1
|
Branquinho J, Neves RL, Martin RP, Arata JG, Bittencourt CA, Araújo RC, Icimoto MY, Pesquero JB. Kinin B1 receptor deficiency promotes enhanced adipose tissue thermogenic response to β3-adrenergic stimulation. Inflamm Res 2024; 73:1565-1579. [PMID: 39017739 DOI: 10.1007/s00011-024-01917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE AND DESIGN Kinin B1 receptor (B1R) has a key role in adipocytes to protect against obesity and glycemic metabolism, thus becoming a potential target for regulation of energy metabolism and adipose tissue thermogenesis. MATERIAL OR SUBJECTS Kinin B1 knockout mice (B1KO) were subjected to acute induction with CL 316,243 and chronic cold exposure. METHODS Metabolic and histological analyses, gene and protein expression and RNA-seq were performed on interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of mice. RESULTS B1KO mice, under acute effect of CL 316,243, exhibited increased energy expenditure and upregulated thermogenic genes in iWAT. They were also protected from chronic cold, showing enhanced non-shivering thermogenesis with increased iBAT mass (~ 90%) and recruitment of beige adipocytes in iWAT (~ 50%). Positive modulation of thermogenic and electron transport chain genes, reaching a 14.5-fold increase for Ucp1 in iWAT. RNA-seq revealed activation of the insulin signaling pathways for iBAT and oxidative phosphorylation, tricarboxylic acid cycle, and browning pathways for iWAT. CONCLUSION B1R deficiency induced metabolic and gene expression alterations in adipose tissue, activating thermogenic pathways and increasing energy metabolism. B1R antagonists emerge as promising therapeutic targets for regulating obesity and associated metabolic disorders, such as inflammation and diabetes.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/drug effects
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Cold Temperature
- Dioxoles/pharmacology
- Energy Metabolism/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B1/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/metabolism
- Thermogenesis/drug effects
- Thiazoles/pharmacology
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
Collapse
Affiliation(s)
- Jéssica Branquinho
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Raquel L Neves
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Renan P Martin
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Júlia G Arata
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Clarissa A Bittencourt
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ronaldo C Araújo
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Y Icimoto
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - João B Pesquero
- Center for Research and Molecular Diagnostic of Genetic Diseases, Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Morocho-Jaramillo PA, Kotlar-Goldaper I, Zakarauskas-Seth BI, Purfürst B, Filosa A, Sawamiphak S. The zebrafish heart harbors a thermogenic beige fat depot analog of human epicardial adipose tissue. Cell Rep 2024; 43:113955. [PMID: 38507414 DOI: 10.1016/j.celrep.2024.113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Epicardial adipose tissue (eAT) is a metabolically active fat depot that has been associated with a wide array of cardiac homeostatic functions and cardiometabolic diseases. A full understanding of its diverse physiological and pathological roles is hindered by the dearth of animal models. Here, we show, in the heart of an ectothermic teleost, the zebrafish, the existence of a fat depot localized underneath the epicardium, originating from the epicardium and exhibiting the molecular signature of beige adipocytes. Moreover, a subset of adipocytes within this cardiac fat tissue exhibits primitive thermogenic potential. Transcriptomic profiling and cross-species analysis revealed elevated glycolytic and cardiac homeostatic gene expression with downregulated obesity and inflammatory hallmarks in the teleost eAT compared to that of lean aged humans. Our findings unveil epicardium-derived beige fat in the heart of an ectotherm considered to possess solely white adipocytes for energy storage and identify pathways that may underlie age-driven remodeling of human eAT.
Collapse
Affiliation(s)
- Paul-Andres Morocho-Jaramillo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ilan Kotlar-Goldaper
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Bhakti I Zakarauskas-Seth
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Bettina Purfürst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Suphansa Sawamiphak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
3
|
Syddall KL, Fernandez-Martell A, Cartwright JF, Alexandru-Crivac CN, Hodgson A, Racher AJ, Young RJ, James DC. Directed evolution of biomass intensive CHO cells by adaptation to sub-physiological temperature. Metab Eng 2024; 81:53-69. [PMID: 38007176 DOI: 10.1016/j.ymben.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
We report a simple and effective means to increase the biosynthetic capacity of host CHO cells. Lonza proprietary CHOK1SV® cells were evolved by serial sub-culture for over 150 generations at 32 °C. During this period the specific proliferation rate of hypothermic cells gradually recovered to become comparable to that of cells routinely maintained at 37 °C. Cold-adapted cell populations exhibited (1) a significantly increased volume and biomass content (exemplified by total RNA and protein), (2) increased mitochondrial function, (3) an increased antioxidant capacity, (4) altered central metabolism, (5) increased transient and stable productivity of a model IgG4 monoclonal antibody and Fc-fusion protein, and (6) unaffected recombinant protein N-glycan processing. This phenotypic transformation was associated with significant genome-scale changes in both karyotype and the relative abundance of thousands of cellular mRNAs across numerous functional groups. Taken together, these observations provide evidence of coordinated cellular adaptations to sub-physiological temperature. These data reveal the extreme genomic/functional plasticity of CHO cells, and that directed evolution is a viable genome-scale cell engineering strategy that can be exploited to create host cells with an increased cellular capacity for recombinant protein production.
Collapse
Affiliation(s)
- Katie L Syddall
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Alejandro Fernandez-Martell
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Joseph F Cartwright
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Cristina N Alexandru-Crivac
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Adam Hodgson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK.
| |
Collapse
|
4
|
Gagnon CM, Svardal H, Jasinska AJ, Danzy Cramer J, Freimer NB, Paul Grobler J, Turner TR, Schmitt CA. Evidence of selection in the uncoupling protein 1 gene region suggests local adaptation to solar irradiance in savannah monkeys ( Chlorocebus spp.). Proc Biol Sci 2022; 289:20221254. [PMID: 36100027 PMCID: PMC9470266 DOI: 10.1098/rspb.2022.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
In the last 300 thousand years, the genus Chlorocebus expanded from equatorial Africa into the southernmost latitudes of the continent, where colder climate was a probable driver of natural selection. We investigated population-level genetic variation in the mitochondrial uncoupling protein 1 (UCP1) gene region-implicated in non-shivering thermogenesis (NST)-in 73 wild savannah monkeys from three taxa representing this southern expansion (Chlorocebus pygerythrus hilgerti, Chlorocebus cynosuros and Chlorocebus pygerythrus pygerythrus) ranging from Kenya to South Africa. We found 17 single nucleotide polymorphisms with extended haplotype homozygosity consistent with positive selective sweeps, 10 of which show no significant linkage disequilibrium with each other. Phylogenetic generalized least-squares modelling with ecological covariates suggest that most derived allele frequencies are significantly associated with solar irradiance and winter precipitation, rather than overall low temperatures. This selection and association with irradiance is demonstrated by a relatively isolated population in the southern coastal belt of South Africa. We suggest that sunbathing behaviours common to savannah monkeys, in combination with the strength of solar irradiance, may mediate adaptations to thermal stress via NST among savannah monkeys. The variants we discovered all lie in non-coding regions, some with previously documented regulatory functions, calling for further validation and research.
Collapse
Affiliation(s)
| | - Hannes Svardal
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Nelson B. Freimer
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
| | - J. Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, Free State 9301, South Africa
| | - Trudy R. Turner
- Department of Genetics, University of the Free State, Bloemfontein, Free State 9301, South Africa
- Department of Anthropology, University of Wisconsin, Milwaukee, Milwaukee, WI, 53201, USA
| | - Christopher A. Schmitt
- Department of Anthropology, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
5
|
Jacobs HT, Ballard JWO. What physiological role(s) does the alternative oxidase perform in animals? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148556. [PMID: 35367450 DOI: 10.1016/j.bbabio.2022.148556] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Although the alternative oxidase, AOX, was known to be widespread in the animal kingdom by 2004, its exact physiological role in animals remains poorly understood. Here we present what evidence has accumulated thus far, indicating that it may play a role in enabling animals to resist various kinds of stress, including toxins, abnormal oxygen or nutrient levels, protein unfolding, dessication and pathogen attack. Much of our knowledge comes from studies in model organisms, where any benefits from exogenously expressed AOX may be masked by its unregulated expression, which may itself be stressful. The further question arises as to why AOX has been lost from some major crown groups, namely vertebrates, insects and cephalopods, if it plays important roles favouring the survival of other animals. We conclude by presenting some speculative ideas addressing this question, and an outline of how it might be approached experimentally.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - J William O Ballard
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Aboouf MA, Armbruster J, Thiersch M, Gassmann M, Gödecke A, Gnaiger E, Kristiansen G, Bicker A, Hankeln T, Zhu H, Gorr TA. Myoglobin, expressed in brown adipose tissue of mice, regulates the content and activity of mitochondria and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159026. [PMID: 34384891 DOI: 10.1016/j.bbalip.2021.159026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
The identification of novel physiological regulators that stimulate energy expenditure through brown adipose tissue (BAT) activity in substrate catalysis is of utmost importance to understand and treat metabolic diseases. Myoglobin (MB), known to store or transport oxygen in heart and skeletal muscles, has recently been found to bind fatty acids with physiological constants in its oxygenated form (i.e., MBO2). Here, we investigated the in vivo effect of MB expression on BAT activity. In particular, we studied mitochondrial function and lipid metabolism as essential determinants of energy expenditure in this tissue. We show in a MB-null (MBko) mouse model that MB expression in BAT impacts on the activity of brown adipocytes in a twofold manner: i) by elevating mitochondrial density plus maximal respiration capacity, and through that, by stimulating BAT oxidative metabolism along with the organelles` uncoupled respiration; and ii) by influencing the free fatty acids pool towards a palmitate-enriched composition and shifting the lipid droplet (LD) equilibrium towards higher counts of smaller droplets. These metabolic changes were accompanied by the up-regulated expression of thermogenesis markers UCP1, CIDEA, CIDEC, PGC1-α and PPAR-α in the BAT of MB wildtype (MBwt) mice. Along with the emergence of the "browning" BAT morphology, MBwt mice exhibited a leaner phenotype when compared to MBko littermates at 20 weeks of age. Our data shed novel insights into MB's role in linking oxygen and lipid-based thermogenic metabolism. The findings suggest potential new strategies of targeting the MB pathway to treat metabolic disorders related to diminishing energy expenditure.
Collapse
Affiliation(s)
- Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Molecular and Translational Biomedicine PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Julia Armbruster
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Molecular and Translational Biomedicine PhD Program, Life Science Zurich Graduate School, 8057 Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Axel Gödecke
- Institute of Cardiovascular Physiology (A.G.), Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Erich Gnaiger
- Department of Visceral, Transplant and Thoracic Surgery, D. Swarovski Research Laboratory, Medical University Innsbruck, Innrain 66/6, A-6020 Innsbruck, Austria
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, University of Bonn, D-53127 Bonn, Germany
| | - Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D-55099 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D-55099 Mainz, Germany
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Thomas A Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
7
|
Brandão BB, Poojari A, Rabiee A. Thermogenic Fat: Development, Physiological Function, and Therapeutic Potential. Int J Mol Sci 2021; 22:5906. [PMID: 34072788 PMCID: PMC8198523 DOI: 10.3390/ijms22115906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.
Collapse
Affiliation(s)
- Bruna B. Brandão
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Ankita Poojari
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Atefeh Rabiee
- Department of Physiology & Pharmacology, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
8
|
Ouchi Y, Chowdhury VS, Cockrem JF, Bungo T. Av-UCP single nucleotide polymorphism affects heat production during cold exposure in chicks. J Therm Biol 2021; 98:102909. [PMID: 34016336 DOI: 10.1016/j.jtherbio.2021.102909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Uncoupling protein one (UCP1) is involved in thermogenesis, especially in non-shivering heat production. In chickens, a single nucleotide polymorphism (SNP) of the av-UCP (avian UCP) gene has been reported to be associated with body weight gain and increased abdominal fat. The purpose of this study was to examine the relationship between the av-UCP gene SNP and heat production in chicks. METHODS C/C and T/T male chicks (Rhode Island Red) of av-UCP gene SNP (g. 1270, C > T) were exposed to a low temperature environment (16 °C for 15 min) and their physiological responses were compared. RESULTS After cold exposure, mean rectal temperatures of C/C chicks were higher than those of T/T chicks. In pectoral muscle, genes expression of av-UCP and carnitine palmitoyltransferase-1 were higher in C/C chicks than T/T chicks. Hypothalamic expression levels of thyrotropin-releasing hormone and proopiomelanocortin genes were higher in C/C chicks than T/T chicks. Expression of hypothalamic corticotropin-releasing hormone, arginine vasotocin, brain-derived neurotrophic factor and neuropeptide Y genes did not differ between C/C and T/T chicks. In addition, plasma free fatty acid levels in C/C chicks were lower than those of T/T chicks. CONCLUSION These results suggest that the av-UCP gene SNP affects non-shivering heat production via the hypothalamo-pituitary-thyroid axis and fatty acid metabolism in the chicken.
Collapse
Affiliation(s)
- Yoshimitsu Ouchi
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Vishwajit S Chowdhury
- Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - John F Cockrem
- School of Veterinary Science, Massey University, Palmerston North, 4442, New Zealand
| | - Takashi Bungo
- Laboratory of Animal Behavior and Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
9
|
Heyde I, Begemann K, Oster H. Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism. Endocrinology 2021; 162:6102571. [PMID: 33453099 PMCID: PMC7864004 DOI: 10.1210/endocr/bqab009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/17/2022]
Abstract
The term energy metabolism comprises the entirety of chemical processes associated with uptake, conversion, storage, and breakdown of nutrients. All these must be tightly regulated in time and space to ensure metabolic homeostasis in an environment characterized by cycles such as the succession of day and night. Most organisms evolved endogenous circadian clocks to achieve this goal. In mammals, a ubiquitous network of cellular clocks is coordinated by a pacemaker residing in the hypothalamic suprachiasmatic nucleus. Adipocytes harbor their own circadian clocks, and large aspects of adipose physiology are regulated in a circadian manner through transcriptional regulation of clock-controlled genes. White adipose tissue (WAT) stores energy in the form of triglycerides at times of high energy levels that then serve as fuel in times of need. It also functions as an endocrine organ, releasing factors in a circadian manner to regulate food intake and energy turnover in other tissues. Brown adipose tissue (BAT) produces heat through nonshivering thermogenesis, a process also controlled by the circadian clock. We here review how WAT and BAT contribute to the circadian regulation of energy metabolism. We describe how adipose rhythms are regulated by the interplay of systemic signals and local clocks and summarize how adipose-originating circadian factors feed-back on metabolic homeostasis. The role of adipose tissue in the circadian control of metabolism becomes increasingly clear as circadian disruption leads to alterations in adipose tissue regulation, promoting obesity and its sequelae. Stabilizing adipose tissue rhythms, in turn, may help to combat disrupted energy homeostasis and obesity.
Collapse
Affiliation(s)
- Isabel Heyde
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
- Correspondence: Henrik Oster, PhD, Institute of Neurobiology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|
10
|
Thermogenic adipocytes: lineage, function and therapeutic potential. Biochem J 2020; 477:2071-2093. [PMID: 32539124 PMCID: PMC7293110 DOI: 10.1042/bcj20200298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Metabolic inflexibility, defined as the inability to respond or adapt to metabolic demand, is now recognised as a driving factor behind many pathologies associated with obesity and the metabolic syndrome. Adipose tissue plays a pivotal role in the ability of an organism to sense, adapt to and counteract environmental changes. It provides a buffer in times of nutrient excess, a fuel reserve during starvation and the ability to resist cold-stress through non-shivering thermogenesis. Recent advances in single-cell RNA sequencing combined with lineage tracing, transcriptomic and proteomic analyses have identified novel adipocyte progenitors that give rise to specialised adipocytes with diverse functions, some of which have the potential to be exploited therapeutically. This review will highlight the common and distinct functions of well-known adipocyte populations with respect to their lineage and plasticity, as well as introducing the most recent members of the adipocyte family and their roles in whole organism energy homeostasis. Finally, this article will outline some of the more preliminary findings from large data sets generated by single-cell transcriptomics of mouse and human adipose tissue and their implications for the field, both for discovery and for therapy.
Collapse
|
11
|
Patel BV, Yao F, Howenstine A, Takenaka R, Hyatt JA, Sears KE, Shewchuk BM. Emergent Coordination of the CHKB and CPT1B Genes in Eutherian Mammals: Implications for the Origin of Brown Adipose Tissue. J Mol Biol 2020; 432:6127-6145. [PMID: 33058877 DOI: 10.1016/j.jmb.2020.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
Abstract
Mitochondrial fatty acid oxidation (FAO) contributes to the proton motive force that drives ATP synthesis in many mammalian tissues. In eutherian (placental) mammals, brown adipose tissue (BAT) can also dissipate this proton gradient through uncoupling protein 1 (UCP1) to generate heat, but the evolutionary events underlying the emergence of BAT are unknown. An essential step in FAO is the transport of cytoplasmic long chain acyl-coenzyme A (acyl-CoA) into the mitochondrial matrix, which requires the action of carnitine palmitoyltransferase 1B (CPT1B) in striated muscle and BAT. In eutherians, the CPT1B gene is closely linked to the choline kinase beta (CHKB) gene, which is transcribed from the same DNA strand and terminates just upstream of CPT1B. CHKB is a rate-limiting enzyme in the synthesis of phosphatidylcholine (PC), a predominant mitochondrial membrane phospholipid, suggesting that the coordinated expression of CHKB and CPT1B may cooperatively enhance mitochondrial FAO. The present findings show that transcription of the eutherian CHKB and CPT1B genes is linked within a unitary epigenetic domain targeted to the CHKB gene, and that that this regulatory linkage appears to have resulted from an intergenic deletion in eutherians that significantly altered the distribution of CHKB and CPT1B expression. Informed by the timing of this event relative to the emergence of BAT, the phylogeny of CHKB-CPT1B synteny, and the insufficiency of UCP1 to account for eutherian BAT, these data support a mechanism for the emergence of BAT based on the acquisition of a novel capacity for adipocyte FAO in a background of extant UCP1.
Collapse
Affiliation(s)
- Bhavin V Patel
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Fanrong Yao
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Aidan Howenstine
- Department of Ecology & Evolutionary Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Risa Takenaka
- Department of Ecology & Evolutionary Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Jacob A Hyatt
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Karen E Sears
- Department of Ecology & Evolutionary Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Brian M Shewchuk
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
12
|
Miller CN, Dye JA, Henriquez AR, Stewart EJ, Lavrich KS, Carswell GK, Ren H, Freeborn DL, Snow SJ, Schladweiler MC, Richards JH, Kodavanti PRS, Fisher A, Chorley BN, Kodavanti UP. Ozone-induced fetal growth restriction in rats is associated with sexually dimorphic placental and fetal metabolic adaptation. Mol Metab 2020; 42:101094. [PMID: 33031959 PMCID: PMC7588867 DOI: 10.1016/j.molmet.2020.101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Objective The importance of the placenta in mediating the pre- and post-natal consequences of fetal growth restriction has been increasingly recognized. However, the influence of placental sexual dimorphism on driving these outcomes has received little attention. The purpose of this study was to characterize how sex contributes to the relationship between placental metabolism and fetal programming utilizing a novel rodent model of growth restriction. Methods Fetal growth restriction was induced by maternal inhalation of 0.8 ppm ozone (4 h/day) during implantation receptivity (gestation days [GDs] 5 and 6) in Long-Evans rats. Control rats were exposed to filtered air. At GD 21, placental and fetal tissues were obtained for metabolic and genomic assessments. Results Growth-restricted male placentae exhibited increased mitochondrial biogenesis, increased oxygen consumption, and reduced nutrient storage. Male growth-restricted fetuses also had evidence of reduced adiposity and downregulation of hepatic metabolic signaling. In contrast, placentae from growth-restricted females had elevated markers of autophagy accompanied by an observed protection against hepatic metabolic perturbations. Despite this, growth restriction in females induced a greater number of hypothalamic gene and pathway alterations compared to growth-restricted males. Conclusions Increases in mitochondrial metabolism in growth-restricted male placentae likely initiates a sequela of adaptations that promote poor nutrient availability and adiposity. Divergently, the female placenta expresses protective mechanisms that may serve to increase nutrient availability to support fetal metabolic development. Collectively, this work emphasizes the importance of sex in mediating alterations in placental metabolism and fetal programming. Peri-implantation exposure to the gaseous air pollutant ozone impairs fetal growth. Ozone-induced, growth-restricted male placentae have increased mitochondrial biogenesis and oxidative consumption. Female growth-restricted placentae show increased inflammatory and autophagy-like responses. Placental metabolic adaptations to growth restriction were associated with sexually dimorphic perturbations in fetal tissues.
Collapse
Affiliation(s)
- Colette N Miller
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA; Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA.
| | - Janice A Dye
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education Research Participation Program, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Katelyn S Lavrich
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Dr., Keystone Building, Durham, NC, 27713, USA
| | - Gleta K Carswell
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Hongzu Ren
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Danielle L Freeborn
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Judy H Richards
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Prasada R S Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Anna Fisher
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Brian N Chorley
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Dr., Mail Code: B105-02, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
13
|
Neofunctionalization of the UCP1 mediated the non-shivering thermogenesis in the evolution of small-sized placental mammals. Genomics 2020; 112:2489-2498. [PMID: 32027956 DOI: 10.1016/j.ygeno.2020.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/25/2022]
Abstract
The acquisition of UCP1-mediated non-shivering thermogenesis (NST) was an important event during the evolution of mammals. Here, we assessed the thermogenic neofunctionalization that occurred in the mammalian UCP1, by performing detailed comparative evolutionary genomics analyses (including phylogenetic and selection analyses) of the UCP family members across all major vertebrate classes. Heterogeneously distributed positive selection signatures were found in several UCPs, being preferably located in the mitochondrial matrix domains. Additionally, comparisons with non-mammalian orthologs showed increased evolutionary rates of the mammalian UCP1, not observable in the phylogenetically related UCP2 and UCP3 paralogs. Also, parallel signatures of episodic positive selection (ω > 1) were found in the ancestral branches of both Glires (rodents and lagomorphs) and Afroinsectivores (afrosoricids and macroscelids), underlining the importance of the UCP1 thermogenic activity in these mammalian groups. Finally, we hypothesize that the independent positive selection events that occurred in these two lineages resulted in two UCP1-mediated NST approaches, namely the cold acute response in the Glires and the reproduction success enhancement in the Afroinsectivores.
Collapse
|
14
|
Jastroch M, Seebacher F. Importance of adipocyte browning in the evolution of endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190134. [PMID: 31928187 DOI: 10.1098/rstb.2019.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothermy changes the relationship between organisms and their environment fundamentally, and it is therefore of major ecological and evolutionary significance. Endothermy is characterized by non-shivering thermogenesis, that is metabolic heat production in the absence of muscular activity. In many eutherian mammals, brown adipose tissue (BAT) is an evolutionary innovation that facilitates non-shivering heat production in mitochondria by uncoupling food-derived substrate oxidation from chemical energy (ATP) production. Consequently, energy turnover is accelerated resulting in increased heat release. The defining characteristics of BAT are high contents of mitochondria and vascularization, and the presence of uncoupling protein 1. Recent insights, however, reveal that a range of stimuli such as exercise, diet and the immune system can cause the browning of white adipocytes, thereby increasing energy expenditure and heat production even in the absence of BAT. Here, we review the molecular mechanisms that cause browning of white adipose tissue, and their potential contribution to thermoregulation. The significance for palaeophysiology lies in the presence of adipose tissue and the mechanisms that cause its browning and uncoupling in all amniotes. Hence, adipocytes may have played a role in the evolution of endothermy beyond the more specific evolution of BAT in eutherians. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Legendre LJ, Davesne D. The evolution of mechanisms involved in vertebrate endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190136. [PMID: 31928191 DOI: 10.1098/rstb.2019.0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endothermy, i.e. the endogenous production of metabolic heat, has evolved multiple times among vertebrates, and several strategies of heat production have been studied extensively by physiologists over the course of the twentieth century. The independent acquisition of endothermy by mammals and birds has been the subject of many hypotheses regarding their origin and associated evolutionary constraints. Many groups of vertebrates, however, are thought to possess other mechanisms of heat production, and alternative ways to regulate thermogenesis that are not always considered in the palaeontological literature. Here, we perform a review of the mechanisms involved in heat production, with a focus on cellular and molecular mechanisms, in a phylogenetic context encompassing the entire vertebrate diversity. We show that endothermy in mammals and birds is not as well defined as commonly assumed by evolutionary biologists and consists of a vast array of physiological strategies, many of which are currently unknown. We also describe strategies found in other vertebrates, which may not always be considered endothermy, but nonetheless correspond to a process of active thermogenesis. We conclude that endothermy is a highly plastic character in vertebrates and provides a guideline on terminology and occurrences of the different types of heat production in vertebrate evolution. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Lucas J Legendre
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Bal NC, Periasamy M. Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190135. [PMID: 31928193 DOI: 10.1098/rstb.2019.0135] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thermogenesis in endotherms relies on both shivering and non-shivering thermogenesis (NST). The role of brown adipose tissue (BAT) in NST is well recognized, but the role of muscle-based NST has been contested. However, recent studies have provided substantial evidence for the importance of muscle-based NST in mammals. This review focuses primarily on the role of sarcoplasmic reticulum (SR) Ca2+-cycling in muscle NST; specifically, it will discuss recent data showing how uncoupling of sarcoendoplasmic reticulum calcium ATPase (SERCA) (inhibition of Ca2+ transport but not ATP hydrolysis) by sarcolipin (SLN) results in futile SERCA pump activity, increased ATP hydrolysis and heat production contributing to muscle NST. It will also critically examine how activation of muscle NST can be an important factor in regulating metabolic rate and whole-body energy homeostasis. In this regard, SLN has emerged as a powerful signalling molecule to promote mitochondrial biogenesis and oxidative metabolism in muscle. Furthermore, we will discuss the functional interplay between BAT and muscle, especially with respect to how reduced BAT function in mammals could be compensated by muscle-based NST. Based on the existing data, we argue that SLN-mediated thermogenesis is an integral part of muscle NST and that muscle NST potentially contributed to the evolution of endothermy within the vertebrate clade. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Naresh C Bal
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751021, India
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
17
|
The emerging roles of lactate as a redox substrate and signaling molecule in adipose tissues. J Physiol Biochem 2020; 76:241-250. [PMID: 31898016 DOI: 10.1007/s13105-019-00723-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Thermogenic (brown and beige) adipose tissues improve glucose and lipid homeostasis and therefore represent putative targets to cure obesity and related metabolic diseases including type II diabetes. Beside decades of research and the very well-described role of noradrenergic signaling, mechanisms underlying adipocytes plasticity and activation of thermogenic adipose tissues remain incompletely understood. Recent studies show that metabolites such as lactate control the oxidative capacity of thermogenic adipose tissues. Long time viewed as a metabolic waste product, lactate is now considered as an important metabolic substrate largely feeding the oxidative metabolism of many tissues, acting as a signaling molecule and as an inter-cellular and inter-tissular redox carrier. In this review, we provide an overview of the recent findings highlighting the importance of lactate in adipose tissues, from its production to its role as a browning inducer and its metabolic links with brown adipose tissue. We also discuss additional function(s) than thermogenesis ensured by brown and beige adipose tissues, i.e., their ability to dissipate high redox pressure and oxidative stress thanks to the activity of the uncoupling protein-1, helping to maintain tissue and whole organism redox homeostasis and integrity.
Collapse
|
18
|
Abstract
Understanding the mammalian energy balance can pave the way for future therapeutics that enhance energy expenditure as an anti-obesity and anti-diabetic strategy. Several studies showed that brown adipose tissue activity increases daily energy expenditure. However, the size and activity of brown adipose tissue is reduced in individuals with obesity and type two diabetes. Humans have an abundance of functionally similar beige adipocytes that have the potential to contribute to increased energy expenditure. This makes beige adipocytes a promising target for metabolic disease therapies. While brown adipocytes tend to be stable, beige adipocytes have a high level of plasticity that allows for the rapid and dynamic induction of thermogenesis by external stimuli such as low environmental temperatures. This means that after browning stimuli have been withdrawn beige adipocytes quickly transition back to their white adipose state. The detailed molecular mechanisms regulating beige adipocytes development, function, and reversibility are not fully understood. The goal of this review is to give a comprehensive overview of beige fat development and origins, along with the transcriptional and epigenetic programs that lead to beige fat formation, and subsequent thermogenesis in humans. An improved understanding of the molecular pathways of beige adipocyte plasticity will enable us to selectively manipulate beige cells to induce and maintain their thermogenic output thus improving the whole-body energy homeostasis.
Collapse
|
19
|
Elemans LM, Cervera IP, Riley SE, Wafer R, Fong R, Tandon P, Minchin JE. Quantitative analyses of adiposity dynamics in zebrafish. Adipocyte 2019; 8:330-338. [PMID: 31411107 PMCID: PMC6768273 DOI: 10.1080/21623945.2019.1648175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adipose tissues often exhibit subtle, quantitative differences between individuals, leading to a graded series of adiposity phenotypes at the population level. Robust, quantitative analyses are vital for studying these differences. In this Commentary we highlight two articles from our lab that employ sensitive new methods in zebrafish capable of delineating complex and quantitative adiposity phenotypes. In the first article, we utilized in vivo imaging to systematically quantify zebrafish adipose tissues. We identified 34 regionally distinct zebrafish adipose tissues and developed statistical models to predict the size and variance of each adipose tissue over the course of zebrafish growth. We then employed these models to identify effects of strain and diet on adipose tissue growth. In the second article, we employed deep phenotyping to study complex disease-related adiposity traits. Using this methodology, we identified that adipose tissues have unique capacities to re-deposit lipid following food restriction and re-feeding. These distinct re-deposition potentials led to widespread fat distribution changes following re-feeding. We discuss how these novel findings may provide relevance to health conditions such as anorexia nervosa. Together, the strategies described in these two articles can be used as unbiased and quantitative methods to uncover new relationships between genotype, diet and adiposity.
Collapse
Affiliation(s)
- Loes M.H. Elemans
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Susanna E. Riley
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rebecca Wafer
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Rosalyn Fong
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Panna Tandon
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - James E.N. Minchin
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
20
|
Lu H, Wang N, Li X, Huang Y, Wang J, Zhao Q. Identification of New Potent Human Uncoupling Protein 1 (UCP1) Agonists Using Virtual Screening and
in vitro
Approaches. Mol Inform 2019; 38:e1900030. [PMID: 31264791 DOI: 10.1002/minf.201900030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hong‐Yuan Lu
- Department of Life Science and BiochemistryShenyang Pharmaceutical University Shenyang 110016 China
- Department of PharmacyGeneral Hospital of Northern Theater Command Shenyang 110840 China
| | - Nan Wang
- Department of Life Science and BiochemistryShenyang Pharmaceutical University Shenyang 110016 China
| | - Xiang Li
- Department of Life Science and BiochemistryShenyang Pharmaceutical University Shenyang 110016 China
| | - Yuan Huang
- Department of Life Science and BiochemistryShenyang Pharmaceutical University Shenyang 110016 China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of EducationShenyang Pharmaceutical University Shenyang 110016 China
| | - Qing‐Chun Zhao
- Department of Life Science and BiochemistryShenyang Pharmaceutical University Shenyang 110016 China
- Department of PharmacyGeneral Hospital of Northern Theater Command Shenyang 110840 China
| |
Collapse
|
21
|
Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals. J Mol Evol 2018; 86:618-634. [PMID: 30327830 DOI: 10.1007/s00239-018-9870-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023]
Abstract
Low oxygen and fluctuant ambient temperature pose serious challenges to mammalian survival. Physiological adaptations in mammals to hypoxia and low temperatures have been intensively investigated, yet their underlying molecular mechanisms need further exploration. Independent invasions of high-altitude plateaus, subterranean burrows and marine environments by different mammals provide opportunities to conduct such analyses. Here, we focused on six genes in the hypoxia inducible factor (HIF) pathway and two non-shivering thermogenesis (NST)-related genes [PPAR co-activator 1 (PGC-1) and uncoupling protein 1 (UCP1)] in representative species of pikas and other mammals to understand whether these loci were targeted by natural selection during independent invasions to conditions characterized by hypoxia and temperature fluctuations by high-altitude, subterranean and marine mammals. Our analyses revealed pervasive positive selection signals in the HIF pathway genes of mammals occupying high-altitude, subterranean and aquatic ecosystems; however, the mechanisms underlying their independent adaptations to hypoxic environments varied by taxa, since different genes were positively selected in each taxon and expression levels of individual genes varied among species. Additionally, parallel amino acid substitutions were also detected in hypoxia-tolerant mammals, indicating that convergent evolution may play a role in their independent adaptations to hypoxic environments. However, divergent evolutionary histories of NST-related genes were noted, since significant evidence of positive selection was observed in PGC-1 and UCP1 in high-altitude species and subterranean rodents; however, UCP1 may have already lost its function in diving cetaceans, which may be related to the thick blubber layer of adipose and connective tissue in these mammals.
Collapse
|
22
|
Jing Y, Niu Y, Liu C, Zen K, Li D. In silico identification of lipid-binding α helices of uncoupling protein 1. Biomed Rep 2018; 9:313-317. [PMID: 30233783 PMCID: PMC6142039 DOI: 10.3892/br.2018.1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022] Open
Abstract
Uncoupling protein 1 (UCP1) located at the mitochondrial inner membrane serves an important role in adaptive non-shivering thermogenesis. Previous data has demonstrated that membrane lipids regulate the biological functions of membrane proteins. However, how mitochondrial lipids interact with UCP1 still remains elusive. In this study, the interactions between UCP1 and membrane lipids were investigated, using bioinformatic approaches due to the limitations associated with experimental techniques. A total of 8 UCP1 peptide regions with α-helices were identified and related to functional sites of UCP1. These were all novel peptide sequences compared with the known protein-lipid interactions. Among several types of UCP1-binding molecules, cardiolipin appeared to serve as a key interacting molecule of the 8 lipid-binding α-helix regions of UCP1. Two cardiolipin-binding lysines (K175 and K269) of UCP1 may be crucial for this UCP1-cardiolipin recognition and UCP1 function. The present findings provide novel insight into the associations of UCP1 with lipids and the potential drug targets in UCP1-associated diseases.
Collapse
Affiliation(s)
- Ying Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Yahan Niu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Chang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
23
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
24
|
Lin J, Cao C, Tao C, Ye R, Dong M, Zheng Q, Wang C, Jiang X, Qin G, Yan C, Li K, Speakman JR, Wang Y, Jin W, Zhao J. Cold adaptation in pigs depends on UCP3 in beige adipocytes. J Mol Cell Biol 2018; 9:364-375. [PMID: 28486585 DOI: 10.1093/jmcb/mjx018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/07/2017] [Indexed: 12/27/2022] Open
Abstract
Pigs lack functional uncoupling protein 1 (UCP1) making them susceptible to cold. Nevertheless, several pig breeds are known to be cold resistant. The molecular mechanism(s) enabling such adaptation are currently unknown. Here, we show that this resistance is not dependent on shivering, but rather depends on UCP3 and white adipose tissue (WAT) browning. In two cold-resistant breeds (Tibetan and Min), but not a cold-sensitive breed (Bama), WAT browning was induced after cold exposure. Beige adipocytes from Tibetan pigs exhibited greater oxidative capacity than those from Bama pigs. Notably, UCP3 expression was significantly increased only in cold-resistant breeds, and knockdown of UCP3 expression in Tibetan adipocytes phenocopied Bama adipocytes in culture. Moreover, the eight dominant pig breeds found across China can be classified into cold-sensitive and cold-resistant breeds based on the UCP3 cDNA sequence. This study indicates that UCP3 has contributed to the evolution of cold resistance in the pig and overturns the orthodoxy that UCP1 is the only thermogenic uncoupling protein.
Collapse
Affiliation(s)
- Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiantao Zheng
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China
| | - Changguo Yan
- Department of Animal Science, Yanbian University, Yanji, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. ACTA ACUST UNITED AC 2018. [PMID: 29514879 DOI: 10.1242/jeb.162958] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a central metabolic organ. Unlike other organs, adipose tissue is compartmentalized into individual depots and distributed throughout the body. These different adipose depots show major functional differences and risk associations for developing metabolic syndrome. Recent advances in lineage tracing demonstrate that individual adipose depots are composed of adipocytes that are derived from distinct precursor populations, giving rise to different populations of energy-storing white adipocytes. Moreover, distinct lineages of energy-dissipating brown and beige adipocytes exist in discrete depots or within white adipose tissue depots. In this Review, we discuss developmental and functional heterogeneity, as well as sexual dimorphism, between and within individual adipose tissue depots. We highlight current data relating to the differences between subcutaneous and visceral white adipose tissue in the development of metabolic dysfunction, with special emphasis on adipose tissue expansion and remodeling of the extracellular matrix. Moreover, we provide a detailed overview of adipose tissue development as well as the consensus and controversies relating to adult adipocyte precursor populations.
Collapse
Affiliation(s)
- Theresa Schoettl
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ingrid P Fischer
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Siegfried Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany .,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
26
|
Fromme T. Commentary: Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny. Front Physiol 2017; 8:978. [PMID: 29235582 PMCID: PMC5712371 DOI: 10.3389/fphys.2017.00978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023] Open
Affiliation(s)
- Tobias Fromme
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional Medicine and ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
27
|
Seebacher F. The evolution of metabolic regulation in animals. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:195-203. [PMID: 29128642 DOI: 10.1016/j.cbpb.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
Abstract
Energy metabolism is determined by a suite of regulatory mechanism, and their increasing complexity over evolutionary time provides the key to understanding the emergence of different metabolic phenotypes. Energy metabolism is at the core of biological processes because all organisms must maintain energy balance against thermodynamic gradients. Energy metabolism is regulated by a bewildering array of interacting molecular mechanisms, and much of what is known about metabolic regulation comes from the medical literature. However, ecology and evolutionary research would gain considerably by incorporating regulatory mechanisms more explicitly in research on topics such as the evolution of endothermy, metabolic plasticity, and energy balance. The purpose of this brief review is to summarise the main regulatory pathways of energy metabolism in animals and their evolutionary origins to make these complex interactions more accessible to researchers from a broad range of backgrounds. Some of the principal regulators of energy balance, such as the AMP-stimulated protein kinase, have an ancient prokaryotic origin. Most regulatory pathways (e.g. thyroid hormone, insulin, adipokines), however, are eukaryotic in origin and diversified substantially in metazoans and vertebrates. Diversification in vertebrates is at least partly due to genome duplications early in this lineage. The interaction between regulatory mechanisms permitted an increasingly sophisticated fine-tuning of energy balance and metabolism. Hence, regulatory complexity increased over evolutionary time, and taxa differ in their potential range of metabolic phenotypes. Choice of model organism therefore becomes important, and bacteria or even invertebrates are not good models for more derived vertebrates. Different metabolic phenotypes and their evolution, such as endothermy and metabolic plasticity, should be interpreted against this regulatory background.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
28
|
Gaudry MJ, Campbell KL. Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny. Front Physiol 2017; 8:670. [PMID: 28979209 PMCID: PMC5611445 DOI: 10.3389/fphys.2017.00670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within) putative regulatory elements among the eutherian lineages with an intact UCP1 suggests that the transcriptional control of gene expression is not highly conserved in this mammalian clade.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| | - Kevin L Campbell
- Department of Biological Sciences, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
29
|
Bal NC, Singh S, Reis FCG, Maurya SK, Pani S, Rowland LA, Periasamy M. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem 2017; 292:16616-16625. [PMID: 28794154 DOI: 10.1074/jbc.m117.790451] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
Thermogenesis is an important homeostatic mechanism essential for survival and normal physiological functions in mammals. Both brown adipose tissue (BAT) (i.e. uncoupling protein 1 (UCP1)-based) and skeletal muscle (i.e. sarcolipin (SLN)-based) thermogenesis processes play important roles in temperature homeostasis, but their relative contributions differ from small to large mammals. In this study, we investigated the functional interplay between skeletal muscle- and BAT-based thermogenesis under mild versus severe cold adaptation by employing UCP1-/- and SLN-/- mice. Interestingly, adaptation of SLN-/- mice to mild cold conditions (16 °C) significantly increased UCP1 expression, suggesting increased reliance on BAT-based thermogenesis. This was also evident from structural alterations in BAT morphology, including mitochondrial architecture, increased expression of electron transport chain proteins, and depletion of fat droplets. Similarly, UCP1-/- mice adapted to mild cold up-regulated muscle-based thermogenesis, indicated by increases in muscle succinate dehydrogenase activity, SLN expression, mitochondrial content, and neovascularization, compared with WT mice. These results further confirm that SLN-based thermogenesis is a key player in muscle non-shivering thermogenesis (NST) and can compensate for loss of BAT activity. We also present evidence that the increased reliance on BAT-based NST depends on increased autonomic input, as indicated by abundant levels of tyrosine hydroxylase and neuropeptide Y. Our findings demonstrate that both BAT and muscle-based NST are equally recruited during mild and severe cold adaptation and that loss of heat production from one thermogenic pathway leads to increased recruitment of the other, indicating a functional interplay between these two thermogenic processes.
Collapse
Affiliation(s)
- Naresh C Bal
- From the School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India, .,the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and.,the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| | - Sushant Singh
- the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and.,the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| | - Felipe C G Reis
- the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| | - Santosh K Maurya
- the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and.,the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| | - Sunil Pani
- From the School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Leslie A Rowland
- the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and
| | - Muthu Periasamy
- the Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, Ohio 43210, and .,the Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827
| |
Collapse
|
30
|
Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR. Understanding the Biology of Thermogenic Fat: Is Browning A New Approach to the Treatment of Obesity? Arch Med Res 2017; 48:401-413. [DOI: 10.1016/j.arcmed.2017.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022]
|
31
|
Pfeifer A, Hoffmann LS. Brown, beige, and white: the new color code of fat and its pharmacological implications. Annu Rev Pharmacol Toxicol 2014; 55:207-27. [PMID: 25149919 DOI: 10.1146/annurev-pharmtox-010814-124346] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults. The enormous metabolic powers of BAT in animal models could make it an attractive target for antiobesity therapies in humans. Here, we review the present knowledge on the role of BAT in energy homeostasis and metabolism, focusing on signaling pathways and potential targets for novel therapeutics. We also shine light on ongoing debates, including those about the true color of brown fat in adults, as well as on the requirements for translation of basic research on BAT into clinical medicine.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, 53105 Bonn, Germany;
| | | |
Collapse
|
32
|
Li Y, Lasar D, Fromme T, Klingenspor M. White, brite, and brown adipocytes: the evolution and function of a heater organ in mammals. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brown fat is a specialized heater organ in eutherian mammals. In contrast to the energy storage function of white adipocytes, brown adipocytes dissipate nutrient energy by uncoupling of mitochondrial oxidative phosphorylation, which depends on uncoupling protein 1 (UCP1). UCP1, as well as UCP2 and UCP3, belong to the family of mitochondrial carriers inserted into the inner mitochondrial membrane for metabolite trafficking between the matrix and the intermembrane space. UCP1 transports protons into the mitochondrial matrix when activated by a rise in free fatty acid levels in the cell. This UCP1-dependant proton leak drives high oxygen consumption rates in the absence of ATP synthesis and dissipates proton motive force as heat. The enormous heating capacity of brown fat is supported by dense vascularization, high rates of tissue perfusion, and high mitochondrial density in brown adipocytes. It has been known for more than 50 years that nonshivering thermogenesis in brown fat serves to maintain body temperature of neonates and small mammals in cold environments, and is used by hibernators for arousal from torpor. It has been speculated that the development of brown fat as a new source for nonshivering thermogenesis provided mammals with a unique advantage for survival in the cold. Indeed brown fat and UCP1 is found in ancient groups of mammals, like the afrotherians and marsupials. In the latter, however, the thermogenic function of UCP1 and brown fat has not been demonstrated as of yet. Notably, orthologs of all three mammalian UCP genes are also present in the genomes of bony fishes and in amphibians. Molecular phylogeny reveals a striking increase in the substitution rate of UCP1 between marsupial and eutherian lineages. At present, it seems that UCP1 only gained thermogenic function in brown adipocytes of eutherian mammals, whereas the function of UCP1 and that of the other UCPs in ectotherms remains to be identified. Evolution of thermogenic function required expression of UCP1 in a brown-adipocyte-like cell equipped with high mitochondrial density embedded in a well-vascularized tissue. Brown-adipocyte-like cells in white adipose tissue, called “brite” (brown-in-white) or “beige” adipocytes, emerge during adipogenesis and in response to cold exposure in anatomically distinct adipose tissue depots of juvenile and adult rodents. These brite adipocytes may resemble the archetypical brown adipocyte in vertebrate evolution. It is therefore of interest to elucidate the molecular mechanisms of brite adipocyte differentiation, study the bioenergetic properties of these cells, and search for the presence of related brown-adipocyte-like cells in nonmammalian vertebrates.
Collapse
Affiliation(s)
- Yongguo Li
- Chair for Molecular Nutritional Medicine, Technische Universität München (TUM), Else Kröner-Fresenius Center for Nutritional Medicine & Z I E L – Research Center for Nutrition and Food Sciences, Gregor-Mendel-Straße 2, 85350 Freising – Weihenstephan, Germany
| | - David Lasar
- Chair for Molecular Nutritional Medicine, Technische Universität München (TUM), Else Kröner-Fresenius Center for Nutritional Medicine & Z I E L – Research Center for Nutrition and Food Sciences, Gregor-Mendel-Straße 2, 85350 Freising – Weihenstephan, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technische Universität München (TUM), Else Kröner-Fresenius Center for Nutritional Medicine & Z I E L – Research Center for Nutrition and Food Sciences, Gregor-Mendel-Straße 2, 85350 Freising – Weihenstephan, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technische Universität München (TUM), Else Kröner-Fresenius Center for Nutritional Medicine & Z I E L – Research Center for Nutrition and Food Sciences, Gregor-Mendel-Straße 2, 85350 Freising – Weihenstephan, Germany
| |
Collapse
|
33
|
JEŽEK P, OLEJÁR T, SMOLKOVÁ K, JEŽEK J, DLASKOVÁ A, PLECITÁ-HLAVATÁ L, ZELENKA J, ŠPAČEK T, ENGSTOVÁ H, PAJUELO REGUERA D, JABŮREK M. Antioxidant and Regulatory Role of Mitochondrial Uncoupling Protein UCP2 in Pancreatic β-cells. Physiol Res 2014; 63:S73-91. [DOI: 10.33549/physiolres.932633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Research on brown adipose tissue and its hallmark protein, mitochondrial uncoupling protein UCP1, has been conducted for half a century and has been traditionally studied in the Institute of Physiology (AS CR, Prague), likewise UCP2 residing in multiple tissues for the last two decades. Our group has significantly contributed to the elucidation of UCP uncoupling mechanism, fully dependent on free fatty acids (FFAs) within the inner mitochondrial membrane. Now we review UCP2 physiological roles emphasizing its roles in pancreatic β-cells, such as antioxidant role, possible tuning of redox homeostasis (consequently UCP2 participation in redox regulations), and fine regulation of glucose-stimulated insulin secretion (GSIS). For example, NADPH has been firmly established as being a modulator of GSIS and since UCP2 may influence redox homeostasis, it likely affects NADPH levels. We also point out the role of phospholipase iPLA2 isoform in providing FFAs for the UCP2 antioxidant function. Such initiation of mild uncoupling hypothetically precedes lipotoxicity in pancreatic β-cells until it reaches the pathological threshold, after which the antioxidant role of UCP2 can be no more cell-protective, for example due to oxidative stress-accumulated mutations in mtDNA. These mechanisms, together with impaired autocrine insulin function belong to important causes of Type 2 diabetes etiology.
Collapse
Affiliation(s)
- P. JEŽEK
- Department of Membrane Transport Biophysics, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pfeifer A, Kilić A, Hoffmann LS. Regulation of metabolism by cGMP. Pharmacol Ther 2013; 140:81-91. [PMID: 23756133 DOI: 10.1016/j.pharmthera.2013.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 01/16/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) mediates the physiological effects of nitric oxide and natriuretic peptides in a broad spectrum of tissues and cells. So far, the major focus of research on cGMP lay on the cardiovascular system. Recent evidence suggests that cGMP also plays a major role in the regulation of cellular and whole-body metabolism. Here, we focus on the role of cGMP in adipose tissue. In addition, other organs important for the regulation of metabolism and their regulation by cGMP are discussed. Targeting the cGMP signaling pathway could be an exciting approach for the regulation of energy expenditure and the treatment of obesity.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Germany.
| | | | | |
Collapse
|
35
|
Shore A, Emes RD, Wessely F, Kemp P, Cillo C, D'Armiento M, Hoggard N, Lomax MA. A comparative approach to understanding tissue-specific expression of uncoupling protein 1 expression in adipose tissue. Front Genet 2013; 3:304. [PMID: 23293654 PMCID: PMC3535714 DOI: 10.3389/fgene.2012.00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/10/2012] [Indexed: 01/04/2023] Open
Abstract
The thermoregulatory function of brown adipose tissue (BAT) is due to the tissue-specific expression of uncoupling protein 1 (UCP1) which is thought to have evolved in early mammals. We report that a CpG island close to the UCP1 transcription start site is highly conserved in all 29 vertebrates examined apart from the mouse and xenopus. Using methylation sensitive restriction digest and bisulfite mapping we show that the CpG island in both the bovine and human is largely un-methylated and is not related to differences in UCP1 expression between white and BAT. Tissue-specific expression of UCP1 has been proposed to be regulated by a conserved 5′ distal enhancer which has been reported to be absent in marsupials. We demonstrate that the enhancer, is also absent in five eutherians as well as marsupials, monotremes, amphibians, and fish, is present in pigs despite UCP1 having become a pseudogene, and that absence of the enhancer element does not relate to BAT-specific UCP1 expression. We identify an additional putative 5′ regulatory unit which is conserved in 14 eutherian species but absent in other eutherians and vertebrates, but again unrelated to UCP1 expression. We conclude that despite clear evidence of conservation of regulatory elements in the UCP1 5′ untranslated region, this does not appear to be related to species or tissues-specific expression of UCP1.
Collapse
Affiliation(s)
- Andrew Shore
- School of Biosciences, Cardiff University Cardiff, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tine M, Kuhl H, Jastroch M, Reinhardt R. Genomic characterization of the European sea bass Dicentrarchus labrax reveals the presence of a novel uncoupling protein (UCP) gene family member in the teleost fish lineage. BMC Evol Biol 2012; 12:62. [PMID: 22577775 PMCID: PMC3428666 DOI: 10.1186/1471-2148-12-62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 05/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Uncoupling proteins (UCP) are evolutionary conserved mitochondrial carriers that control energy metabolism and therefore play important roles in several physiological processes such as thermogenesis, regulation of reactive oxygen species (ROS), growth control, lipid metabolism and regulation of insulin secretion. Despite their importance in various physiological processes, their molecular function remains controversial. The evolution and phylogenetic distribution may assist to identify their general biological function and structure-function relationships. The exact number of uncoupling protein genes in the fish genome and their evolution is unresolved. Results Here we report the first characterisation of UCP gene family members in sea bass, Dicentrarchus labrax, and then retrace the evolution of the protein family in vertebrates. Four UCP genes that are shared by five other fish species were identified in sea bass genome. Phylogenetic reconstitution among vertebrate species and synteny analysis revealed that UCP1, UCP2 and UCP3 evolved from duplication events that occurred in the common ancestor of vertebrates, whereas the novel fourth UCP originated specifically in the teleost lineage. Functional divergence analysis among teleost species revealed specific amino acid positions that have been subjected to altered functional constraints after duplications. Conclusions This work provides the first unambiguous evidence for the presence of a fourth UCP gene in teleost fish genome and brings new insights into the evolutionary history of the gene family. Our results suggest functional divergence among paralogues which might result from long-term and differential selective pressures, and therefore, provide the indication that UCP genes may have diverse physiological functions in teleost fishes. Further experimental analysis of the critical amino acids identified here may provide valuable information on the physiological functions of UCP genes.
Collapse
Affiliation(s)
- Mbaye Tine
- Max Planck Institute for Molecular Genetics, Ihnestresse 63-73, 14195, Berlin, Germany.
| | | | | | | |
Collapse
|
37
|
Luévano-Martínez LA. Uncoupling proteins (UCP) in unicellular eukaryotes: true UCPs or UCP1-like acting proteins? FEBS Lett 2012; 586:1073-8. [PMID: 22569266 DOI: 10.1016/j.febslet.2012.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
Uncoupling proteins belong to the superfamily of mitochondrial anion carriers. They are apparently present throughout the Eukarya domain in which only some members have an established physiological function, i.e. UCP1 from brown adipose tissue is involved in non-shivering thermogenesis. However, the proteins responsible for the phenotype observed in unicellular organisms have not been characterized. In this report we analyzed functional evidence concerning unicellular UCPs and found that true UCPs are restricted to some taxonomical groups while proteins conferring a UCP1-like phenotype to fungi and most protists are the result of a promiscuous activity exerted by other mitochondrial anion carriers. We describe a possible evolutionary route followed by these proteins by which they acquire this promiscuous mechanism.
Collapse
Affiliation(s)
- Luis Alberto Luévano-Martínez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Cidade Universitária, Av Prof Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
38
|
Cloning and ontogenetic expression of the uncoupling protein 1 gene UCP1 in sheep. J Appl Genet 2012; 53:203-12. [DOI: 10.1007/s13353-012-0086-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/26/2012] [Accepted: 01/26/2012] [Indexed: 12/19/2022]
|
39
|
Kazantzis M, Takahashi V, Hinkle J, Kota S, Zilberfarb V, Issad T, Abdelkarim M, Chouchane L, Strosberg AD. PAZ6 cells constitute a representative model for human brown pre-adipocytes. Front Endocrinol (Lausanne) 2012; 3:13. [PMID: 22649407 PMCID: PMC3355992 DOI: 10.3389/fendo.2012.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/14/2012] [Indexed: 11/13/2022] Open
Abstract
The role of brown adipose tissue (BAT) in human metabolism and its potential as an anti-obesity target organ have recently received much renewed attention. Following radiological detection of substantial amounts of BAT in adults by several independent research groups, an increasing number of studies are now dedicated to uncover BAT's genetic, developmental, and environmental determinants. In contrast to murine BAT, human BAT is not present as a single major fat depot in a well-defined location. The distribution of BAT in several areas in the body significantly limits its availability to research. A human brown adipocyte cell line is therefore critical in broadening the options available to researchers in the field. The human BAT-cell line PAZ6 was created to address such a need and has been well characterized by several research groups around the world. In the present review, we discuss their findings and propose potential applications of the PAZ6 cells in addressing the relevant questions in the BAT field, namely for future use in therapeutic applications.
Collapse
Affiliation(s)
- Melissa Kazantzis
- Department of Infectology, The Scripps Research Institute-FloridaJupiter, FL, USA
- *Correspondence: Melissa Kazantzis, Department of Infectology, The Scripps Research Institute-Florida, 120 Scripps Way, #B110, Jupiter FL, 33458, USA. e-mail:
| | - Virginia Takahashi
- Department of Infectology, The Scripps Research Institute-FloridaJupiter, FL, USA
| | - Jessica Hinkle
- Department of Infectology, The Scripps Research Institute-FloridaJupiter, FL, USA
| | - Smitha Kota
- Department of Infectology, The Scripps Research Institute-FloridaJupiter, FL, USA
| | - Vladimir Zilberfarb
- INSERM U1016Paris, France
- CNRS-UMR8104Paris, France
- Département de Biologie Cellulaire, Université Paris DescartesParis, France
| | - Tarik Issad
- INSERM U1016Paris, France
- CNRS-UMR8104Paris, France
- Département de Biologie Cellulaire, Université Paris DescartesParis, France
| | - Mouaadh Abdelkarim
- Department of Genetic Medicine, Weill Cornell Medical College in QatarDoha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medical College in QatarDoha, Qatar
| | - Arthur Donny Strosberg
- Department of Infectology, The Scripps Research Institute-FloridaJupiter, FL, USA
- INSERM U1016Paris, France
- Institut Cochin INSERM U1016, Université Paris7-Denis-DiderotParis, France
| |
Collapse
|
40
|
Absence of adaptive nonshivering thermogenesis in a marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). J Comp Physiol B 2011; 182:393-401. [DOI: 10.1007/s00360-011-0623-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
|
41
|
Zhau HE, He H, Wang CY, Zayzafoon M, Morrissey C, Vessella RL, Marshall FF, Chung LWK, Wang R. Human prostate cancer harbors the stem cell properties of bone marrow mesenchymal stem cells. Clin Cancer Res 2011; 17:2159-69. [PMID: 21355075 DOI: 10.1158/1078-0432.ccr-10-2523] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE Prostate tumor cells frequently show the features of osteoblasts, which are differentiated from bone marrow mesenchymal stem cells. We examined human prostate cancer cell lines and clinical prostate cancer specimens for additional bone marrow mesenchymal stem cell properties. EXPERIMENTAL DESIGN Prostate cancer cell lines were induced for osteoblastogenic and adipogenic differentiation, detected by standard staining methods and confirmed by lineage-specific marker expression. Abnormal expression of the markers was then assessed in clinical prostate cancer specimens. RESULTS After osteoblastogenic induction, cells of the LNCaP lineage, PC-3 lineage, and DU145 displayed osteoblastic features. Upon adipogenic induction, PC-3 lineage and DU145 cells differentiated into adipocyte-like cells. The adipocyte-like cancer cells expressed brown adipocyte-specific markers, suggesting differentiation along the brown adipocyte lineage. The adipogenic differentiation was accompanied by growth inhibition, and most of the adipocyte-like cancer cells were committed to apoptotic death. During cyclic treatments with adipogenic differentiation medium and then with control medium, the cancer cells could commit to repeated adipogenic differentiation and retrodifferentiation. In clinical prostate cancer specimens, the expression of uncoupling protein 1 (UCP1), a brown fat-specific marker, was enhanced with the level of expression correlated to disease progression from primary to bone metastatic cancers. CONCLUSIONS This study thus revealed that prostate cancer cells harbor the stem cell properties of bone marrow mesenchymal stem cells. The abnormally expressed adipogenic UCP1 protein may serve as a unique marker, while adipogenic induction can be explored as a differentiation therapy for prostate cancer progression and bone metastasis.
Collapse
Affiliation(s)
- Haiyen E Zhau
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Seebacher F, Brand MD, Else PL, Guderley H, Hulbert AJ, Moyes CD. Plasticity of oxidative metabolism in variable climates: molecular mechanisms. Physiol Biochem Zool 2010; 83:721-32. [PMID: 20586603 DOI: 10.1086/649964] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Converting food to chemical energy (ATP) that is usable by cells is a principal requirement to sustain life. The rate of ATP production has to be sufficient for housekeeping functions, such as protein synthesis and maintaining membrane potentials, as well as for growth and locomotion. Energy metabolism is temperature sensitive, and animals respond to environmental variability at different temporal levels, from within-individual to evolutionary timescales. Here we review principal molecular mechanisms that underlie control of oxidative ATP production in response to climate variability. Nuclear transcription factors and coactivators control expression of mitochondrial proteins and abundance of mitochondria. Fatty acid and phospholipid concentrations of membranes influence the activity of membrane-bound proteins as well as the passive leak of protons across the mitochondrial membrane. Passive proton leak as well as protein-mediated proton leak across the inner mitochondrial membrane determine the efficacy of ATP production but are also instrumental in endothermic heat production and as a defense against reactive oxygen species. Both transcriptional mechanisms and membrane composition interact with environmental temperature and diet, and this interaction between diet and temperature in determining mitochondrial function links the two major environmental variables that are affected by changing climates. The limits to metabolic plasticity could be set by the production of reactive oxygen species leading to cellular damage, limits to substrate availability in mitochondria, and a disproportionally large increase in proton leak over ATP production.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | |
Collapse
|
43
|
Son’kin VD, Kirdin AA, Andreev RS, Akimov EB. Homeostatic non-shivering thermogenesis in humans facts and hypotheses. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s0362119710050129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
He L, Vasiliou K, Nebert DW. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 2009; 3:195-206. [PMID: 19164095 PMCID: PMC2752037 DOI: 10.1186/1479-7364-3-2-195] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The solute-carrier gene (SLC) superfamily encodes membrane-bound transporters. The SLC superfamily comprises 55 gene families having at least 362 putatively functional protein-coding genes. The gene products include passive transporters, symporters and antiporters, located in all cellular and organelle membranes, except, perhaps, the nuclear membrane. Transport substrates include amino acids and oligopeptides, glucose and other sugars, inorganic cations and anions (H+, HCO3-, Cl-, Na+, K+, Ca2+, Mg2+, PO43-, HPO42-, H2PO4-, SO42-, C2O42-, OH-,CO32-), bile salts, carboxylate and other organic anions, acetyl coenzyme A, essential metals, biogenic amines, neurotransmitters, vitamins, fatty acids and lipids, nucleosides, ammonium, choline, thyroid hormone and urea. Contrary to gene nomenclature commonly assigned on the basis of evolutionary divergence http://www.genenames.org/, the SLC gene superfamily has been named based largely on transporter function by proteins having multiple transmembrane domains. Whereas all the transporters exist for endogenous substrates, it is likely that drugs, non-essential metals and many other environmental toxicants are able to 'hitch-hike' on one or another of these transporters, thereby enabling these moieties to enter (or leave) the cell. Understanding and characterising the functions of these transporters is relevant to medicine, genetics, developmental biology, pharmacology and cancer chemotherapy.
Collapse
Affiliation(s)
- Lei He
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
45
|
Alán L, Smolková K, Kronusová E, Santorová J, Jezek P. Absolute levels of transcripts for mitochondrial uncoupling proteins UCP2, UCP3, UCP4, and UCP5 show different patterns in rat and mice tissues. J Bioenerg Biomembr 2009; 41:71-8. [PMID: 19242784 DOI: 10.1007/s10863-009-9201-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/29/2009] [Indexed: 12/11/2022]
Abstract
Existing controversies led us to analyze absolute mRNA levels of mitochondrial uncoupling proteins (UCP1-UCP5). Individual UCP isoform mRNA levels varied by up to four orders of magnitude in rat and mouse tissues. UCP2 mRNA content was relatively high (0.4 to 0.8 pg per 10 ng of total mRNA) in rat spleen, rat and mouse lung, and rat heart. Levels of the same order of magnitude were found for UCP3 mRNA in rat and mouse skeletal muscle, for UCP4 and UCP5 mRNA in mouse brain, and for UCP2 and UCP5 mRNA in mouse white adipose tissue. Significant differences in pattern were found for rat vs. mouse tissues, such as the dominance of UCP3/UCP5 vs. UCP2 transcript in mouse heart and vice versa in rat heart; or UCP2 (UCP5) dominance in rat brain contrary to 10-fold higher UCP4 and UCP5 dominance in mouse brain. We predict high antioxidant/antiapoptotic UCP function in tissues with higher UCP mRNA content.
Collapse
Affiliation(s)
- Lukás Alán
- Department of Membrane Transport Biophysics, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
46
|
Hughes DA, Jastroch M, Stoneking M, Klingenspor M. Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. BMC Evol Biol 2009; 9:4. [PMID: 19128480 PMCID: PMC2627829 DOI: 10.1186/1471-2148-9-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 01/07/2009] [Indexed: 11/25/2022] Open
Abstract
Background Uncoupling protein 1 (UCP1) is a mitochondrial anion carrier, expressed in brown adipose tissue (BAT) of Eutherians. UCP1 is responsible for uncoupling mitochondrial proton transport from the production of ATP, thereby dissipating heat; it is essential for non-shivering thermogenesis (NST) in mammalian BAT. UCP1 orthologs have been identified in non-Eutherian mammals, fish and amphibians. Yet, UCP1 has a unique function in Eutherians in that it is necessary in the production of heat (NST). As such, this study aims to determine the evolutionary mode of UCP1 in Eutherians, where there is clear evidence of UCP1-dependent NST in BAT. Results Models of adaptive evolution through phylogenetic analysis of amino acid sequences by maximum likelihood were implemented to determine the mode of UCP1 protein evolution in Eutherians. An increase in the rate of amino acid substitutions on the branch leading to Eutherians is observed, but is best explained by relaxed constraints, not positive selection. Further, evidence for branch and site heterogeneity in selection pressures, as well as divergent selection pressures between UCP1 and its paralogs (UCP2-3) is observed. Conclusion We propose that the unique thermogenic function of UCP1 in Eutherians may be best explained by neutral processes. Along with other evidence, this suggests that the primary biochemical properties of UCP1 may not differ between Eutherians and non-Eutherians.
Collapse
Affiliation(s)
- David A Hughes
- Max-Planck-Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Leipzig, Germany.
| | | | | | | |
Collapse
|