1
|
Gui L, Zuo X, Feng J, Wang M, Chen Z, Sun Y, Qi J, Chen Z, Pathak JL, Zhang Y, Cui C, Zhang P, Guo X, Lv Q, Zhang X, Zhang Y, Gu J, Lin Z. Outgrowth of Escherichia is susceptible to aggravation of systemic lupus erythematosus. Arthritis Res Ther 2024; 26:191. [PMID: 39511594 PMCID: PMC11542361 DOI: 10.1186/s13075-024-03413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is linked to host gut dysbiosis. Here we performed faecal gut microbiome sequencing to investigate SLE-pathogenic gut microbes and their potential mechanisms. METHODS There were 134 healthy controls (HCs) and 114 SLE cases for 16 S ribosomal RNA (rRNA) sequencing and 97 HCs and 124 SLE cases for shotgun metagenomics. Faecal microbial changes and associations with clinical phenotypes were evaluated, and SLE-associated microbial genera were identified in amplicon analysis. Next, metagenomic sequencing was applied for accurate identification of microbial species and discovery of their metabolic pathways and immunogenic peptides both relevant to SLE. Finally, contribution of specific taxa to disease development was confirmed by oral gavage into lupus-prone MRL/lpr mice. RESULTS SLE patients had gut microbiota richness reduction and composition alteration, particularly lupus nephritis and active patients. Proteobacteria/Bacteroidetes (P/B) ratio was remarkably up-regulated, and Escherichia was identified as the dominantly expanded genus in SLE, followed by metagenomics accurately located Escherichia coli and Escherichia unclassified species. Significant associations primarily appeared among Escherichia coli, metabolic pathways of purine nucleotide salvage or peptidoglycan maturation and SLE disease activity index (SLEDAI), and between multiple epitopes from Escherichia coli and disease activity or renal involvement phenotype. Finally, gavage with faecal Escherichia revealed that it upregulated lupus-associated serum traits and aggravated glomerular lesions in MRL/lpr mice. CONCLUSION We characterize a novel SLE exacerbating Escherichia outgrowth and suggest its contribution to SLE procession may be partially associated with metabolite changes and cross-reactivity of gut microbiota-associated epitopes and host autoantigens. The findings could provide a deeper insight into gut Escherichia in the procession of SLE.
Collapse
Affiliation(s)
- Lian Gui
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junmei Feng
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingbang Wang
- Department of Neonatology, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, China
- Microbiome Therapy Center, Department of Experiment & Research, Medical School, South China Hospital, Shenzhen University, Shenzhen, China
| | - Zena Chen
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuhan Sun
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Qi
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuanggui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yanli Zhang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunping Cui
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pingping Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinghua Guo
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Lv
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Zhang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhiming Lin
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Schneider KM, Kummen M, Trivedi PJ, Hov JR. Role of microbiome in autoimmune liver diseases. Hepatology 2024; 80:965-987. [PMID: 37369002 PMCID: PMC11407779 DOI: 10.1097/hep.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/25/2023] [Indexed: 06/29/2023]
Abstract
The microbiome plays a crucial role in integrating environmental influences into host physiology, potentially linking it to autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. All autoimmune liver diseases are associated with reduced diversity of the gut microbiome and altered abundance of certain bacteria. However, the relationship between the microbiome and liver diseases is bidirectional and varies over the course of the disease. This makes it challenging to dissect whether such changes in the microbiome are initiating or driving factors in autoimmune liver diseases, secondary consequences of disease and/or pharmacological intervention, or alterations that modify the clinical course that patients experience. Potential mechanisms include the presence of pathobionts, disease-modifying microbial metabolites, and more nonspecific reduced gut barrier function, and it is highly likely that the effect of these change during the progression of the disease. Recurrent disease after liver transplantation is a major clinical challenge and a common denominator in these conditions, which could also represent a window to disease mechanisms of the gut-liver axis. Herein, we propose future research priorities, which should involve clinical trials, extensive molecular phenotyping at high resolution, and experimental studies in model systems. Overall, autoimmune liver diseases are characterized by an altered microbiome, and interventions targeting these changes hold promise for improving clinical care based on the emerging field of microbiota medicine.
Collapse
Affiliation(s)
| | - Martin Kummen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Palak J. Trivedi
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, UK
- Liver Unit, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
- Institute of Applied Health Research, University of Birmingham, UK
| | - Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
3
|
Moadi L, Turjeman S, Asulin N, Koren O. The effect of testosterone on the gut microbiome in mice. Commun Biol 2024; 7:880. [PMID: 39030253 PMCID: PMC11271554 DOI: 10.1038/s42003-024-06470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
The role of hormones in gut-brain crosstalk is largely elusive, but recent research supports specific changes in hormone levels correlated with the gut microbiota. An interesting but unstudied area in microbial endocrinology is the interplay between the microbiota and sex hormones. The aim of this study is to investigate the effect of testosterone and sex on the mouse gut microbiome. We use in vitro experiments to test direct effects of testosterone on bacteria in fecal samples collected from male and female mice pre- and post-puberty. Sex-specific microbial and metabolic differences surrounding puberty are also examined in vivo. We then explore effects of testosterone supplementation in vivo, characterizing microbiota and metabolomes of male and female mice. We detect sex-specific differences in microbiota and associated metabolites of mice post-puberty, but in vitro experiments reveal that testosterone only affects microbiota of fecal samples collected before puberty. Testosterone supplementation in vivo affects gut microbiota and metabolomes in both male and female mice. Taking our results from in vitro and in vivo experiments, we conclude that the shift in the microbiome after puberty is at least partially caused by the higher levels of sex hormones, mainly testosterone, in the host.
Collapse
Affiliation(s)
- Lelyan Moadi
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nofar Asulin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Seida I, Al Shawaf M, Mahroum N. Fecal microbiota transplantation in autoimmune diseases - An extensive paper on a pathogenetic therapy. Autoimmun Rev 2024; 23:103541. [PMID: 38593970 DOI: 10.1016/j.autrev.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The role of infections in the pathogenesis of autoimmune diseases has long been recognized and reported. In addition to infectious agents, the internal composition of the "friendly" living bacteria, (microbiome) and its correlation to immune balance and dysregulation have drawn the attention of researchers for decades. Nevertheless, only recently, scientific papers regarding the potential role of transferring microbiome from healthy donor subjects to patients with autoimmune diseases has been proposed. Fecal microbiota transplantation or FMT, carries the logic of transferring microorganisms responsible for immune balance from healthy donors to individuals with immune dysregulation or more accurately for our paper, autoimmune diseases. Viewing the microbiome as a pathogenetic player allows us to consider FMT as a pathogenetic-based treatment. Promising results alongside improved outcomes have been demonstrated in patients with different autoimmune diseases following FMT. Therefore, in our current extensive review, we aimed to highlight the implication of FMT in various autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid and liver diseases, systemic lupus erythematosus, and type 1 diabetes mellitus, among others. Presenting all the aspects of FMT in more than 12 autoimmune diseases in one paper, to the best of our knowledge, is the first time presented in medical literature. Viewing FMT as such could contribute to better understanding and newer application of the model in the therapy of autoimmune diseases, indeed.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Maisam Al Shawaf
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
5
|
Kosarek NN, Preston EV. Contributions of Synthetic Chemicals to Autoimmune Disease Development and Occurrence. Curr Environ Health Rep 2024; 11:128-144. [PMID: 38653907 DOI: 10.1007/s40572-024-00444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Exposure to many synthetic chemicals has been linked to a variety of adverse human health effects, including autoimmune diseases. In this scoping review, we summarize recent evidence detailing the effects of synthetic environmental chemicals on autoimmune diseases and highlight current research gaps and recommendations for future studies. RECENT FINDINGS We identified 68 recent publications related to environmental chemical exposures and autoimmune diseases. Most studies evaluated exposure to persistent environmental chemicals and autoimmune conditions including rheumatoid arthritis (RA), systemic lupus (SLE), systemic sclerosis (SSc), and ulcerative colitis (UC) and Crohn's disease. Results of recent original research studies were mixed, and available data for some exposure-outcome associations were particularly limited. PFAS and autoimmune inflammatory bowel diseases (UC and CD) and pesticides and RA appeared to be the most frequently studied exposure-outcome associations among recent publications, despite a historical research focus on solvents. Recent studies have provided additional evidence for the associations of exposure to synthetic chemicals with certain autoimmune conditions. However, impacts on other autoimmune outcomes, particularly less prevalent conditions, remain unclear. Owing to the ubiquitous nature of many of these exposures and their potential impacts on autoimmune risk, additional studies are needed to better evaluate these relationships, particularly for understudied autoimmune conditions. Future research should include larger longitudinal studies and studies among more diverse populations to elucidate the temporal relationships between exposure-outcome pairs and to identify potential population subgroups that may be more adversely impacted by immune modulation caused by exposure to these chemicals.
Collapse
Affiliation(s)
- Noelle N Kosarek
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Emma V Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Floor 14, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Tsigalou C, Tsolou A, Stavropoulou E, Konstantinidis T, Zafiriou E, Dardiotis E, Tsirogianni A, Bogdanos D. Unraveling the intricate dance of the Mediterranean diet and gut microbiota in autoimmune resilience. Front Nutr 2024; 11:1383040. [PMID: 38818135 PMCID: PMC11137302 DOI: 10.3389/fnut.2024.1383040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
The nutritional habits regulate the gut microbiota and increase risk of an autoimmune disease. Western diet is rich in sugars, meat, and poly-unsaturated fatty acids, which lead to dysbiosis of intestinal microbiota, disruption of gut epithelial barrier and chronic mucosal inflammation. In contrast, the Mediterranean Diet (MedDiet) is abundant in ω3 fatty acids, fruits, and vegetables, possessing anti-inflammatory properties that contribute to the restoration of gut eubiosis. Numerous studies have extensively examined the impact of MedDiet and its components on both health and various disease states. Additionally, specific investigations have explored the correlation between MedDiet, microbiota, and the risk of autoimmune diseases. Furthermore, the MedDiet has been linked to a reduced risk of cardiovascular diseases, playing a pivotal role in lowering mortality rates among individuals with autoimmune diseases and comorbidities. The aim of the present review is to specifically highlight current knowledge regarding possible interactions of MedDiet with the patterns of intestinal microbiota focusing on autoimmunity and a blueprint through dietary modulations for the prevention and management of disease's activity and progression.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Avgi Tsolou
- Laboratory of Molecular Cell Biology, Cell Cycle and Proteomics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Theocharis Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
7
|
Hong Y, Li H, Chen L, Su H, Zhang B, Luo Y, Li C, Zhao Z, Shao Y, Guo L. Short-term exposure to antibiotics begets long-term disturbance in gut microbial metabolism and molecular ecological networks. MICROBIOME 2024; 12:80. [PMID: 38715137 PMCID: PMC11075301 DOI: 10.1186/s40168-024-01795-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/14/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Antibiotic exposure can occur in medical settings and from environmental sources. Long-term effects of brief antibiotic exposure in early life are largely unknown. RESULTS Post a short-term treatment by ceftriaxone to C57BL/6 mice in early life, a 14-month observation was performed using 16S rRNA gene-sequencing technique, metabolomics analysis, and metagenomics analysis on the effects of ceftriaxone exposure. Firstly, the results showed that antibiotic pre-treatment significantly disturbed gut microbial α and β diversities (P < 0.05). Both Chao1 indices and Shannon indices manifested recovery trends over time, but they didn't entirely recover to the baseline of control throughout the experiment. Secondly, antibiotic pre-treatment reduced the complexity of gut molecular ecological networks (MENs). Various network parameters were affected and manifested recovery trends over time with different degrees, such as nodes (P < 0.001, R2 = 0.6563), links (P < 0.01, R2 = 0.4543), number of modules (P = 0.0672, R2 = 0.2523), relative modularity (P = 0.6714, R2 = 0.0155), number of keystones (P = 0.1003, R2 = 0.2090), robustness_random (P = 0.79, R2 = 0.0063), and vulnerability (P = 0.0528, R2 = 0.28). The network parameters didn't entirely recover. Antibiotic exposure obviously reduced the number of key species in gut MENs. Interestingly, new keystones appeared during the recovery process of network complexity. Changes in network stability might be caused by variations in network complexity, which supports the ecological theory that complexity begets stability. Besides, the metabolism profiles of the antibiotic group and control were significantly different. Correlation analysis showed that antibiotic-induced differences in gut microbial metabolism were related to MEN changes. Antibiotic exposure also caused long-term effects on gut microbial functional networks in mice. CONCLUSIONS These results suggest that short-term antibiotic exposure in early life will cause long-term negative impacts on gut microbial diversity, MENs, and microbial metabolism. Therefore, great concern should be raised about children's brief exposure to antibiotics if the results observed in mice are applicable to humans. Video Abstract.
Collapse
Affiliation(s)
- Yuehui Hong
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
- Jiangmen Key Laboratory of Traditional Chinese Medicine Ingredients and Their Mechanisms of Action, Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Hao Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yu Luo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Chengji Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zuguo Zhao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yiming Shao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
8
|
Shtossel O, Finkelstein S, Louzoun Y. mi-Mic: a novel multi-layer statistical test for microbiota-disease associations. Genome Biol 2024; 25:113. [PMID: 38693546 PMCID: PMC11064322 DOI: 10.1186/s13059-024-03256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
mi-Mic, a novel approach for microbiome differential abundance analysis, tackles the key challenges of such statistical tests: a large number of tests, sparsity, varying abundance scales, and taxonomic relationships. mi-Mic first converts microbial counts to a cladogram of means. It then applies a priori tests on the upper levels of the cladogram to detect overall relationships. Finally, it performs a Mann-Whitney test on paths that are consistently significant along the cladogram or on the leaves. mi-Mic has much higher true to false positives ratios than existing tests, as measured by a new real-to-shuffle positive score.
Collapse
Affiliation(s)
- Oshrit Shtossel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Shani Finkelstein
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel.
| |
Collapse
|
9
|
Kalayci FNC, Ozen S. Possible Role of Dysbiosis of the Gut Microbiome in SLE. Curr Rheumatol Rep 2023; 25:247-258. [PMID: 37737528 DOI: 10.1007/s11926-023-01115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW The resident gut microbiota serves as a double-edged sword that aids the host in multiple ways to preserve a healthy equilibrium and serve as early companions and boosters for the gradual evolution of our immune defensive layers; nevertheless, the perturbation of the symbiotic resident intestinal communities has a profound impact on autoimmunity induction, particularly in systemic lupus erythematosus (SLE). Herein, we seek to critically evaluate the microbiome research in SLE with a focus on intestinal dysbiosis. RECENT FINDINGS SLE is a complex and heterogeneous disorder with self-attack due to loss of tolerance, and there is aberrant excessive immune system activation. There is mounting evidence suggesting that intestinal flora disturbances may accelerate the formation and progression of SLE, presumably through a variety of mechanisms, including intestinal barrier dysfunction and leaky gut, molecular mimicry, bystander activation, epitope spreading, gender bias, and biofilms. Gut microbiome plays a critical role in SLE pathogenesis, and additional studies are warranted to properly define the impact of gut microbiome in SLE, which can eventually lead to new and potentially safer management approaches for this debilitating disease.
Collapse
Affiliation(s)
| | - Seza Ozen
- Department of Paediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Rigante D, Leoni C, Onesimo R, Giorgio V, Trevisan V, Zampino G. Aberrant N-myristoylation as a prelude to autoimmune manifestations in patients with SHOC2 mutations. Autoimmun Rev 2023; 22:103462. [PMID: 37793491 DOI: 10.1016/j.autrev.2023.103462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Chiara Leoni
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta Onesimo
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy
| | - Valentina Trevisan
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
Shtossel O, Turjeman S, Riumin A, Goldberg MR, Elizur A, Bekor Y, Mor H, Koren O, Louzoun Y. Recipient-independent, high-accuracy FMT-response prediction and optimization in mice and humans. MICROBIOME 2023; 11:181. [PMID: 37580821 PMCID: PMC10424414 DOI: 10.1186/s40168-023-01623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/14/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Some microbiota compositions are associated with negative outcomes, including among others, obesity, allergies, and the failure to respond to treatment. Microbiota manipulation or supplementation can restore a community associated with a healthy condition. Such interventions are typically probiotics or fecal microbiota transplantation (FMT). FMT donor selection is currently based on donor phenotype, rather than the anticipated microbiota composition in the recipient and associated health benefits. However, the donor and post-transplant recipient conditions differ drastically. We here propose an algorithm to identify ideal donors and predict the expected outcome of FMT based on donor microbiome alone. We also demonstrate how to optimize FMT for different required outcomes. RESULTS We show, using multiple microbiome properties, that donor and post-transplant recipient microbiota differ widely and propose a tool to predict the recipient post-transplant condition (engraftment success and clinical outcome), using only the donors' microbiome and, when available, demographics for transplantations from humans to either mice or other humans (with or without antibiotic pre-treatment). We validated the predictor using a de novo FMT experiment highlighting the possibility of choosing transplants that optimize an array of required goals. We then extend the method to characterize a best-planned transplant (bacterial cocktail) by combining the predictor and a generative genetic algorithm (GA). We further show that a limited number of taxa is enough for an FMT to produce a desired microbiome or phenotype. CONCLUSIONS Off-the-shelf FMT requires recipient-independent optimized FMT selection. Such a transplant can be from an optimal donor or from a cultured set of microbes. We have here shown the feasibility of both types of manipulations in mouse and human recipients. Video Abstract.
Collapse
Affiliation(s)
- Oshrit Shtossel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel.
| | - Sondra Turjeman
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Alona Riumin
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael R Goldberg
- Yitzhak Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
- Department of Pediatrics, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Arnon Elizur
- Yitzhak Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
- Department of Pediatrics, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Yarin Bekor
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Hadar Mor
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel.
| |
Collapse
|
12
|
Turjeman S, Sharon E, Levin R, Oralewska B, Szaflarska-Popławska A, Bierła JB, Cukrowska B, Koren O. Celiac-the lone horse? An autoimmune condition without signals of microbiota dysbiosis. Microbiol Spectr 2023; 11:e0146323. [PMID: 37565758 PMCID: PMC10581062 DOI: 10.1128/spectrum.01463-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
Accumulating evidence supports the role of microbiota in autoimmune processes, but research regarding the role of the gut microbiota in celiac disease (CD) is still emerging, and a consistent CD-associated dysbiosis pattern has not yet been defined. Here, we characterized the microbiota of children newly diagnosed with CD, with their unaffected family members as a healthy control group to reduce confounding factors including genetic background, hygiene, dietary habits, and environment, and followed children with CD over 1 year of dietary intervention (exclusion of gluten) to understand if the microbiota is associated with CD and its mediation. We did not find differences in the microbiota of siblings with and without CD, despite a wealth of evidence in the literature supporting CD-specific microbiota. CD is common among first-degree relatives, so this could suggest that unaffected family members in this study may be living in a pre-CD state, currently below clinical detection. Interestingly, despite the effectiveness of diet in CD control, we did not observe diet-mediated microbiota changes, except for short-term increase in Akkermansia muciniphila. This lack of effect could suggest a very strong CD microbial signature even when controlled or could be a technical shortcoming. Expanded future studies with both related and unrelated controls and diet interventions in both the CD and control arms can provide further context to our findings. IMPORTANCE The microbiota is the community of microbes that live in and on us. These microbes are essential to our health and everyday function. Disruption of the community is associated with diseases ranging from metabolic syndrome to autoimmune diseases to mental disorders. In the case of celiac disease (CD), research remains inconclusive regarding implications of the microbiota in etiology. Here, we compared microbiota of children with CD to those of their unaffected family members and found very few differences in microbiota profiles. We next examined how gluten elimination in CD patients affects the microbiota. Surprisingly, despite diet adherence, microbiota shifts were minimal, with only a short-term increase in Akkermansia muciniphila. Previous studies suggest that family members of CD patients may be living in a pre-CD state, which could explain their microbial similarity. A larger study with unrelated controls and increased microbiota monitoring during diet intervention should give our findings more perspective.
Collapse
Affiliation(s)
- Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Efrat Sharon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rachel Levin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Beata Oralewska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Anna Szaflarska-Popławska
- Department of Pediatric Endoscopy and Gastrointestinal Function Testing, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Joanna B. Bierła
- Department of Pathomorphology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Bożena Cukrowska
- Department of Pathomorphology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
13
|
Fontaine F, Turjeman S, Callens K, Koren O. The intersection of undernutrition, microbiome, and child development in the first years of life. Nat Commun 2023; 14:3554. [PMID: 37322020 PMCID: PMC10272168 DOI: 10.1038/s41467-023-39285-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Undernutrition affects about one out of five children worldwide. It is associated with impaired growth, neurodevelopment deficits, and increased infectious morbidity and mortality. Undernutrition, however, cannot be solely attributed to a lack of food or nutrient deficiency but rather results from a complex mix of biological and environmental factors. Recent research has shown that the gut microbiome is intimately involved in the metabolism of dietary components, in growth, in the training of the immune system, and in healthy development. In this review, we look at these features in the first three years of life, which is a critical window for both microbiome establishment and maturation and child development. We also discuss the potential of the microbiome in undernutrition interventions, which could increase efficacy and improve child health outcomes.
Collapse
Affiliation(s)
- Fanette Fontaine
- Food and Agriculture Organization of the United Nations, Rome, Italy
- Université Paris- Cité, 75006, Paris, France
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Karel Callens
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
14
|
Johansen VBI, Færø D, Buschard K, Kristiansen K, Pociot F, Kiilerich P, Josefsen K, Haupt-Jorgensen M, Antvorskov JC. A Gluten-Free Diet during Pregnancy and Early Life Increases Short Chain Fatty Acid-Producing Bacteria and Regulatory T Cells in Prediabetic NOD Mice. Cells 2023; 12:1567. [PMID: 37371037 PMCID: PMC10297205 DOI: 10.3390/cells12121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The incidence of the autoimmune disease type 1 diabetes is increasing, likely caused by environmental factors. A gluten-free diet has previously been shown to ameliorate autoimmune diabetes in non-obese diabetic (NOD) mice and humans. Although the exact mechanisms are not understood, interventions influencing the intestinal microbiota early in life affect the risk of type 1 diabetes. Here, we characterize how NOD mice that are fed a gluten-free (GF) diet differ from NOD mice that are fed a gluten-containing standard (STD) diet in terms of their microbiota composition by 16S rRNA gene amplicon sequencing and pancreatic immune environment by real-time quantitative PCR at the prediabetic stage at 6 and 13 weeks of age. Gut microbiota analysis revealed highly distinct microbiota compositions in both the cecum and the colon of GF-fed mice compared with STD-fed mice. The microbiotas of the GF-fed mice were characterized by an increased Firmicutes/Bacteroidetes ratio, an increased abundance of short chain fatty acid (particularly butyrate)-producing bacteria, and a reduced abundance of Lactobacilli compared with STD mice. We found that the insulitis score in the GF mice was significantly reduced compared with the STD mice and that the markers for regulatory T cells and T helper 2 cells were upregulated in the pancreas of the GF mice. In conclusion, a GF diet during pre- and early post-natal life induces shifts in the cecal and colonic microbiota compatible with a less inflammatory environment, providing a likely mechanism for the protective effect of a GF diet in humans.
Collapse
Affiliation(s)
| | - Daisy Færø
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
| | - Karsten Buschard
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2200 Copenhagen, Denmark; (K.K.); (P.K.)
| | - Flemming Pociot
- Steno Diabetes Center, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark;
| | - Pia Kiilerich
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2200 Copenhagen, Denmark; (K.K.); (P.K.)
- Department for Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Knud Josefsen
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
| | - Martin Haupt-Jorgensen
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
| | - Julie Christine Antvorskov
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
- Steno Diabetes Center, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark;
| |
Collapse
|
15
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acid chains in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
Terrón-Camero LC, Gordillo-González F, Salas-Espejo E, Andrés-León E. Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice. Genes (Basel) 2022; 13:2280. [PMID: 36553546 PMCID: PMC9777648 DOI: 10.3390/genes13122280] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The study of microorganisms is a field of great interest due to their environmental (e.g., soil contamination) and biomedical (e.g., parasitic diseases, autism) importance. The advent of revolutionary next-generation sequencing techniques, and their application to the hypervariable regions of the 16S, 18S or 23S ribosomal subunits, have allowed the research of a large variety of organisms more in-depth, including bacteria, archaea, eukaryotes and fungi. Additionally, together with the development of analysis software, the creation of specific databases (e.g., SILVA or RDP) has boosted the enormous growth of these studies. As the cost of sequencing per sample has continuously decreased, new protocols have also emerged, such as shotgun sequencing, which allows the profiling of all taxonomic domains in a sample. The sequencing of hypervariable regions and shotgun sequencing are technologies that enable the taxonomic classification of microorganisms from the DNA present in microbial communities. However, they are not capable of measuring what is actively expressed. Conversely, we advocate that metatranscriptomics is a "new" technology that makes the identification of the mRNAs of a microbial community possible, quantifying gene expression levels and active biological pathways. Furthermore, it can be also used to characterise symbiotic interactions between the host and its microbiome. In this manuscript, we examine the three technologies above, and discuss the implementation of different software and databases, which greatly impact the obtaining of reliable results. Finally, we have developed two easy-to-use pipelines leveraging Nextflow technology. These aim to provide everything required for an average user to perform a metagenomic analysis of marker genes with QIMME2 and a metatranscriptomic study using Kraken2/Bracken.
Collapse
Affiliation(s)
- Laura C. Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| | - Fernando Gordillo-González
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| | - Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC (IPBLN-CSIC), 18016 Granada, Spain
| |
Collapse
|
17
|
Calcaterra V, Mameli C, Rossi V, Magenes VC, Massini G, Perazzi C, Verduci E, Zuccotti G. What we know about the relationship between autoimmune thyroid diseases and gut microbiota: a perspective on the role of probiotics on pediatric endocrinology. Minerva Pediatr (Torino) 2022; 74:650-671. [PMID: 36149093 DOI: 10.23736/s2724-5276.22.06873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Autoimmune diseases account for a cumulative overall prevalence of about 3-5% worldwide. Among them, autoimmune thyroid diseases (ATDs) are the most common and comprise two main entities: Hashimoto's thyroiditis (HT) and Graves-Basedow disease (GD). The pathogenesis of ATDs remains not fully elucidated, however the role of microbioma has been proposed. Gut microbiota exert an important influence on the intestinal barrier, nutrient metabolism and immune system development and functions. EVIDENCE ACQUISITION In this review, we describe on the main features of ATDs in pediatrics, focusing on the reciprocal influence between gut microbiota, thyroid hormone metabolism and thyroid autoimmunity and consider the role of probiotics and other microbiota-targeted therapies in thyroid diseases with a perspective on pediatric endocrinology. EVIDENCE SYNTHESIS Microbiome affects both endogenous and exogenous thyroid hormone metabolism and influences the absorption of minerals important to the thyroid function, which are iodine, selenium, zinc and iron. The alteration of the gut microbiota, with the consequent modifications in the barrier function and the increased gut permeability, seems involved in the development of autoimmune and chronic inflammatory diseases, including ATDs. The supplementation with probiotics showed beneficial effects on the thyroid hormone and thyroid function because this strategy could restore the intestinal eubiosis and the good strain microorganism proliferation. CONCLUSIONS Even though the evidence about the interaction between microbiota and ATDs in pediatric patients is limited, the promising results obtained in the adult population, and in other autoimmune disorders affecting children, highlight the need of for further research in the pediatric field.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy - .,Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy -
| | - Chiara Mameli
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy.,"L. Sacco" Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Virginia Rossi
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy
| | | | - Giulia Massini
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy
| | - Chiara Perazzi
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, "V. Buzzi" Children's Hospital, Milan, Italy.,"L. Sacco" Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Tao S, Wang X, Yang X, Liu Y, Fu Z, Zhang L, Wang Z, Ni J, Shuai Z, Pan H. COVID-19 and inflammatory bowel disease crosstalk: From emerging association to clinical proposal. J Med Virol 2022; 94:5640-5652. [PMID: 35971954 PMCID: PMC9538900 DOI: 10.1002/jmv.28067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause coronavirus disease 2019 (COVID-19), an acute respiratory inflammation that has emerged worldwide since December 2019, and it quickly became a global epidemic. Inflammatory bowel disease (IBD) is a group of chronic nonspecific intestinal inflammatory diseases whose etiology has not been elucidated. The two have many overlapping symptoms in clinical presentation, such as abdominal pain, diarrhea, pneumonia, etc. Imbalance of the autoimmune system in IBD patients and long-term use of immunosuppressive drugs may increase the risk of infection; and systemic symptoms caused by COVID-19 may also induce or exacerbate intestinal inflammation. It has been found that the SARS-CoV-2 receptor angiotensin converting enzyme 2, which is highly expressed in the lung and intestine, is an inflammatory protective factor, and is downregulated and upregulated in COVID-19 and IBD, respectively, suggesting that there may be a coregulatory pathway. In addition, the immune activation pattern of COVID-19 and the cytokine storm in the inflammatory response have similar roles in IBD, indicating that the two diseases may influence each other. Therefore, this review aimed to address the following research questions: whether SARS-CoV-2 infection leads to the progression of IBD; whether IBD increases the risk of COVID-19 infection and poor prognosis; possible common mechanisms and genetic cross-linking between the two diseases; new treatment and care strategies for IBD patients, and the feasibility and risk of vaccination in the context of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Sha‐Sha Tao
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| | - Xin‐Yi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, First Clinical Medical CollegeAnhui Medical UniversityHefeiAnhuiChina
| | - Xiao‐Ke Yang
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Yu‐Chen Liu
- Department of Otolaryngology, Head, and Neck SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Zi‐Yue Fu
- Department of Clinical Medicine, The Second School of Clinical MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Li‐Zhi Zhang
- Department of Clinical Medicine, The First School of Clinical MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Zhi‐Xin Wang
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| | - Zong‐Wen Shuai
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
| | - Hai‐Feng Pan
- Department of Epidemiology and Biostatistics, School of Public HealthAnhui Medical UniversityHefeiAnhuiChina
| |
Collapse
|
19
|
Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111910. [PMID: 36431045 PMCID: PMC9696601 DOI: 10.3390/life12111910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The intestine barrier, the front line of normal body defense, relies on its structural integrity, microbial composition and barrier immunity. The intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. Although it occupies a relatively small proportion of the intestinal microbiota, Lactobacilli has been discovered to have a significant impact on the intestine tract in previous studies. It is undeniable that some Lactobacillus strains present probiotic properties through maintaining the micro-ecological balance via different mechanisms, such as mucosal barrier function and barrier immunity, to prevent infection and even to solve some neurology issues by microbiota-gut-brain/liver/lung axis communication. Notably, not only living cells but also Lactobacillus derivatives (postbiotics: soluble secreted products and para-probiotics: cell structural components) may exert antipathogenic effects and beneficial functions for the gut mucosal barrier. However, substantial research on specific effects, safety and action mechanisms in vivo should be done. In clinical application of humans and animals, there are still doubts about the precise evaluation of Lactobacilli's safety, therapeutic effect, dosage and other aspects. Therefore, we provide an overview of central issues on the impacts of Lactobacillus casei (L. casei) and their products on the intestinal mucosal barrier and some diseases and highlight the urgent need for further studies.
Collapse
Affiliation(s)
- Da Qin
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| |
Collapse
|
20
|
Otten K, Keller L, Puiu AA, Herpertz-Dahlmann B, Seitz J, Kohn N, Edgar JC, Wagels L, Konrad K. Pre- and postnatal antibiotic exposure and risk of developing attention deficit hyperactivity disorder-A systematic review and meta-analysis combining evidence from human and animal studies. Neurosci Biobehav Rev 2022; 140:104776. [PMID: 35842009 DOI: 10.1016/j.neubiorev.2022.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/10/2022] [Indexed: 11/26/2022]
Abstract
This study investigated the effects of early antibiotic exposure on ADHD risk by (1) integrating meta-analytical evidence from human observational studies examining the association between prenatal or early postnatal antibiotic exposure on the risk of developing ADHD; and (2) reviewing evidence from experimental animal studies on the effects of early antibiotic exposure on behavior. Sixteen human studies and five rodent studies were reviewed. A quantitative meta-analysis with 10 human studies indicated an increased risk for ADHD after prenatal antibiotic exposure (summary effect estimate Hazard Ratio (HR) 1.23, 95% CI 1.09-1.38; N = 2,398,475 subjects) but not after postnatal exposure within the first two years of life (summary effect estimate HR 1.12, 95% CI 0.95-1.32; N = 1,863,867 subjects). The rodent literature suggested that peri-natal antibiotic exposure has effects on social behavior, anxiety and aggression, alongside changes in gut microbial composition. Human and rodent findings thus suggest prenatal antibiotic exposure as a possible risk factor for ADHD, and suggest that an early disruption of the gut microbiome by antibiotics may interfere with neurodevelopment.
Collapse
Affiliation(s)
- Katharina Otten
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Lara Keller
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Andrei A Puiu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Nils Kohn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lisa Wagels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine 10, Research Centre Jülich, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; JARA-Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), RWTH Aachen & Research Centre Jülich, 52428 Jülich, Germany
| |
Collapse
|
21
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. PATHOPHYSIOLOGY 2022; 29:243-280. [PMID: 35736648 PMCID: PMC9231084 DOI: 10.3390/pathophysiology29020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022] Open
Abstract
In our continuing examination of the role of exposomes in autoimmune disease, we use this review to focus on pathogens. Infections are major contributors to the pathophysiology of autoimmune diseases through various mechanisms, foremost being molecular mimicry, when the structural similarity between the pathogen and a human tissue antigen leads to autoimmune reactivity and even autoimmune disease. The three best examples of this are oral pathogens, SARS-CoV-2, and the herpesviruses. Oral pathogens reach the gut, disturb the microbiota, increase gut permeability, cause local inflammation, and generate autoantigens, leading to systemic inflammation, multiple autoimmune reactivities, and systemic autoimmunity. The COVID-19 pandemic put the spotlight on SARS-CoV-2, which has been called “the autoimmune virus.” We explore in detail the evidence supporting this. We also describe how viruses, in particular herpesviruses, have a role in the induction of many different autoimmune diseases, detailing the various mechanisms involved. Lastly, we discuss the microbiome and the beneficial microbiota that populate it. We look at the role of the gut microbiome in autoimmune disorders, because of its role in regulating the immune system. Dysbiosis of the microbiota in the gut microbiome can lead to multiple autoimmune disorders. We conclude that understanding the precise roles and relationships shared by all these factors that comprise the exposome and identifying early events and root causes of these disorders can help us to develop more targeted therapeutic protocols for the management of this worldwide epidemic of autoimmunity.
Collapse
|
22
|
Liu Z, Wei S, Chen X, Liu L, Wei Z, Liao Z, Wu J, Li Z, Zhou H, Wang D. The Effect of Long-Term or Repeated Use of Antibiotics in Children and Adolescents on Cognitive Impairment in Middle-Aged and Older Person(s) Adults: A Cohort Study. Front Aging Neurosci 2022; 14:833365. [PMID: 35401157 PMCID: PMC8984107 DOI: 10.3389/fnagi.2022.833365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives We evaluated the effects of long-term/recurrent use of antibiotics in childhood on developing cognitive impairment in middle and old age from UK Biobank Database. Methods UK Biobank recruited participants aged 37-73 years. Cognitive impairment was ascertained by fluid intelligence questionnaire. Primary outcome was the occurrence of cognitive impairment in middle and old age. Multivariate logistic regression models were used to explore the relationship between long-term/recurrent use of antibiotics and cognitive impairment. Results Over 3.8-10.8 years' follow-up, 4,781 of the 35,921 participants developed cognitive impairment. The odds of cognitive impairment in middle and old age among long-term/recurrent use of antibiotics in childhood were increased by 18% compared with their counterparts (adjusted odd ratio 1.18, 95% confidence interval 1.08-1.29, p < 0.01). The effect of long-term/recurrent use of antibiotics in childhood on cognitive impairment was homogeneous across different categories of various subgroup variables such as sex, age, APOE4, ethnic groups, income before tax, smoking status, alcohol status, BMI, hypertension and diabetes but the effect of long-term/recurrent use of antibiotics in childhood was modified by the educational qualification (p-value for interaction <0.05). Conclusion Long-term/recurrent use of antibiotics in childhood may increase the risk of cognitive impairment in middle and old age.
Collapse
Affiliation(s)
- Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shouchao Wei
- Department of Neurology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Xiaoxia Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lingying Liu
- Department of Neurology, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Zhuangsheng Wei
- Department of Neurology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zhimin Liao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiayuan Wu
- Department of Clinical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhichao Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Duolao Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
23
|
Zhou JY, Zhou D, Telfer K, Reynero K, Jones MB, Hambor J, Cobb BA. Antigen presenting cell response to polysaccharide A is characterized by the generation of anti-inflammatory macrophages. Glycobiology 2022; 32:136-147. [PMID: 34939104 PMCID: PMC8934142 DOI: 10.1093/glycob/cwab111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/16/2021] [Indexed: 03/09/2024] Open
Abstract
Polysaccharide A (PSA) is the immunodominant capsular carbohydrate from the gram negative commensal microbe Bacteroides fragilis that has shown remarkable potency in ameliorating many rodent models of inflammatory disease by eliciting downstream suppressive CD4+ T cells. PSA is composed of a zwitterionic repeating unit that allows it to be processed by antigen presenting cells (APCs) and presented by MHCII in a glycosylation-dependent manner. While previous work has uncovered much about the interactions between MHCII and PSA, as well as the downstream T cell response, little is known about how PSA affects the phenotype of MHCII+ APCs, including macrophages. Here, we utilized an unbiased systems approach consisting of RNAseq transcriptomics, high-throughput flow cytometry, Luminex analysis and targeted validation experiments to characterize the impact of PSA-mediated stimulation of splenic MHCII+ cells. The data revealed that PSA potently elicited the upregulation of an alternatively activated M2 macrophage transcriptomic and cell surface signature. Cell-type-specific validation experiments further demonstrated that PSA-exposed bone marrow-derived macrophages (BMDMs) induced cell surface and intracellular markers associated with M2 macrophages compared with conventional peptide ovalbumin (ova)-exposed BMDMs. In contrast to macrophages, we also found that CD11c+ dendritic cells (DCs) upregulated the pro-T cell activation costimulatory molecule CD86 following PSA stimulation. Consistent with the divergent BMDM and DC changes, PSA-exposed DCs elicited an antigen-experienced T cell phenotype in co-cultures, whereas macrophages did not. These findings collectively demonstrate that the PSA-induced immune response is characterized by both T cell stimulation via presentation by DCs, and a previously unrecognized anti-inflammatory polarization of macrophages.
Collapse
Affiliation(s)
- Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - David Zhou
- Department of Computer Science, Arizona State University, 1151 S. Forest Avenue, Tempe, AZ 85281, USA
| | - Kevin Telfer
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - Kalob Reynero
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - Mark B Jones
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| | - John Hambor
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-7288, USA
| |
Collapse
|
24
|
Rathmann J, Stamatis P, Jönsson G, Englund M, Segelmark M, Jayne D, Mohammad AJ. Infection is associated with increased risk of MPO- but not PR3-ANCA-associated vasculitis. Rheumatology (Oxford) 2022; 61:4817-4826. [PMID: 35289842 PMCID: PMC9707308 DOI: 10.1093/rheumatology/keac163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/09/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES To determine whether development of ANCA-associated vasculitis (AAV) shows a relationship with a prior infection and if prior infection affects disease characteristics and outcome. METHODS All incident cases of AAV diagnosed in a defined region of Sweden from 2000 through 2016 were identified. For each case, 10 individuals from the general population, matched for age, sex and area of residence, were selected. Infections occurring in AAV patients and controls prior to the date of AAV diagnosis (index date for respective controls) were identified using an administrative database. Conditional logistic regression models were used to calculate odds ratios (OR) of developing AAV. Occurrence, clinical characteristics and outcome of AAV were analysed with respect to prior infection. RESULTS Two-hundred and seventy patients with AAV (48% female) and 2687 controls were included. Prior to diagnosis/index date, 146 (54%) AAV patients had been diagnosed with infection vs 1282 (48%) controls, with OR for AAV 1.57 (95% CI 1.18, 2.19) in those with infections of the upper respiratory tract and 1.68 (1.02, 2.77) in those with pneumonia. Difference from controls was significant in patients with MPO-ANCA 1.99 (95% CI 1.25, 3.1) but not in those with PR3-ANCA 1.0 (0.61, 1.52). Patients with prior infection showed higher disease activity at AAV diagnosis. No differences in disease characteristics, comorbidities or outcome in those with and without prior infections were observed. CONCLUSIONS Respiratory tract infections are positively associated with development of MPO- but not PR3-ANCA vasculitis. Prior infection is associated with higher disease activity at AAV diagnosis.
Collapse
Affiliation(s)
- Jens Rathmann
- Correspondence to: Jens Rathmann, Department of Rheumatology, Skåne University Hospital Lund, SE-221 85 Lund, Sweden. E-mail:
| | | | - Göran Jönsson
- Department of Clinical Sciences Lund, Department of Infectious Diseases
| | - Martin Englund
- Department of Clinical Sciences Lund, Clinical Epidemiology Unit
| | - Mårten Segelmark
- Department of Clinical Sciences Lund, Nephrology, Lund University, Lund, Sweden
| | - David Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Aladdin J Mohammad
- Department of Clinical Sciences, Rheumatology,Department of Clinical Sciences Lund, Clinical Epidemiology Unit,Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Yu M, Li L, Ren Q, Feng H, Tao S, Cheng L, Ma L, Gou SJ, Fu P. Understanding the Gut-Kidney Axis in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: An Analysis of Gut Microbiota Composition. Front Pharmacol 2022; 13:783679. [PMID: 35140612 PMCID: PMC8819146 DOI: 10.3389/fphar.2022.783679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence suggested that gut microbiota played critical roles in developing autoimmune diseases. This study investigated the correlation between gut microbiota and antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with kidney injury. We analyzed the fecal samples of 23 AAV patients with kidney injury using a 16s RNA microbial profiling approach. The alpha-diversity indexes were significantly lower in AAV patients with kidney injury than healthy controls (Sobs P < 0.001, Shannon P < 0.001, Chao P < 0.001). The beta-diversity difference demonstrated a significant difference among AAV patients with kidney injury, patients with lupus nephritis (LN), and health controls (ANOSIM, p = 0.001). Among these AAV patients, the Deltaproteobacteria, unclassified_o_Bacteroidales, Prevotellaceae, Desulfovibrionaceae Paraprevotella, and Lachnospiraceae_NK4A136_group were correlated negatively with serum creatinine, and the proportion of Deltaproteobacteria, unclassified_o_Bacteroidales, Desulfovibrionaceae, Paraprevotella, and Lachnospiraceae_NK4A136_group had a positive correlation with eGFR. In conclusion, the richness and diversity of gut microbiota were reduced in AAV patients with kidney injury, and the alteration of gut microbiota might be related with the severity of kidney injury of AAV patients. Targeted regulation of gut microbiota disorder might be a potential treatment for AAV patients with kidney injury.
Collapse
Affiliation(s)
- Meilian Yu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Lingzhi Li
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Qian Ren
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Han Feng
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sibei Tao
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Cheng
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Liang Ma, ; Shen-Ju Gou,
| | - Shen-Ju Gou
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Liang Ma, ; Shen-Ju Gou,
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Tsigalou C, Konstantinidis T, Aloizou AM, Bezirtzoglou E, Tsakris A. Future Therapeutic Prospects in Dealing with Autoimmune Diseases: Treatment Based on the Microbiome Model. ROLE OF MICROORGANISMS IN PATHOGENESIS AND MANAGEMENT OF AUTOIMMUNE DISEASES 2022:489-520. [DOI: 10.1007/978-981-19-4800-8_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Turjeman S, Koren O. Using the microbiome in clinical practice. Microb Biotechnol 2022; 15:129-134. [PMID: 34767683 PMCID: PMC8719822 DOI: 10.1111/1751-7915.13971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| |
Collapse
|
28
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
29
|
Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! The effect of the microbiome on synaptic plasticity. Biol Rev Camb Philos Soc 2021; 97:582-599. [PMID: 34734461 PMCID: PMC9298272 DOI: 10.1111/brv.12812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
The microbiome influences the emotional and cognitive phenotype of its host, as well as the neurodevelopment and pathophysiology of various brain processes and disorders, via the well‐established microbiome–gut–brain axis. Rapidly accumulating data link the microbiome to severe neuropsychiatric disorders in humans, including schizophrenia, Alzheimer's and Parkinson's. Moreover, preclinical work has shown that perturbation of the microbiome is closely associated with social, cognitive and behavioural deficits. The potential of the microbiome as a diagnostic and therapeutic tool is currently undercut by a lack of clear mechanistic understanding of the microbiome–gut–brain axis. This review establishes the hypothesis that the mechanism by which this influence is carried out is synaptic plasticity – long‐term changes to the physical and functional neuronal structures that enable the brain to undertake learning, memory formation, emotional regulation and more. By examining the different constituents of the microbiome–gut–brain axis through the lens of synaptic plasticity, this review explores the diverse aspects by which the microbiome shapes the behaviour and mental wellbeing of the host. Key elements of this complex bi‐directional relationship include neurotransmitters, neuronal electrophysiology, immune mediators that engage with both the central and enteric nervous systems and signalling cascades that trigger long‐term potentiation of synapses. The importance of establishing mechanistic correlations along the microbiome–gut–brain axis cannot be overstated as they hold the potential for furthering current understanding regarding the vast fields of neuroscience and neuropsychiatry. This review strives to elucidate the promising theory of microbiome‐driven synaptic plasticity in the hope of enlightening current researchers and inspiring future ones.
Collapse
Affiliation(s)
- Ayala Glinert
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, 1311502, Israel
| |
Collapse
|
30
|
Mei L, Yang Z, Zhang X, Liu Z, Wang M, Wu X, Chen X, Huang Q, Huang R. Sustained Drug Treatment Alters the Gut Microbiota in Rheumatoid Arthritis. Front Immunol 2021; 12:704089. [PMID: 34721377 PMCID: PMC8551364 DOI: 10.3389/fimmu.2021.704089] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Several studies have investigated the causative role of the microbiome in the development of rheumatoid arthritis (RA), but changes in the gut microbiome in RA patients during drug treatment have been less well studied. Here, we tracked the longitudinal changes in gut bacteria in 22 RA patients who were randomized into two groups and treated with Huayu-Qiangshen-Tongbi formula (HQT) plus methotrexate (MTX) or leflunomide (LEF) plus MTX. There were differences in the gut microbiome between untreated (at baseline) RA patients and healthy controls, with 37 species being more abundant in the RA patients and 21 species (including Clostridium celatum) being less abundant. Regarding the functional analysis, vitamin K2 biosynthesis was associated with RA-enriched bacteria. Additionally, in RA patients, alterations in gut microbial species appeared to be associated with RA-related clinical indicators through changing various gut microbiome functional pathways. The clinical efficacy of the two treatments was further observed to be similar, but the response trends of RA-related clinical indices in the two treatment groups differed. For example, HQT treatment affected the erythrocyte sedimentation rate (ESR), while LEF treatment affected the C-reactive protein (CRP) level. Further, 11 species and 9 metabolic pathways significantly changed over time in the HQT group (including C. celatum, which increased), while only 4 species and 2 metabolic pathways significantly changed over time in the LEF group. In summary, we studied the alterations in the gut microbiome of RA patients being treated with HQT or LEF. The results provide useful information on the role of the gut microbiota in the pathogenesis of RA, and they also provide potentially effective directions for developing new RA treatments.
Collapse
Affiliation(s)
- Liyan Mei
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Zhihua Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiaolin Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Zehao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Maojie Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.,Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Xiaodong Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiumin Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Qingchun Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine (The Second Affiliated Hospital of Guangzhou University of Chinese Medicine), Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Titelbaum M, Brant B, Baumel D, Burstein-Willensky A, Perez S, Barsheshet Y, Avni O. Ezh2 harnesses the intranuclear actin cytoskeleton to remodel chromatin in differentiating Th cells. iScience 2021; 24:103093. [PMID: 34622148 PMCID: PMC8479699 DOI: 10.1016/j.isci.2021.103093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/20/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Following their first interaction with the antigen, quiescent naive T-helper (Th; CD4+) cells enlarge, differentiate, and proliferate; these processes are accompanied by substantial epigenetic alterations. We showed previously that the epigenetic regulators the polycomb-group (PcG) proteins have a dual function as both positive and negative transcriptional regulators; however, the underlying mechanisms remain poorly understood. Here, we demonstrate that during Th cell differentiation the methyltransferase activity of the PcG protein Ezh2 regulates post-transcriptionally inducible assembly of intranuclear actin filaments. These filaments are colocalized with the actin regulators Vav1 and WASp, vertically oriented to the T cell receptor, and intermingle with the chromatin fibers. Ezh2 and Vav1 are observed together at chromatin-actin intersections. Furthermore, the inducible assembly of nuclear actin filaments is required for chromatin spreading and nuclear growth. Altogether these findings delineate a model in which the epigenetic machinery orchestrates the dynamic mechanical force of the intranuclear cytoskeleton to reorganize chromatin during differentiation. Ezh2 regulates post-transcriptionally the inducible assembly of intranuclear F-actin F-actin is oriented toward the TCR and intermingled with the chromatin fibers F-actin is required for chromatin spreading and nuclear growth The epigenetic machinery harnesses intranuclear cytoskeleton to reorganize chromatin
Collapse
Affiliation(s)
- Moran Titelbaum
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Boris Brant
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Daniel Baumel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Shira Perez
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Orly Avni
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
32
|
Marck CH, Probst Y, Chen J, Taylor B, van der Mei I. Dietary patterns and associations with health outcomes in Australian people with multiple sclerosis. Eur J Clin Nutr 2021; 75:1506-1514. [PMID: 33531638 DOI: 10.1038/s41430-021-00864-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND/OBJECTIVES Associations between patterns of food intake and health in people with multiple sclerosis (MS) are of increasing global interest; however, Australian data are lacking. This study aimed to assess the dietary habits and associations with health outcomes of Australians with MS. SUBJECTS/METHODS This cross-sectional study used 2016 survey data from the Australian MS Longitudinal Study, including the Dietary Habits Questionnaire, Hospital Anxiety and Depression Scale, Assessment of Quality of Life, Fatigue Severity Scale, Patient-Determined Disease Steps Scale and 13 MS symptoms scales. Regression models were constructed using directed acyclic graphs. RESULTS Almost all (94.3%) of the 1490 participants reported making an effort to eating healthy with 21.2% following one or more specific diets, although often not strictly. Overall, 7.9% reported not eating meat, 8.1% reported not consuming dairy, and 4.0% consumed neither food group. A healthier diet score was associated with better mental, physical and total quality of life, and lower depression, and pain scores, and fewer cognition, vision and bowel symptoms. Higher reported fibre, fruit, vegetable and healthy fat scores were positively associated with most health outcomes. CONCLUSIONS Healthier overall diet scores and higher fibre, fruit and vegetable scores were associated with better health outcomes in this sample of Australians adults with MS. However, the proportion of participants avoiding dairy and meat, or adhering to a specific MS diet was much lower than previously reported. Prospective dietary studies are needed to further understand whether dietary change is feasible and affects health outcomes over time.
Collapse
Affiliation(s)
- Claudia H Marck
- Disability and Health Unit, The Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Yasmine Probst
- School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Jing Chen
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Bruce Taylor
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS, 7000, Australia
| |
Collapse
|
33
|
Kindgren E, Ludvigsson J. Infections and antibiotics during fetal life and childhood and their relationship to juvenile idiopathic arthritis: a prospective cohort study. Pediatr Rheumatol Online J 2021; 19:145. [PMID: 34530851 PMCID: PMC8447683 DOI: 10.1186/s12969-021-00611-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aetiology of juvenile idiopathic arthritis (JIA) is poorly understood. It has been shown that use of antibiotics is associated with JIA. However, whether the association is due to increased occurrence of infection in these individuals is unknown. The purpose of this investigation was to measure the association between number of infections and use of antibiotics during childhood with development of JIA. METHODS In ABIS (All Babies in Southeast Sweden) a population-based prospective birth cohort of 17,055 children, data were collected on infections and antibiotic exposure during pregnancy and childhood. 102 individuals with JIA were identified. Multivariable logistic regression analyses were performed, adjusting for confounding factors. RESULTS Exposure to antibiotics during the periods 1-12 months, 1-3 years and 5-8 years was significantly associated with increased risk for JIA. The odds of developing JIA were three times higher in those exposed to antibiotics during the first 3 years of life compared with those not exposed (aOR 3.17; 95% CI 1.11-9.03, p = 0.031), and more than twice as high in those exposed to antibiotics during the first 5 years of life compared with those not exposed (aOR 2.18; 95% CI 1.36-3.50, p = 0.001). The odds of developing JIA were 78% higher in those exposed to antibiotics during the first 8 years of life compared with those not exposed (aOR 1.78; 95% CI 1.15-2.73, p = 0.009). Occurrence of infection during fetal life or childhood showed no significant association with the risk of developing JIA, after confounder adjustment. The cumulative number of courses of antibiotics was significantly higher during childhood for the individuals who developed JIA (p < 0.001). Penicillins were more frequently used than non-penicillins, but both had an equal effect on the risk of developing JIA. CONCLUSIONS Exposure to antibiotics early in life is associated with later onset of JIA in a large birth cohort from the general population. The relationship was dose dependent. These results suggest that further, more restrictive, antibiotic policies during the first years of life would be advisable.
Collapse
Affiliation(s)
- Erik Kindgren
- Department of Pediatrics, Skaraborg Hospital Skövde, SE-541 85, Skövde, Sweden. .,Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Johnny Ludvigsson
- grid.5640.70000 0001 2162 9922Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Crown Princess Victoria Children’s Hospital, Linköping, Sweden
| |
Collapse
|
34
|
Jia X, Zhai T, Qu C, Ye J, Zhao J, Liu X, Zhang JA, Qian Q. Metformin Reverses Hashimoto's Thyroiditis by Regulating Key Immune Events. Front Cell Dev Biol 2021; 9:685522. [PMID: 34124070 PMCID: PMC8193849 DOI: 10.3389/fcell.2021.685522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background Hashimoto's thyroiditis (HT) is a common autoimmune disease characterized by high levels of thyroid peroxidase antibody (TPOAb) and thyroid globulin antibody (TgAb) as well as infiltration of lymphocytes in thyroid. In recent years, metformin has been proven to be effective in a variety of autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. Methods This study systematically explored the therapeutic effect of metformin on HT and its underlying mechanism by comprehensively utilizing methods including animal model, in vitro cell culture and differentiation, mRNA sequencing and 16S rRNA sequencing. Findings We found that metformin indeed had a therapeutic effect on mice with HT mainly by reducing TgAb and lymphocyte infiltration in thyroid tissue. In addition, metformin also significantly suppressed the number and function of Th17 cells and M1 macrophages polarization in HT mice. Furthermore, metformin can inhibit the differentiation and function of Th17 in vitro. The results of mRNA sequencing of thyroid tissue illustrated that the therapeutic effect of metformin on HT was mainly achieved by regulating immune pathways. 16S RNA sequencing of the intestinal flora found that the intestinal flora of HT mice differs significantly from that of the normal mice and also were altered by metformin treatment. Interpretation These experiments provided a preliminary theoretical basis for the clinical application of metformin in the treatment of HT.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Tianyu Zhai
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Chunjie Qu
- Shanghai Pudong New Area Center for Disease Control, Shanghai, China
| | - Jianjun Ye
- Shanghai Kangqiao Community Health Service Center, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xuerong Liu
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qiaohui Qian
- Department of Endocrinology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
35
|
Xiao S, Zhang G, Jiang C, Liu X, Wang X, Li Y, Cheng M, Lv H, Xian F, Guo X, Tan Y. Deciphering Gut Microbiota Dysbiosis and Corresponding Genetic and Metabolic Dysregulation in Psoriasis Patients Using Metagenomics Sequencing. Front Cell Infect Microbiol 2021; 11:605825. [PMID: 33869074 PMCID: PMC8047475 DOI: 10.3389/fcimb.2021.605825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Background Increasing evidence has shown that alterations in the intestinal microbiota play an important role in the pathogenesis of psoriasis. The existing relevant studies focus on 16S rRNA gene sequencing, but in-depth research on gene functions and comprehensive identification of microbiota is lacking. Objectives To comprehensively identify characteristic gut microbial compositions, genetic functions and relative metabolites of patients with psoriasis and to reveal the potential pathogenesis of psoriasis. Methods DNA was extracted from the faecal microbiota of 30 psoriatic patients and 15 healthy subjects, and metagenomics sequencing and bioinformatic analyses were performed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database, cluster of orthologous groups (COG) annotations, and metabolic analyses were used to indicate relative target genes and pathways to reveal the pathogenesis of psoriasis. Results Compared with healthy individuals, the gut microbiota of psoriasis patients displayed an alteration in microbial taxa distribution, but no significant difference in microbial diversity. A distinct gut microbial composition in patients with psoriasis was observed, with an increased abundance of the phyla Firmicutes, Actinobacteria and Verrucomicrobia and genera Faecalibacterium, Bacteroides, Bifidobacterium, Megamonas and Roseburia and a decreased abundance of the phyla Bacteroidetes, Euryarchaeota and Proteobacteria and genera Prevotella, Alistipes, and Eubacterium. A total of 134 COGs were predicted with functional analysis, and 15 KEGG pathways, including lipopolysaccharide (LPS) biosynthesis, WNT signaling, apoptosis, bacterial secretion system, and phosphotransferase system, were significantly enriched in psoriasis patients. Five metabolites, hydrogen sulfide (H2S), isovalerate, isobutyrate, hyaluronan and hemicellulose, were significantly dysregulated in the psoriatic cohort. The dysbiosis of gut microbiota, enriched pathways and dysregulated metabolites are relevant to immune and inflammatory response, apoptosis, the vascular endothelial growth factor (VEGF) signaling pathway, gut-brain axis and brain-skin axis that play important roles in the pathogenesis of psoriasis. Conclusions A clear dysbiosis was displayed in the gut microbiota profile, genetic functions and relative metabolites of psoriasis patients. This study is beneficial for further understanding the inflammatory pathogenesis of psoriasis and could be used to develop microbiome-based predictions and therapeutic approaches.
Collapse
Affiliation(s)
- Shiju Xiao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Graduate School, Capital Medical University, Beijing, China
| | - Guangzhong Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Chunyan Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xin Liu
- Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Xiaoxu Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Graduate School, Capital Medical University, Beijing, China
| | - Yafan Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Meijiao Cheng
- Beijing QuantiHealth Technology Co., Ltd, Beijing, China
| | - Hongpeng Lv
- Beijing University of Chinese Medicine, Beijing, China
| | - Fuyang Xian
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinwei Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Graduate School, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Colucci R, Moretti S. Implication of Human Bacterial Gut Microbiota on Immune-Mediated and Autoimmune Dermatological Diseases and Their Comorbidities: A Narrative Review. Dermatol Ther (Heidelb) 2021; 11:363-384. [PMID: 33507493 PMCID: PMC8018919 DOI: 10.1007/s13555-021-00485-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
During the last decade, the advent of modern sequencing methods (next generation techniques, NGS) has helped describe the composition of the human gut microbiome, enabling us to understand the main characteristics of a healthy gut microbiome and, conversely, the magnitude of its disease-related changes. This new knowledge has revealed that healthy gut microbiota allow the maintenance of several crucial physiological functions, such as the ability to regulate the innate and adaptive immune systems. Increasing evidence has pointed out a condition of dysbiosis in several autoimmune/immune mediated dermatological conditions and specific gut microbial signatures have also been reported to correlate with clinical and prognostic parameters of such diseases. Based on a literature search of relevant published articles, this review debates the current knowledge and the possible pathogenic implications of bacterial gut microbiota composition assessed through NGS techniques in systemic lupus erythematosus, atopic dermatitis, psoriasis, and alopecia areata. Evidence of a potential role of specific gut microbiota signatures in modulating the clinical course of such diseases and their main comorbidities has been also reviewed.
Collapse
Affiliation(s)
- Roberta Colucci
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy.
| | - Silvia Moretti
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
37
|
Avni D, Avni O. Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response. Front Cell Infect Microbiol 2021; 11:649480. [PMID: 33869080 PMCID: PMC8044974 DOI: 10.3389/fcimb.2021.649480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis (Bilharziasis), a neglected tropical disease that affects more than 240 million people around the world, is caused by infection with the helminth parasite Schistosoma. As part of their secretome, schistosomes release extracellular vesicles (EVs) that modulate the host immune response. The EV-harbored miRNAs upregulate the innate immune response of the M1 pathway and downregulate the differentiation toward the adaptive Th2 immunity. A schistosomal egg-derived miRNA increases the percentage of regulatory T cells. This schistosomal-inducible immunoediting process generates ultimately a parasitic friendly environment that is applied carefully as restrained Th2 response is crucial for the host survival and successful excretion of the eggs. Evidence indicates a selective targeting of schistosomal EVs, however, the underlying mechanisms are unclear yet. The effects of the schistosomes on the host immune system is in accordance with the hygiene hypothesis, attributing the dramatic increase in recent decades in allergy and other diseases associated with imbalanced immune response, to the reduced exposure to infectious agents that co-evolved with humans during evolution. Deciphering the bioactive cargo, function, and selective targeting of the parasite-secreted EVs may facilitate the development of novel tools for diagnostics and delivered therapy to schistosomiasis, as well as to immune-associated disorders.
Collapse
Affiliation(s)
- Dror Avni
- Laboratory of Molecular Cell Biology, Sheba Medical Center, Tel Hashomer, Israel.,Laboratory for the Study of Tropical Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - Orly Avni
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
38
|
Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression. Biomed Pharmacother 2021; 137:111065. [PMID: 33540138 DOI: 10.1016/j.biopha.2020.111065] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The occurrence, progression and recurrence of psoriasis are thought to be related to mood and psychological disorders such as depression. Psoriasis can lead to depression, and depression, in turn, exacerbates psoriasis. No specific mechanism can explain the association between psoriasis and depression. The gut-brain-skin axis has been used to explain correlations among the gut microbiota, emotional states and systemic and skin inflammation, and this axis may be associated with overlapping mechanisms between psoriasis and depression. Therefore, in the context of the gut-brain-skin axis, we systematically summarized and comparatively analysed the inflammatory and immune mechanisms of psoriasis and depression and illustrated the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and the gut microbiota. This review provides a theoretical basis and new targets for the treatment of psoriasis and depression.
Collapse
|
39
|
Ling Z, Cheng Y, Yan X, Shao L, Liu X, Zhou D, Zhang L, Yu K, Zhao L. Alterations of the Fecal Microbiota in Chinese Patients With Multiple Sclerosis. Front Immunol 2020; 11:590783. [PMID: 33391265 PMCID: PMC7772405 DOI: 10.3389/fimmu.2020.590783] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence indicates that alterations in the intestinal microbiota may be associated with neurological disorders such as multiple sclerosis (MS). MS is a putative autoimmune disease of the central nervous system. However, it has not been determined whether the intestinal microbiota and host immune status are altered in Chinese patients with stable MS. In our study, 22 Chinese patients with stable MS and 33 healthy controls were enrolled for fecal microbiota analysis and host immunity evaluation. The microbial diversity and composition, bacterial co-occurrence correlations, predictive functional profiles, and microbiota-cytokine correlations between the two groups were compared. We observed that while the overall structure of the fecal microbiota did not change significantly, the abundances of several key functional bacteria, primarily Faecalibacterium, decreased remarkably. Faecalibacterium and Granulicatella could be used to distinguish between patients with MS and healthy controls with an area under the curve of 0.832. PiCRUSt analysis revealed that genes associated with fructose, mannose, and fatty acid metabolism were significantly enriched in the MS microbiota. In addition, we also observed that the levels of several pro- and anti-inflammatory cytokines and chemokines, such as IL-1ra, IL-8, IL-17, and TNF-α changed observably, and the abundances of key functional bacteria like butyrate producers correlated with the changes in the cytokine levels. Our present study indicated that altered composition of the fecal microbiota might play vital roles in the etiopathogenesis of MS by regulating host immunity, which suggests that microbiota-targeting patient-tailored early intervention techniques might serve as novel therapeutic approaches for MS.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Li Shao
- Hangzhou Normal University, Hangzhou, China.,Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dajin Zhou
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Lijuan Zhang
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Kunqiang Yu
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| |
Collapse
|
40
|
Montgomery TL, Künstner A, Kennedy JJ, Fang Q, Asarian L, Culp-Hill R, D'Alessandro A, Teuscher C, Busch H, Krementsov DN. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc Natl Acad Sci U S A 2020; 117:27516-27527. [PMID: 33077601 PMCID: PMC7959502 DOI: 10.1073/pnas.2002817117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. The etiology of MS is multifactorial, with disease risk determined by genetics and environmental factors. An emerging risk factor for immune-mediated diseases is an imbalance in the gut microbiome. However, the identity of gut microbes associated with disease risk, their mechanisms of action, and the interactions with host genetics remain obscure. To address these questions, we utilized the principal autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), together with a genetically diverse mouse model representing 29 unique host genotypes, interrogated by microbiome sequencing and targeted microbiome manipulation. We identified specific gut bacteria and their metabolic functions associated with EAE susceptibility, implicating short-chain fatty acid metabolism as a key element conserved across multiple host genotypes. In parallel, we used a reductionist approach focused on two of the most disparate phenotypes identified in our screen. Manipulation of the gut microbiome by transplantation and cohousing demonstrated that transfer of these microbiomes into genetically identical hosts was sufficient to modulate EAE susceptibility and systemic metabolite profiles. Parallel bioinformatic approaches identified Lactobacillus reuteri as a commensal species unexpectedly associated with exacerbation of EAE in a genetically susceptible host, which was functionally confirmed by bacterial isolation and commensal colonization studies. These results reveal complex interactions between host genetics and gut microbiota modulating susceptibility to CNS autoimmunity, providing insights into microbiome-directed strategies aimed at lowering the risk for autoimmune disease and underscoring the need to consider host genetics and baseline gut microbiome composition.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Josephine J Kennedy
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401
| | - Qian Fang
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Lori Asarian
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045
| | - Cory Teuscher
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, VT 05401
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401;
| |
Collapse
|
41
|
Alvarez CA, Jones MB, Hambor J, Cobb BA. Characterization of Polysaccharide A Response Reveals Interferon Responsive Gene Signature and Immunomodulatory Marker Expression. Front Immunol 2020; 11:556813. [PMID: 33193325 PMCID: PMC7649347 DOI: 10.3389/fimmu.2020.556813] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Polysaccharide A (PSA), a capsular carbohydrate from the commensal gut bacteria Bacteroides fragilis, has been shown to possess both potent T cell-dependent pro- and anti-inflammatory properties. PSA is able to induce abscess and adhesion formation in sepsis models, but can also inhibit asthma, inflammatory bowel disease (IBD) and experimental autoimmune encephalomyelitis (EAE) through MHCII-dependent activation of CD4+ T cells. Yet, despite decades of study, the ability of PSA to balance both these pro- and anti-inflammatory responses remains poorly understood. Here, we utilized an unbiased systems immunology approach consisting of RNAseq transcriptomics, high-throughput flow cytometry, and Luminex analysis to characterize the full impact of PSA-mediated stimulation of CD4+ T cells. We found that exposure to PSA resulted in the upregulation and secretion of IFNγ, TNFα, IL-6, and CXCL10, consistent with an interferon responsive gene (IRG) signature. Importantly, PSA stimulation also led to expression of immune checkpoint markers Lag3, Tim3, and, especially, PD1, which were also enriched and sustained in the gut associated lymphoid tissue of PSA-exposed mice. Taken together, PSA responding cells display an unusual mixture of pro-inflammatory cytokines and anti-inflammatory surface receptors, consistent with the ability to both cause and inhibit inflammatory disease.
Collapse
Affiliation(s)
- Carlos A. Alvarez
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mark B. Jones
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - John Hambor
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, United States
| | - Brian A. Cobb
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
42
|
Cutolo M, Straub RH. Sex steroids and autoimmune rheumatic diseases: state of the art. Nat Rev Rheumatol 2020; 16:628-644. [PMID: 33009519 DOI: 10.1038/s41584-020-0503-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
In autoimmune rheumatic diseases, oestrogens can stimulate certain immune responses (including effects on B cells and innate immunity), but can also have dose-related anti-inflammatory effects on T cells, macrophages and other immune cells. By contrast, androgens and progesterone have predominantly immunosuppressive and anti-inflammatory effects. Hormone replacement therapies and oral contraception (and also pregnancy) enhance or decrease the severity of autoimmune rheumatic diseases at a genetic or epigenetic level. Serum androgen concentrations are often low in men and in women with autoimmune rheumatic diseases, suggesting that androgen-like compounds might be a promising therapeutic approach. However, androgen-to-oestrogen conversion (known as intracrinology) is enhanced in inflamed tissues, such as those present in patients with autoimmune rheumatic diseases. In addition, it is becoming evident that the gut microbiota differs between the sexes (known as the microgenderome) and leads to sex-dependent genetic and epigenetic changes in gastrointestinal inflammation, systemic immunity and, potentially, susceptibility to autoimmune or inflammatory rheumatic diseases. Future clinical research needs to focus on the therapeutic use of androgens and progestins or their downstream signalling cascades and on new oestrogenic compounds such as tissue-selective oestrogen complex to modulate altered immune responses.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Postgraduate School of Rheumatology, Department of Internal Medicine DIMI, University of Genova, IRCCS San Martino Polyclinic, Genoa, Italy.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Division of Rheumatology, Department of Internal Medicine, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
43
|
Abstract
Most patients with acute Lyme disease are cured with antibiotic intervention, but 10 to 20% endure debilitating symptoms such as fatigue, neurological complications, and myalgias after treatment, a condition known as posttreatment Lyme disease syndrome (PTLDS). The etiology of PTLDS is not understood, and objective diagnostic tools are lacking. PTLDS symptoms overlap several diseases in which patients exhibit alterations in their microbiome. We found that patients with PTLDS have a distinct microbiome signature, allowing for an accurate classification of over 80% of analyzed cases. The signature is characterized by an increase in Blautia, a decrease in Bacteroides, and other changes. Importantly, this signature supports the validity of PTLDS and is the first potential biological diagnostic tool for the disease. Lyme disease is the most common vector-borne disease in the United States, with an estimated incidence of 300,000 infections annually. Antibiotic intervention cures Lyme disease in the majority of cases; however, 10 to 20% of patients develop posttreatment Lyme disease syndrome (PTLDS), a debilitating condition characterized by chronic fatigue, pain, and cognitive difficulties. The underlying mechanism responsible for PTLDS symptoms, as well as a reliable diagnostic tool, has remained elusive. We reasoned that the gut microbiome may play an important role in PTLDS given that the symptoms overlap considerably with conditions in which a dysbiotic microbiome has been observed, including mood, cognition, and autoimmune disorders. Analysis of sequencing data from a rigorously curated cohort of patients with PTLDS revealed a gut microbiome signature distinct from that of healthy control subjects, as well as from that of intensive care unit (ICU) patients. Notably, microbiome sequencing data alone were indicative of PTLDS, which presents a potential, novel diagnostic tool for PTLDS.
Collapse
|
44
|
Carbone F, Bonaventura A, Liberale L, Paolino S, Torre F, Dallegri F, Montecucco F, Cutolo M. Atherosclerosis in Rheumatoid Arthritis: Promoters and Opponents. Clin Rev Allergy Immunol 2020; 58:1-14. [PMID: 30259381 DOI: 10.1007/s12016-018-8714-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Substantial epidemiological data identified cardiovascular (CV) diseases as a main cause of mortality in patients with rheumatoid arthritis (RA). In light of this, RA patients may benefit from additional CV risk screening and more intensive prevention strategies. Nevertheless, current algorithms for CV risk stratification still remain tailored on general population and are burdened by a significant underestimation of CV risk in RA patients. Acute CV events in patients with RA are largely related to an accelerated atherosclerosis. As pathophysiological features of atherosclerosis overlap those occurring in the inflamed RA synovium, the understanding of those common pathways represents an urgent need and a leading challenge for CV prevention in patients with RA. Genetic background, metabolic status, gut microbiome, and systemic inflammation have been also suggested as additional key pro-atherosclerotic factors. The aim of this narrative review is to update the current knowledge about pathophysiology of atherogenesis in RA patients and potential anti-atherosclerotic effects of disease-modifying anti-rheumatic drugs.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,Center for Molecular Cardiology, University of Zürich, 12 Wagistrasse, 8952, Schlieren, Switzerland
| | - Sabrina Paolino
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy
| | - Francesco Torre
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy.,Clinic of Emergency Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Maurizio Cutolo
- IRCCS Ospedale Policlinico San Martino Genoa, 10 Largo Benzi, 16132, Genoa, Italy. .,Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, San Martino Polyclinic Hospital, Genoa, Italy.
| |
Collapse
|
45
|
Farràs M, Martinez-Gili L, Portune K, Arranz S, Frost G, Tondo M, Blanco-Vaca F. Modulation of the Gut Microbiota by Olive Oil Phenolic Compounds: Implications for Lipid Metabolism, Immune System, and Obesity. Nutrients 2020; 12:nu12082200. [PMID: 32718098 PMCID: PMC7468985 DOI: 10.3390/nu12082200] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive information of the beneficial effects of virgin olive oil (VOO), especially on cardiovascular diseases. Some VOO healthy properties have been attributed to their phenolic-compounds (PCs). The aim of this review is to present updated data on the effects of olive oil (OO) PCs on the gut microbiota, lipid metabolism, immune system, and obesity, as well as on the crosstalk among them. We summarize experiments and clinical trials which assessed the specific effects of the olive oil phenolic-compounds (OOPCs) without the synergy with OO-fats. Several studies have demonstrated that OOPC consumption increases Bacteroidetes and/or reduces the Firmicutes/Bacteroidetes ratio, which have both been related to atheroprotection. OOPCs also increase certain beneficial bacteria and gut-bacteria diversity which can be therapeutic for lipid-immune disorders and obesity. Furthermore, some of the mechanisms implicated in the crosstalk between OOPCs and these disorders include antimicrobial-activity, cholesterol microbial metabolism, and metabolites produced by bacteria. Specifically, OOPCs modulate short-chain fatty-acids produced by gut-microbiota, which can affect cholesterol metabolism and the immune system, and may play a role in weight gain through promoting satiety. Since data in humans are scarce, there is a necessity for more clinical trials designed to assess the specific role of the OOPCs in this crosstalk.
Collapse
Affiliation(s)
- Marta Farràs
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain;
- Correspondence: ; Tel.: +34-935537595
| | - Laura Martinez-Gili
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, AstondoBidea, Edificio 609, 48160 Derio, Spain; (K.P.); (S.A.)
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, AstondoBidea, Edificio 609, 48160 Derio, Spain; (K.P.); (S.A.)
| | - Gary Frost
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain;
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain;
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
46
|
Bellastella G, Maiorino MI, Cirillo P, Longo M, Pernice V, Costantino A, Annunziata C, Bellastella A, Esposito K, De Bellis A. Remission of Pituitary Autoimmunity Induced by Gluten-Free Diet in Patients With Celiac Disease. J Clin Endocrinol Metab 2020; 105:5841167. [PMID: 32433771 DOI: 10.1210/clinem/dgz228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/20/2020] [Indexed: 01/18/2023]
Abstract
CONTEXT An improvement of some autoimmune diseases associated with celiac disease (CD) has been observed after a gluten-free diet (GFD). OBJECTIVE The aim of this longitudinal study was to evaluate the effect of a GFD on autoimmune pituitary impairment in patients with CD and potential/subclinical lymphocytic hypophysitis (LYH). DESIGN Five-year longitudinal observational study. SETTING Tertiary referral center for immunoendocrinology at the University of Campania "Luigi Vanvitelli". PATIENTS Ninety-three newly diagnosed LYH patients (high titer of antipituitary antibodies [APA] and normal or subclinically impaired pituitary function) were enrolled from 2000 to 2013 and grouped as follows: group 1, consisting of 43 patients with LYH + CD, and group 2, consisting of 50 patients with isolated LYH only. INTERVENTION A GFD was started in patients in group 1 after the diagnosis of CD. MAIN OUTCOME MEASURES APA titers and pituitary function were evaluated at the beginning of the study and then yearly for 5 years in both groups. Patients progressing to a clinically overt LYH were excluded from the follow-up. RESULTS Complete remission of LYH (disappearance of APA and recovery of pituitary function in patients with previous subclinical hypopituitarism) occurred in 15 patients in group 1 after a GFD (34%) and spontaneously in only 1 patient in group 2 (2%) (P < .001). Two patients in group 1 and 25 in group 2 progressed to a clinically overt hypopituitarism and dropped out from the study to receive an appropriate replacement therapy. The presence of CD was the only independent predictor of pituitary function recovery (hazard ratio [HR] 0.059, 95% confidence interval [CI] 0.01-0.54, P = .012). CONCLUSION In patients with LYH and CD, a GFD may be able to induce remission of subclinical LYH, or prevent the progression to clinical stage of this disease.
Collapse
Affiliation(s)
- Giuseppe Bellastella
- Unit of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Ida Maiorino
- Unit of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vlenia Pernice
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Costantino
- Unit of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmen Annunziata
- Unit of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Unit of Diabetes, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annamaria De Bellis
- Unit of Endocrinology and Metabolic Diseases, University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
47
|
Meng T, Zhang S, Wang D, Zhang H, Song Z, Li S, Chen M, Tang C. Association between antibiotic use and the risk of rheumatoid arthritis: A protocol for a systematic review. Medicine (Baltimore) 2020; 99:e19155. [PMID: 32118718 PMCID: PMC7478554 DOI: 10.1097/md.0000000000019155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The potential association between antibiotic use and the risk of rheumatoid arthritis (RA) has drawn significant attention from clinicians and researchers in recent years due to the wild usage of antibiotic. This study aimed to perform a systematic review and meta-analysis of the literature to determine if antibiotic use is associated with an increased risk of RA, so as to provide an important reference for clinical decision-making. METHODS Case-control and nest case-control studies of assessing whether antibiotic use is associated with the onset of RA will be identified in searches of 4 databases from their inception to August 2019. All data were assessed and extracted by 2 authors independently. The Newcastle-Ottawa scale was used to assess the quality of the selected studies. Manager Software 5.3 from Cochrane Collaboration (London, UK) and Stata 15.1 (Stata Corp, College Station, TX) will be used to conduct meta-analysis, determining pooled odds ratios and evaluating heterogeneity between studies. RESULT The results of this systemic review and meta-analysis will be submitted to a recognized journal for publication. CONCLUSION This systemic review and meta-analysis will determine if antibiotic use is associated with an increased risk of RA. We hope this study can make a definitive conclusion for the association.
Collapse
Affiliation(s)
- Tingting Meng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Shibin Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Shunde District Hospital of Chinese Medicine of Foshan City, Foshan, Guangdong
| | - Haijun Zhang
- Department of Orthopaedics, Gansu Second Provincial People's Hospital
| | - Zhongyang Song
- Clinical Medical College of Traditional Chinese Medicine, Gansu University of Chinese medicine, Lanzhou, Gansu
| | - Shengdong Li
- Department of Rheumatology, The Second Hospital of Yinzhou, Ninbo Zhejiang, China
| | - Min Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Chunzhi Tang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Han SH, Lee JS, Song KH, Choe YB, Ahn KJ, Lee YW. Differences in foot skin microbiomes between patients with type 2 diabetes and healthy individuals. Mycoses 2020; 63:314-322. [PMID: 31834952 DOI: 10.1111/myc.13046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022]
Abstract
Impaired immunity and changes in the microenvironment in patients with diabetes might influence the composition of the cutaneous microbiome. However, data on the cutaneous microbiome of these patients are scarce. This study compared the fungal and bacterial components of the skin microbiome between patients with type 2 diabetes mellitus (DM) and healthy individuals. We obtained skin swab samples from the plantar forefoot of 17 patients with DM and 18 healthy individuals to conduct a cross-sectional study. The samples were profiled with culture-independent sequencing of the V3 to V4 regions of the bacterial 16S rRNA gene and the fungal ITS2 region, followed by direct DNA extraction and molecular polymerase chain reaction (PCR). We observed a differential cutaneous microbiome, especially for fungi, in patients with type 2 diabetes compared to that in healthy controls. Trichophyton rubrum was more abundant in DM samples. The Shannon diversity index for fungi was lower in the DM patients. Principal coordinate analysis plots and permutational multivariate analysis of variance (PERMANOVA) tests based on Bray-Curtis distances between samples supported the association of the fungal microbiome with DM at the species level. The results suggest that clinicians should pay attention to both fungi and bacteria and provide appropriate prevention and therapeutic strategies for diabetic cutaneous complications including diabetic foot ulcers. These data also contribute to future research associated with diabetes and cutaneous microbiomes.
Collapse
Affiliation(s)
- Song Hee Han
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Ji Su Lee
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Kee-Ho Song
- Division of Endocrinology and Metabolism, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yong Beom Choe
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Kyu Joong Ahn
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Yang Won Lee
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea.,Research Institute of Medical Science, Konkuk University, Seoul, Korea
| |
Collapse
|
49
|
Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020; 19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.
Collapse
Affiliation(s)
- Judith Merrheim
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - José Villegas
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Jérôme Van Wassenhove
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rémi Khansa
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rozen le Panse
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Nadine Dragin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; Inovarion, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France.
| |
Collapse
|
50
|
Vojdani A, Gushgari LR, Vojdani E. Interaction between food antigens and the immune system: Association with autoimmune disorders. Autoimmun Rev 2020; 19:102459. [PMID: 31917265 DOI: 10.1016/j.autrev.2020.102459] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
It has been shown that environmental factors such as infections, chemicals, and diet play a major role in autoimmune diseases; however, relatively little attention has been given to food components as the most prevalent modifiers of these afflictions. This review summarizes the current body of knowledge related to different mechanisms and associations between food proteins/peptides and autoimmune disorders. The primary factor controlling food-related immune reactions is the oral tolerance mechanism. The failure of oral tolerance triggers immune reactivity against dietary antigens, which may initiate or exacerbate autoimmune disease when the food antigen shares homology with human tissue antigens. Because the conformational fit between food antigens and a host's self-determinants has been determined for only a few food proteins, we examined evidence related to the reaction of affinity-purified disease-specific antibody with different food antigens. We also studied the reaction of monoclonal or polyclonal tissue-specific antibodies with various food antigens and the reaction of food-specific antibodies with human tissue antigens. Examining the assembled information, we postulated that chemical modification of food proteins by different toxicants in food may result in immune reaction against modified food proteins that cross-react with tissue antigens, resulting in autoimmune reactivity. Because we are what our microbiome eats, food can change the gut commensals, and toxins can breach the gut barrier, penetrating into different organs where they can initiate autoimmune response. Conversely, there are also foods and supplements that help maintain oral tolerance and microbiome homeostasis. Understanding the potential link between specific food consumption and autoimmunity in humans may lay the foundation for further research about the proper diet in the prevention of autoimmune diseases.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., 822 S. Robertson Blvd, Ste. 312, Los Angeles, CA 90035, USA; Department of Preventive Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Lydia R Gushgari
- Cyrex Laboratories, LLC. 2602 South 24(th) St., Phoenix, AZ 85034, USA.
| | - Elroy Vojdani
- Regenera Medical, 11860 Wilshire Blvd., Ste. 301, Los Angeles, CA 90025, USA.
| |
Collapse
|