1
|
Wadström BN, Wulff AB, Pedersen KM, Nordestgaard BG. Small Remnants versus Large Triglyceride-Rich Lipoproteins in Risk of Atherosclerotic Cardiovascular Disease. Clin Chem 2025:hvae222. [PMID: 39882976 DOI: 10.1093/clinchem/hvae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
BACKGROUND Small remnants may penetrate the arterial intima more efficiently compared to large triglyceride-rich lipoproteins (TGRL). We tested the hypothesis that the importance of remnant cholesterol for the risk of atherosclerotic cardiovascular disease (ASCVD) may depend on the size of the remnants and TGRL carrying cholesterol. METHODS The cholesterol content of small remnants and large TGRL were measured in 25 572 individuals from the Copenhagen General Population Study (2003-2015) and in 222 721 individuals from the UK Biobank (2006-2010) using nuclear magnetic resonance spectroscopy. In the Copenhagen cohort during up to 15 years of follow-up and in the UK Biobank cohort during up to 16 years of follow-up, the numbers of individuals diagnosed with ASCVD (=myocardial infarction, ischemic stroke, and peripheral artery disease) in national health registries were 3869 and 11 424, respectively. RESULTS Compared to individuals with low cholesterol content in both small remnants and large TGRL (cutpoints were median cholesterol content), multivariable-adjusted hazard ratios for risk of ASCVD were 1.21 (95% confidence interval: 1.07-1.37) for individuals with high cholesterol content in small remnants only and 0.94 (0.83-1.07) for individuals with high cholesterol content in large TGRL only; the multivariable-adjusted hazard ratio for risk of ASCVD per 10 percentile-units higher cholesterol content in small remnants vs that in large TGRL was 1.04 (1.01-1.07). In the UK Biobank cohort, corresponding hazard ratios were 1.11 (1.03-1.20), 1.01 (0.93-1.09), and 1.05 (1.04-1.07), respectively. CONCLUSION The importance of remnant cholesterol for the risk of ASCVD may depend on the size of the TGRL and remnants carrying cholesterol.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Balling M, Afzal S, Varbo A, Nordestgaard BG, Langsted A. Remnant Cholesterol: Quantification, Concentrations by Sex and Age, and Risk of Ischemic Heart Disease. Clin Chem 2024:hvae217. [PMID: 39723642 DOI: 10.1093/clinchem/hvae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Observational and genetic causal studies have shown an association between high concentrations of remnant cholesterol and increased risk of ischemic heart disease. However, findings from randomized intervention trials that reduced plasma triglycerides, a surrogate marker of remnant cholesterol, have been conflicting. The exact mechanisms by which remnant cholesterol contributes to atherosclerosis and, ultimately, ischemic heart disease remain incompletely understood. Additionally, insight on sex and age differences and the importance of measurement differences of remnant cholesterol in plasma concentrations and risk of ischemic heart disease are sparse. CONTENT This review covers current knowledge regarding remnant cholesterol and its role in ischemic heart disease, with particular attention to measurement and sex- and age-specific differences. SUMMARY Findings from observational, genetic, and mechanistic studies support the notion that higher remnant cholesterol may be an important cause of ischemic heart disease in both women and men. Concentrations of remnant cholesterol vary by age, with a sharp increase at early adulthood for men and around menopause for women. Remnant cholesterol can be calculated from a standard lipid profile and in addition measured directly using manual ultracentrifugation, automated assays, and nuclear magnetic resonance spectroscopy. Irrespective of the method used to assess plasma concentrations, high concentrations of remnant cholesterol are consistently associated with increased risk of myocardial infarction and ischemic heart disease in observational and genetic causal studies; cholesterol rather than triglycerides in remnants drive this risk. Importantly, results from ongoing randomized clinical trials aiming specifically at lowering remnant cholesterol and ischemic heart disease are eagerly awaited.
Collapse
Affiliation(s)
- Mie Balling
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Varbo
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Tao S, Yu L, Li J, Wu J, Yang D, Huang X, Xue T. Elevated remnant cholesterol and the risk of prevalent major depressive disorder: a nationwide population-based study. Front Psychiatry 2024; 15:1495467. [PMID: 39611132 PMCID: PMC11602507 DOI: 10.3389/fpsyt.2024.1495467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Background Remnant cholesterol (RC) has received increasing attention due to its association with a variety of diseases. However, comprehensive population-based studies elucidating the relationship between RC and major depressive disorder (MDD) are limited. The current study aimed to determine the association between RC and MDD in US adults. Methods Cross-sectional data of US adults with complete RC and depression information were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. MDD was evaluated using the Patient Health Questionnaire (PHQ-9). Multivariate logistic regression, sensitivity analysis, and spline smoothing plot method were conducted to explore the relationship between RC and depression. The cut-off point was calculated using recursive partitioning analysis when segmenting effects emerged. The area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, Hosmer-Lemeshow test, the decision curve analysis (DCA), and clinical impact curve (CIC) were employed to evaluate the performance of RC in identifying MDD. Subgroup analyses and interaction tests were performed to explore whether the association was stable in different populations. Results A total of 9,173 participants were enrolled and participants in the higher RC quartile tended to have a higher PHQ-9 score and prevalence of MDD. In the fully adjusted model, a positive association between RC and PHQ-9 score and MDD was both observed (β=0.54, 95% CI 0.26~0.82; OR=1.43, 95% CI 1.15~1.78). Participants in the highest RC quartile had a 0.42-unit higher PHQ-9 score (β=0.42, 95% CI 0.15~0.69) and a significantly 32% higher risk of MDD than those in the lowest RC quartile (OR=1.32, 95% CI 1.05~1.66). Spline smoothing plot analysis further confirmed the positive and non-linear association between RC and PHQ-9 and MDD. ROC analysis (AUC=0.762), the Hosmer-Lemeshow test (χ2 = 6.258, P=0.618), and calibration curve all indicated a high performance and goodness-of-fit of the multivariate model. DCA and CIC analysis similarly demonstrated a positive overall net benefit and clinical impact for the model. Subgroup analyses and interaction tests suggested that the relationship between RC and depression remained stable across subgroups and was unaffected by other factors other than diabetes, hypertension, or hyperlipidemia. Conclusion An elevated RC is associated with a higher risk of prevalent MDD among US adults, especially in those with diabetes, hypertension, or hyperlipidemia. The present results suggested that the management of RC levels and comorbidities may contribute to alleviating the occurrence of MDD.
Collapse
Affiliation(s)
- Shiyi Tao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ji Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deshuang Yang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xuanchun Huang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Xue
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Mu J, Weng Y, Xiao J, Huang Y, He X, Xie Z, Yu H. Association of remnant cholesterol with coronary artery ectasia: a cross-sectional study. Lipids Health Dis 2024; 23:240. [PMID: 39107777 PMCID: PMC11301834 DOI: 10.1186/s12944-024-02225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE Coronary artery ectasia (CAE) is a condition characterized by the localized or widespread dilation of one or more coronary arteries. The majority of CAE patients do not present with clinical symptoms, and the exact cause of CAE remains unclear. Therefore, a retrospective analysis was conducted to explore the potential causes of CAE. METHODS This study was a retrospective analysis of patients who underwent coronary angiography at Guangdong Provincial People's Hospital between January 2017 and July 2022, of whom 679 patients were ultimately enrolled in the study. Among them, 260 patients were diagnosed with CAE, whereas 419 patients with normal coronary results composed the control group. Remnant cholesterol (RC) was calculated as total cholesterol (TC) minus high-density lipoprotein cholesterol (HDL-C) minus low-density lipoprotein cholesterol (LDL-C). The association between RC levels and the risk of CAE was assessed via multivariable logistic models. RESULTS Out of the 679 patients who participated in this study, with an average age of 59.9 years, 38.3% were diagnosed with CAE. Patients with CAE had higher RC levels than did those without CAE (P = 0.001). A significant positive association was observed between RC levels and the risk of CAE, with a multivariable adjusted odds ratio (OR) of 1.950 (95% confidence interval [CI]: 1.163-3.270). There was a significant positive association between RC levels and the risk of CAE in both single-vessel and multivessel dilation cases, as well as in isolated CAE and dilation secondary to coronary atherosclerosis. According to the subgroup analyses, RC levels were positively associated with the risk of CAE in participants with hypertension (OR, 1.065; 95% CI, 1.034-1.098). CONCLUSION RC levels are positively correlated with CAE, implying that a focus on RC could be beneficial in CAE research.
Collapse
Affiliation(s)
- Jing Mu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yihan Weng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Jiquan Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yusi Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiang He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixin Xie
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou Guangdong, China
| | - Huimin Yu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Department of Cardiology, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, China.
| |
Collapse
|
5
|
Guardiola M, Rehues P, Amigó N, Arrieta F, Botana M, Gimeno-Orna JA, Girona J, Martínez-Montoro JI, Ortega E, Pérez-Pérez A, Sánchez-Margalet V, Pedro-Botet J, Ribalta J. Increasing the complexity of lipoprotein characterization for cardiovascular risk in type 2 diabetes. Eur J Clin Invest 2024; 54:e14214. [PMID: 38613414 DOI: 10.1111/eci.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024]
Abstract
The burden of cardiovascular disease is particularly high among individuals with diabetes, even when LDL cholesterol is normal or within the therapeutic target. Despite this, cholesterol accumulates in their arteries, in part, due to persistent atherogenic dyslipidaemia characterized by elevated triglycerides, remnant cholesterol, smaller LDL particles and reduced HDL cholesterol. The causal link between dyslipidaemia and atherosclerosis in T2DM is complex, and our contention is that a deeper understanding of lipoprotein composition and functionality, the vehicle that delivers cholesterol to the artery, will provide insight for improving our understanding of the hidden cardiovascular risk of diabetes. This narrative review covers three levels of complexity in lipoprotein characterization: 1-the information provided by routine clinical biochemistry, 2-advanced nuclear magnetic resonance (NMR)-based lipoprotein profiling and 3-the identification of minor components or physical properties of lipoproteins that can help explain arterial accumulation in individuals with normal LDLc levels, which is typically the case in individuals with T2DM. This document highlights the importance of incorporating these three layers of lipoprotein-related information into population-based studies on ASCVD in T2DM. Such an attempt should inevitably run in parallel with biotechnological solutions that allow large-scale determination of these sets of methodologically diverse parameters.
Collapse
Affiliation(s)
- Montse Guardiola
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pere Rehues
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Amigó
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
- Biosfer Teslab, Reus, Spain
| | | | - Manuel Botana
- Departamento de Endocrinología y Nutrición, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - José A Gimeno-Orna
- Endocrinology and Nutrition Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Josefa Girona
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
| | - Emilio Ortega
- Department of Endocrinology and Nutrition, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Pérez-Pérez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Department of Endocrinology and Nutrition, Hospital del Mar, Barcelona, Spain
- Department of Medicine, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Universitat Rovira i Virgili, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Li B, Liu Y, Zhou X, Chen L, Yan L, Tang X, Gao Z, Wan Q, Luo Z, Qin G, Ning G, Gu W, Mu Y. Remnant cholesterol is more positively related to diabetes, prediabetes, and insulin resistance than conventional lipid parameters and lipid ratios: A multicenter, large sample survey. J Diabetes 2024; 16:e13592. [PMID: 39136535 PMCID: PMC11320755 DOI: 10.1111/1753-0407.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Not many large-sample investigations are available that compare the potency of the relationship of remnant cholesterol (RC) and other lipid parameters with diabetes and prediabetes. The goals of our study are to discover the relationship between RC and prediabetes, diabetes, and insulin resistance (IR) and to investigate RC, high-density lipoprotein cholesterol (HDL-C), non-HDL-C, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), TC/HDL-C, LDL-C/HDL-C, and TG/HDL-C, which are the lipid parameters that are most positively related to diabetes, prediabetes, and IR. METHODS This research enrolled 36 684 subjects from China's eight provinces. We employed multiple logistic regression analysis for testing the relationship between lipid parameters and diabetes, prediabetes, and IR. RESULTS After adjusting for potential confounders, and comparing the results with other lipid parameters, the positive relationship between RC and diabetes (odds ratio [OR] 1.417, 95% confidence interval [CI]: 1.345-1.492), prediabetes (OR 1.555, 95% CI: 1.438-1.628), and IR (OR 1.488, 95% CI: 1.404-1.577) was highest. RC was still related to diabetes, prediabetes, and IR even when TG <2.3 mmol/L (diabetes: OR 1.256, 95% CI: 1.135-1.390; prediabetes: OR 1.503, 95% CI: 1.342-1.684; and IR: OR 1.278, 95% CI: 1.140-1.433), LDL-C <2.6 mmol/L (diabetes: OR 1.306, 95% CI: 1.203-1.418; prediabetes: OR 1.597, 95% CI: 1.418-1.798; and IR: OR 1.552, 95% CI: 1.416-1.701), or HDL-C ≥1 mmol/L (diabetes: OR 1.456, 95% CI: 1.366-1.550; prediabetes: OR 1.553, 95% CI: 1.421-1.697; and IR: OR 1.490, 95% CI: 1.389-1.598). CONCLUSION RC is more positively related to diabetes, prediabetes, and IR than conventional lipids and lipid ratios in the general population, the relationships between RC and diabetes, prediabetes, and IR are stable, even if HDL-C, LDL-C, or TG are at appropriate levels.
Collapse
Affiliation(s)
- Binqi Li
- School of MedicineNankai UniversityTianjinChina
- Department of EndocrinologyFirst Medical Center of PLA General HospitalBeijingChina
| | - Yang Liu
- Department of EndocrinologyFirst Medical Center of PLA General HospitalBeijingChina
- Department of EndocrinologyEighth Medical Center of PLA General HospitalBeijingChina
| | - Xin Zhou
- Graduate SchoolChinese PLA General HospitalBeijingChina
- Department of Medical OncologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
- The Second Medical Center of Chinese PLA General HospitalBeijingChina
| | - Lulu Chen
- Wuhan Union HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Li Yan
- Department of EndocrinologyZhongshan University Sun Yat‐sen Memorial HospitalGuangzhouChina
| | - Xulei Tang
- Department of EndocrinologyFirst Hospital of Lanzhou UniversityLanzhouChina
| | - Zhengnan Gao
- Department of EndocrinologyDalian Central HospitalDalianChina
| | - Qin Wan
- Department of EndocrinologySouthwest Medical University Affiliated HospitalLuzhouChina
| | - Zuojie Luo
- Department of endocrinologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Guijun Qin
- Department of endocrinologyFirst Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guang Ning
- Department of Endocrinology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijun Gu
- Department of EndocrinologyFirst Medical Center of PLA General HospitalBeijingChina
- Department of EndocrinologyEighth Medical Center of PLA General HospitalBeijingChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
| | - Yiming Mu
- School of MedicineNankai UniversityTianjinChina
- Department of EndocrinologyFirst Medical Center of PLA General HospitalBeijingChina
- Department of EndocrinologyEighth Medical Center of PLA General HospitalBeijingChina
- Graduate SchoolChinese PLA General HospitalBeijingChina
| |
Collapse
|
7
|
Doi T, Langsted A, Nordestgaard BG. Lipoproteins, Cholesterol, and Atherosclerotic Cardiovascular Disease in East Asians and Europeans. J Atheroscler Thromb 2023; 30:1525-1546. [PMID: 37704428 PMCID: PMC10627775 DOI: 10.5551/jat.rv22013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
One fifth of the world population live in East Asia comprising Japan, Korea, and China where ischemic heart disease, a major component of atherosclerotic cardiovascular disease (ASCVD), is the second most frequent cause of death. Each of low-density lipoproteins (LDL), remnant lipoproteins, and lipoprotein(a), summarized as non-high-density lipoproteins (non-HDL) or apolipoprotein B (apoB) containing lipoproteins, causes ASCVD. However, a significant proportion of the evidence on lipoproteins and lipoprotein cholesterol with risk of ASCVD came from White people mainly living in Europe and North America and not from people living in East Asia or of East Asian descent. With a unique biological, geohistorical, and social background in this world region, East Asians have distinctive characteristics that might have potential impact on the association of lipoproteins and lipoprotein cholesterol with risk of ASCVD. Considering the movement across national borders in the World, understanding of lipoprotein and lipoprotein cholesterol evidence on ASCVD in East Asia is important for both East Asian and non-East Asian populations wherever they live in the World.In this review, we introduce the biological features of lipoproteins and lipoprotein cholesterol and the evidence for their association with risk of ASCVD in East Asian and European populations. We also provide an overview of guideline recommendations for prevention of ASCVD in these two different world regions. Finally, specific preventive strategies and future perspectives are touched upon.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Clinical Biochemistry, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ou SJL, Yang D, Pranata HP, Tai ES, Liu MH. Postprandial glycemic and lipidemic effects of black rice anthocyanin extract fortification in foods of varying macronutrient compositions and matrices. NPJ Sci Food 2023; 7:59. [PMID: 37914734 PMCID: PMC10620212 DOI: 10.1038/s41538-023-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Anthocyanin (ACN) fortification of commonly consumed foods is significant as a dietary strategy against the development of metabolic complications by delivering ACNs at high doses. However, its bioactivity and translated metabolic effects in the presence of varying food matrices and macro-constituents is particularly unclear. This end-to-end study investigates the metabolic effects of black rice ACN extract (BRAE) fortification-from in-vitro enzyme inhibitory activities and digestibility, to downstream in vivo impacts on GI, postprandial glycemia and lipidemia. The in vivo effects were investigated in two separate crossover randomised controlled trials (RCT) of 24 healthy participants each-the first RCT determined the postprandial blood glucose, insulin, and ACN bioavailability to a starch-rich single food over 2 h, while the second RCT determined the postprandial blood glucose, insulin, lipid panel, and lipoprotein particles and subfractions to a starch- and fat-rich composite meal over 4 h. In-vitro findings confirmed the inhibitory activities of major black rice ACNs on carbohydrases (p = 0.0004), lipases (p = 0.0002), and starch digestibility (p < 0.0001). in vivo, a 27-point mean GI reduction of wheat bread was observed with BRAE fortification, despite a non-significant attenuation in postprandial glycemia. Conversely, there were no differences in postprandial glycemia when fortified bread was consumed as a composite meal, but acute lipid profiles were altered: (1) improved plasma HDL-c, ([0.0140 mmol/L, 95% CI: (0.00639, 0.0216)], p = 0.0028), Apo-A1 ([0.0296 mmol/L, 95% CI: (0.00757, 0.0515)], p = 0.0203), and Apo-B ([0.00880 mmol/L, 95% CI: (0.00243, 0.0152)], p = 0.0185), (2) modified LDL and HDL subfractions (p < 0.05), and (3) remodelled lipid distributions in HDL and LDL particles. This end-to-end study indicates the potential of ACN fortification in GI reduction and modulating postprandial lipoprotein profiles to starch- and fat-rich composite meals.
Collapse
Affiliation(s)
- Sean Jun Leong Ou
- Division of Endocrinology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Dimeng Yang
- Division of Endocrinology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hanny Putri Pranata
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - E Shyong Tai
- Division of Endocrinology, University Medicine Cluster, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Mei Hui Liu
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
9
|
Wang Y, Zha F, Han Y, Cai Y, Chen M, Yang C, Cai X, Hu H, Cao C, Luo J. Nonlinear connection between remnant cholesterol and stroke risk: evidence from the China health and retirement longitudinal study. Lipids Health Dis 2023; 22:181. [PMID: 37880769 PMCID: PMC10601161 DOI: 10.1186/s12944-023-01943-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE The evidence on the relationship between remnant cholesterol (RC) and stroke remains controversial. Therefore, this study aimed to explore the relationship between RC and stroke risk in a Chinese population of middle-aged and elderly individuals. METHODS The present study included 10067 Chinese subjects of middle-aged and elderly individuals. The connection between RC and incident stroke was investigated using the multivariate Cox proportional hazards regression model, several sensitivity analyses, generalized additive models, and smoothed curve fitting. RESULTS A total of 1180 participants with stroke were recorded during the follow-up period. The multivariate Cox proportional hazards regression model identified a positive connection between RC and stroke risk (hazard ratio (HR) = 1.087, 95% confidence interval (CI): 1.001-1.180). In addition, the current study discovered a nonlinear connection between RC and incident stroke, and the point of inflection for RC was 1.78 mmol/L. The risk of stroke increased by 25.1% with each unit increase in RC level when RC was < 1.78 mmol/L (HR:1.251, 95%CI: 1.089-1.437, P = 0.0015). The results were not affected by sensitivity tests. CONCLUSION The current study showed a positive and nonlinear connection between RC and stroke risk in a middle-aged and elderly Chinese population. These findings provided new information to help researchers better understand the relationship between RC levels and incident stroke.
Collapse
Affiliation(s)
- Yuanqing Wang
- Department of Functional Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Fubing Zha
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Yong Han
- Department of Emergency, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Ying Cai
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Dapeng New District, Shenzhen, 518000, Guangdong Province, China
| | - Miaoling Chen
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Cui Yang
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Dapeng New District, Shenzhen, 518000, Guangdong Province, China
| | - Xiaodong Cai
- Department of Functional Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Haofei Hu
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, No.3002, Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China.
| | - Changchun Cao
- Department of Rehabilitation, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Dapeng New District, Shenzhen, 518000, Guangdong Province, China.
| | - Jiao Luo
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Dapeng New District, Shenzhen, 518000, Guangdong Province, China.
| |
Collapse
|
10
|
Johansen MØ, Moreno-Vedia J, Balling M, Davey Smith G, Nordestgaard BG. Triglyceride content increases while cholesterol content decreases in HDL and LDL+IDL fractions following normal meals: The Copenhagen General Population Study of 25,656 individuals. Atherosclerosis 2023; 383:117316. [PMID: 37820443 PMCID: PMC7615473 DOI: 10.1016/j.atherosclerosis.2023.117316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS During fat tolerance tests, plasma triglycerides increase while high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and intermediate-density lipoprotein (IDL) cholesterol decrease. However, it is unknown whether triglyceride content increases and cholesterol content decreases in HDL and LDL + IDL fractions following normal meals in the general population. Therefore, we tested the hypothesis that triglyceride content increases while cholesterol content decreases in HDL and LDL + IDL fractions following normal meals. METHODS In this cross-sectional study, we included 25,656 individuals aged 20-100 years, all without lipid-lowering therapy at examination and selected for metabolomic profiling from the Copenhagen General Population Study. Triglyceride and cholesterol content of 14 lipoprotein fractions weas measured using nuclear magnetic resonance (NMR) spectroscopy. Time since last meal was recorded by the examiner immediately before blood sampling. RESULTS Following normal meals in age and sex-adjusted analyses and when compared with fasting levels, plasma triglycerides were higher for up to 5-6 h, and triglyceride content was higher for up to 6-7 h in HDL fractions, for up to 6-7 h in LDL + IDL fractions, and for up to 5-6 h in very-low-density lipoprotein (VLDL) fractions. Further, plasma cholesterol was lower for up to 2-3 h, and cholesterol content was lower for up to 0-1 h in HDL fractions and for up to 4-5 h in LDL + IDL fractions, while cholesterol content was higher for up to 4-5 h in VLDL fractions. CONCLUSIONS Following normal meals, triglyceride content increases while cholesterol content decreases in HDL and LDL + IDL fractions.
Collapse
Affiliation(s)
- Mia Ø Johansen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Juan Moreno-Vedia
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Mie Balling
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
Shi L, Zhang D, Ju J, Wang A, Du T, Chen X, Song Y, Gao Z, Xu H. Remnant cholesterol associates with hypertension beyond low-density lipoprotein cholesterol among the general US adult population. Front Endocrinol (Lausanne) 2023; 14:1260764. [PMID: 37842298 PMCID: PMC10570462 DOI: 10.3389/fendo.2023.1260764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Previous findings have indicated that elevated low-density lipoprotein cholesterol (LDL-C) and remnant cholesterol (RC) are associated with hypertension. We aim to explore whether higher RC levels may be associated with hypertension beyond LDL-C in the general US adult population. Methods This study included 10,842 adults from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. Weighted multivariable logistic regression models were used to estimate the odds ratios (ORs) of hypertension for LDL-C and RC. We also performed analyses examining the association between hypertension and LDL-C vs. RC concordant/discordant groups. Results A total of 4,963 (41.54%, weighted) individuals had hypertension. The weighted median levels were LDL-C: 118mg/dL, RC: 20mg/dL. At lower LDL-C clinical cut-point, the proportion of discordantly high RC dramatically increased. After multivariable adjustment, log RC was associated with higher prevalence of hypertension [OR 2.54, 95% confidence interval (CI) 2.17-2.99]. Participants with the highest tertile of RC were more likely to have hypertension (OR 2.18; 95% CI 1.89-2.52) compared with those with the lowest tertile of RC. This association remained marked after including body mass index (BMI), LDL-C, high-density lipoprotein cholesterol (HDL-C) or triglycerides. The association between LDL-C and hypertension was absent after adjusting for BMI, RC or triglycerides. Compared with low LDL-C/low RC group, the discordant low LDL-C/high RC group was associated with hypertension (OR 2.04; 95% CI 1.72-2.42), whereas the high LDL-C/low RC group was not, regardless of BMI, HDL-C or triglycerides. Similar results were observed when examining discordance among different clinical cut-points, except for the cut-point of LDL-C 70 mg/dL and RC 13 mg/dL. To better understand the association, we performed an additional analysis, which showed that among participants with apolipoprotein B < median (92mg/dL), those with discordant RC ≥ median (20mg/dL) had significantly higher odds of having hypertension (OR 1.73; 95% CI 1.38-2.17). Conclusion RC was associated with hypertension beyond LDL-C in the general US adult population. This association went beyond increased triglycerides levels, and lipoproteins other than apoB may be involved.
Collapse
Affiliation(s)
- Liu Shi
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongmei Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anlu Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyi Du
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanye Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yewen Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuye Gao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Lütjohann D, Klör HU, Stellaard F. Measurement of Serum Low Density Lipoprotein Cholesterol and Triglyceride-Rich Remnant Cholesterol as Independent Predictors of Atherosclerotic Cardiovascular Disease: Possibilities and Limitations. Nutrients 2023; 15:2202. [PMID: 37432317 DOI: 10.3390/nu15092202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 07/12/2023] Open
Abstract
The serum low density lipoprotein cholesterol (LDL-C) concentration is the dominant clinical parameter to judge a patient's risk of developing cardiovascular disease (CVD). Recent evidence supports the theory that cholesterol in serum triglyceride-rich lipoproteins (TRLs) contributes significantly to the atherogenic risk, independent of LDL-C. Therefore, combined analysis of both targets and adequate treatment may improve prevention of CVD. The validity of TRL-C calculation is solely dependent on the accuracy of the LDL-C measurement. Direct measurement of serum LDL- C is more accurate than established estimation procedures based upon Friedewald, Martin-Hopkins, or Sampson equations. TRL-C can be easily calculated as total C minus high density lipoprotein C (HDL-C) minus LDL-C. Enhanced serum LDL-C or TRL-C concentrations require different therapeutic approaches to lower the atherogenic lipoprotein C. This review describes the different atherogenic lipoproteins and their possible analytical properties and limitations.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Hans-Ulrich Klör
- Department of Internal Medicine III, University of Gießen, 35392 Gießen, Germany
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
13
|
Harsløf M, Pedersen KM, Afzal S, Davey Smith G, Nordestgaard BG. Lower levels of small HDL particles associated with increased infectious disease morbidity and mortality: a population-based cohort study of 30 195 individuals. Cardiovasc Res 2023; 119:957-968. [PMID: 36537045 DOI: 10.1093/cvr/cvac194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS Low levels of HDL cholesterol have been associated with increased risk of infectious disease morbidity and mortality. Nuclear magnetic resonance (NMR) spectroscopy permits the measurement of HDL particle count and allows further subclassification according to particle size. We tested the hypothesis that low number of different HDL subfractions is associated with increased infectious disease morbidity and mortality. METHODS AND RESULTS HDL particle counts were measured using NMR spectroscopy in 30 195 individuals aged 22-99 years from the Copenhagen General Population Study. Using multiple-event Cox regression and cause-specific hazard models, we assessed risk of hospitalizations due to infection and infectious disease-related death, from 2003 through 2018. During follow-up, 9303 individuals had one or more infectious disease events, and 1558 experienced infectious disease-related death. In multifactorial adjusted analyses, low number of small and medium HDL particles was associated with increased risk of any infection and infectious disease-related death, whereas low number of large and extra-large HDL particles was not. A very high number of small and medium HDL particles was also associated with increased risk of any infection, but not with infectious disease-related death. For small and medium HDL particles and compared to individuals in the 91-95th percentile, hazard ratios (HRs) in individuals in the lowest percentile were 2.31 (95% confidence interval: 1.75, 3.05) for any infection and 3.23 (2.08, 5.02) for infectious disease-related death. For the highest percentile, corresponding HRs were 1.36 (1.07, 1.74) and 1.06 (0.57, 1.98), respectively. Individuals in the lowest percentile had increased risk of pneumonia (HR: 1.86; 95% confidence interval: 1.30, 2.65), sepsis (2.17; 1.37, 3.35), urinary tract infection (1.76; 1.17, 2.63), skin infection (1.87; 1.24, 2.81), gastroenteritis (1.78; 1.01, 3.16), and other infections (2.57; 1.28, 5.16). CONCLUSION Low number of the small HDL particles was associated with increased infectious disease morbidity and mortality.
Collapse
Affiliation(s)
- Mads Harsløf
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 73, DK-2730 Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 73, DK-2730 Herlev, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 73, DK-2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 73, DK-2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, BS8 2BN Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, BS8 2BN Bristol, United Kingdom
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 73, DK-2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
14
|
Wang Y, Shen R. Association of remnant cholesterol with depression among US adults. BMC Psychiatry 2023; 23:259. [PMID: 37069633 PMCID: PMC10108798 DOI: 10.1186/s12888-023-04770-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Remnant cholesterol is receiving increasing attention because of its association with various diseases. However, there have been no studies on remnant cholesterol levels and depression. METHODS A cross-sectional analysis was performed based on the National Health and Nutrition Examination Survey (NHANES) 2005-2016. Depression was assessed using a Patient Health Questionnaire (PHQ-9). Fasting remnant cholesterol was calculated as the total cholesterol minus high-density lipoprotein cholesterol (HDL-C) minus low-density lipoprotein cholesterol (LDL-C). Logistic regression analysis with sampling weights was used to examine the association between remnant cholesterol concentration and depression. RESULTS Among 8,263 adults enrolled in this study (weighted mean age, 45.65 years), 5.88% (weighted percentage) had depression. Compared to the participants without depression, those with depression had higher concentration of remnant cholesterol (weighted mean, 26.13 vs. 23.05, P < 0.001). There was a significant positive relationship between remnant cholesterol concentration and depression and multivariable-adjusted OR with 95% CI was 1.49 (1.02-2.17). Among the subgroup analyses, remnant cholesterol concentration was positively associated with depression among participants less than 60 years (OR, 1.62; 95% CI, 1.09-2.42), male (OR, 2.02; 95% CI, 1.01-4.05), BMI under 30 (OR, 1.83; 95% CI, 1.14-2.96), and those with diabetes (OR, 3.88; 95% CI, 1.43-10.49). CONCLUSIONS Remnant cholesterol concentration positively correlated with depression, suggesting that a focus on remnant cholesterol may be useful in the study of depression.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cardiovascular Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ruhua Shen
- Department of Cardiovascular Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
15
|
Lee HC, Akhmedov A, Chen CH. Spotlight on very-low-density lipoprotein as a driver of cardiometabolic disorders: Implications for disease progression and mechanistic insights. Front Cardiovasc Med 2022; 9:993633. [PMID: 36267630 PMCID: PMC9577298 DOI: 10.3389/fcvm.2022.993633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Very-low-density lipoprotein (VLDL) is the only lipoprotein containing apolipoprotein B that is secreted from the liver, where VLDL is assembled from apolipoproteins, cholesterol, and triglycerides. The primary function of VLDL is to transport cholesterol and other lipids to organs and cells for utilization. Apart from its role in normal biologic processes, VLDL is also known to contribute to the development of atherosclerotic cardiovascular disease. Large VLDL particles, which are subclassified according to their size by nuclear magnetic resonance spectrometry, are significantly correlated not only with atherosclerosis, but also with insulin resistance and diabetes incidence. VLDL can also be subclassified according to surface electrical charge by using anion-exchange chromatography. The most electronegative VLDL subclass is highly cytotoxic to endothelial cells and may contribute to coronary heart disease. In addition, electronegative VLDL contributes to the development of atrial remodeling, especially in patients with metabolic syndrome, which is an established risk factor for atrial fibrillation. In this review, we focus on the VLDL subclasses that are associated with apolipoprotein alterations and are involved in cardiometabolic disease. The postprandial enhancement of VLDL’s pathogenicity is a critical medical issue, especially in patients with metabolic syndrome. Therefore, the significance of the postprandial modification of VLDL’s chemical and functional properties is extensively discussed.
Collapse
Affiliation(s)
- Hsiang-Chun Lee
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Institute/Center of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan,Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, United States,*Correspondence: Chu-Huang Chen,
| |
Collapse
|
16
|
Rief M, Raggam R, Rief P, Metnitz P, Stojakovic T, Reinthaler M, Brodmann M, März W, Scharnagl H, Silbernagel G. Comparison of Two Nuclear Magnetic Resonance Spectroscopy Methods for the Measurement of Lipoprotein Particle Concentrations. Biomedicines 2022; 10:biomedicines10071766. [PMID: 35885071 PMCID: PMC9312544 DOI: 10.3390/biomedicines10071766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Measuring lipoprotein particle concentrations may help to improve cardiovascular risk stratification. Both the lipofit (Numares) and lipoprofile (LabCorp) NMR methods are widely used for the quantification of lipoprotein particle concentrations. Objective: The aim of the present work was to perform a method comparison between the lipofit and lipoprofile NMR methods. In addition, there was the objective to compare lipofit and lipoprofile measurements of standard lipids with clinical chemistry-based results. Methods: Total, LDL, and HDL cholesterol and triglycerides were measured with ß-quantification in serum samples from 150 individuals. NMR measurements of standard lipids and lipoprotein particle concentrations were performed by Numares and LabCorp. Results: For both NMR methods, differences of mean concentrations compared to ß-quantification-derived measurements were ≤5.5% for all standard lipids. There was a strong correlation between ß-quantification- and NMR-derived measurements of total and LDL cholesterol and triglycerides (all r > 0.93). For both, the lipofit (r = 0.81) and lipoprofile (r = 0.84) methods, correlation coefficients were lower for HDL cholesterol. There was a reasonable correlation between LDL and HDL lipoprotein particle concentrations measured with both NMR methods (both r > 0.9). However, mean concentrations of major and subclass lipoprotein particle concentrations were not as strong. Conclusions: The present analysis suggests that reliable measurement of standard lipids is possible with these two NMR methods. Harmonization efforts would be needed for better comparability of particle concentration data.
Collapse
Affiliation(s)
- Martin Rief
- Division of General Anaesthesiology, Emergency- and Intensive Care Medicine, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, A-8036 Graz, Austria; (M.R.); (P.M.)
| | - Reinhard Raggam
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (R.R.); (P.R.); (M.B.); (G.S.)
| | - Peter Rief
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (R.R.); (P.R.); (M.B.); (G.S.)
| | - Philipp Metnitz
- Division of General Anaesthesiology, Emergency- and Intensive Care Medicine, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, A-8036 Graz, Austria; (M.R.); (P.M.)
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, A-8036 Graz, Austria;
| | - Markus Reinthaler
- Department of Cardiology (CBF), Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany;
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (R.R.); (P.R.); (M.B.); (G.S.)
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, A-8036 Graz, Austria;
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, A-8036 Graz, Austria;
- Correspondence: ; Tel.: +43-(0)316-385-86030
| | - Günther Silbernagel
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, A-8036 Graz, Austria; (R.R.); (P.R.); (M.B.); (G.S.)
| |
Collapse
|
17
|
Packard CJ. Remnants, LDL, and the Quantification of Lipoprotein-Associated Risk in Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2022; 24:133-142. [PMID: 35175548 PMCID: PMC8983627 DOI: 10.1007/s11883-022-00994-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Implementation of intensive LDL cholesterol (LDL-C) lowering strategies and recognition of the role of triglyceride-rich lipoproteins (TRL) in atherosclerosis has prompted re-evaluation of the suitability of current lipid profile measurements for future clinical practice. RECENT FINDINGS At low concentrations of LDL-C (< 1.8 mmol/l/70 mg/dl), the Friedewald equation yields estimates with substantial negative bias. New equations provide a more accurate means of calculating LDL-C. Recent reports indicate that the increase in risk per unit increment in TRL/remnant cholesterol may be greater than that of LDL-C. Hence, specific measurement of TRL/remnant cholesterol may be of importance in determining risk. Non-HDL cholesterol and plasma apolipoprotein B have been shown in discordancy analyses to identify individuals at high risk even when LDL-C is low. There is a need to adopt updated methods for determining LDL-C and to develop better biomarkers that more accurately reflect the abundance of TRL remnant particles.
Collapse
Affiliation(s)
- Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
18
|
Concerns Regarding NMR Lipoprotein Analyses Performed on the Nightingale Heath Platform – Focus on LDL Subclasses. J Clin Lipidol 2022; 16:250-252. [DOI: 10.1016/j.jacl.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022]
|
19
|
Wilson PWF, Jacobson TA, Martin SS, Jackson EJ, Le NA, Davidson MH, Vesper HW, Frikke-Schmidt R, Ballantyne CM, Remaley AT. Lipid measurements in the management of cardiovascular diseases: Practical recommendations a scientific statement from the national lipid association writing group. J Clin Lipidol 2021; 15:629-648. [PMID: 34802986 DOI: 10.1016/j.jacl.2021.09.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/31/2023]
Abstract
Lipoprotein measurements are pivotal in the management of patients at risk for atherosclerotic coronary heart disease (CHD) with myocardial infarction and coronary death as the main outcomes, and for atherosclerotic cardiovascular disease (ASCVD), which includes CHD and stroke. Recent developments and changes in guidelines affect optimization of using lipid measures as cardiovascular biomarkers. This scientific statement reviews the pre-analytical, analytical, post-analytical, and clinical aspects of lipoprotein measurements. Highlights include the following: i) It is acceptable to screen with nonfasting lipids. ii) non-high-density lipoprotein HDL-cholesterol (non-HDL-C) is measured reliably in either the fasting or the nonfasting state and can effectively guide ASCVD prevention. iii) low density lipoprotein cholesterol (LDL-C) can be estimated from total cholesterol, high density lipoprotein cholesterol (HDL-C), and triglyceride (TG) measurements. For patients with LDL-C>100 mg/dL and TG ≤150 mg/dL it is reasonable to use the Friedewald formula. However, for those with TG 150-400 mg/dL the Friedewald formula for LDL-C estimation is less accurate. The Martin/Hopkins method is recommended for LDL-C estimation throughout the range of LDL-C levels and up to TG levels of 399 mg/dL. For TG levels ≥400 mg/dL LDL-C estimating equations are currently not recommended and newer methods are being evaluated. iv) When LDL-C or TG screening results are abnormal the clinician should consider obtaining fasting lipids. v) Advanced lipoprotein tests using apolipoprotein B (apoB), LDL Particle Number (LDL-P) or remnant cholesterol may help to guide therapeutic decisions in select patients, but data are limited for patients already on lipid lowering therapy with low LDL-C levels. Better harmonization of advanced lipid measurement methods is needed. Lipid measurements are recommended 4-12 weeks after a change in lipid treatment. Lipid laboratory reports should denote desirable values and specifically identify extremely elevated LDL-C levels (≥190 mg/dL at any age or ≥160 mg/dL in children) as severe hypercholesterolemia. Potentially actionable abnormal lipid test results, including fasting triglycerides (TG) ≥500 mg/dL, should be reported as hypertriglyceridemia. Appropriate use and reporting of lipid tests should improve their utility in the management of persons at high risk for ASCVD events.
Collapse
Affiliation(s)
- Peter W F Wilson
- Emory University School of Medicine, Atlanta, GA, United States; Atlanta Veterans Affairs Medical Center, Atlanta, GA, United States.
| | | | - Seth S Martin
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - N-Anh Le
- Atlanta Veterans Affairs Medical Center, Atlanta, GA, United States
| | | | - Hubert W Vesper
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ruth Frikke-Schmidt
- Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Alan T Remaley
- National Heart, Lung and Blood Institute, Bethesda, MD, United States
| |
Collapse
|
20
|
Quispe R, Martin SS, Michos ED, Lamba I, Blumenthal RS, Saeed A, Lima J, Puri R, Nomura S, Tsai M, Wilkins J, Ballantyne CM, Nicholls S, Jones SR, Elshazly MB. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J 2021; 42:4324-4332. [PMID: 34293083 PMCID: PMC8572557 DOI: 10.1093/eurheartj/ehab432] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/05/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
AIMS Emerging evidence suggests that remnant cholesterol (RC) promotes atherosclerotic cardiovascular disease (ASCVD). We aimed to estimate RC-related risk beyond low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (apoB) in patients without known ASCVD. METHODS AND RESULTS We pooled data from 17 532 ASCVD-free individuals from the Atherosclerosis Risk in Communities study (n = 9748), the Multi-Ethnic Study of Atherosclerosis (n = 3049), and the Coronary Artery Risk Development in Young Adults (n = 4735). RC was calculated as non-high-density lipoprotein cholesterol (non-HDL-C) minus calculated LDL-C. Adjusted Cox models were used to estimate the risk for incident ASCVD associated with log RC levels. We also performed discordance analyses examining relative ASCVD risk in RC vs. LDL-C discordant/concordant groups using difference in percentile units (>10 units) and clinically relevant LDL-C targets. The mean age of participants was 52.3 ± 17.9 years, 56.7% were women and 34% black. There were 2143 ASCVD events over the median follow-up of 18.7 years. After multivariable adjustment including LDL-C and apoB, log RC was associated with higher ASCVD risk [hazard ratio (HR) 1.65, 95% confidence interval (CI) 1.45-1.89]. Moreover, the discordant high RC/low LDL-C group, but not the low RC/high LDL-C group, was associated with increased ASCVD risk compared to the concordant group (HR 1.21, 95% CI 1.08-1.34). Similar results were shown when examining discordance across clinical cutpoints. CONCLUSIONS In ASCVD-free individuals, elevated RC levels were associated with ASCVD independent of traditional risk factors, LDL-C, and apoB levels. The mechanisms of RC association with ASCVD, surprisingly beyond apoB, and the potential value of targeted RC-lowering in primary prevention need to be further investigated.
Collapse
Affiliation(s)
- Renato Quispe
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Shay Martin
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin Donelly Michos
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isha Lamba
- Department of Medicine, New York Presbyterian Hospital-Cornell, 525 East 68th Street, New York, NY, USA
| | - Roger Scott Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anum Saeed
- Department of Cardiovascular Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joao Lima
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sarah Nomura
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - John Wilkins
- Division of Cardiology and the Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christie Mitchell Ballantyne
- Department of Cardiovascular Medicine, Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Stephen Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Steven Richard Jones
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamed Badreldin Elshazly
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
21
|
Darabi M, Kontush A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159058. [PMID: 34624514 DOI: 10.1016/j.bbalip.2021.159058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.
Collapse
Affiliation(s)
- Maryam Darabi
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France.
| |
Collapse
|
22
|
Ginsberg HN, Packard CJ, Chapman MJ, Borén J, Aguilar-Salinas CA, Averna M, Ference BA, Gaudet D, Hegele RA, Kersten S, Lewis GF, Lichtenstein AH, Moulin P, Nordestgaard BG, Remaley AT, Staels B, Stroes ESG, Taskinen MR, Tokgözoğlu LS, Tybjaerg-Hansen A, Stock JK, Catapano AL. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42:4791-4806. [PMID: 34472586 PMCID: PMC8670783 DOI: 10.1093/eurheartj/ehab551] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH-10-305, New York, NY 10032, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - M John Chapman
- Sorbonne University Endocrinology-Metabolism Division, Pitié-Salpetriere University Hospital, and National Institute for Health and Medical Research (INSERM), 47 Hôpital boulevard, Paris 75013, France
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Blå Stråket 5, Gothenburg 413 45, Sweden
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto, Monterrey, Nuevo León 3000, Mexico
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Marina Square, 61, Palermo 90133, Italy
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, 305 Rue St Vallier, Chicoutimi, Québec G7H 5H6, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Eaton Building, Room 12E248, 200 Elizabeth St, Toronto, Ontario M5G 2C4, Canada
| | - Alice H Lichtenstein
- Cardiovascular Nutrition, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St Ste 9, Boston, MA 02111, USA
| | - Philippe Moulin
- Department of Endocrinology, GHE, Hospices Civils de Lyon, CarMeN Laboratory, Inserm UMR 1060, CENS-ELI B, Univ-Lyon1, Lyon 69003, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Dr Ste 10-7C114, Bethesda, MD 20892, USA
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, 1541 Kings Hwy, Amsterdam 71103, The Netherlands
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, 06100 Sıhhiye, Ankara, Turkey
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Blegdamsvej 9, Rigshospitalet, Copenhagen 2100, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg 57 2000, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, Copenhagen 3B 2200, Denmark
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, Gothenburg SE-412 51, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano and IRCCS MultiMedica, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
23
|
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
24
|
The Effects of Calculated Remnant-Like Particle Cholesterol on Incident Cardiovascular Disease: Insights from a General Chinese Population. J Clin Med 2021; 10:jcm10153388. [PMID: 34362168 PMCID: PMC8348383 DOI: 10.3390/jcm10153388] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Growing evidence suggests that remnant cholesterol (RC) contributes to residual atherosclerotic cardiovascular disease (ASCVD) risk. However, the cutoff points to treat RC for reducing ASCVD are still unknown. This study aimed to investigate the relationships between RC and combined cardiovascular diseases (CVDs) in a general China cohort, with 11,956 subjects aged ≥ 35 years. Methods: Baseline RC was estimated with the Friedewald formula for 8782 subjects. The outcome was the incidence of combined CVD, including fatal and nonfatal stroke and coronary heart disease (CHD). The Cox proportional hazards model was used to calculate hazard ratios (HRs) with 95% confidence intervals. The restricted cubic spline (RCS) model was used to evaluate the dose–response relationship between continuous RC and the natural log of HRs. Results: After a median follow-up of 4.66 years, 431 CVD events occurred. In the Cox proportional models, participants with a high level of categorial RC had a significantly higher risk for combined CVD (HR: 1.37; 95% CI: 1.07–1.74) and CHD (HR: 1.63; 95% CI: 1.06–2.53), compared to those with a medium level of RC. In the stratification analyses, a high level of RC significantly increased combined CVD risk for subgroups females, age < 65 years, noncurrent smokers, noncurrent drinkers, normal weight, renal dysfunction, and no hyperuricemia. The same trends were found for CHD among subgroups males, age < 65 years, overweight, renal dysfunction, and no hyperuricemia; stroke among subgroup females. In RCS models, a significant linear association between RC and combined CVD and a nonlinear association between RC and CHD resulted. The risk of outcomes was relatively flat until 0.84 mmol/L of RC and increased rapidly afterwards, with an HR of 1.308 (1.102 to 1.553) for combined CVD and 1.411 (1.061 to 1.876) for CHD. Stratified analyses showed a significant nonlinear association between RC and CVD outcomes in the subgroup aged < 65 years or the diabetes subgroup. Conclusions: In this large-scale and long-term follow-up cohort study, participants with higher RC levels had a significantly worse prognosis, especially for the subgroup aged 35–65 years or the diabetes mellitus subgroup.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The functions, genetic variations and impact of apolipoprotein E on lipoprotein metabolism in general are placed in the context of clinical practice dealing with moderate dyslipidaemia as well as dysbetalipoproteinemia, a highly atherogenic disorder and lipoprotein glomerulopathy. RECENT FINDINGS Additional variants of apolipoprotein E and participation of apolipoprotein E in inflammation are of interest. The mostly favourable effects of apolipoprotein E2 as well as the atherogenic nature of apolipoproteinE4, which has an association with cognitive impairment, are confirmed. The contribution of remnant lipoproteins of triglyceride-rich lipoproteins, of which dysbetalipoproteinemia represents an extreme, is explored in atherosclerosis. Mimetic peptides may present new therapeutic approaches. Apolipoprotein E is an important determinant of the lipid profile and cardiovascular health in the population at large and can precipitate dysbetalipoproteinemia and glomerulopathy. Awareness of apolipoprotein E polymorphisms should improve medical care.
Collapse
|
26
|
Manita D, Yoshida H, Koyama I, Nakamura M, Hirowatari Y. Verification of Low-Density Lipoprotein Cholesterol Levels Measured by Anion-Exchange High-Performance Liquid Chromatography in Comparison with Beta Quantification Reference Measurement Procedure. J Appl Lab Med 2021; 6:654-667. [PMID: 33147343 DOI: 10.1093/jalm/jfaa144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND A new lipoprotein testing method based on anion-exchange HPLC (AEX-HPLC) was recently established. We verified the accuracy of LDL-C levels, a primary therapeutic target for the prevention of cardiovascular disease (CVD), measured by AEX-HPLC comparing with LDL-C levels measured by beta quantification-reference measurement procedure (BQ-RMP), homogenous assays, and calculation methods. METHODS We compared LDL-C levels measured by AEX-HPLC (adLDL-Ch: LDL-Ch and IDL-Ch) and BQ-RMP using blood samples from 52 volunteers. AdLDL-Ch levels were also compared with those measurements by homogeneous assays and calculation methods (Friedewald equation, Martin equation, and Sampson equation) using blood samples from 411 participants with dyslipidemia and/or type 2 diabetes. RESULTS The precision and accuracy of adLDL-Ch were verified by BQ-RMP. The mean percentage bias [bias (%)] for LDL-C was 1.2%, and the correlation was y = 0.990x + 3.361 (r = 0.990). These results met the acceptable range of accuracy prescribed by the National Cholesterol Education Program. Additionally, adLDL-Ch levels were correlated with LDL-C levels measured by the 2 homogeneous assays (r > 0.967) and the calculation methods (r > 0.939), in serum samples from patients with hypertriglyceridemia. CONCLUSIONS AEX-HPLC is a reliable method for measuring LDL-C levels for CVD risk in daily clinical laboratory analyses.
Collapse
Affiliation(s)
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Isao Koyama
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Lipid Reference Laboratory, Osaka, Japan
| | - Masakazu Nakamura
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Lipid Reference Laboratory, Osaka, Japan
| | - Yuji Hirowatari
- Department of Health Science, Laboratory Science, Saitama Prefectural University, Saitama, Japan
| |
Collapse
|
27
|
Bruemmer D, Cho L. Remnant Cholesterol: The Leftovers and Their Contribution to Atherosclerotic Cardiovascular Disease. Circ Cardiovasc Imaging 2021; 14:e012615. [PMID: 33877871 DOI: 10.1161/circimaging.121.012615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dennis Bruemmer
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Section of Preventive Cardiology and Rehabilitation, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Leslie Cho
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Section of Preventive Cardiology and Rehabilitation, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
28
|
Johansen MØ, Vedel-Krogh S, Nielsen SF, Afzal S, Davey Smith G, Nordestgaard BG. Per-Particle Triglyceride-Rich Lipoproteins Imply Higher Myocardial Infarction Risk Than Low-Density Lipoproteins: Copenhagen General Population Study. Arterioscler Thromb Vasc Biol 2021; 41:2063-2075. [PMID: 33827253 DOI: 10.1161/atvbaha.120.315639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Mia Ø Johansen
- Department of Clinical Biochemistry (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, CopenhagenUniversity Hospital, Denmark.,The Copenhagen General Population Study (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.)
| | - Signe Vedel-Krogh
- Department of Clinical Biochemistry (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, CopenhagenUniversity Hospital, Denmark.,The Copenhagen General Population Study (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.)
| | - Sune F Nielsen
- Department of Clinical Biochemistry (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, CopenhagenUniversity Hospital, Denmark.,The Copenhagen General Population Study (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.)
| | - Shoaib Afzal
- Department of Clinical Biochemistry (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, CopenhagenUniversity Hospital, Denmark.,The Copenhagen General Population Study (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.)
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, United Kingdom (G.D.S.).,Population Health Sciences, Bristol Medical School, University of Bristol, United Kingdom (G.D.S.)
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, CopenhagenUniversity Hospital, Denmark.,The Copenhagen General Population Study (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.), Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.O.J., S.V.-K., S.F.N., S.A., B.G.N.)
| |
Collapse
|
29
|
VLDL Cholesterol Accounts for One-Half of the Risk of Myocardial Infarction Associated With apoB-Containing Lipoproteins. J Am Coll Cardiol 2021; 76:2725-2735. [PMID: 33272366 DOI: 10.1016/j.jacc.2020.09.610] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Plasma apolipoprotein B (apoB) is a composite measure of all apoB-containing lipoproteins causing atherosclerotic cardiovascular disease; however, it is unclear which fraction of risk is explained by cholesterol and triglycerides, respectively, in very low-density lipoproteins (VLDLs). OBJECTIVES The authors tested the hypothesis that VLDL cholesterol and triglycerides each explain part of the myocardial infarction risk from apoB-containing lipoproteins. METHODS Nested within 109,751 individuals from the Copenhagen General Population Study, the authors examined 25,480 subjects free of lipid-lowering therapy and myocardial infarction at study entry. All had measurements of plasma apoB (quantitating number of apoB-containing lipoproteins) and cholesterol and triglyceride content of VLDL, intermediate-density lipoproteins (IDLs), and low-density lipoproteins (LDLs). RESULTS During a median 11 years of follow-up, 1,816 were diagnosed with myocardial infarction. Per 1-mmol/l higher levels, multivariable-adjusted hazard ratios for myocardial infarction were 2.07 (95% confidence interval [CI]: 1.81 to 2.36) for VLDL cholesterol, 1.19 (95% CI: 1.14 to 1.25) for VLDL triglycerides, 5.38 (95% CI: 3.73 to 7.75) for IDL cholesterol, and 1.86 (95% CI: 1.62 to 2.14) for LDL cholesterol. Per 1-g/l higher plasma apoB, the corresponding value was 2.21 (95% CI: 1.90 to 2.58). In a step-up Cox regression, risk factors for myocardial infarction entered by importance as VLDL cholesterol, systolic blood pressure, smoking, and IDL + LDL cholesterol, whereas VLDL triglycerides did not enter the model. VLDL cholesterol explained 50% and IDL + LDL cholesterol 29% of the risk of myocardial infarction from apoB-containing lipoproteins, whereas VLDL triglycerides did not explain risk. CONCLUSIONS VLDL cholesterol explained one-half of the myocardial infarction risk from elevated apoB-containing lipoproteins, whereas VLDL triglycerides did not explain risk.
Collapse
|
30
|
Turkes GF, Uysal S, Demir T, Demiral Y, Pamuk BO, Yılmaz H, Demir L, Doruk M, Bozkaya G. Associations Between Bioavailable Vitamin D and Remnant Cholesterol in Patients With Type 2 Diabetes Mellitus. Cureus 2021; 13:e13248. [PMID: 33728195 PMCID: PMC7948319 DOI: 10.7759/cureus.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction In circulation, 99% vitamin D is transported by binding to vitamin D binding protein (VDBP) and albumin. Vitamin D at free form and vitamin D binding to albumin are defined as bioavailable vitamin D. Vitamin D deficiency is associated with atherogenic lipid profile and insulin resistance. Remnant cholesterol is defined as the cholesterol component of triglyceride-rich lipoproteins and contributes to the atherosclerotic burden. The aim of this study was to investigate the association between bioavailable vitamin D and remnant cholesterol in patients with type 2 diabetes mellitus (T2DM). Methods A total of 198 T2DM patients and 208 non-diabetic subjects underwent biochemical measurements of lipid profiles, 25(OH)D, VDBP, CRP and albumin levels. Their demographic characteristics (age, sex) were questioned. Subjects with thyroid, kidney and liver dysfunction and using lipid-lowering therapy were not included in the study. The diagnosis of T2DM was made according to the American Diabetes Association ADA 2016 criteria. Classification of vitamin D levels was done according to the Endocrine Society. Bioavailable vitamin D concentrations were calculated. Results High-density lipoprotein cholesterol (HDL), 25(OH)D, free vitamin D and bioavailable vitamin D levels were significantly lower in diabetic patients than in non-diabetic patients while triglyceride, remnant cholesterol and CRP levels were found to be significantly higher. VDBP was positively correlated with CRP and remnant cholesterol in diabetic patients, but not in non-diabetic patients. Cut-off values were determined from non-diabetics as 3.56 ng/mL for bioavailable vitamin D and 26.56 mg/dL for remnant cholesterol. Logistic regression analysis in the control group showed that the odds ratio for increasing remnant cholesterol above the cut-off value was determined as 2.01 for low bioavailable vitamin D and 1.1 for elevated CRP. However, in T2DM there was no significant relationship. In all subjects, low bioavailable vitamin D increased the remnant cholesterol above the cut-off by 2.18-fold independent of the presence of T2DM. However, there was no significant risk to increase remnant cholesterol, considering a total 25(OH) D deficiency in all groups. Conclusions Low bioavailable vitamin D was found to be a risk factor for elevated remnant cholesterol. This relationship was not detected in patients with T2DM. We believe that the inflammation observed in Diabetes Mellitus may increase the concentrations of VDBP and a decrease in bioavailable vitamin D levels. Therefore, measuring VDBP and calculating the bioavailable vitamin D may provide additional information about the actual vitamin D status.
Collapse
Affiliation(s)
- Gulsum Feyza Turkes
- Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, TUR.,Biochemistry, Kecioren Training and Research Hospital, Ankara, TUR
| | - Sezer Uysal
- Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, TUR
| | - Tevfik Demir
- Endocrinology and Metabolism, Faculty of Medicine, Dokuz Eylul University, Izmir, TUR
| | - Yucel Demiral
- Public Health, Faculty of Medicine, Dokuz Eylul University, Izmir, TUR
| | - Baris Onder Pamuk
- Endocrinology and Metabolism, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, TUR
| | - Husnu Yılmaz
- Endocrinology and Metabolism, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, TUR
| | - Leyla Demir
- Biochemistry, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, TUR
| | - Mehmet Doruk
- Endocrinology and Metabolism, Izmir Bozyaka Training and Research Hospital, Izmir, TUR
| | - Giray Bozkaya
- Biochemistry, Izmir Bozyaka Training and Research Hospital, Izmir, TUR
| |
Collapse
|
31
|
Si S, Hou L, Chen X, Li W, Liu X, Liu C, Li Y, Yuan T, Li J, Wang B, Li H, Xue F. Exploring the causal roles of circulating remnant lipid profile on cardiovascular and cerebrovascular diseases: Mendelian randomization study. J Epidemiol 2021; 32:205-214. [PMID: 33441507 PMCID: PMC8979919 DOI: 10.2188/jea.je20200305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Causal evidence of circulating lipids especially the remnant cholesterol with cardiovascular and cerebrovascular disease (CVD) is lacking. This research aimed to explore the causal roles of extensive lipid traits especially the remnant lipids in CVD. Methods Two-sample Mendelian randomization (TSMR) analysis was performed based on large-scale meta-analysis datasets in European ancestry. The causal effect of 15 circulating lipid profiles including 6 conventional lipids and 9 remnant lipids on coronary heart disease (CHD) and ischemic stroke (IS), as well as the subtypes, was assessed. Results Apolipoprotein B (Apo B), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were still important risk factors for CHD and myocardial infarction (MI) but not for IS. Apo B is the strongest which increased the CHD and MI risk by 44% and 41%, respectively. The odds ratios (ORs) of total TG on CHD and MI were 1.25 (95% confidence interval [CI], 1.13–1.38) and 1.24 (95% CI, 1.11–1.38), respectively. A one standard deviation difference increased TG in medium very-low-density lipoproteins (M.VLDL.TG), TG in small VLDL (S.VLDL.TG), TG in very small VLDL (XS.VLDL.TG), TG in intermediate-density lipoproteins (IDL.TG), TG in very large HDL (XL.HDL.TG), and TG in small HDL (S.HDL.TG) particles also robustly increased the risk of CHD and MI by 9–28% and 9–27%, respectively. TG in very/extremely large VLDL (XXL.VLDL.TG and XL.VLDL.TG) were insignificant or even negatively associated with CHD (in multivariable TSMR), and negatively associated with IS as well. Conclusion The remnant lipids presented heterogeneity and two-sided effects for the risk of CHD and IS that may partially rely on the particle size. The findings suggested that the remnant lipids were required to be intervened according to specific components. This research confirms the importance of remnant lipids and provides causal evidence for potential targets for intervention.
Collapse
Affiliation(s)
- Shucheng Si
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Lei Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Xiaolu Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Wenchao Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Xinhui Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Congcong Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Yunxia Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Tonghui Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Jiqing Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Bojie Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University
| | - Hongkai Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University.,Institute for Medical Dataology, Shandong University
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University.,Institute for Medical Dataology, Shandong University.,National Institute of Health Data Science of China
| |
Collapse
|
32
|
Hoogeveen RC, Ballantyne CM. Residual Cardiovascular Risk at Low LDL: Remnants, Lipoprotein(a), and Inflammation. Clin Chem 2021; 67:143-153. [PMID: 33257928 PMCID: PMC7793228 DOI: 10.1093/clinchem/hvaa252] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Current guidelines target low-density lipoprotein cholesterol (LDL-C) concentrations to reduce atherosclerotic cardiovascular disease (ASCVD) risk, and yet clinical trials demonstrate persistent residual ASCVD risk despite aggressive LDL-C lowering. CONTENT Non-LDL-C lipid parameters, most notably triglycerides, triglyceride-rich lipoproteins (TGRLs), and lipoprotein(a), and C-reactive protein as a measure of inflammation are increasingly recognized as associated with residual risk after LDL-C lowering. Eicosapentaenoic acid in statin-treated patients with high triglycerides reduced both triglycerides and ASCVD events. Reducing TGRLs is believed to have beneficial effects on inflammation and atherosclerosis. High lipoprotein(a) concentrations increase ASCVD risk even in individuals with LDL-C < 70 mg/dL. Although statins do not generally lower lipoprotein(a), proprotein convertase subtilisin/kexin type 9 inhibitors reduce lipoprotein(a) and cardiovascular outcomes, and newer approaches are in development. Persistent increases in C-reactive protein after intensive lipid therapy have been consistently associated with increased risk for ASCVD events. SUMMARY We review the evidence that biochemical assays to measure TGRLs, lipoprotein(a), and C-reactive protein are associated with residual risk in patients treated to low concentrations of LDL-C. Growing evidence supports a causal role for TGRLs, lipoprotein(a), and inflammation in ASCVD; novel therapies that target TGRLs, lipoprotein(a), and inflammation are in development to reduce residual ASCVD risk.
Collapse
Affiliation(s)
- Ron C Hoogeveen
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christie M Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
33
|
HDL and Reverse Remnant-Cholesterol Transport (RRT): Relevance to Cardiovascular Disease. Trends Mol Med 2020; 26:1086-1100. [DOI: 10.1016/j.molmed.2020.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
|
34
|
White AMB, Mishcon HR, Redwanski JL, Hills RD. Statin Treatment in Specific Patient Groups: Role for Improved Cardiovascular Risk Markers. J Clin Med 2020; 9:E3748. [PMID: 33233352 PMCID: PMC7700563 DOI: 10.3390/jcm9113748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ample evidence supports the use of statin therapy for secondary prevention in patients with a history of atherosclerotic cardiovascular disease (ASCVD), but evidence is wanting in the case of primary prevention, low-risk individuals, and elderly adults 65+. Statins are effective in lowering low-density lipoprotein (LDL), which has long been a target for treatment decisions. We discuss the weakening dependence between cholesterol levels and mortality as a function of age and highlight recent findings on lipoprotein subfractions and other superior markers of ASCVD risk. The efficacy of statins is compared for distinct subsets of patients based on age, diabetes, ASCVD, and coronary artery calcium (CAC) status. Most cardiovascular risk calculators heavily weight age and overestimate one's absolute risk of ASCVD, particularly in very old adults. Improvements in risk assessment enable the identification of specific patient populations that benefit most from statin treatment. Derisking is particularly important for adults over 75, in whom treatment benefits are reduced and adverse musculoskeletal effects are amplified. The CAC score stratifies the benefit effect size obtainable with statins, and forms of coenzyme Q are discussed for improving patient outcomes. Robust risk estimator tools and personalized, evidence-based approaches are needed to optimally reduce cardiovascular events and mortality rates through administration of cholesterol-lowering medications.
Collapse
Affiliation(s)
- Alyssa M. B. White
- Department of Pharmaceutical Sciences and Administration, University of New England, Portland, ME 04103, USA; (A.M.B.W.); (H.R.M.)
| | - Hillary R. Mishcon
- Department of Pharmaceutical Sciences and Administration, University of New England, Portland, ME 04103, USA; (A.M.B.W.); (H.R.M.)
| | - John L. Redwanski
- Department of Pharmacy Practice, School of Pharmacy, University of New England, Portland, ME 04103, USA;
| | - Ronald D. Hills
- Department of Pharmaceutical Sciences and Administration, University of New England, Portland, ME 04103, USA; (A.M.B.W.); (H.R.M.)
| |
Collapse
|
35
|
Joshi R, Wannamethee G, Engmann J, Gaunt T, Lawlor DA, Price J, Papacosta O, Shah T, Tillin T, Whincup P, Chaturvedi N, Kivimaki M, Kuh D, Kumari M, Hughes AD, Casas JP, Humphries SE, Hingorani AD, Schmidt AF. Establishing reference intervals for triglyceride-containing lipoprotein subfraction metabolites measured using nuclear magnetic resonance spectroscopy in a UK population. Ann Clin Biochem 2020; 58:47-53. [PMID: 32936666 PMCID: PMC7791273 DOI: 10.1177/0004563220961753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Nuclear magnetic resonance (NMR) spectroscopy allows triglycerides to be subclassified into 14 different classes based on particle size and lipid content. We recently showed that these subfractions have differential associations with cardiovascular disease events. Here we report the distributions and define reference interval ranges for 14 triglyceride-containing lipoprotein subfraction metabolites. METHODS Lipoprotein subfractions using the Nightingale NMR platform were measured in 9073 participants from four cohort studies contributing to the UCL-Edinburgh-Bristol consortium. The distribution of each metabolite was assessed, and reference interval ranges were calculated for a disease-free population, by sex and age group (<55, 55-65, >65 years), and in a subgroup population of participants with cardiovascular disease or type 2 diabetes. We also determined the distribution across body mass index and smoking status. RESULTS The largest reference interval range was observed in the medium very-low density lipoprotein subclass (2.5th 97.5th percentile; 0.08 to 0.68 mmol/L). The reference intervals were comparable among male and female participants, with the exception of triglyceride in high-density lipoprotein. Triglyceride subfraction concentrations in very-low density lipoprotein, intermediate-density lipoprotein, low-density lipoprotein and high-density lipoprotein subclasses increased with increasing age and increasing body mass index. Triglyceride subfraction concentrations were significantly higher in ever smokers compared to never smokers, among those with clinical chemistry measured total triglyceride greater than 1.7 mmol/L, and in those with cardiovascular disease, and type 2 diabetes as compared to disease-free subjects. CONCLUSION This is the first study to establish reference interval ranges for 14 triglyceride-containing lipoprotein subfractions in samples from the general population measured using the nuclear magnetic resonance platform. The utility of nuclear magnetic resonance lipid measures may lead to greater insights for the role of triglyceride in cardiovascular disease, emphasizing the importance of appropriate reference interval ranges for future clinical decision making.
Collapse
Affiliation(s)
- Roshni Joshi
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | - Goya Wannamethee
- Department of Primary Care & Population Health, Faculty of Population Health, University College London, London, UK
| | - Jorgen Engmann
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | - Tom Gaunt
- Department of Primary Care & Population Health, Faculty of Population Health, University College London, London, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.,Bristol NIHR Biomedical Research Centre, Bristol, UK.,Population Health Science, Bristol Medical School, Bristol, UK
| | - Jackie Price
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Olia Papacosta
- Department of Primary Care & Population Health, Faculty of Population Health, University College London, London, UK
| | - Tina Shah
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | - Therese Tillin
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Peter Whincup
- Population Health Research Institute, St George's, University of London, London, UK
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Colchester, UK
| | - Alun D Hughes
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Juan P Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare, MA, USA.,Division of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard School of Medicine, Boston, MA, USA
| | - Steve E Humphries
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | - A Floriaan Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK.,Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
36
|
Parhofer KG, Chapman MJ, Nordestgaard BG. Efficacy and safety of icosapent ethyl in hypertriglyceridaemia: a recap. Eur Heart J Suppl 2020; 22:J21-J33. [PMID: 33061865 PMCID: PMC7537801 DOI: 10.1093/eurheartj/suaa116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although low-density lipoprotein cholesterol lowering is effective in atherosclerotic cardiovascular disease (ASCVD) prevention, considerable ‘lipid-associated’ residual risk remains, particularly in patients with mild-to-moderate hypertriglyceridaemia (2–10 mmol/L; 176–880 mg/dL). Triglyceride (TG)-rich lipoproteins carry both TGs and cholesterol (remnant-cholesterol). At TG levels >5 mmol/L (440 mg/dL) vs. <1 mmol/L (88 mg/dL) or remnant-cholesterol >2.3 mmol/L (89 mg/dL) vs. <0.5 mmol/L (19 mg/dL), risk is ∼1.5-fold elevated for aortic stenosis, 2-fold for all-cause mortality, 3-fold for ischaemic stroke, 5-fold for myocardial infarction (MI), and 10-fold for acute pancreatitis. Furthermore, Mendelian randomization studies indicate that elevated TG-rich lipoproteins are causally related to increased risk of ASCVD and even all-cause mortality. While genetic and epidemiological data strongly indicate that TG-rich lipoproteins are causally linked to ASCVD, intervention data are ambiguous. Fibrates, niacin and low-dose omega-3 fatty acids have all been used in outcome trials, but have failed to demonstrate clear benefit in combination with statins. Whether the lack of additional benefit relates to methodological issues or true failure is indeterminate. Importantly, a recent intervention trial evaluating a high dose of eicosapentaenoic-acid showed clear benefit. Thus, REDUCE-IT evaluated the effect of icosapent ethyl (4 g/day) on cardiovascular outcomes in 8179 high-risk patients with moderate TG elevation on statin therapy. Over a median duration of 4.9 years, the relative risk for the primary endpoint (composite of cardiovascular death, non-fatal MI, non-fatal stroke, coronary revascularization, or unstable angina) was reduced by 25% (absolute risk 17.2% vs. 22.0%; P < 0.0001; number needed to treat 21). High-dose icosapent ethyl intervention therefore confers substantial cardiovascular benefit in high-risk patients with moderate hypertriglyceridaemia on statin therapy.
Collapse
Affiliation(s)
- Klaus G Parhofer
- Medizinische Klinik IV - Großhadern, Klinikum der Universität München, Marchioninistr. 15, München 81377, Germany
| | - M John Chapman
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, 47-83, Boulevard de l'Hopital 75651, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| |
Collapse
|
37
|
Björnson E, Packard CJ, Adiels M, Andersson L, Matikainen N, Söderlund S, Kahri J, Hakkarainen A, Lundbom N, Lundbom J, Sihlbom C, Thorsell A, Zhou H, Taskinen MR, Borén J. Apolipoprotein B48 metabolism in chylomicrons and very low-density lipoproteins and its role in triglyceride transport in normo- and hypertriglyceridemic human subjects. J Intern Med 2020; 288:422-438. [PMID: 31846520 DOI: 10.1111/joim.13017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Renewed interest in triglyceride-rich lipoproteins as causative agents in cardiovascular disease mandates further exploration of the integrated metabolism of chylomicrons and very low-density lipoproteins (VLDL). METHODS Novel tracer techniques and an integrated multi-compartmental model were used to determine the kinetics of apoB48- and apoB100-containing particles in the chylomicron and VLDL density intervals in 15 subjects with a wide range of plasma triglyceride levels. RESULTS Following a fat-rich meal, apoB48 appeared in the chylomicron, VLDL1 and VLDL2 fractions in all subjects. Chylomicrons cleared rapidly from the circulation but apoB48-containing VLDL accumulated, and over the day were 3-fold higher in those with high versus low plasma triglyceride. ApoB48-containing particles were secreted directly into both the chylomicron and VLDL fractions at rates that were similar across the plasma triglyceride range studied. During fat absorption, whilst most triglyceride entered the circulation in chylomicrons, the majority of apoB48 particles were secreted into the VLDL density range. CONCLUSION The intestine secretes apoB48-containing particles not only as chylomicrons but also directly into the VLDL1 and VLDL2 density ranges both in the basal state and during dietary lipid absorption. Over the day, apoB48-containing particles appear to comprise about 20-25% of circulating VLDL and, especially in those with elevated triglycerides, form part of a slowly cleared 'remnant' particle population, thereby potentially increasing CHD risk. These findings provide a metabolic understanding of the potential consequences for increased CHD risk when slowed lipolysis leads to the accumulation of remnants, especially in individuals with hypertriglyceridemia.
Collapse
Affiliation(s)
- E Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - C J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Adiels
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - L Andersson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - N Matikainen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - S Söderlund
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - J Kahri
- Department of Internal Medicine and Rehabilitation, Helsinki University Hospital, Helsinki, Finland
| | - A Hakkarainen
- Radiology, HUS Medical Imaging Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - N Lundbom
- Radiology, HUS Medical Imaging Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - J Lundbom
- Radiology, HUS Medical Imaging Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - C Sihlbom
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - A Thorsell
- Proteomics Facility, University of Gothenburg, Gothenburg, Sweden
| | - H Zhou
- Merck Research Laboratories, Merck & Co. Inc., Kenilworth, NJ, USA
| | - M-R Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - J Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
38
|
Joshi R, Wannamethee SG, Engmann J, Gaunt T, Lawlor DA, Price J, Papacosta O, Shah T, Tillin T, Chaturvedi N, Kivimaki M, Kuh D, Kumari M, Hughes AD, Casas JP, Humphries S, Hingorani AD, Schmidt AF. Triglyceride-containing lipoprotein sub-fractions and risk of coronary heart disease and stroke: A prospective analysis in 11,560 adults. Eur J Prev Cardiol 2020; 27:1617-1626. [PMID: 31996015 PMCID: PMC7707881 DOI: 10.1177/2047487319899621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
AIMS Elevated low-density lipoprotein cholesterol (LDL-C) is a risk factor for cardiovascular disease; however, there is uncertainty about the role of total triglycerides and the individual triglyceride-containing lipoprotein sub-fractions. We measured 14 triglyceride-containing lipoprotein sub-fractions using nuclear magnetic resonance and examined associations with coronary heart disease and stroke. METHODS Triglyceride-containing sub-fraction measures were available in 11,560 participants from the three UK cohorts free of coronary heart disease and stroke at baseline. Multivariable logistic regression was used to estimate the association of each sub-fraction with coronary heart disease and stroke expressed as the odds ratio per standard deviation increment in the corresponding measure. RESULTS The 14 triglyceride-containing sub-fractions were positively correlated with one another and with total triglycerides, and inversely correlated with high-density lipoprotein cholesterol (HDL-C). Thirteen sub-fractions were positively associated with coronary heart disease (odds ratio in the range 1.12 to 1.22), with the effect estimates for coronary heart disease being comparable in subgroup analysis of participants with and without type 2 diabetes, and were attenuated after adjustment for HDL-C and LDL-C. There was no evidence for a clear association of any triglyceride lipoprotein sub-fraction with stroke. CONCLUSIONS Triglyceride sub-fractions are associated with increased risk of coronary heart disease but not stroke, with attenuation of effects on adjustment for HDL-C and LDL-C.
Collapse
Affiliation(s)
- Roshni Joshi
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, UK
| | - S Goya Wannamethee
- Department of Primary Care & Population Health, Faculty of Population Health, University College London, UK
| | - Jorgen Engmann
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, UK
| | - Tom Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, UK
- Bristol NIHR Biomedical Research Centre, UK
- Population Health Science, Bristol Medical School, UK
| | - Jackie Price
- The Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, UK
| | - Olia Papacosta
- Department of Primary Care & Population Health, Faculty of Population Health, University College London, UK
| | - Tina Shah
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, UK
| | - Therese Tillin
- Department of Epidemiology and Public Health, University College London, UK
| | - Nishi Chaturvedi
- Department of Epidemiology and Public Health, University College London, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, UK
| | - Alun D Hughes
- Department of Epidemiology and Public Health, University College London, UK
| | - Juan P Casas
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare, USA
| | - Steve Humphries
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, UK
| | - A Floriaan Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Centre Utrecht, The Netherlands
| |
Collapse
|
39
|
Chen J, Kuang J, Tang X, Mao L, Guo X, Luo Q, Peng D, Yu B. Comparison of calculated remnant lipoprotein cholesterol levels with levels directly measured by nuclear magnetic resonance. Lipids Health Dis 2020; 19:132. [PMID: 32522276 PMCID: PMC7285517 DOI: 10.1186/s12944-020-01311-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Remnant cholesterol (RC) can partly explain the residual risk in atherosclerotic cardiovascular disease (ASCVD). A consensus method of measuring RC levels has not been established yet. In clinical practice, RC levels are usually calculated from the standard lipid profile, which are not true RC. Nuclear magnetic resonance (NMR) can measure RC levels directly. This study aimed to characterize RC at fasting and non-fasting states in more details and establish the performance of calculated RC and NMR-measured RC. METHODS Blood samples at fasting state and at 2 h and 4 h postprandial states were collected in 98 subjects. Lipid parameters including total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), subfractions 3, 4, and 5 of very low-density lipoprotein cholesterol (VLDL3-C, VLDL4-C, and VLDL5-C, respectively), and intermediate-density lipoprotein cholesterol (IDL-C) were measured by enzymatic method and NMR. RC levels calculated from the standard lipid profile or measured by NMR were referred here as RCe or RCn. RESULTS The RCe and RCn levels were different, but both of them increased after a meal (P < 0.05), especially at 4 h postprandial state. Low correlations were found between RCe and RCn in the 1st, 2nd, and 3rd quartiles of TG, but RCn showed great correlation with RCe in the highest quartile regardless of the fasting or non-fasting state (R = 0.611, 0.536, and 0.535 for 0 h, 2 h, and 4 h, respectively). However, across the 2nd and 3rd quartiles, RCe levels were nearly close to RCn levels. RCe levels tended to overestimate RCn levels in the 1st quartile of TGe levels with median differences of 0.23(- 0.13, 0.63) and underestimate RCn levels with median differences of - 0.23(- 0.33, 0.07) in the highest quartile of TGe levels. CONCLUSIONS RC calculated from the standard lipid profile as TC minus LDL-C minus HDL-C is different from the NMR-measured RC. According to different TG levels, RC could overestimate or underestimate the actual RC level. Developing a consensus clinical method to measure RC levels is necessary, so that results from different studies and platforms can be more directly compared. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1900020873. Registered in 21 January 2019 - Retrospectively registered.
Collapse
Affiliation(s)
- Jin Chen
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Jie Kuang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaoyu Tang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Ling Mao
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xin Guo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Qin Luo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
40
|
Balling M, Langsted A, Afzal S, Varbo A, Davey Smith G, Nordestgaard BG. Reply to: “Methodological issues regarding: “A third of nonfasting plasma cholesterol is in remnant lipoproteins: Lipoprotein subclass profiling in 9293 individuals””. Atherosclerosis 2020; 302:57-58. [DOI: 10.1016/j.atherosclerosis.2020.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
|
41
|
Würtz P, Soininen P. Reply to: “Methodological issues regarding: “A third of nonfasting plasma cholesterol is in remnant lipoproteins: Lipoprotein subclass profiling in 9293 individuals””. Atherosclerosis 2020; 302:59-61. [DOI: 10.1016/j.atherosclerosis.2020.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
|
42
|
Methodological issues regarding: “A third of nonfasting plasma cholesterol is in remnant lipoproteins: Lipoprotein subclass profiling in 9293 individuals”. Atherosclerosis 2020; 302:55-56. [DOI: 10.1016/j.atherosclerosis.2020.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/24/2019] [Accepted: 01/23/2020] [Indexed: 01/26/2023]
|
43
|
Abstract
PURPOSE OF REVIEW To critically appraise new insights into the biology of remnant lipoproteins and their putative role in the pathophysiology of atherosclerotic cardiovascular disease, and to compare the atherogenicity of remnant particles with that of low-density lipoproteins (LDL). RECENT FINDINGS New in-vivo stable isotope tracer studies of the kinetics of apoB48 and apoB100-containing lipoproteins in postprandial conditions have revealed that apoB48-containing very low-density lipoproteins (VLDL) accumulated markedly in hypertriglyceridemic patients. These intestinally-derived particles were cleared slowly, and represented up to 25% of circulating VLDL; as part of the remnant particle population, they may increase cardiovascular risk. Importantly, the PCSK9 inhibitor, evolocumab, was shown to reduce remnant levels (-29%) during the postprandial period in diabetic patients on statin therapy - an effect which may be additive to that of LDL-cholesterol reduction in conferring cardiovascular benefit. In recent Mendelian randomization studies, the effect of lowering triglyceride-rich lipoproteins or LDL-cholesterol translated to similar clinical benefit per unit of apoB. Finally, in randomized trials involving statin-treated patients with atherosclerotic cardiovascular disease, remnant cholesterol levels were associated with coronary atheroma progression independently of LDL-cholesterol. SUMMARY Overall, data from observational studies in large cohorts, Mendelian randomization studies, meta-regression analyses, and post-hoc analyses of randomized trials are consistent with the contention that remnants are highly atherogenic particles and contribute to the atherosclerotic burden in an equivalent manner to that of LDL.
Collapse
Affiliation(s)
- Carlos A Aguilar Salinas
- Unidad de Investigación en Enfermedades Metabólicas
- Departamento de Endocrinología y Metabolismo. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., México
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitie-Salpetriere University Hospital
- Faculty of Medicine, Sorbonne University
- National Institute for Health and Medical Research (INSERM), Paris, France
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Binder CJ, Borén J, Catapano AL, Dallinga-Thie G, Kronenberg F, Mallat Z, Negrini S, Raggi P, von Eckardstein A. The year 2019 in Atherosclerosis. Atherosclerosis 2020; 299:67-75. [PMID: 32248950 DOI: 10.1016/j.atherosclerosis.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Geesje Dallinga-Thie
- Department of Vascular Medicine, Amsterdam University Medical Centers, AMC, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; University of Paris, PARCC, INSERM, Paris, France
| | - Simona Negrini
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada; Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
45
|
Chait A, Ginsberg HN, Vaisar T, Heinecke JW, Goldberg IJ, Bornfeldt KE. Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes 2020; 69:508-516. [PMID: 32198194 PMCID: PMC7085249 DOI: 10.2337/dbi19-0007] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/16/2020] [Indexed: 01/05/2023]
Abstract
Diabetes is now a pandemic disease. Moreover, a large number of people with prediabetes are at risk for developing frank diabetes worldwide. Both type 1 and type 2 diabetes increase the risk of atherosclerotic cardiovascular disease (CVD). Even with statin treatment to lower LDL cholesterol, patients with diabetes have a high residual CVD risk. Factors mediating the residual risk are incompletely characterized. An attractive hypothesis is that remnant lipoprotein particles (RLPs), derived by lipolysis from VLDL and chylomicrons, contribute to this residual risk. RLPs constitute a heterogeneous population of lipoprotein particles, varying markedly in size and composition. Although a universally accepted definition is lacking, for the purpose of this review we define RLPs as postlipolytic partially triglyceride-depleted particles derived from chylomicrons and VLDL that are relatively enriched in cholesteryl esters and apolipoprotein (apo)E. RLPs derived from chylomicrons contain apoB48, while those derived from VLDL contain apoB100. Clarity as to the role of RLPs in CVD risk is hampered by lack of a widely accepted definition and a paucity of adequate methods for their accurate and precise quantification. New specific methods for RLP quantification would greatly improve our understanding of their biology and role in promoting atherosclerosis in diabetes and other disorders.
Collapse
Affiliation(s)
- Alan Chait
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Henry N Ginsberg
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University, New York, NY
| | - Tomas Vaisar
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jay W Heinecke
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, New York, NY
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA
| |
Collapse
|
46
|
Feng X, Guo Q, Zhou S, Sun T, Liu Y, Zhou Z, Zhou Y. Could remnant-like particle cholesterol become a risk factor in diabetic menopausal women with coronary artery disease? A cross-sectional study of single academic center in China. Lipids Health Dis 2020; 19:44. [PMID: 32178671 PMCID: PMC7076918 DOI: 10.1186/s12944-020-01224-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS It has been confirmed that remnant-like particle cholesterol (RLP-C) mediates the progression of coronary artery disease (CAD). Currently there is limited information on RLP-C in menopausal women. With the special status of diabetes mellitus (DM) combined with the special body changes of the menopausal women, the RLP-C is particularly important when studying the changes that occurred in response to CAD and its associated risk factors. This study discussed whether RLP-C could be an independent risk factor for menopausal women with CAD and DM. METHODS The cohort consisted of 4753 menopausal women who had undergone coronary angiography. Subjects were separated into CAD and non-CAD groups, and univariate and multivariate logistic regression analysis of CAD risk factors were performed. All patients with a history of DM were divided into DM subgroups. Then, the univariate and multivariate logistic regression analysis of the risk factors of CAD and the comparison among age groups in the DM subgroup were performed. After age stratification of the DM group, the Kruskal-Wallis test was used to analyze the differences of various lipid indexes among age groups. RESULTS The multivariate logistic regression showed that RLP-C was an independent risk factor for CAD in menopausal women (OR 1.232, 95%CI 1.070-1.419). In the DM subgroup, it was also found that RLP-C was an independent risk factor for CAD (OR 1.366, 95%CI 1.043-1.791). Kruskal-Wallis test analysis found that RLP-C had no significant difference among three groups (P > 0.05). CONCLUSIONS RLP-C was proved to be an independent risk factor for menopausal women with CAD and DM.
Collapse
Affiliation(s)
| | | | - Shu Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Tienan Sun
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Yuyang Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Zhiming Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical center for coronary heart disease, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Atherogenic dyslipidaemia, characterized by high plasma triglycerides (a surrogate for triglyceride-rich remnant lipoproteins) and low high-density lipoprotein cholesterol (HDL-C), is prevalent in patients with type 2 diabetes mellitus (T2DM) and contributes to a high modifiable residual cardiovascular risk. Fibrates are effective in managing hypertriglyceridaemia but lack consistent cardiovascular benefit in clinical trials and exhibit pharmacokinetic interaction with statins (gemfibrozil) and renal and hepatic safety issues (fenofibrate). The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm offers potential for improving potency, selectivity and the benefit-risk profile. RECENT FINDINGS The present review discusses evidence for the novel SPPARMα agonist, pemafibrate. Clinical trials showed robust lowering of triglyceride-rich lipoproteins, elevation in HDL-C and nonlipid beneficial effects including anti-inflammatory activity. There was a favourable safety profile, with no increase in serum creatinine, evident with fenofibrate, and improved renal and hepatic safety. The cardiovascular outcomes study PROMINENT is critical to confirming the SPPARMα concept by validating reduction in residual cardiovascular risk in patients with T2DM and long-term safety. SUMMARY SPPARMα offers a new paradigm for reducing residual cardiovascular risk in T2DM. PROMINENT will be critical to differentiating the first SPPARMα, pemafibrate, as a novel therapeutic class distinct from current fibrates.
Collapse
Affiliation(s)
| | - Raul D Santos
- Hospital Israelita Albert Einstein
- Lipid Clinic, Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| |
Collapse
|
48
|
Chung ST, Cravalho CKL, Meyers AG, Courville AB, Yang S, Matthan NR, Mabundo L, Sampson M, Ouwerkerk R, Gharib AM, Lichtenstein AH, Remaley AT, Sumner AE. Triglyceride Paradox Is Related to Lipoprotein Size, Visceral Adiposity and Stearoyl-CoA Desaturase Activity in Black Versus White Women. Circ Res 2019; 126:94-108. [PMID: 31623522 DOI: 10.1161/circresaha.119.315701] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE In black women, triglycerides are paradoxically normal in the presence of insulin resistance. This relationship may be explained by race-related differences in central adiposity and SCD (stearoyl-CoA desaturase)-1 enzyme activity index. OBJECTIVE In a cross-sectional study, to compare fasting and postprandial triglyceride-rich lipoprotein particle (TRLP) concentrations and size in black compared with white pre- and postmenopausal women and determine the relationship between TRLP subfractions and whole-body insulin sensitivity, hepatic and visceral fat, and SCD-1 levels. METHODS AND RESULTS In 122 federally employed women without diabetes mellitus, 73 black (58 African American and 15 African immigrant) and 49 white; age, 44±10 (mean±SD) years; body mass index, 30.0±5.6 kg/m2, we measured lipoprotein subfractions using nuclear magnetic resonance. Hepatic fat was measured by proton magnetic resonance spectroscopy, insulin sensitivity index calculated by minimal modeling from a frequently sampled intravenous glucose test, and red blood cell fatty acid profiles were measured by gas chromatography and were used to estimate SCD-1 indices. Hepatic fat, insulin sensitivity index, and SCD-1 were similar in black women and lower than in whites, regardless of menopausal status. Fasting and postprandial large, medium, and small TRLPs, but not very small TRLPs, were lower in black women. Fasting large, medium, and very small TRLPs negatively correlated with insulin sensitivity index and positively correlated with visceral and hepatic fat and SCD-1 activity in both groups. In multivariate models, visceral fat and SCD-1 were associated with total fasting TRLP concentrations (adjR2, 0.39; P=0.001). Black women had smaller postprandial changes in large (P=0.005) and medium TRLPs (P=0.007). CONCLUSIONS Lower visceral fat and SCD-1 activity may contribute to the paradoxical association of lower fasting and postprandial TRLP subfractions despite insulin resistance in black compared with white pre- and postmenopausal women. Similar concentrations of very small TRLPs are related to insulin resistance and could be important mediators of cardiometabolic disease risk in women. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01809288.
Collapse
Affiliation(s)
- Stephanie T Chung
- From the Intramural Program of National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (S.T.C., C.K.L.C., L.M., R.O., A.M.G., A.E.S.)
| | - Celeste K L Cravalho
- From the Intramural Program of National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (S.T.C., C.K.L.C., L.M., R.O., A.M.G., A.E.S.)
| | - Abby G Meyers
- Intramural Program of National Institute of Child Health and Development, National Institutes of Health, MD (A.G.M.)
| | | | - Shanna Yang
- NIH Clinical Center, Bethesda, MD (A.B.C., S.Y.)
| | - Nirupa Rachel Matthan
- Cardiovascular Nutrition Laboratory, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA (N.R.M., A.H.L.)
| | - Lilian Mabundo
- From the Intramural Program of National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (S.T.C., C.K.L.C., L.M., R.O., A.M.G., A.E.S.)
| | - Maureen Sampson
- National Heart, Lung, and Blood Institute, Bethesda, MD (M.S., A.T.R.)
| | - Ronald Ouwerkerk
- From the Intramural Program of National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (S.T.C., C.K.L.C., L.M., R.O., A.M.G., A.E.S.)
| | - Ahmed M Gharib
- From the Intramural Program of National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (S.T.C., C.K.L.C., L.M., R.O., A.M.G., A.E.S.)
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA (N.R.M., A.H.L.)
| | - Alan T Remaley
- National Heart, Lung, and Blood Institute, Bethesda, MD (M.S., A.T.R.)
| | - Anne E Sumner
- From the Intramural Program of National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (S.T.C., C.K.L.C., L.M., R.O., A.M.G., A.E.S.).,National Institute of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD (A.E.S.)
| |
Collapse
|
49
|
Hokkanen K, Tirronen A, Ylä-Herttuala S. Intestinal lymphatic vessels and their role in chylomicron absorption and lipid homeostasis. Curr Opin Lipidol 2019; 30:370-376. [PMID: 31361624 DOI: 10.1097/mol.0000000000000626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we describe novel findings related to intestinal lipid transport in lymphatic vessels. RECENT FINDINGS Studies have shown that chylomicron entry to lacteals and lymph movement in intestinal lymphatic capillaries is an active process. Regulators of this intestinal chylomicron transport include among others the autonomous nervous system, transcription factors like PLAGL2, and molecular regulators, such as VEGF-A/Nrp1/VEGFR1, VEGF-C/VEGFR3, DLL4, CALCRL and GLP-2. Chylomicron transport in intestinal lymphatics is now emerging not only as an option for drug delivery but also as a new candidate for drug targeting in lipid-related disorders. SUMMARY Dysfunctions of lymphatic lipid transport can result in conditions such as dyslipidaemia. Intestinal lymphatics also provide several potential therapeutic possibilities: molecular regulation of lacteal cell-to-cell junctioning and lymph flow could provide new ways of treating conditions like hyperlipidaemia and associated diseases, such as atherosclerosis and other cardiovascular diseases, obesity, diabetes and fatty-liver disease. The intestinal lymphatic system can also be employed to deliver lipid nanoparticles as drug carriers to the venous circulation for improved treatment outcome. These findings highlight the importance and need for research on the different players of intestinal lymphatics in dietary lipid handling and therapeutic applications.
Collapse
Affiliation(s)
- Krista Hokkanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland
| | - Annakaisa Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|