1
|
Zhu S, Pan W, Yao Y, Shi K. The efficacy of colchicine compared to placebo for preventing ischemic stroke among individuals with established atherosclerotic cardiovascular diseases: a systematic review and meta-analysis. SCAND CARDIOVASC J 2025; 59:2441112. [PMID: 39689934 DOI: 10.1080/14017431.2024.2441112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 12/19/2024]
Abstract
Background. Colchicine is an anti-inflammatory drug with promising efficacy for preventing cardiovascular events. We aimed to assess the pooled effect of colchicine on ischemic stroke among patients with established atherosclerotic cardiovascular diseases. Methods. PubMed, Scopus, Web of Science, and the Cochrane Library were systematically searched from the inception to August 5, 2024. A random-effects (DerSimonian-Laird) model was used to conduct this meta-analysis. The inclusion criteria were as follows: (I) being a randomized controlled trial; and (II) measuring the efficacy of colchicine compared to placebo for preventing ischemic stroke among those with established atherosclerotic cardiovascular diseases. Results. We identified 13 eligible clinical trials with 24900 participants. Colchicine significantly decreased the risk of ischemic stroke (relative risk (RR) 0.85, 95% confidence interval (CI) (0.72, 0.99), I2=2.92%) among those with established atherosclerotic cardiovascular diseases. Colchicine was more effective when used at 0.5 mg/day (RR 0.86, 95% CI (0.75, 0.99)), prescribed for more than 30 days (RR 0.86, 95% CI (0.75, 1.00)) or for more than 90 days (RR 0.65, 95% CI (0.46, 0.92)), or administered for patients with acute coronary syndrome (RR 0.46, 95% CI (0.23, 0.92)). In addition, colchicine was more effective in studies with a sample size of more than 500 patients, consistent with sensitivity analysis, which indicated that the results relied on large-sized clinical trials. Conclusion. Colchicine may decrease the risk of ischemic stroke among patients with established atherosclerotic cardiovascular diseases, particularly after long-term use; however, future studies are needed due to inconsistencies between existing trials.
Collapse
Affiliation(s)
- Shulai Zhu
- Department of Neurology, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, China
| | - Weiwei Pan
- Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, China
| | - Yingjie Yao
- Department of Cardiology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Kai Shi
- Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
2
|
Noll G, Borelli WV, Mantovani GP, Martins SCO, Sposato LA. Low-dose colchicine for stroke prevention: A systematic overview of systematic reviews and meta-analyses. J Stroke Cerebrovasc Dis 2024; 34:108167. [PMID: 39653300 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Stroke incidence remains a significant concern despite optimized prevention strategies. Colchicine shows potential for improving stroke prevention globally. AIMS To summarize efficacy and safety estimates from systematic reviews and meta-analyses (SRMAs) of randomized controlled trials (RCTs) comparing colchicine to usual care or placebo for stroke prevention. METHODS We conducted an overview of SRMAs according to the Preferred Reporting Items for Overviews of Reviews guidelines through a systematic search in Pubmed, Embase, and the Cochrane Library. Statistical analysis was performed using RevMan Web. Heterogeneity was assessed with I² statistics. RESULTS Thirty-two studies were included. Colchicine significantly reduced stroke recurrence (RR 0.46; 95 % CI 0.41-0.52; p < 0.0001; I² = 0 %; OR 0.44, 95 % CI 0.36-0.55; p < 0.0001; I² = 0 %) but increased gastrointestinal adverse events (RR 1.54, 95 % CI 1.33-1.79; p < 0.0001; I² = 63 %; OR 1.60, 95 % CI 1.08-2.38; p = 0.0007; I² = 82 %). Most SRMAs (93.75 %) showed reduced stroke incidence (RR 0.26-0.54), while 65.22 % reported increased gastrointestinal events (RR 1.05-2.66). No significant differences were observed in mortality, infection or cancer rates. Overall quality was appraised as high in 28.12 %, moderate in 6.25 %, low in 40.06 %, and critically low in 25 % of SRMAs. Data were primarily derived from seven RCTs with low risk of bias. CONCLUSIONS Moderate-quality evidence supports colchicine's benefits and reasonable safety for preventing stroke among high-risk populations. However, stroke was not the primary endpoint in analyzed studies. RCTs directly assessing colchicine for stroke prevention are warranted.
Collapse
Affiliation(s)
- Giovani Noll
- Department of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Gabriel Paulo Mantovani
- Department of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Sheila Cristina Ouriques Martins
- Department of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Department of Neurology, Hospital Moinhos de Ventos, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Luciano A Sposato
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada.
| |
Collapse
|
3
|
Tramujas L, Nogueira A, Felix N, de Barros E Silva PGM, Abizaid A, Cavalcanti AB. Association of colchicine use with cardiovascular and limb events in peripheral artery disease: Insights from a retrospective cohort study. Atherosclerosis 2024; 398:118563. [PMID: 39299823 DOI: 10.1016/j.atherosclerosis.2024.118563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND AIMS Colchicine has demonstrated efficacy in treating coronary artery disease, but its efficacy in peripheral artery disease (PAD) remains uncertain. This study aims to address this gap in knowledge. METHODS A retrospective cohort study was conducted using the TriNetX Network, selecting patients with lower limb PAD between January 1, 2011, and January 1, 2024. Colchicine users were matched 1:1 with non-users through propensity score matching, considering demographics, medical conditions, medications, and psychosocial factors. The primary outcome was a composite of major adverse cardiovascular and limb events (MACLE) - including lower limb amputation, revascularization for lower limb ischemia, acute myocardial infarction, ischemic stroke, and all-cause mortality - over a ten-year follow-up. RESULTS From 53,568 colchicine-treated and 1,499,969 untreated patients with lower limb PAD, 52,350 pairs were successfully matched. Over ten years, colchicine was associated with a significant reduction in MACLE (hazard ratio, [HR] 0.90, 95% CI 0.88-0.92, p < 0.001), any lower limb amputation (HR 0.84, 95% CI 0.75-0.94, p = 0.002), revascularization for lower limb ischemia (HR 0.85, 95% CI 0.82-0.88, p < 0.001), major adverse cardiovascular events (HR 0.93, 95% CI 0.91-0.95, p < 0.001), and all-cause mortality (HR 0.90, 95% CI 0.87-0.92, p < 0.001). It also result in a reduced risk of ischemic stroke (HR 0.95, 95% CI 0.92-0.98, p = 0.001), but not of acute myocardial infarction (HR 0.98, 95% CI 0.95-1.01, p = 0.24). CONCLUSIONS Colchicine significantly reduced major adverse cardiovascular and limb events in patients with lower limb PAD, supporting the need for further investigation.
Collapse
Affiliation(s)
| | - Alleh Nogueira
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Nicole Felix
- Federal University of Campina Grande, Campina Grande, Brazil
| | | | - Alexandre Abizaid
- Hcor Research Institute, São Paulo, Brazil; Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
4
|
Tercan H, van Broekhoven A, Bahrar H, Opstal T, Cossins BC, Rother N, Rodwell L, Bekkering S, El Messaoudi S, Riksen NP, Cornel JH. The Effect of Low-Dose Colchicine on the Phenotype and Function of Neutrophils and Monocytes in Patients with Chronic Coronary Artery Disease: A Double-Blind Randomized Placebo-Controlled Cross-Over Study. Clin Pharmacol Ther 2024; 116:1325-1333. [PMID: 39115262 DOI: 10.1002/cpt.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/03/2024] [Indexed: 10/16/2024]
Abstract
Recent landmark trials showed that colchicine provides a substantial benefit in reducing major cardiovascular events in patients with coronary artery disease. Yet, its exact mechanism of action is still poorly understood. This study aimed to unravel the effect of colchicine on monocyte and neutrophil phenotype and function. A randomized double-blind placebo-controlled cross-over intervention study was executed in patients with a history of myocardial infarction. In neutrophils, colchicine treatment decreased CD62L expression and NGAL release upon ex vivo stimulation and increased PMA-induced ROS production. The effects of colchicine on monocytes were limited to a decrease in HLA-DR expression in the intermediate and nonclassical monocytes. Also, on the level of RNA expression, colchicine did not affect monocyte phenotype, while affecting various immunomodulating genes in neutrophils. Overall, our study suggests that treatment with colchicine affects neutrophil function, particularly by reducing neutrophil recruitment, lowering concentrations of NGAL, and changing the expression of various genes with immunomodulatory potential, whereas the effect on monocytes is limited.
Collapse
Affiliation(s)
- Helin Tercan
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Amber van Broekhoven
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Harsh Bahrar
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Tjerk Opstal
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Cardiology, Northwest Clinics, Alkmaar, The Netherlands
| | - Benjamin C Cossins
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Laura Rodwell
- Section Biostatistics, IQ Health, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Saloua El Messaoudi
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan H Cornel
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Cardiology, Northwest Clinics, Alkmaar, The Netherlands
- Dutch Network for Cardiovascular Research (WCN), Utrecht, The Netherlands
| |
Collapse
|
5
|
Nishimiya K, Sharma G, Singh K, Ahsen OO, Gardecki JA, Tearney GJ. Imaging human coronary cholesterol/urate crystals with cross-polarized micro-optical coherence tomography. Front Cardiovasc Med 2024; 11:1433227. [PMID: 39529973 PMCID: PMC11551715 DOI: 10.3389/fcvm.2024.1433227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Birefringent crystals such as monosodium-urate (MSU) and cholesterol crystals (CC) likely contribute to the progression of coronary artery disease (CAD) due to their potential to exacerbate inflammation through inflammatory cytokine activation. Here, we present cross-polarized micro-optical coherence tomography (CP-µOCT) for visualizing individual birefringent crystals in human coronary arteries. Methods and results Human cadaver coronary arteries with a history of CAD with or without gout were dissected for CP-µOCT imaging. Specimens were processed for histological identification of birefringence under polarization light microscopy (PLM). CP-µOCT visualized needle-crystals that appeared as long projections in orthogonal planes, and PLM confirmed that CP-µOCT-delineated needle-crystals demonstrated negative birefringence. The needle-crystals were dissolved after immersion in uricase (p < 0.05), and thus were MSU. CP-µOCT was three-dimensionally volume-rendered for counting MSU and CCs in 79 regions of interest sized [750 (x) × 500 (y) × 400 (z) µm]. Crystal counts were normalized by the total coronary length utilized. The relationship between CP-µOCT-delineated MSU counts and those seen in corresponding histology, and the difference in coronary MSU amongst gout vs. non-gout patients was analyzed. CP-µOCT-delineated MSU counts were significantly correlated with MSU counted by PLM-based histology (R = 0.98, p < 0.01), and with histology-derived intimal thickening (R = 0.51, p < 0.01). MSU and CCs were both significantly greater in gout patients compared with non-gout patients (p < 0.05). Discussion These results demonstrate a significant increase in CP-µOCT-delineated crystals in gout vs. non-gout patients, suggesting that this technology can be used to improve our understanding of crystal-driven coronary pathogenesis.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gargi Sharma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Kanwarpal Singh
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Osman O. Ahsen
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Pathology, Harvard Medical School Mass General Brigham, Boston, MA, United States
| |
Collapse
|
6
|
Hassanain HA, El Wakeel LM, Khorshid H, Ahmed MA. Colchicine effect on biomarkers of cardiac remodelling and atherosclerosis in ST-elevation myocardial infarction: A randomized controlled trial. Br J Clin Pharmacol 2024. [PMID: 39359014 DOI: 10.1111/bcp.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/09/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS Owing to its underlying inflammatory nature, atherosclerotic cardiovascular disease remains the leading global cause of mortality, particularly post-ST-elevation myocardial infarction (STEMI), a condition with significant risk for further cardiovascular events and mortality. This study aimed to investigate colchicine's effect on inflammation, cardiac remodelling and atherosclerotic risk in STEMI patients. METHODS We conducted a randomized controlled study on 88 STEMI patients undergoing percutaneous coronary intervention. Eligible patients were randomly assigned to 1 of 2 groups. The control group received the guideline-directed medical therapy for STEMI, and the test group received guideline-directed medical therapy and 0.5 mg colchicine twice daily for 3 months. The soluble suppressor of tumorigenicity (sST2), interleukin-1β, lipid profile parameters, triglyceride (TG)/high-density lipoprotein (HDL-C) ratio levels and left ventricular ejection fraction were evaluated for patients at baseline and the end of the 3 months. RESULTS No significant effects were reported for colchicine on sST2, interleukin-1β levels or left ventricular ejection fraction. Colchicine significantly lowered TG levels vs. controls, 134 (46-353) vs. 176 (72-825) respectively, P = .02, as well as TG/HDL-C ratio levels, 4.16 (2.75-5.24) vs. 5.11 (3.51-8.33),` respectively, P = .024. sST2 levels of the studied cohort were positively correlated with their TG/HDL-C ratio levels (R = .459, P < .001) at the end of follow-up. CONCLUSION Our study highlights a promising impact of colchicine on atherosclerosis and cardiac remodelling factors in STEMI patients. Colchicine significantly reduced TG levels and TG/HDL-C ratio and was safe and well tolerated. Larger long-term studies powered to assess clinical outcomes of remodelling are necessary to confirm its beneficial effects in STEMI. CLINICALTRIAL GOV REGISTRATION ID NCT06054100.
Collapse
Affiliation(s)
| | | | - Hazem Khorshid
- Cardiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Adel Ahmed
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Chen Y, Luo X, Xu B, Bao X, Jia H, Yu B. Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis. Cardiovasc Drugs Ther 2024; 38:819-832. [PMID: 36522550 DOI: 10.1007/s10557-022-07414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Nowadays, as a type of orderly and active death determined by genes, programmed cell death (PCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis, has attracted much attention owing to its participation in numerous chronic cardiovascular diseases, especially atherosclerosis (AS), a canonical chronic inflammatory disease featured by lipid metabolism disturbance. Abundant researches have reported that PCD under distinct internal conditions fulfills different roles of atherosclerotic pathological processes, including lipid core expansion, leukocyte adhesion, and infiltration. Noteworthy, emerging evidence recently has also suggested that oxidative stress (OS), an imbalance of antioxidants and oxygen free radicals, has the potential to mediate PCD occurrence via multiple ways, including oxidization and deubiquitination. Interestingly, more recently, several studies have proposed that the mediating mechanisms could effect on the atherosclerotic initiation and progression significantly from variable aspects, so it is of great clinical importance to clarify how OS-mediated PCD and AS interact. Herein, with the aim of summarizing potential and sufficient atherosclerotic therapy targets, we seek to provide extensive analysis of the specific regulatory mechanisms of PCD mediated by OS and their multifaceted effects on the entire pathological atherosclerotic progression.
Collapse
Affiliation(s)
- Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| |
Collapse
|
8
|
Yousefzadeh M, Khosrobeigi A, Salehi A. Studying the efficacy of low-dose colchicine on clinical outcomes of patients with STEMI: a randomized controlled trial. Egypt Heart J 2024; 76:85. [PMID: 38969838 PMCID: PMC11229522 DOI: 10.1186/s43044-024-00515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Numerous studies have underscored the essential role of inflammation across all stages of atherosclerosis. While various anti-inflammatory interventions have been implemented to mitigate inflammation-induced injuries, outcomes have been conflicting. Given the essential role of inflammation in these patients and limited data regarding the efficacy of low-dose Colchicine as an anti-inflammatory drug, we aimed to study the efficacy of low-dose Colchicine on clinical outcomes of patients with STEMI in Iran. RESULTS Participants presented with STEMI and qualified revascularization at Shahid Beheshti Hospital in Qom during 2022 and 2023 were included into the study. This study included 172 STEMI patients (114 males and 58 females) within the mean age of 58.93 ± 7.79. Results indicate that colchicine (2 mg for loading dose and 0.5 mg daily for 30 days) and placebo group were not significant differences in identical profiles regarding age and gender. Analyses revealed no significant differences in clinical outcome after the 40-day follow-up period. CONCLUSIONS This study revealed that the addition of colchicine did not yield a significant benefit in enhancing the outcomes of patients with STEMI. CLINICAL TRIAL REGISTRATION This study was prospectively registered on Iranian registry of clinical trials, with registration number (IRCT20231001059578N1).
Collapse
Affiliation(s)
- Mojtaba Yousefzadeh
- Cardiology Research Department, Qom University of Medical Sciences, Qom, Iran
| | - Ali Khosrobeigi
- Cardiology Research Department, Qom University of Medical Sciences, Qom, Iran.
| | - Ayoub Salehi
- Cardiology Research Department, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
9
|
Bulnes JF, González L, Velásquez L, Orellana MP, Venturelli PM, Martínez G. Role of inflammation and evidence for the use of colchicine in patients with acute coronary syndrome. Front Cardiovasc Med 2024; 11:1356023. [PMID: 38993522 PMCID: PMC11236697 DOI: 10.3389/fcvm.2024.1356023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Acute Coronary Syndrome (ACS) significantly contributes to cardiovascular death worldwide. ACS may arise from the disruption of an atherosclerotic plaque, ultimately leading to acute ischemia and myocardial infarction. In the pathogenesis of atherosclerosis, inflammation assumes a pivotal role, not solely in the initiation and complications of atherosclerotic plaque formation, but also in the myocardial response to ischemic insult. Acute inflammatory processes, coupled with time to reperfusion, orchestrate ischemic and reperfusion injuries, dictating infarct magnitude and acute left ventricular (LV) remodeling. Conversely, chronic inflammation, alongside neurohumoral activation, governs persistent LV remodeling. The interplay between chronic LV remodeling and recurrent ischemic episodes delineates the progression of the disease toward heart failure and cardiovascular death. Colchicine exerts anti-inflammatory properties affecting both the myocardium and atherosclerotic plaque by modulating the activity of monocyte/macrophages, neutrophils, and platelets. This modulation can potentially result in a more favorable LV remodeling and forestalls the recurrence of ACS. This narrative review aims to delineate the role of inflammation across the different phases of ACS pathophysiology and describe the mechanistic underpinnings of colchicine, exploring its purported role in modulating each of these stages.
Collapse
Affiliation(s)
- Juan Francisco Bulnes
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leticia González
- Centro de Imágenes Biomédicas, Departamento de Radiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo Velásquez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Paz Orellana
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Gonzalo Martínez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago, Chile
- Heart Research Institute, Sydney, NSW, Australia
| |
Collapse
|
10
|
Guan J, Abudouaini H, Lin K, Yang K. Emerging insights into the role of IL-1 inhibitors and colchicine for inflammation control in type 2 diabetes. Diabetol Metab Syndr 2024; 16:140. [PMID: 38918878 PMCID: PMC11197348 DOI: 10.1186/s13098-024-01369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent chronic metabolic disorder, is closely linked to persistent low-grade inflammation, significantly contributing to its development and progression. This review provides a comprehensive examination of the inflammatory mechanisms underlying T2DM, focusing on the role of the NLRP3 inflammasome and interleukin-1β (IL-1β) in mediating inflammatory responses. We discuss the therapeutic potential of IL-1 inhibitors and colchicine, highlighting their mechanisms in inhibiting the NLRP3 inflammasome and reducing IL-1β production. Recent studies indicate that these agents could effectively mitigate inflammation, offering promising avenues for the prevention and management of T2DM. By exploring the intricate connections between metabolic disturbances and chronic inflammation, this review underscores the need for novel anti-inflammatory strategies to address T2DM and its complications.
Collapse
Affiliation(s)
- Jianbin Guan
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Haimiti Abudouaini
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Kaiyuan Lin
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Kaitan Yang
- Honghui-Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
- Truma Rehabilitation Department, Honghui-Hospital,Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
11
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Wang X, Zhang Y, Du L, Jiang Z, Guo Y, Wang K, Zhou Y, Yin X, Guo X. TUDCA alleviates atherosclerosis by inhibiting AIM2 inflammasome and enhancing cholesterol efflux capacity in macrophage. iScience 2024; 27:109849. [PMID: 38784008 PMCID: PMC11112614 DOI: 10.1016/j.isci.2024.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Cholesterol efflux capacity (CEC) dysfunction in macrophages is important in atherosclerosis. However, the mechanism underlying CEC dysfunction remains unclear. We described the characteristics of ATF4 and inflammasome activation in macrophages during atherosclerosis through scRNA sequencing analysis. Then model of hyperlipemia was established in ApoE-/- mice; some were treated with tauroursodeoxycholic acid (TUDCA). TUDCA decreased the ATF4, Hspa, and inflammasome activation, reduced plaque area of the artery, and promoted CEC in macrophages. Furthermore, TUDCA abolished oxLDL-induced foam cell formation by inhibiting activation of the PERK/eIF2α/ATF4 and AIM2 inflammasome in macrophages. Further assays revealed ATF4 binding to AIM2 promoter, promoting its transcriptional activity significantly. Then we discovered that ATF4 affected AIM2-mediated foam cell formation by targeting ABCA1, which could be blocked by TUDCA. Our study demonstrated that TUDCA alleviates atherosclerosis by inhibiting AIM2 inflammasome and enhancing CEC of macrophage, which provided possibilities for the development of therapies.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuesheng Zhang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yan Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kai Wang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yijiang Zhou
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiang Yin
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
13
|
Huang R, Sun Y, Liu R, Zhu B, Zhang H, Wu H. ZeXieYin formula alleviates atherosclerosis by inhibiting the MAPK/NF-κB signaling pathway in APOE-/- mice to attenuate vascular inflammation and increase plaque stability. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117969. [PMID: 38437888 DOI: 10.1016/j.jep.2024.117969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zexieyin formula (ZXYF), a traditional Chinese herbal formula recorded in the Huangdi Neijing to have efficacy in relieving spleen dampness and heat accumulation syndrome, which is also the key pathogenesis of atherosclerosis (AS). The efficacy has demonstrated by our previous studies. However, the intrinsic mechanism of ZXYF for treating vascular inflammation and the effect of inflammatory response on plaque are not known. Currently, plaque stabilization is crucial for the prognosis of AS. AIM OF THE STUDY Our study mainly focused on the therapeutic effects of ZXYF on high-fat diet (HFD)-induced vascular inflammation and vulnerable plaques (VP) in mice and explored its underlying mechanism. METHODS AND MATERIALS Male apolipoprotein E knockout (APOE-/-) mice were fed HFD for 8 weeks to establish a VP model. During this period, the mice were also administered ZXYF, while atorvastatin (ATO) was used as a positive control. Aortic plaque area and morphology were detected by oil red staining and HE staining. Aortic plaque collagen content was detected by Masson staining. M1/M2 type macrophages were detected using immunofluorescence (IF). The study analyzed the levels of inflammation-related cytokines (IL-1β, IL-10, IL-6), MAPK/NF-κB pathway proteins, and NLRP3 inflammasomes (NLRP3, Caspase-1) using Western blot. Additionally, the levels of matrix metalloproteinase (MMP)-2 and MMP-9 and α-smooth muscle actin (α-SMA) in the aorta were analyzed using immunohistochemistry (IHC). The plaque instability index was calculated for each group using the vulnerable plaque formula. RESULTS In this study, APOE-/- mice were fed high-fat diet for 8 weeks. The results of oil-red and HE staining indicated a significant increase in the aortic plaque area of the mice, which exhibited a typical VP phenotype. ZXYF and ATO significantly improved AS plaques and prevented plaque rupture. HFD exacerbated vascular inflammation, stimulated macrophage conversion to M1-type through the MAPK/NF-κB signaling pathway, and released pro-inflammatory factors such as interleukin (IL)-1β, IL-1α, and IL-6. These factors activated NLRP3 inflammasome, leading to cellular death. However, ZXYF could reverse this trend and promote the conversion of macrophages to the anti-inflammatory M2 type. The anti-inflammatory effect of ATO was not significant. Moreover, HFD promoted the release of MMP-2 and MMP-9 from macrophages, which degraded plaque collagen, and induced a decrease in plaque SMC content, resulting in a thinning of the plaque fibrous cap. In contrast, ZXYF inhibited the decomposition of plaque collagen and increased the content of plaque smooth muscle cells (SMC) by reducing macrophage secretion of MMPs, thereby stabilizing plaques. Although ATO could reverse the decrease in plaque collagen and SMC content, its effect on MMPs was not significant. Finally, we calculated the vulnerability index to assess the overall risk of the plaque vulnerability phenotype. In line with these findings, ZXYF and ATO were able to effectively reverse the increase in the vulnerability index caused by HFD and lower the risk of adverse cardiovascular events. CONCLUSION Our results suggested that ZXYF could reduce inflammation and increase plaque stability by inhibiting the MAPK/NF-κB signaling pathway, which provided a theoretical basis for clinical application and subsequent research.
Collapse
Affiliation(s)
- Rumin Huang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China
| | - Ruiyi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Boran Zhu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Chinese Medicine, Jinan University, Guangzhou, 510632, PR China.
| | - Haoxin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
McCauley MD, Iacobellis G, Li N, Nattel S, Goldberger JJ. Targeting the Substrate for Atrial Fibrillation: JACC Review Topic of the Week. J Am Coll Cardiol 2024; 83:2015-2027. [PMID: 38749620 PMCID: PMC11460524 DOI: 10.1016/j.jacc.2024.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 06/17/2024]
Abstract
The identification of the pulmonary veins as a trigger source for atrial fibrillation (AF) has established pulmonary vein isolation (PVI) as a key target for AF ablation. However, PVI alone does not prevent recurrent AF in many patients, and numerous additional ablation strategies have failed to improve on PVI outcomes. This therapeutic limitation may be due, in part, to a failure to identify and intervene specifically on the pro-fibrillatory substrate within the atria and pulmonary veins. In this review paper, we highlight several emerging approaches with clinical potential that target atrial cardiomyopathy-the underlying anatomic, electrical, and/or autonomic disease affecting the atrium-in various stages of practice and investigation. In particular, we consider the evolving roles of risk factor modification, targeting of epicardial adipose tissue, tissue fibrosis, oxidative stress, and the inflammasome, along with aggressive early anti-AF therapy in AF management. Attention to combatting substrate development promises to improve outcomes in AF.
Collapse
Affiliation(s)
- Mark D McCauley
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Na Li
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, Texas, USA
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| | - Jeffrey J Goldberger
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
15
|
Mao J, Chen Y, Zong Q, Liu C, Xie J, Wang Y, Fisher D, Hien NTT, Pronyuk K, Musabaev E, Li Y, Zhao L, Dang Y. Corilagin alleviates atherosclerosis by inhibiting NLRP3 inflammasome activation via the Olfr2 signaling pathway in vitro and in vivo. Front Immunol 2024; 15:1364161. [PMID: 38803504 PMCID: PMC11128681 DOI: 10.3389/fimmu.2024.1364161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Atherosclerosis, a leading cause of global cardiovascular mortality, is characterized by chronic inflammation. Central to this process is the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which significantly influences atherosclerotic progression. Recent research has identified that the olfactory receptor 2 (Olfr2) in vascular macrophages is instrumental in driving atherosclerosis through NLRP3- dependent IL-1 production. Methods To investigate the effects of Corilagin, noted for its anti-inflammatory attributes, on atherosclerotic development and the Olfr2 signaling pathway, our study employed an atherosclerosis model in ApoE-/- mice, fed a high-fat, high-cholesterol diet, alongside cellular models in Ana-1 cells and mouse bone marrow-derived macrophages, stimulated with lipopolysaccharides and oxidized low-density lipoprotein. Results The vivo and vitro experiments indicated that Corilagin could effectively reduce serum lipid levels, alleviate aortic pathological changes, and decrease intimal lipid deposition. Additionally, as results showed, Corilagin was able to cut down expressions of molecules associated with the Olfr2 signaling pathway. Discussion Our findings indicated that Corilagin effectively inhibited NLRP3 inflammasome activation, consequently diminishing inflammation, macrophage polarization, and pyroptosis in the mouse aorta and cellular models via the Olfr2 pathway. This suggests a novel therapeutic mechanism of Corilagin in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jinqian Mao
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiushuo Zong
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiling Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Xie
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujie Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of The Western Cape, Cape Town, South Africa
| | | | - Khrystyna Pronyuk
- Department of Infectious Diseases, O.Bogomolets National Medical University, Kyiv, Ukraine
| | - Erkin Musabaev
- Research Institute of Virology, Ministry of Health, Tashkent, Uzbekistan
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Dang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zhang RS, Weber BN, Araiza-Garaygordobil D, Garshick MS. Colchicine for the Prevention of Cardiovascular Disease: Potential Global Implementation. Curr Cardiol Rep 2024; 26:423-434. [PMID: 38573553 PMCID: PMC11196186 DOI: 10.1007/s11886-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW Targeting traditional cardiovascular risk factors is effective in reducing recurrent cardiovascular events, yet the presence of residual cardiovascular risk due to underlying systemic inflammation is a largely unaddressed opportunity. This review aims to comprehensively assess the evolving role of colchicine as a therapeutic approach targeting residual inflammatory risk in the context of those with coronary artery disease (CAD). RECENT FINDINGS Inflammation plays a significant role in promoting atherosclerosis, and targeting anti-inflammatory pathways has the potential to decrease cardiovascular events. Low-dose colchicine (0.5 mg/day orally), when added to guideline-directed medical care for CAD, safely decreases major adverse cardiovascular events (MACE) by 31% in stable atherosclerosis patients and 23% in those after recent myocardial infarctions. Meta-analyses of recent randomized control trials further support both the efficacy and safety of colchicine, particularly when added to other standard cardiovascular therapies, including statin therapy. The European Society of Cardiology and other national guidelines endorse the use of low-dose colchicine in patients across the spectrum of CAD. Recently, colchicine was FDA-approved in the United States as the first anti-inflammatory therapy for the reduction of cardiovascular events. In a period of a rising incidence of CAD across the globe, colchicine represents a unique opportunity to decrease MACE due to its large magnitude of benefits and general affordability. However, challenges with drug interactions must be addressed, especially in those regions where HIV, hepatitis, and tuberculosis are prevalent. Colchicine is safe and effective at reducing cardiovascular events across a broad spectrum of coronary syndromes. The ability to simultaneously target traditional risk factors and mitigate residual inflammatory risk marks a substantial advancement in cardiovascular prevention strategies, heralding a new era in the global battle against CAD.
Collapse
Affiliation(s)
- Robert S Zhang
- Leon H. Charney Division of Cardiology and Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Brittany N Weber
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Michael S Garshick
- Leon H. Charney Division of Cardiology and Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
17
|
Wang T, Ding J, Cheng X, Yang Q, Hu P. Glucagon-like peptide-1 receptor agonists: new strategies and therapeutic targets to treat atherosclerotic cardiovascular disease. Front Pharmacol 2024; 15:1396656. [PMID: 38720777 PMCID: PMC11076696 DOI: 10.3389/fphar.2024.1396656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of cardiovascular mortality and is increasingly prevalent in our population. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) can safely and effectively lower glucose levels while concurrently managing the full spectrum of ASCVD risk factors and improving patients' long-term prognosis. Several cardiovascular outcome trials (CVOTs) have been carried out to further investigate the cardiovascular benefits of GLP-1RAs. Analyzing data from CVOTs can provide insights into the pathophysiologic mechanisms by which GLP-1RAs are linked to ASCVD and define the use of GLP-1RAs in clinical practice. Here, we discussed various mechanisms hypothesized in previous animal and preclinical human studies, including blockade of the production of adhesion molecules and inflammatory factors, induction of endothelial cells' synthesis of nitric oxide, protection of mitochondrial function and restriction of oxidative stress, suppression of NOD-like receptor thermal protein domain associated protein three inflammasome, reduction of foam cell formation and macrophage inflammation, and amelioration of vascular smooth muscle cell dysfunction, to help explain the cardiovascular benefits of GLP-1RAs in CVOTs. This paper provides an overview of the clinical research, molecular processes, and possible therapeutic applications of GLP-1RAs in ASCVD, while also addressing current limitations in the literature and suggesting future research directions.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juncan Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Yeh JJ, Liw PX, Wong YS, Kao HM, Lee CH, Lin CL, Kao CH. The effect of colchicine on cancer risk in patients with immune-mediated inflammatory diseases: a time-dependent study based on the Taiwan's National Health Insurance Research Database. Eur J Med Res 2024; 29:245. [PMID: 38649928 PMCID: PMC11034118 DOI: 10.1186/s40001-024-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND To determine the effect of colchicine on cancer risk in patients with the immune-mediated inflammatory diseases (IMIDs)-related to colchicine use. METHODS This is a time-dependent propensity-matched general population study based on the National Health Insurance Research Database (NHIRD) of Taiwan. We identified the IMIDs patients (n = 111,644) newly diagnosed between 2000 and 2012 based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)-274,712, 135, 136.1, 279.49, 518.3, 287.0, 696.0, 696.1, 696.8, 420, 429.4, 710.0, 710.1, 710.3, 710.4, 714.0, 720, 55.0, 55.1, 55.9, 556. INCLUSION CRITERIA aged ≧ 20 years, if a patient had at least these disease diagnosis requirements within 1 year of follow-up, and, these patients had at least two outpatient visits or an inpatient visit. After propensity-matched according to age, sex, comorbidities, medications and index date, the IMIDs patients enter into colchicine users (N = 16,026) and colchicine nonusers (N = 16,026). Furthermore, time-dependent Cox models were used to analyze cancer risk in propensity-matched colchicine users compared with the nonusers. The cumulative cancer incidence was analyzed using Cox proportional regression analysis. We calculated adjusted hazard ratios (aHRs) and their 95% confidence intervals (95% CIs) for cancer after adjusting for sex, age, comorbidities, and use of medicine including acetylcysteine, medication for smoking cessation such as nicotine replacement medicines (the nicotine patch) and pill medicines (varenicline), anti-inflammatory drugs and immunosuppressant drugs. RESULTS Comparing the colchicine nonusers, all cancer risk were mildly attenuated, the (aHR (95% CI)) of all cancer is (0.84 (0.55, 0.99)). Meanwhile, the colchicine users were associated with the lower incidence of the colorectal cancer, the (aHRs (95% CI)) is (0.22 (0.19, 0.89)). Those aged < 65 years and male/female having the colchicine users were associated with lower risk the colorectal cancer also. Moreover, the colchicine > 20 days use with the lower aHR for colorectal cancer. CONCLUSION Colchicine was associated with the lower aHR of the all cancer and colorectal cancer formation in patients with the IMIDs.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Chest Medicine, Geriatric Medicine and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Xuan Liw
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Sin Wong
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Husan-Min Kao
- Department of Geriatric Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Hsun Lee
- Department of Medical Education, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan.
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
- Artificial Intelligence Center, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
19
|
Fang C, Zuo K, Liu Z, Xu L, Yang X. Disordered GPR43/NLRP3 expression in peripheral leukocytes of patients with atrial fibrillation is associated with intestinal short chain fatty acids levels. Eur J Med Res 2024; 29:233. [PMID: 38622672 PMCID: PMC11017637 DOI: 10.1186/s40001-024-01825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with circulating inflammation. Short-chain fatty acids (SCFAs) derived from gut microbiota (GM) regulate leukocyte function and inhibit the release of inflammatory cytokines, which are partly mediated by the G-protein-coupled receptor 43 (GPR43) signaling. This study aimed to investigate the expression of GPR43/NOD-like receptors family pyrin domain containing 3 (NLRP3) in leukocytes and the interaction with intestinal SCFAs levels in AF patients. METHODS Expressions of GPR43 and NLRP3 mRNA in peripheral blood leukocytes from 23 AF patients and 25 non-AF controls were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Expressions of leukocyte GPR43 and NLRP3 protein were evaluated by western blot analysis. The levels of plasma IL-1β were measured by enzyme-linked immunosorbent assay (ELISA). The fecal SCFAs levels based on GC/MS metabolome of corresponding 21 controls and 14 AF patients were acquired from our published dataset. To evaluate the expression of NLRP3 and GPR43 and the release of IL-1β, human THP-1 cells were stimulated with or without SCFAs (acetate, propionate, and butyrate), lipopolysaccharide (LPS), and nigericin in vitro, respectively. RESULTS Compared to the controls, the mRNA expression in peripheral leukocytes was significantly reduced in AF patients (P = 0.011) coupled with the increase in downstream leukocyte NLRP3 mRNA expression (P = 0.007) and plasma IL-1β levels (P < 0.001), consistent with changes in GPR43 and NLRP3 protein expression. Furthermore, leukocyte GPR43 mRNA levels were positively correlated with fecal GM-derived acetic acid (P = 0.046) and negatively correlated with NLRP3 mRNA expression (P = 0.024). In contrast to the negative correlation between left atrial diameter (LAD) and GPR43 (P = 0.008), LAD was positively correlated with the leukocyte NLRP3 mRNA levels (P = 0.024). Subsequent mediation analysis showed that 68.88% of the total effect of intestinal acetic acid on AF might be mediated by leukocyte GPR43/NLRP3. The constructed GPR43-NLRP3 score might have a predictive potential for AF detection (AUC = 0.81, P < 0.001). Moreover, SCFAs treatment increased GPR43 expression and remarkably reduced LPS/nigericin-induced NLRP3 expression and IL-1β release in human THP-1 cells in vitro. CONCLUSIONS Disrupted interactions between GPR43 and NLRP3 expression in peripheral blood leukocytes, associated with reduced intestinal GM-derived SCFAs, especially acetic acid, may be involved in AF development and left atrial enlargement by enhancing circulating inflammation.
Collapse
Affiliation(s)
- Chen Fang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Kun Zuo
- Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Heart Center, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Zheng Liu
- Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Heart Center, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| | - Li Xu
- Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Heart Center, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| | - Xinchun Yang
- Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Heart Center, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
20
|
Kidder E, Gangopadhyay S, Francis S, Alfaidi M. "How to Release or Not Release, That Is the Question." A Review of Interleukin-1 Cellular Release Mechanisms in Vascular Inflammation. J Am Heart Assoc 2024; 13:e032987. [PMID: 38390810 PMCID: PMC10944040 DOI: 10.1161/jaha.123.032987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, characterized by atherosclerotic activity within large and medium-sized arteries. Inflammation has been shown to be a primary driver of atherosclerotic plaque formation, with interleukin-1 (IL-1) having a principal role. This review focuses on the current state of knowledge of molecular mechanisms of IL-1 release from cells in atherosclerotic plaques. A more in-depth understanding of the process of IL-1's release into the vascular environment is necessary for the treatment of inflammatory disease processes, as the current selection of medicines being used primarily target IL-1 after it has been released. IL-1 is secreted by several heterogenous mechanisms, some of which are cell type-specific and could provide further specialized targets for therapeutic intervention. A major unmet challenge is to understand the mechanism before and leading to IL-1 release, especially by cells in atherosclerotic plaques, including endothelial cells, vascular smooth muscle cells, and macrophages. Data so far indicate a heterogeneity of IL-1 release mechanisms that vary according to cell type and are stimulus-dependent. Unraveling this complexity may reveal new targets to block excess vascular inflammation.
Collapse
Affiliation(s)
- Evan Kidder
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Siddhartha Gangopadhyay
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| | - Sheila Francis
- School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Mabruka Alfaidi
- Division of Cardiology, Department of Internal MedicineLouisiana State University Health Sciences CentreShreveportLAUSA
| |
Collapse
|
21
|
Wang S, Chen Y, Wu C, Wang Y, Lin W, Bu R. Trehalose Alleviates Myocardial Ischemia/Reperfusion Injury by Inhibiting NLRP3-Mediated Pyroptosis. Appl Biochem Biotechnol 2024; 196:1194-1210. [PMID: 37378719 DOI: 10.1007/s12010-023-04613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a pathological damage secondary to myocardial ischemia that can further aggravate tissue and organ injuries. Therefore, there is an urgent need to develop an effective approach for alleviating myocardial I/R injury. Trehalose (TRE) is a natural bioactive substance that has been shown to have extensive physiological effects in various animals and plants. However, TRE's protective effects against myocardial I/R injury remain unclear. This study aimed to evaluate the protective effect of TRE pre-treatment in mice with acute myocardial I/R injury and to explore the role of pyroptosis in this process. Mice were pre-treated with trehalose (1 mg/g) or an equivalent amount of saline solution for 7 days. The left anterior descending coronary artery was ligated in mice from the I/R and I/R + TRE groups, followed by 2-h or 24-h reperfusion after 30 min. Transthoracic echocardiography was performed to assess cardiac function in mice. Serum and cardiac tissue samples were obtained to examine the relevant indicators. We established an oxygen-glucose deprivation and re-oxygenation model in neonatal mouse ventricular cardiomyocytes and validated the mechanism by which trehalose affects myocardial necrosis via overexpression or silencing of NLRP3. TRE pre-treatment significantly improved cardiac dysfunction and reduced the infarct size in mice after I/R, accompanied by a decrease in the I/R-induced levels of CK-MB, cTnT, LDH, reactive oxygen species, pro-IL-1β, pro-IL-18, and TUNEL-positive cells. Furthermore, TRE intervention suppressed the expression of pyroptosis-related proteins following I/R. TRE attenuates myocardial I/R injury in mice by inhibiting NLRP3-mediated caspase-1-dependent pyroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Shengnan Wang
- The Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian Province, China
| | - Youfang Chen
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou City, 362000, Fujian Province, China
| | - Chunchun Wu
- The Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian Province, China
| | - Yaoguo Wang
- The Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian Province, China
| | - Weiqiang Lin
- The Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian Province, China
| | - Rongsheng Bu
- The Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, 362000, Fujian Province, China.
| |
Collapse
|
22
|
Dzobo KE, Cupido AJ, Mol BM, Stiekema LC, Versloot M, Winkelmeijer M, Peter J, Pennekamp AM, Havik SR, Vaz FM, van Weeghel M, Prange KH, Levels JH, de Winther MP, Tsimikas S, Groen AK, Stroes ES, de Kleijn DP, Kroon J. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler Thromb Vasc Biol 2024; 44:720-740. [PMID: 38269588 PMCID: PMC10880937 DOI: 10.1161/atvbaha.123.319937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a). METHODS Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions. The atherogenicity of the observed Lp(a)-associated lipids was tested ex vivo in primary human monocytes by RNA sequencing, ELISA, Western blot, and transendothelial migratory assays. Using immunofluorescence staining and single-cell RNA sequencing, the phenotype of macrophages was investigated in human atherosclerotic lesions. RESULTS Compared with healthy individuals with low/normal Lp(a) levels (median, 7 mg/dL [18 nmol/L]; n=13), individuals with elevated Lp(a) levels (median, 87 mg/dL [218 nmol/L]; n=12) demonstrated an increase in lipid species, particularly diacylglycerols (DGs) and lysophosphatidic acid (LPA). DG and the LPA precursor lysophosphatidylcholine were enriched in the Lp(a) fraction. Ex vivo stimulation with DG(40:6) demonstrated a significant upregulation in proinflammatory pathways related to leukocyte migration, chemotaxis, NF-κB (nuclear factor kappa B) signaling, and cytokine production. Functional assessment showed a dose-dependent increase in the secretion of IL (interleukin)-6, IL-8, and IL-1β after DG(40:6) and DG(38:4) stimulation, which was, in part, mediated via the NLRP3 (NOD [nucleotide-binding oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome. Conversely, LPA-stimulated monocytes did not exhibit an inflammatory phenotype. Furthermore, activation of monocytes by DGs and LPA increased their transendothelial migratory capacity. Human atherosclerotic plaques from patients with high Lp(a) levels demonstrated colocalization of Lp(a) with M1 macrophages, and an enrichment of CD68+IL-18+TLR4+ (toll-like receptor) TREM2+ (triggering receptor expressed on myeloid cells) resident macrophages and CD68+CASP1+ (caspase) IL-1B+SELL+ (selectin L) inflammatory macrophages compared with patients with low Lp(a). Finally, potent Lp(a)-lowering treatment (pelacarsen) resulted in a reduction in specific circulating DG lipid subspecies in patients with cardiovascular disease with elevated Lp(a) levels (median, 82 mg/dL [205 nmol/L]). CONCLUSIONS Lp(a)-associated DGs and LPA have a potential role in Lp(a)-induced monocyte inflammation by increasing cytokine secretion and monocyte transendothelial migration. This DG-induced inflammation is, in part, NLRP3 inflammasome dependent.
Collapse
Affiliation(s)
- Kim E. Dzobo
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
| | - Arjen J. Cupido
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Barend M. Mol
- Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands (B.M.M., D.P.V.d.K.)
| | - Lotte C.A. Stiekema
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Miranda Versloot
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
| | - Maaike Winkelmeijer
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Jorge Peter
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Anne-Marije Pennekamp
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Stefan R. Havik
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Frédéric M. Vaz
- Core Facility Metabolomics (F.M.V., M.v.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Michel van Weeghel
- Core Facility Metabolomics (F.M.V., M.v.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Koen H.M. Prange
- Department of Medical Biochemistry, Amsterdam Infection and Immunity (K.H.M.P., M.P.J.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Johannes H.M. Levels
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Infection and Immunity (K.H.M.P., M.P.J.d.W.), Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla (S.T.)
| | - Albert K. Groen
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Erik S.G. Stroes
- Vascular Medicine (A.J.C., L.C.A.S., E.S.G.S.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
| | - Dominique P.V. de Kleijn
- Department of Vascular Surgery, University Medical Centre Utrecht, the Netherlands (B.M.M., D.P.V.d.K.)
| | - Jeffrey Kroon
- Departments of Experimental Vascular Medicine (K.E.D., M.V., M.W., J.P., A.-M.P., S.R.H., J.H.M.L., A.K.G., J.K.), Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, the Netherlands (K.E.D., M.V., J.K.)
- Laboratory of Angiogenesis and Vascular Metabolism, Flanders Institute for Biotechnology (VIB)-KU Leuven Center for Cancer Biology, VIB, Belgium (J.K.)
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute, Belgium (J.K.)
| |
Collapse
|
23
|
Sertdemir AL, Şahin AT, Duran M, Çelik M, Tatar S, Oktay İ, Alsancak Y. Association between syndecan-4 and subclinical atherosclerosis in ankylosing spondylitis. Medicine (Baltimore) 2024; 103:e37019. [PMID: 38241528 PMCID: PMC10798725 DOI: 10.1097/md.0000000000037019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Despite advances in the diagnosis and treatment of ankylosing spondylitis (AS), the risk of cardiovascular complications in AS patients is still higher than in the general population. Macrophages are at the intersection of the basic pathogenetic processes of AS and atherosclerosis. Although syndecan-4 (SDC4) mediates a variety of biological processes, the role of SDC4 in macrophage-mediated atherogenesis in AS patients remains unclear. Herein, we aimed to investigate the role of SDC4 in subclinical atherosclerosis in AS patients. METHODS Subjects were selected from eligible AS patients and control subjects without a prior history of AS who were referred to the rheumatology outpatient clinics. All participants' past medical records and clinical, and demographic characteristics were scanned. In addition, carotid intima-media thickness (CIMT) measurement and disease activity index measurement were applied to all patients. RESULTS According to our data, serum SDC4 level was significantly higher among AS patients compared with the control group (6.7 [1.5-35.0] ng/mL vs 5.1 [0.1-12.5] ng/mL, P < .001). The calculated CIMT was also significantly higher in AS patients than in the control group (0.6 [0.3-0.9] mm vs 0.4 (0.2-0.7), P < .001]. Additionally, serum C-reactive protein level and SDC4 level were independent predictors of AS and strongly associated with CIMT. Linear regression analysis showed that serum SDC4 level was the best predictor of CIMT (P = .004). CONCLUSION Our data indicate that serum SDC4 levels provide comprehensive information about the clinical activity of the disease and subclinical atherosclerosis in AS patients.
Collapse
Affiliation(s)
- Ahmet L. Sertdemir
- Department of Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet T. Şahin
- Department of Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mustafa Duran
- Department of Cardiology, Konya City Hospital, Konya, Turkey
| | - Mustafa Çelik
- Department of Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Sefa Tatar
- Department of Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - İrem Oktay
- Department of Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Yakup Alsancak
- Department of Cardiology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
24
|
Gera P, Wasserstein DH, Frishman WH, Aronow WS. Low-Dose Colchicine for the Prevention of Cardiovascular Events After Acute Coronary Syndrome. Cardiol Rev 2024:00045415-990000000-00190. [PMID: 38189365 DOI: 10.1097/crd.0000000000000650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Colchicine, an established anti-inflammatory drug, is examined for its potential in mitigating adverse cardiovascular events following acute coronary syndrome (ACS). ACS, primarily triggered by plaque rupture and subsequent thrombosis, is a critical cardiovascular condition. Colchicine's mechanism of action involves inhibiting microtubule activity, leading to immobilization of white blood cells and reducing inflammation. Clinical data from studies, including low-dose colchicine for secondary prevention of cardiovascular disease two and colchicine cardiovascular outcomes trial, support its efficacy in reducing major cardiovascular events post-ACS, though some studies report varying results. Colchicine can cause transient gastrointestinal side effects and is prescribed with caution in patients with certain medical conditions. The recent FDA approval of a low dose of colchicine reiterates its benefit in reducing cardiovascular risk. The cost-effectiveness of colchicine products (0.5 and 0.6 mg doses) are compared, suggesting the generic 0.6 mg dose of colchicine to be an alternative to branded forms of the drug.
Collapse
Affiliation(s)
- Priyanka Gera
- From the Westchester Medical Center, New York Medical College, Valhalla, NY
| | | | | | | |
Collapse
|
25
|
Chlorogiannis DD, Pargaonkar S, Papanagiotou P, Bakogiannis NC, Bakoyiannis C, Kokkinidis DG. Inflammation, anti-inflammatory agents, and the role of colchicine in carotid artery stenosis. VASA 2024; 53:4-12. [PMID: 38079179 DOI: 10.1024/0301-1526/a001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality worldwide. In the last few years, the role of inflammation and inflammatory modulatory medications is investigated for the optimal treatment of coronary artery disease. It can be hypothesized that since inflammation is also involved in carotid artery stenosis development and progression, the same class of medication could be useful. Our objective with this review is to present the available evidence, published studies and promising ongoing trials on the role of anti-inflammatory medications - with a special emphasis on the most commonly used drug of this class: colchicine - in patients with carotid artery stenosis.
Collapse
Affiliation(s)
| | - Sumant Pargaonkar
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York Ciry, NY, USA
| | - Panagiotis Papanagiotou
- First Department of Radiology, School of Medicine, National & Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
- Department of Diagnostic and Interventional Neuroradiology, Hospital Bremen-Mitte/Bremen-Ost, Bremen, Germany
| | - Nikolaos C Bakogiannis
- Division of Vascular Surgery, Laiko General Hospital/University of Athens School of Medicine, Athens, Greece
| | - Christos Bakoyiannis
- Division of Vascular Surgery, Laiko General Hospital/University of Athens School of Medicine, Athens, Greece
| | - Damianos G Kokkinidis
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Pandeya A, Kanneganti TD. Therapeutic potential of PANoptosis: innate sensors, inflammasomes, and RIPKs in PANoptosomes. Trends Mol Med 2024; 30:74-88. [PMID: 37977994 PMCID: PMC10842719 DOI: 10.1016/j.molmed.2023.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
The innate immune system initiates cell death pathways in response to pathogens and cellular stress. Cell death can be either non-lytic (apoptosis) or lytic (PANoptosis, pyroptosis, and necroptosis). PANoptosis has been identified as an inflammatory, lytic cell death pathway driven by caspases and RIPKs that is regulated by PANoptosome complexes, making it distinct from other cell death pathways. Several PANoptosome complexes (including ZBP1-, AIM2-, RIPK1-, and NLRP12-PANoptosomes) have been characterized to date. Furthermore, PANoptosis is implicated in infectious and inflammatory diseases, cancers, and homeostatic perturbations. Therefore, targeting its molecular components offers significant potential for therapeutic development. This review covers PANoptosomes and their assembly, PANoptosome-mediated cell death mechanisms, and ongoing progress in developing therapeutics that target PANoptosis.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
27
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
28
|
Chen T, Liu G, Yu B. A meta-analysis evaluating efficacy and safety of colchicine for prevention of major cardiovascular events in patients with coronary artery disease. Clin Res Cardiol 2023; 112:1487-1505. [PMID: 37505274 DOI: 10.1007/s00392-023-02254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Inflammatory plays a key role in the development of coronary artery disease (CAD). Colchicine as an anti-inflammatory treatment for CAD has attracted much attention, its efficacy and safety are controversial and deserved further exploration. METHODS AND RESULTS To evaluate the efficacy and safety of colchicine for patients with CAD, relevant randomized controlled trials (RCTs) were identified by searching several databases including PubMed, Web of Science, and EMBASE from January 1992 to May 2022. Fourteen eligible trials of colchicine therapy include populations with chronic coronary syndrome (CCS) (N = 2), acute coronary syndrome (ACS) (N = 5), and percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) (N = 7), and involve a total of 13,235 patients which include 6654 subjects in colchicine group and 6581 subjects in the respective control arms. The outcome was reported as odds ratio (OR) and 95% confidence interval (CI), as the relative measure of association. Overall, the incidences of major adverse cardiovascular events (MACEs) (OR 0.65; 95% CI 0.54-0.77, p < 0.01), new ACS (OR 0.68; 95% CI 0.57-0.81, p < 0.01), coronary revascularization (OR 0.65; 95% CI 0.53-0.78, p < 0.01), and stroke (OR 0.51; 95% CI 0.32-0.82, p < 0.01), were lower in the colchicine group than in the placebo arm. We did not find a significant reduction in the incidence of atrial fibrillation (OR 0.84; 95% CI 0.68-1.04, p = 0.11), all-cause mortality (OR 1.06; 95% CI 0.83-1.35, p = 0.83), cardiovascular mortality (OR 0.77; 95% CI 0.52-1.15, p = 0.21). However, we found that colchicine did increase non-cardiovascular mortality (OR 1.44; 95% CI 1.04-2.01, p = 0.03). Although the incidence of gastrointestinal events in the colchicine treatment group was higher than that in the placebo arms (OR 2.08; 95% CI 1.39-3.12, p < 0.01), the symptoms disappeared rapidly after drug withdrawal and could be tolerated by most patients. Colchicine did not increase the incidence of infections (OR 1.42; 95% CI 0.82-2.46, p = 0.22), pneumonia (OR 1.55; 95% CI 0.58-4.18, p = 0.39), cancers (OR 0.98; 95% CI 0.79-1.22, p = 0.88), bleeding (OR 1.14; 95% CI 0.41-3.14, p = 0.80). CONCLUSIONS Colchicine is an effective, relatively safe drug that could be considered for the treatment of CAD. However, we need to pay attention to the increasing occurrence of non-cardiovascular mortality and infection especially pneumonia possibly caused by colchicine. Efficacy and safety of colchicine for patients with CAD. CAD coronary artery disease; RCTs randomized controlled trials; OR odds ratio; MACEs major adverse cardiovascular events; ACS acute coronary syndrome; NNT number needed to treat; NNH number needed to harm.
Collapse
Affiliation(s)
- Tao Chen
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Nanjing North Street No. 155, Heping District, Shenyang, 110001, China
| | - Guihong Liu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Nanjing North Street No. 155, Heping District, Shenyang, 110001, China.
| |
Collapse
|
29
|
García-Escobar A, Vera-Vera S, Tébar-Márquez D, Rivero-Santana B, Jurado-Román A, Jiménez-Valero S, Galeote G, Cabrera JÁ, Moreno R. Neutrophil-to-lymphocyte ratio an inflammatory biomarker, and prognostic marker in heart failure, cardiovascular disease and chronic inflammatory diseases: New insights for a potential predictor of anti-cytokine therapy responsiveness. Microvasc Res 2023; 150:104598. [PMID: 37633337 DOI: 10.1016/j.mvr.2023.104598] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
In the 20th century, research focused on cholesterol and lipoproteins as the key mechanism in establishing atherosclerotic cardiovascular disease (ASCVD). Given that some studies demonstrated subclinical atherosclerosis in subjects without conventional cardiovascular risk factors, the elevated low-density lipoprotein (LDL) levels alone cannot account for the entire burden of atherosclerosis. Hence, large-scale clinical trials demonstrated the operation of immune and inflammatory pathways in ASCVD. In this regard, the evidence establishes that cells of the immune system, both the innate (neutrophils, macrophages) and adaptive (T cell and other lymphocytes) limbs, contribute to atherosclerosis and atherothrombosis. Besides, basic science studies have identified proatherogenic cytokines such as interleukin (IL)-1, IL-12, and IL-18. In this regard, some studies showed that antiinflammatory therapy targeting the immune system by modulating or blocking interleukins, also known as anti-cytokine therapy, can reduce the risk of major cardiovascular adverse events. The neutrophils play a key role in the innate immune system, representing the acute phase of an inflammatory response. In contrast, lymphocytes represent the adaptive immune system and promote the induction of autoimmune inflammation, especially in the chronic inflammatory response. Through the literature review, we will highlight the inflammatory pathway for the physiopathology of ASCVD, HF, and COVID-19. In this regard, the neutrophil-to-lymphocyte ratio (NLR) integrates the innate immune and adaptive immune systems, making the NLR a biomarker of inflammation. In addition, we provided an update on the evidence showing that high NLR is associated with worse prognosis in heart failure (HF), ASCVD, and COVID-19, as well as their clinical applications showing that the normalization of NLR after anti-cytokine therapy is a potential predictor of therapy responsiveness and is associated with reduction of major adverse cardiovascular events.
Collapse
Affiliation(s)
- Artemio García-Escobar
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain; Cardiology Department, Quirónsalud University Hospital Madrid, Spain.
| | - Silvio Vera-Vera
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Daniel Tébar-Márquez
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Borja Rivero-Santana
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Alfonso Jurado-Román
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Santiago Jiménez-Valero
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Guillermo Galeote
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | | | - Raúl Moreno
- Cardiology Department, Interventional Cardiology Section, La Paz University Hospital, Madrid, Spain; Institute for Health Research La Paz University Hospital (IDIPAZ), Madrid, Spain; Biomedical Research Network Center on Cardiovascular Disease (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Hutton M, Frazer M, Lin A, Patel S, Misra A. New Targets in Atherosclerosis: Vascular Smooth Muscle Cell Plasticity and Macrophage Polarity. Clin Ther 2023; 45:1047-1054. [PMID: 37709601 DOI: 10.1016/j.clinthera.2023.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Despite an increase in treatment options, and substantial reductions in cardiovascular mortality over the past half-century, atherosclerosis remains the most prevalent cause of premature mortality worldwide. The development of innovative new therapies is crucial to further minimize atherosclerosis-related deaths. The diverse array of cell phenotypes derived from vascular smooth muscle cells (SMCs) and macrophages within atherosclerotic plaques are increasingly becoming recognized for their beneficial and detrimental roles in plaque stability and disease burden. This review explores how contemporary transcriptomics and fate-mapping studies have revealed vascular cell plasticity as a relatively unexplored target for therapeutic intervention. METHODS Recent literature for this narrative review was obtained by searching electronic databases (ie, Google Scholar, PubMed). Additional studies were sourced from reference lists and the authors' personal databases. FINDINGS The lipid-rich and inflammatory plaque milieu induces SMC phenotypic switching to both beneficial and detrimental phenotypes. Likewise, macrophage heterogeneity increases with disease burden to a variety of pro-inflammatory and anti-inflammatory activation states. These vascular cell phenotypes are determinants of plaque structure stability, and it is therefore highly likely that they influence clinical outcomes. Development of clinical treatments targeting deleterious phenotypes or promoting pro-healing phenotypes remains in its infancy. However, existing treatments (statins) have shown beneficial effects toward macrophage polarization, providing a rationale for more targeted approaches. In contrast, beneficial SMC phenotypic modulation with these pharmacologic agents has yet to be achieved. The range of modulated vascular cell phenotypes provides a multitude of novel targets and the potential to reduce future adverse events. IMPLICATIONS Vascular cell phenotypic heterogeneity must continue to be explored to lower cardiovascular events in the future. The rapidly increasing weight of evidence surrounding the role of SMC plasticity and macrophage polarity in plaque vulnerability provides a strong foundation upon which development of new therapeutics must follow. This approach may prove to be crucial in reducing cardiovascular events and improving patient benefit in the future.
Collapse
Affiliation(s)
- Michael Hutton
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
| | - Madeleine Frazer
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
| | - Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia; Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
31
|
Zhan Y, Yue H, Zhao X, Tang J, Wu Z. Colchicine in atrial fibrillation: are old trees in bloom? Front Physiol 2023; 14:1260774. [PMID: 37916222 PMCID: PMC10616799 DOI: 10.3389/fphys.2023.1260774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Colchicine is a widely used drug that was originally used to treat gout and rheumatic diseases. In recent years, colchicine has shown high potential in the cardiovascular field. Atrial fibrillation (AF) is a cardiovascular disease with a high incidence. One of the most frequent complications following cardiovascular surgery is postoperative atrial fibrillation (POAF), which affects patient health and disease burden. This article reviews the research status of colchicine in AF and summarizes the relevant progress.
Collapse
Affiliation(s)
- Yujia Zhan
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Tang
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu, University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J, Tumanov S, Örd T, Hadden M, Mokry M, Mol BM, Pasterkamp G, Padula MP, Geczy CL, Ramaswamy Y, Sluimer JC, Kaikkonen MU, Stocker R, Baker AH, Fisher EA, Patel S, Misra A. Colchicine promotes atherosclerotic plaque stability independently of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560632. [PMID: 37873248 PMCID: PMC10592948 DOI: 10.1101/2023.10.03.560632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.
Collapse
|
33
|
Aleman Oliva C, Aleman Espino E, Demory Beckler M, Kesselman MM. Radiation-Induced Peripheral Artery Disease in a 63-Year-Old Patient. Cureus 2023; 15:e47372. [PMID: 38022038 PMCID: PMC10657155 DOI: 10.7759/cureus.47372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Tobacco use, hypertension, diabetes, and hypercholesterolemia are known risk factors for peripheral artery disease (PAD). However, additional causes of PAD, such as radiation therapy, should be considered for the prevention and diagnosis of this disease. The patient described in this report had 36 radiation therapies directly to the pelvis and bladder area due to bladder cancer. The presence of severe PAD on this patient's right external iliac artery, the same area where he received radiation therapy, raises the question of whether radiation therapy contributed to the development of PAD. In addition, his history of anal intraepithelial neoplasia, obstructive uropathy, and chronic kidney disease further demonstrated that he possibly suffered extensive tissue damage due to radiation to the pelvis. This case report explores the current diagnosis guidelines and treatment options for patients with radiation-induced PAD. Through this case study, we aim to bring awareness to this lesser-known cause of PAD among medical providers and promote research for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Claudia Aleman Oliva
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Erik Aleman Espino
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Michelle Demory Beckler
- Microbiology and Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
34
|
Meng Y, Ma L, Zong T, Wang Z. Changes in the structure and function of the left ventricle in patients with gout: A study based on three-dimensional speckle tracking echocardiography. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:1119-1128. [PMID: 37313863 DOI: 10.1002/jcu.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE Studies have shown that gout can increase the risk of cardiovascular disease. Three-dimensional speckle-tracking echocardiography (3D-STE), a sensitive imaging technology, enables the detection of subtle myocardial dysfunctions. Our aim is to evaluate the left ventricular (LV) functions in patients with gout using 3D-STE. METHODS 80 subjects: 40 with gout and 40 as normal controls were involved. We obtained and analyzed these parameters from the dynamic images of a 3D full-volume dataset: global longitudinal strain (GLS), global circumferential strain (GCS), global radial strain (GRS), Twist, 16-segmental time-to-peak longitudinal strain (TTP) and systolic dyssynchrony index (SDI)besides other relevant parameters. RESULTS Compared with the normal group, gout patients were more likely to have left ventricular remodeling. The patients with gout showed decreased Em, increased E/Em and larger volume index of the left atrium (LAVI) indicating reduced diastolic function. The peak GLS (-17.42 ± 2.02 vs. -22.40 ± 2.57, P < 0.001), GCS (-27.04 ± 3.75 vs. -34.85 ± 4.99, P < 0.001), GRS (38.22 ± 4.28 vs. 46.15 ± 5.17, P < 0.001), and Twist (15.18 ± 5.45 vs. 19.02 ± 5.29, P = 0.015) were significantly lower in patients with gout than in healthy participants. The SDI (5.57 ± 1.46 vs. 4.91 ± 1.19, P = 0.016) was significantly increased in patients with gout compared with normal controls. There was no significant between-group difference in TTP (P = 0.43). The systolic GLS, GRS and GCS peak values increased gradually from the base to the apex, with the lowest values in the basal segment in patients with gout. Receiver-operating characteristic curve analysis revealed among these strains GLS has the largest area under the curve (AUC: 0.93, P < 0.001), the cutoff value of -18.97% with a sensitivity and specificity of 80.0% and 92.0%, respectively, for differentiating two groups. A multivariate linear regression analysis shows that the relationship between gout and strain parameters including GLS, GRS, and GCS is statistically significant (P < 0.001). CONCLUSION Although patients with gout having a normal ejection fraction, structural remodeling of the left ventricle and subclinical LV deformation may occur. 3D-STE can detect subtle cardiac dysfunctions in patients with gout at an early stage.
Collapse
Affiliation(s)
- Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Leiyuan Ma
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Avagimyan A, Pogosova N, Kakturskiy L, Sheibani M, Urazova O, Trofimenko A, Navarsdyan G, Jndoyan Z, Abgaryan K, Fogacci F, Galli M, Agati L, Kobalava Z, Shafie D, Marzilli M, Gogiashvili L, Sarrafzadegan N. HIV-Related Atherosclerosis: State-of-the-Art-Review. Curr Probl Cardiol 2023; 48:101783. [PMID: 37172874 DOI: 10.1016/j.cpcardiol.2023.101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The infection caused by the Human Immunodeficiency Virus (HIV) has spread rapidly across the globe, assuming the characteristics of an epidemic in some regions. Thanks to the introduction of antiretroviral therapy into routine clinical practice, there was a considerable breakthrough in the treatment of HIV, that is now HIV is potentially well-controlled even in low-income countries. To date, HIV infection has moved from the group of life-threatening conditions to the group of chronic and well controlled ones and the quality of life and life expectancy of HIV+ people, with an undetectable viral load is closer to that of an HIV- people. However, unsolved issues still persist. For example: people living with HIV are more prone to the age-related diseases, especially atherosclerosis. For this reason, a better understanding of the mechanisms of HIV-associated destabilization of vascular homeostasis seems to be an urgent duty, that may lead to the development of new protocols, bringing the possibilities of pathogenetic therapies to a new level. The purpose of the article was to evaluate the pathological aspects of HIV-induced atherosclerosis.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Assistant Professor, Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Pogosova
- Professor, Deputy of General Director for Science and Preventive Cardiology, National Medical Research Centre of Cardiology after E. Chazov, Moscow, Russia
| | - Lev Kakturskiy
- Professor, Scientific Director, Research Institute of Human Morphology FSBI «Petrovskiy NRCS, Moscow, Russia
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Olga Urazova
- Professor, Head of Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Artem Trofimenko
- Associate Professor, Pathophysiology Department, Kuban State Medical University, Krasnodar, Russia
| | - Grizelda Navarsdyan
- Professor, Pathophysiology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zinaida Jndoyan
- Professor, Head of Internal Diseases Propedeutics Department, Yerevan State Medical University after M. Heratsi, Armenia
| | - Kristina Abgaryan
- Associate Professor, Medical Microbiology Department, Yerevan State Medical University after M.Heratsi, Armenia
| | - Federica Fogacci
- Research Fellow, Atherosclerosis and Metabolic Disorders Research Unit, University of Bologna, Bologna, Italy
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Luciano Agati
- Professor of Cardiology Department, Head of Cardiology Unit Azienda Policlinico Umberto II, Sapienza University, Rome, Italy
| | - Zhanna Kobalava
- Professor, Head of Internal Disease, Cardiology and Clinical Pharmacology Department, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Davood Shafie
- Isfahan Cardiovascular Research Institute, Isfahan, Iran
| | - Mario Marzilli
- Professor, Head of Cardiovascular Medicine Division, University of Pisa, Pisa, Italy
| | - Liana Gogiashvili
- Professor, Head of Experimental and Clinical Pathology Department, Al. Natishvili Institute of Experimental Morphology, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Nizal Sarrafzadegan
- Professor, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Hasselbalch HC, Junker P, Skov V, Kjær L, Knudsen TA, Larsen MK, Holmström MO, Andersen MH, Jensen C, Karsdal MA, Willumsen N. Revisiting Circulating Extracellular Matrix Fragments as Disease Markers in Myelofibrosis and Related Neoplasms. Cancers (Basel) 2023; 15:4323. [PMID: 37686599 PMCID: PMC10486581 DOI: 10.3390/cancers15174323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Philadelphia chromosome-negative chronic myeloproliferative neoplasms (MPNs) arise due to acquired somatic driver mutations in stem cells and develop over 10-30 years from the earliest cancer stages (essential thrombocythemia, polycythemia vera) towards the advanced myelofibrosis stage with bone marrow failure. The JAK2V617F mutation is the most prevalent driver mutation. Chronic inflammation is considered to be a major pathogenetic player, both as a trigger of MPN development and as a driver of disease progression. Chronic inflammation in MPNs is characterized by persistent connective tissue remodeling, which leads to organ dysfunction and ultimately, organ failure, due to excessive accumulation of extracellular matrix (ECM). Considering that MPNs are acquired clonal stem cell diseases developing in an inflammatory microenvironment in which the hematopoietic cell populations are progressively replaced by stromal proliferation-"a wound that never heals"-we herein aim to provide a comprehensive review of previous promising research in the field of circulating ECM fragments in the diagnosis, treatment and monitoring of MPNs. We address the rationales and highlight new perspectives for the use of circulating ECM protein fragments as biologically plausible, noninvasive disease markers in the management of MPNs.
Collapse
Affiliation(s)
- Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, 5000 Odense, Denmark;
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Trine A. Knudsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, 4000 Roskilde, Denmark; (V.S.); (L.K.); (T.A.K.); (M.K.L.)
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Herlev Hospital, 2730 Herlev, Denmark; (M.O.H.); (M.H.A.)
| | - Christina Jensen
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | - Morten A. Karsdal
- Nordic Bioscience A/S, 2730 Herlev, Denmark; (C.J.); (M.A.K.); (N.W.)
| | | |
Collapse
|
37
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
38
|
Algoet M, Janssens S, Himmelreich U, Gsell W, Pusovnik M, Van den Eynde J, Oosterlinck W. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med 2023; 33:357-366. [PMID: 35181472 DOI: 10.1016/j.tcm.2022.02.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
Acute myocardial infarction is caused by a sudden coronary artery occlusion and leads to ischemia in the corresponding myocardial territory which generally results in myocardial necrosis. Without restoration of coronary perfusion, myocardial scar formation will cause adverse remodelling of the myocardium and heart failure. Successful introduction of percutaneous coronary intervention and surgical coronary artery bypass grafting made it possible to achieve early revascularisation/reperfusion, hence limiting the ischemic zone of myocardium. However, reperfusion by itself paradoxically triggers an exacerbated and accelerated injury in the myocardium, called ischemia-reperfusion (I/R) injury. This mechanism is partially driven by inflammation through multiple interacting pathways. In this review we summarize the current insights in mechanisms of I/R injury and the influence of altered inflammation. Multiple pharmacological and interventional therapeutic strategies (ischemic conditioning) have proven to be beneficial during I/R in preclinical models but were notoriously unsuccessful upon clinical translation. In this review we focus on common mechanisms of I/R injury, altered inflammation and potential therapeutic strategies. We hypothesize that a dual approach may be of value because I/R injury patients are predestined with multiple comorbidities and systemic low-grade inflammation, which requires targeted intervention before other strategies can be fully effective.
Collapse
Affiliation(s)
- Michiel Algoet
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Matic Pusovnik
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jef Van den Eynde
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, United States
| | | |
Collapse
|
39
|
Lu C, Zhou F, Xian H, Sun S, Yue J, Zhang Y, Zhao Q, Luo X, Li Y. Serum IL-38 Level Was Associated with Incidence of MACE in the STEMI Patients. Int J Gen Med 2023; 16:2987-2997. [PMID: 37465556 PMCID: PMC10350401 DOI: 10.2147/ijgm.s417471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Background The relationship between serum IL-38 and major adverse cardiovascular events (MACE) in patients with ST elevation myocardial infarction (STEMI) remains unclear. Methods In the present study, 589 STEMI patients were included, the serum level of IL-38 was measured. The median follow-up time was 720 days, the STEMI patients were divided into high IL-38 (IL-38>6.49ng/mL) and low IL-38 groups (IL-38≤6.49ng/mL) to compare the probability of MACE. Results Plasma IL-38 levels were significantly lower in STEMI patients than in SAP patients (4.0±2.2 vs 6.9±3.2 ng/mL, P < 0.001). Ninety-three STEMI patients met the defined MACE study endpoint. The incidence of MACE was significantly lower in patients with high IL-38 group than in patients with low IL-38 group (7.8% vs 23.7%, P < 0.001). Low plasma IL-38 levels were independently associated with the occurrence of MACE (OR = 0.90, P < 0.001). Conclusion We get a conclusion that low plasma levels of IL-38 are independently associated with the occurrence of MACE.
Collapse
Affiliation(s)
- Chengbo Lu
- Department of Cardiology, 1st Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, People’s Republic of China
| | - Fanghui Zhou
- Department of Hematology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Huimin Xian
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Siyuan Sun
- Department of Cardiology, People’s Hospital of Taihe County, Taihe, Anhui, People’s Republic of China
| | - Jingkun Yue
- Department of Cardiology, People’s Hospital of Taihe County, Taihe, Anhui, People’s Republic of China
| | - Ying Zhang
- Department of Gynaecology and Obstetrics, 1st Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, People’s Republic of China
| | - Qi Zhao
- Department of Cardiology, 1st Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yang Li
- Department of Cardiology, 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
40
|
Ehlers TS, van der Horst J, Møller S, Piil PK, Gliemann L, Aalkjaer C, Jepps TA, Hellsten Y. Colchicine enhances β adrenoceptor-mediated vasodilation in men with essential hypertension. Br J Clin Pharmacol 2023; 89:2179-2189. [PMID: 36764326 DOI: 10.1111/bcp.15688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/12/2023] Open
Abstract
AIMS The aim of this study is to examine whether colchicine improves β adrenoceptor-mediated vasodilation in humans by conducting a double-blinded, placebo-controlled intervention study. Colchicine treatment has known beneficial effects on cardiovascular health and reduces the incidence of cardiovascular disease. Studies in isolated rodent arteries have shown that colchicine can enhance β adrenoceptor-mediated vasodilation, but this has not been determined in humans. METHODS Middle-aged men with essential hypertension were randomly assigned firstly to acute treatment with either 0.5 mg colchicine (n = 19) or placebo (n = 12). They were subsequently re-randomized for 3 weeks of treatment with either colchicine 0.5 mg twice daily (n = 16) or placebo (n = 15) followed by a washout period of 48-72 h. The vasodilator responses to isoprenaline, acetylcholine and sodium nitroprusside were determined as well as arterial pressure, arterial compliance and plasma inflammatory markers. RESULTS Acute colchicine treatment increased isoprenaline (by 38% for the highest dose) as well as sodium nitroprusside (by 29% main effect) -induced vasodilation but had no effect on the response to acetylcholine. The 3-week colchicine treatment followed by a washout period did not induce an accumulated or sustained effect on the β adrenoceptor response, and there was no effect on arterial pressure, arterial compliance or the level of measured inflammatory markers. CONCLUSION Colchicine acutely enhances β adrenoceptor- and nitric oxide-mediated changes in vascular conductance in humans, supporting that the mechanism previously demonstrated in rodents, translates to humans. The results provide novel translational evidence for a transient enhancing effect of colchicine on β adrenoceptor-mediated vasodilation in humans with essential hypertension. CONDENSED ABSTRACT Preclinical studies in isolated rodent arteries have shown that colchicine can enhance β adrenoceptor-mediated vasodilation. Here we show that this effect of colchicine can be translated to humans. Acute colchicine treatment was found to increase both isoprenaline- and sodium nitroprusside-induced vasodilation. The study provides the first translational evidence for a transient β adrenoceptor-mediated vasodilatory effect of colchicine in humans. The finding of an acute effect suggests that it may be clinically important to maintain an adequate bioavailability of colchicine.
Collapse
Affiliation(s)
- Thomas S Ehlers
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (Experimental Site), University of Copenhagen, Copenhagen, Denmark
| | - Jennifer van der Horst
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (Experimental Site), University of Copenhagen, Copenhagen, Denmark
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Møller
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (Experimental Site), University of Copenhagen, Copenhagen, Denmark
| | - Peter K Piil
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (Experimental Site), University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (Experimental Site), University of Copenhagen, Copenhagen, Denmark
| | - Christian Aalkjaer
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department of Nutrition, Exercise and Sports (Experimental Site), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Lee JH. Treatment mechanism of immune triad from the repurposing drug against COVID-19. TRANSLATIONAL MEDICINE OF AGING 2023; 7:33-45. [PMID: 37388715 PMCID: PMC10290163 DOI: 10.1016/j.tma.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023] Open
Abstract
COVID-19 is an immune-mediated disease whose pathophysiology uses SAMHD1 tetramerization and cGAS-STING signaling, toll-like receptor 4 (TLR4) cascade, spike protein- inflammasome activation, and neuropilin 1 (NRP1) signaling. Variants of concern, such as SARS-CoV-2 Omicron Subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, BA.2.75.2, and other mutants, have emerged. The longitudinal memory T-cell response to SARS-CoV-2 persists for eight months after symptom onset. Therefore, we must achieve viral clearance to coordinate immune cell reactions. Aspirin, dapsone, and dexamethasone as anticatalysis medicines have been used to treat COVID-19. They are shown to work harmoniously with modulating ILCs. Therefore, it needs to prescribe this immune triad to alleviate the clinical pathologic course and block exacerbation mechanisms due to diverse SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Respiratory Medicine, Seoul Metropolitan Seobuk Hospital, 49 Galhyeon-ro 7-gil, Yeokchon-dong Eunpyeong-gu, Seoul, 03433, Republic of Korea
- Geoje Public Health Center, Suyang-ro 506 (Yangjeong-dong ), Geoje city, Gyeongsangnam-do, 53236, Republic of Korea
| |
Collapse
|
42
|
Landau D, Shukri N, Arazi E, Tobar A, Segev Y. Beneficiary Effects of Colchicine on Inflammation and Fibrosis in a Mouse Model of Kidney Injury. Nephron Clin Pract 2023; 147:693-700. [PMID: 37263257 DOI: 10.1159/000531313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Low-grade inflammation is seen in many chronic illnesses, including chronic kidney disease (CKD). We have recently reported on beneficiary effects of anti-inflammatory treatment in the interleukin (IL-) 1 pathway on anemia as well as CKD extent in a mouse model. Colchicine has been shown to have beneficiary effects in several inflammatory conditions through various mechanisms, including inhibition of tubulin polymerization as well as caspase-1-mediated IL-1 activation. METHODS Kidney injury (KI) was induced by administering an adenine diet to 8-week-old C57BL/6J mice treated with colchicine (Col) (30 µg/kg) or saline injections for 3 weeks, generating 4 groups: C, Ccol, KI, and KIcol. RESULTS KI animals had an increase in inflammation indices in the blood (neutrophils), liver, and kidneys (uromodulin, IL-6, pSTAT3). Increased kidney tubulin polymerization and caspase-1 in KI, as well as kidney Mid88 and IRAK4 (downstream of IL-1), were inhibited in KIcol. Kidney macrophage and polymorphonuclear infiltration (positive for F4/80 and MPO, respectively), the percentage of fibrotic area, and TGFβ mRNA levels were lower in KIcol versus KI. CONCLUSIONS Colchicine inhibited tubulin polymerization and caspase-1 activation and attenuated kidney inflammation and fibrosis in a mouse model of adenine-induced KI. Given its reported safety profile for long-term anti-inflammatory therapy without increasing infection tendency, it may serve as novel therapeutic approach in CKD.
Collapse
Affiliation(s)
- Daniel Landau
- Institute of Nephrology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nehoray Shukri
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Eden Arazi
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ana Tobar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Israel
| | - Yael Segev
- Institute of Pathology, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
43
|
Alam M, Kontopantelis E, Mamas MA, Savinova OV, Jhaveri A, Siddiqui E, Jhamnani S. Meta-analysis of the effect of colchicine on C-reactive protein in patients with acute and chronic coronary syndromes. Coron Artery Dis 2023; 34:210-215. [PMID: 36762630 PMCID: PMC10073305 DOI: 10.1097/mca.0000000000001220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
OBJECTIVE The anti-inflammatory drug colchicine has recently shown benefits in the prevention of major adverse cardiovascular events (MACE) in patients with the acute coronary syndrome (ACS) and chronic coronary syndromes (CCS). This meta-analysis focuses on understanding Colchicine's effects on the high-sensitivity C-reactive protein (hs-CRP) to provide mechanistic insight to explain its clinical event reduction. METHODS A computerized search of MEDLINE was conducted to retrieve journal articles with studies performed on humans from 1 January 2005 to 1 January 2022, using keywords: 'Colchicine AND Coronary', 'Colchicine AND CRP', and 'Colchicine AND Coronary Artery Disease'. Studies were included if they measured hs-CRP changes from baseline, and colchicine or placebo were given to patients with ACS or CCS. RESULTS Thirteen studies with a biomarker subgroup population of 1636 patients were included in the hs-CRP meta-analysis. Of those 13 studies, 8 studies with a total population of 6016 reported clinical events defined as myocardial infarction (MI), stroke, cardiovascular death, periprocedural MI, repeat angina after PCI and repeat revascularization. Multivariate analysis revealed a weak negative correlation of -0.1056 ( P = 0.805) between change in CRP and clinical events. Overall, colchicine treatment resulted in a greater reduction in hs-CRP levels compared with placebo (Mean Difference: -1.59; 95% Confidence Interval, -2.40 to -0.79, P = 0.0001) and clinical events (Odds Ratio: 0.78; 95% Confidence Interval 0.64 to 0.95, P = 0.01). CONCLUSION Colchicine therapy is associated with a reduction in hs-CRP and clinical events in patients with ACS and CCS. This finding supports colchicine's anti-inflammatory efficacy via CRP reduction to explain its clinical benefit.
Collapse
Affiliation(s)
- Mustafa Alam
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY
| | | | - Mamas A. Mamas
- Keele Cardiac Research Group, Keele University, Stoke-on-Trent, UK
| | - Olga V. Savinova
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY
| | | | | | | |
Collapse
|
44
|
Liu Y, Yang H, Zhu F, Ouyang Y, Pan P. Inhibition of STAT3 phosphorylation by colchicine regulates NLRP3 activation to alleviate sepsis-induced acute lung injury. Inflammopharmacology 2023:10.1007/s10787-023-01199-9. [PMID: 37115345 DOI: 10.1007/s10787-023-01199-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
The pharmacotherapeutic mechanism of colchicine, a tricyclic, lipid-soluble alkaloid extracted from the plant of the Lily family Colchicum autumnale, has not been fully understood in diverse disorders, including sepsis-induced acute lung injury (ALI). The study aimed at exploring the impact of colchicine on sepsis-induced ALI and the relevant mechanisms. Colchicine significantly attenuated ALI in mice caused by sepsis by alleviating respiratory dysfunction and pulmonary edema in mice, inhibiting NLRP3 inflammasome formation, and reducing oxidative stress, pyroptosis, and apoptosis of murine alveolar macrophage (J774A.1) cells. The targets of colchicine were predicted in the superPRED database and intersected with the differentially expressed genes in the GSE5883 and GSE129775 datasets. The major targets were subjected to protein-protein interaction network generation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. It was thus found that colchicine inhibited STAT3 phosphorylation but did not alter STAT3 total protein expression. Phosphorylated STAT3 recruited EP300 to form a complex to promote histone H3 acetylation and histone H4 acetylation of NLRP3 promoter, leading to pyroptosis of J774A.1 cells. In conclusion, inhibition of STAT3 phosphorylation by colchicine represses NLRP3 promoter acetylation via the STAT3/EP300 complex, thereby alleviating ALI caused by sepsis.
Collapse
Affiliation(s)
- Yuanshui Liu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
- Department of Emergency Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, People's Republic of China
| | - Hang Yang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Fei Zhu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China
| | - Yanhong Ouyang
- Department of Emergency Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan, People's Republic of China
| | - Pinhua Pan
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
45
|
Al-Hawary SIS, Jasim SA, Romero-Parra RM, Bustani GS, Hjazi A, Alghamdi MI, Kareem AK, Alwaily ER, Zabibah RS, Gupta J, Mahmoudi R, Hosseini-Fard S. NLRP3 inflammasome pathway in atherosclerosis: Focusing on the therapeutic potential of non-coding RNAs. Pathol Res Pract 2023; 246:154490. [PMID: 37141699 DOI: 10.1016/j.prp.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome pathway has a critical role in the pathogenesis of atherosclerosis. Activation of this pathway is implicated in the subendothelial inflammation and atherosclerosis progression. The NLRP3 inflammasome are cytoplasmic sensors with the distinct capacity to identify a wide range of inflammation-related signals, which enhance NLRP3 inflammasome assembly and allow it to trigger inflammation. This pathway is triggered by a variety of intrinsic signals which exist in atherosclerotic plaques, like cholesterol crystals and oxidized LDL. Further pharmacological findings indicated that NLRP3 inflammasome enhanced caspase-1-mediated secretion of pro-inflammatory mediators like interleukin (IL)- 1β/18. Newly published cutting-edge studies suggested that non-coding RNAs (ncRNAs) including microRNAs (miRNAs, miRs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are major modulators of NLRP3 inflammasome in atherosclerosis. Therefore, in this review, we aimed to discuss the NLRP3 inflammasome pathway, biogenesis of ncRNAs as well as the modulatory role of ncRNAs in regulating the various mediators of NLRP3 inflammasome pathway including TLR4, NF-kB, NLRP3, and caspase 1. We also discussed the importance of NLRP3 inflammasome pathway-related ncRNAs as a diagnostic biomarker in atherosclerosis and current therapeutics in the modulation of NLRP3 inflammasome in atherosclerosis. Finally, we speak about the limitations and future prospects of ncRNAs in regulating inflammatory atherosclerosis via the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedreza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Froldi G. The Use of Medicinal Plants in Blood Vessel Diseases: The Influence of Gender. Life (Basel) 2023; 13:life13040866. [PMID: 37109395 PMCID: PMC10147070 DOI: 10.3390/life13040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Data available in the literature on the use of herbal products to treat inflammation-related vascular diseases were considered in this study, while also assessing the influence of gender. To this end, the articles published in PubMed over the past 10 years that described the use of plant extracts in randomized clinical trials studying the effectiveness in vascular pathologies were analyzed. The difference in efficacy of plant-derived preparations in female and male subjects was always considered when reporting. The safety profiles of the selected plants were described, reporting unwanted effects in humans and also by searching the WHO database (VigiBase®). The medicinal plants considered were Allium sativum, Campomanesia xanthocarpa, Sechium edule, Terminalia chebula. Additionally, an innovative type of preparation consisting of plant-derived nanovesicles was also reported.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
47
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
48
|
de Carvalho VMF, de Oliveira PSS, de Albuquerque APB, Rêgo MJBDM, da Rosa MM, de Oliveira DC, Pereira MC, Pitta MGDR. Decreased Serum Levels of Soluble Oncostatin M Receptor (sOSMR) and Glycoprotein 130 (sgp130) in Patients with Coronary Artery Disease. Arq Bras Cardiol 2023; 120:e20220326. [PMID: 37098986 PMCID: PMC10263435 DOI: 10.36660/abc.20220326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Oncostatin M (OSM) is a pleiotropic cytokine which, after arterial injury, has proven to be to be rapidly expressed. OBJECTIVES To correlate the serum levels of OSM, soluble OSM receptor (sOSMR), and soluble fraction of glycoprotein 130 (sgp130) in patients with coronary artery disease (CAD) with clinical parameters. METHODS Levels of sOSMR and sgp130 were evaluated by ELISA and OSM by Western Blot, in patients with CCS (n=100), patients with ACS (n=70), and 64 control volunteers without clinical manifestations of the disease. P-values < 0.05 were considered to be statistically significant. RESULTS CAD patients exhibited significantly lower levels of sOSMR and sgp130 and higher levels of OSM when compared to the controls (both p < 0.0001). Clinical analysis displayed, lower levels of sOSMR in men ([OR] = 2.05, p = 0.026), youth (OR = 1.68, p = 0.0272), hypertensives (OR = 2.19, p = 0.041), smokers (OR = 2.19, p = 0.017), patients that did not present dyslipidemia (OR = 2.32, p = 0.013), patients with Acute Myocardial Infarction [AMI] (OR = 3.01, p = 0.001) and patients not treated with statin (OR = 1.95, p = 0.031), antiplatelet agent (OR = 2.46, p = 0.005), inhibitors of calcium channels (OR = 3.15, p = 0.028), and antidiabetic drugs (OR = 2.97, p = 0.005). The levels of sOSMR were also correlated with gender, age, hypertension, and use of medications in multivariate analysis. CONCLUSIONS Our data suggest that the enhanced serum levels of OSM, and decreased levels of sOSMR and sGP130 in patients with cardiac injury may play an important role in the pathophysiological mechanism of the disease. Furthermore, lower levels of sOSMR were associated with gender, age, hypertension, and the use of medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michelly Cristiny Pereira
- Universidade Federal de PernambucoRecifePEBrasilUniversidade Federal de Pernambuco, Recife, PE – Brasil
| | | |
Collapse
|
49
|
Nogic J, Mehta O, Tong D, Brown AJ, Layland J. Colchicine in the Management of Acute Coronary Syndrome: A Meta-analysis. Cardiol Ther 2023; 12:171-181. [PMID: 36609745 PMCID: PMC9986187 DOI: 10.1007/s40119-022-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Colchicine, thought to exert its effect via reduction of inflammation, has recently been studied in patients following acute coronary syndromes (ACS). We performed a meta-analysis of all available randomized controlled trials (RCTs) in this high-risk cohort, evaluating efficacy and safety. METHODS MEDLINE, PubMed, EMBASE, clinical trial registries, and select conference proceedings were searched for RCTs comparing colchicine to placebo in patients following ACS. The primary outcome was trial-defined major adverse cardiovascular events (MACE). Secondary endpoints included stroke, myocardial infarction (MI), all-cause and cardiovascular death, and urgent revascularization. Analysis was performed at the longest available clinical follow-up. RESULTS Two RCTs with a pooled sample size of 5540 patients with 2778 (50.1%) receiving colchicine and 2762 (49.9%) placebo were included. In order to maximize consistency, composite efficacy endpoints between trials were modified. Compared to placebo, patients receiving colchicine had reduction in study-defined composite endpoint (5.5% vs. 7.6%) OR 0.67 (95% CI 0.46-0.98, p = 0.04, I2 = 46%). Similarly, there was a significant reduction in cerebrovascular accidents (OR 0.31, 95% CI 0.14-0.69, p = 0.004, I2 = 0%) and repeat revascularization OR 0.36 (95% CI 0.14-0.90, p = 0.03, I2 = 54%). There was no difference between cardiovascular death (OR 0.92, 95% CI 0.52-1.62, p = 0.78, I2 = 0%), non-cardiovascular death OR 1.27 (95% CI 0.72-2.24, p = 0.41, I2 = 0%), MI at longest available follow-up OR 0.89 (95% CI 0.67-1.17, p = 0.39, I2 = 0%) or resuscitated cardiac arrest OR 0.88 (95% CI 0.32-2.43, p = 0.81, I2 = 0%) in those receiving colchicine. CONCLUSIONS These data suggest colchicine, in addition to guideline-directed medical therapy following acute coronary syndrome reduces MACE, cerebrovascular accidents, and rates of urgent revascularization at 2 years of follow-up.
Collapse
Affiliation(s)
- Jason Nogic
- Monash Cardiovascular Research Centre, Monash University and Monash Heart, Monash Health, Melbourne, Australia
| | - Ojas Mehta
- Department of Cardiovascular Research, Peninsula Clinical School, Melbourne, Australia
| | - David Tong
- Department of Cardiovascular Research, Peninsula Clinical School, Melbourne, Australia
| | - Adam J Brown
- Monash Cardiovascular Research Centre, Monash University and Monash Heart, Monash Health, Melbourne, Australia
| | - Jamie Layland
- Department of Cardiovascular Research, Peninsula Clinical School, Melbourne, Australia.
| |
Collapse
|
50
|
Bursill CA. NDRG1: A New Regulator of Vascular Inflammation and Atherothrombosis. Circ Res 2023; 132:320-322. [PMID: 36730378 DOI: 10.1161/circresaha.122.322377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Christina A Bursill
- Vascular Research Centre, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia. Faculty of Health and Medical Science, The University of Adelaide, South Australia, Australia
| |
Collapse
|