1
|
Tseng WW, Chu CH, Lee YJ, Zhao S, Chang C, Ho YP, Wei AC. Metabolic regulation of mitochondrial morphologies in pancreatic beta cells: coupling of bioenergetics and mitochondrial dynamics. Commun Biol 2024; 7:1267. [PMID: 39369076 PMCID: PMC11455970 DOI: 10.1038/s42003-024-06955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by pancreatic beta cells in response to elevated levels of blood glucose. To elucidate the interactions between energy production and mitochondrial fission/fusion dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and graph-based network analysis. The aim is to determine the mechanism that regulates mitochondrial morphology and balances metabolic demands in pancreatic beta cells. A minimalistic differential equation-based model for beta cells is constructed that includes glycolysis, oxidative phosphorylation, calcium dynamics, and fission/fusion dynamics, with ATP synthase flux and proton leak flux as main regulators of mitochondrial dynamics. The model shows that mitochondrial fission occurs in response to hyperglycemia, starvation, ATP synthase inhibition, uncoupling, and diabetic conditions, in which the rate of proton leakage exceeds the rate of mitochondrial ATP synthesis. Under these metabolic challenges, the propensities of tip-to-tip fusion events simulated from the microscopy images of the mitochondrial networks are lower than those in the control group and prevent the formation of mitochondrial networks. The study provides a quantitative framework that couples bioenergetic regulation with mitochondrial dynamics, offering insights into how mitochondria adapt to metabolic challenges.
Collapse
Affiliation(s)
- Wen-Wei Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsiang Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - Chen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Neikirk K, Kabugi K, Mungai M, Kula B, Smith N, Hinton AO. Ethnicity-related differences in mitochondrial regulation by insulin stimulation in diabetes. J Cell Physiol 2024; 239:e31317. [PMID: 38775168 PMCID: PMC11324399 DOI: 10.1002/jcp.31317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024]
Abstract
Mitochondrial dysfunction has long been implicated in the development of insulin resistance, which is a hallmark of type 2 diabetes. However, recent studies reveal ethnicity-related differences in mitochondrial processes, underscoring the need for nuance in studying mitochondrial dysfunction and insulin sensitivity. Furthermore, the higher prevalence of type 2 diabetes among African Americans and individuals of African descent has brought attention to the role of ethnicity in disease susceptibility. In this review, which covers existing literature, genetic studies, and clinical data, we aim to elucidate the complex relationship between mitochondrial alterations and insulin stimulation by considering how mitochondrial dynamics, contact sites, pathways, and metabolomics may be differentially regulated across ethnicities, through mechanisms such as single nucleotide polymorphisms (SNPs). In addition to achieving a better understanding of insulin stimulation, future studies identifying novel regulators of mitochondrial structure and function could provide valuable insights into ethnicity-dependent insulin signaling and personalized care.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Nathan Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA 14642
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
4
|
Carroll DT, Miller A, Fuhr J, Elsakr JM, Ricciardi V, Del Bene AN, Stephens S, Krystofiak E, Lindsley SR, Kirigiti M, Takahashi DL, Dean TA, Wesolowski SR, McCurdy CE, Friedman JE, Aagaard KM, Kievit P, Gannon M. Analysis of beta-cell maturity and mitochondrial morphology in juvenile non-human primates exposed to maternal Western-style diet during development. Front Endocrinol (Lausanne) 2024; 15:1417437. [PMID: 39114287 PMCID: PMC11304003 DOI: 10.3389/fendo.2024.1417437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Using a non-human primate (NHP) model of maternal Western-style diet (mWSD) feeding during pregnancy and lactation, we previously reported altered offspring beta:alpha cell ratio in vivo and insulin hyper-secretion ex vivo. Mitochondria are known to maintain beta-cell function by producing ATP for insulin secretion. In response to nutrient stress, the mitochondrial network within beta cells undergoes morphological changes to maintain respiration and metabolic adaptability. Given that mitochondrial dynamics have also been associated with cellular fate transitions, we assessed whether mWSD exposure was associated with changes in markers of beta-cell maturity and/or mitochondrial morphology that might explain the offspring islet phenotype. Methods We evaluated the expression of beta-cell identity/maturity markers (NKX6.1, MAFB, UCN3) via florescence microscopy in islets of Japanese macaque pre-adolescent (1 year old) and peri-adolescent (3-year-old) offspring born to dams fed either a control diet or WSD during pregnancy and lactation and weaned onto WSD. Mitochondrial morphology in NHP offspring beta cells was analyzed in 2D by transmission electron microscopy and in 3D using super resolution microscopy to deconvolve the beta-cell mitochondrial network. Results There was no difference in the percent of beta cells expressing key maturity markers in NHP offspring from WSD-fed dams at 1 or 3 years of age; however, beta cells of WSD-exposed 3 year old offspring showed increased levels of NKX6.1 per beta cell at 3 years of age. Regardless of maternal diet, the beta-cell mitochondrial network was found to be primarily short and fragmented at both ages in NHP; overall mitochondrial volume increased with age. In utero and lactational exposure to maternal WSD consumption may increase mitochondrial fragmentation. Discussion Despite mWSD consumption having clear developmental effects on offspring beta:alpha cell ratio and insulin secretory response to glucose, this does not appear to be mediated by changes to beta-cell maturity or the beta-cell mitochondrial network. In general, the more fragmented mitochondrial network in NHP beta cells suggests greater ability for metabolic flexibility.
Collapse
Affiliation(s)
- Darian T. Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Allie Miller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Fuhr
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, United States
| | - Joseph M. Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Valerie Ricciardi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alexa N. Del Bene
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Stedman Stephens
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Sarah R. Lindsley
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Diana L. Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Tyler A. Dean
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Jacob E. Friedman
- Department of Physiology and Biochemistry and Harold Hamm Diabetes Center at the University of Oklahoma, Oklahoma City, OK, United States
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
5
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
6
|
McLaughlin MR, Weaver SA, Syed F, Evans-Molina C. Advanced Imaging Techniques for the Characterization of Subcellular Organelle Structure in Pancreatic Islet β Cells. Compr Physiol 2023; 14:5243-5267. [PMID: 38158370 PMCID: PMC11490899 DOI: 10.1002/cphy.c230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic β cell. However, genetic and physiologic data indicate that defects in β cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the β cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the β cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.
Collapse
Affiliation(s)
- Madeline R. McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Staci A. Weaver
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Farooq Syed
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Wu D, Tian L, Hoskin V, Dasgupta A. Editorial: The effects of mitochondrial dysfunction on the cell cycle. Front Cell Dev Biol 2023; 11:1303834. [PMID: 37928899 PMCID: PMC10622665 DOI: 10.3389/fcell.2023.1303834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Danchen Wu
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Lian Tian
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Victoria Hoskin
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Queen's Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
8
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
9
|
Kabra UD, Jastroch M. Mitochondrial Dynamics and Insulin Secretion. Int J Mol Sci 2023; 24:13782. [PMID: 37762083 PMCID: PMC10530730 DOI: 10.3390/ijms241813782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are involved in the regulation of cellular energy metabolism, calcium homeostasis, and apoptosis. For mitochondrial quality control, dynamic processes, such as mitochondrial fission and fusion, are necessary to maintain shape and function. Disturbances of mitochondrial dynamics lead to dysfunctional mitochondria, which contribute to the development and progression of numerous diseases, including Type 2 Diabetes (T2D). Compelling evidence has been put forward that mitochondrial dynamics play a significant role in the metabolism-secretion coupling of pancreatic β cells. The disruption of mitochondrial dynamics is linked to defects in energy production and increased apoptosis, ultimately impairing insulin secretion and β cell death. This review provides an overview of molecular mechanisms controlling mitochondrial dynamics, their dysfunction in pancreatic β cells, and pharmaceutical agents targeting mitochondrial dynamic proteins, such as mitochondrial division inhibitor-1 (mdivi-1), dynasore, P110, and 15-oxospiramilactone (S3).
Collapse
Affiliation(s)
- Uma D. Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara 391760, India;
| | - Martin Jastroch
- The Arrhenius Laboratories F3, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Ježek P. Pitfalls of Mitochondrial Redox Signaling Research. Antioxidants (Basel) 2023; 12:1696. [PMID: 37759999 PMCID: PMC10525995 DOI: 10.3390/antiox12091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
11
|
Mohan R, Jo S, Lockridge A, Ferrington DA, Murray K, Eschenlauer A, Bernal-Mizrachi E, Fujitani Y, Alejandro EU. OGT Regulates Mitochondrial Biogenesis and Function via Diabetes Susceptibility Gene Pdx1. Diabetes 2021; 70:2608-2625. [PMID: 34462257 PMCID: PMC8564412 DOI: 10.2337/db21-0468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
O-GlcNAc transferase (OGT), a nutrient sensor sensitive to glucose flux, is highly expressed in the pancreas. However, the role of OGT in the mitochondria of β-cells is unexplored. In this study, we identified the role of OGT in mitochondrial function in β-cells. Constitutive deletion of OGT (βOGTKO) or inducible ablation in mature β-cells (iβOGTKO) causes distinct effects on mitochondrial morphology and function. Islets from βOGTKO, but not iβOGTKO, mice display swollen mitochondria, reduced glucose-stimulated oxygen consumption rate, ATP production, and glycolysis. Alleviating endoplasmic reticulum stress by genetic deletion of Chop did not rescue the mitochondrial dysfunction in βOGTKO mice. We identified altered islet proteome between βOGTKO and iβOGTKO mice. Pancreatic and duodenal homeobox 1 (Pdx1) was reduced in in βOGTKO islets. Pdx1 overexpression increased insulin content and improved mitochondrial morphology and function in βOGTKO islets. These data underscore the essential role of OGT in regulating β-cell mitochondrial morphology and bioenergetics. In conclusion, OGT couples nutrient signal and mitochondrial function to promote normal β-cell physiology.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN
| | - Kevin Murray
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Arthur Eschenlauer
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Ernesto Bernal-Mizrachi
- Miami VA Healthcare System, Miami, FL
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miami, FL
| | - Yoshio Fujitani
- Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
12
|
Han YS, Yi EY, Jegal ME, Kim YJ. Cancer Stem-Like Phenotype of Mitochondria Dysfunctional Hep3B Hepatocellular Carcinoma Cell Line. Cells 2021; 10:1608. [PMID: 34198967 PMCID: PMC8307994 DOI: 10.3390/cells10071608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are major organelles that play various roles in cells, and mitochondrial dysfunction is the main cause of numerous diseases. Mitochondrial dysfunction also occurs in many cancer cells, and these changes are known to affect malignancy. The mitochondria of normal embryonic stem cells (ESCs) exist in an undifferentiated state and do not function properly. We hypothesized that mitochondrial dysfunction in cancer cells caused by the depletion of mitochondrial DNA might be similar to the mitochondrial state of ESCs. We generated mitochondria dysfunctional (ρ0) cells from the Hep3B hepatocellular carcinoma cell line and tested whether these ρ0 cells show cancer stem-like properties, such as self-renewal, chemotherapy resistance, and angiogenesis. Compared with Hep3B cells, the characteristics of each cancer stem-like cell were increased in Hep3B/ρ0 cells. The Hep3B/ρ0 cells formed a continuous and large sphere from a single cell. Additionally, the Hep3B/ρ0 cells showed resistance to the anticancer drug doxorubicin because of the increased expression of ATP-binding cassette Subfamily B Member 1. The Hep3B/ρ0 conditioned medium induced more and thicker blood vessels and increased the mobility and invasiveness of the blood vessel cells. Therefore, our data suggest that mitochondrial dysfunction can transform cancer cells into cancer stem-like cells.
Collapse
Affiliation(s)
- Yu-Seon Han
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Eui-Yeun Yi
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Myeong-Eun Jegal
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
| | - Yung-Jin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea; (Y.-S.H.); (E.-Y.Y.); (M.-E.J.)
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
| |
Collapse
|
13
|
Nowzari F, Wang H, Khoradmehr A, Baghban M, Baghban N, Arandian A, Muhaddesi M, Nabipour I, Zibaii MI, Najarasl M, Taheri P, Latifi H, Tamadon A. Three-Dimensional Imaging in Stem Cell-Based Researches. Front Vet Sci 2021; 8:657525. [PMID: 33937378 PMCID: PMC8079735 DOI: 10.3389/fvets.2021.657525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cells have an important role in regenerative therapies, developmental biology studies and drug screening. Basic and translational research in stem cell technology needs more detailed imaging techniques. The possibility of cell-based therapeutic strategies has been validated in the stem cell field over recent years, a more detailed characterization of the properties of stem cells is needed for connectomics of large assemblies and structural analyses of these cells. The aim of stem cell imaging is the characterization of differentiation state, cellular function, purity and cell location. Recent progress in stem cell imaging field has included ultrasound-based technique to study living stem cells and florescence microscopy-based technique to investigate stem cell three-dimensional (3D) structures. Here, we summarized the fundamental characteristics of stem cells via 3D imaging methods and also discussed the emerging literatures on 3D imaging in stem cell research and the applications of both classical 2D imaging techniques and 3D methods on stem cells biology.
Collapse
Affiliation(s)
- Fariborz Nowzari
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Huimei Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mahdi Muhaddesi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad I. Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Najarasl
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Payam Taheri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- Department of Physics, Shahid Beheshti University, Tehran, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
14
|
Glancy B, Kim Y, Katti P, Willingham TB. The Functional Impact of Mitochondrial Structure Across Subcellular Scales. Front Physiol 2020; 11:541040. [PMID: 33262702 PMCID: PMC7686514 DOI: 10.3389/fphys.2020.541040] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are key determinants of cellular health. However, the functional role of mitochondria varies from cell to cell depending on the relative demands for energy distribution, metabolite biosynthesis, and/or signaling. In order to support the specific needs of different cell types, mitochondrial functional capacity can be optimized in part by modulating mitochondrial structure across several different spatial scales. Here we discuss the functional implications of altering mitochondrial structure with an emphasis on the physiological trade-offs associated with different mitochondrial configurations. Within a mitochondrion, increasing the amount of cristae in the inner membrane improves capacity for energy conversion and free radical-mediated signaling but may come at the expense of matrix space where enzymes critical for metabolite biosynthesis and signaling reside. Electrically isolating individual cristae could provide a protective mechanism to limit the spread of dysfunction within a mitochondrion but may also slow the response time to an increase in cellular energy demand. For individual mitochondria, those with relatively greater surface areas can facilitate interactions with the cytosol or other organelles but may be more costly to remove through mitophagy due to the need for larger phagophore membranes. At the network scale, a large, stable mitochondrial reticulum can provide a structural pathway for energy distribution and communication across long distances yet also enable rapid spreading of localized dysfunction. Highly dynamic mitochondrial networks allow for frequent content mixing and communication but require constant cellular remodeling to accommodate the movement of mitochondria. The formation of contact sites between mitochondria and several other organelles provides a mechanism for specialized communication and direct content transfer between organelles. However, increasing the number of contact sites between mitochondria and any given organelle reduces the mitochondrial surface area available for contact sites with other organelles as well as for metabolite exchange with cytosol. Though the precise mechanisms guiding the coordinated multi-scale mitochondrial configurations observed in different cell types have yet to be elucidated, it is clear that mitochondrial structure is tailored at every level to optimize mitochondrial function to meet specific cellular demands.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
- NIAMS, National Institutes of Health, Bethesda, MD, United States
| | - Yuho Kim
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
| | - T. Bradley Willingham
- Muscle Energetics Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Georgiadou E, Rutter GA. Control by Ca 2+ of mitochondrial structure and function in pancreatic β-cells. Cell Calcium 2020; 91:102282. [PMID: 32961506 PMCID: PMC7116533 DOI: 10.1016/j.ceca.2020.102282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria play a central role in glucose metabolism and the stimulation of insulin secretion from pancreatic β-cells. In this review, we discuss firstly the regulation and roles of mitochondrial Ca2+ transport in glucose-regulated insulin secretion, and the molecular machinery involved. Next, we discuss the evidence that mitochondrial dysfunction in β-cells is associated with type 2 diabetes, from a genetic, functional and structural point of view, and then the possibility that these changes may in part be mediated by dysregulation of cytosolic Ca2+. Finally, we review the importance of preserved mitochondrial structure and dynamics for mitochondrial gene expression and their possible relevance to the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
16
|
Plecitá-Hlavatá L, Engstová H, Holendová B, Tauber J, Špaček T, Petrásková L, Křen V, Špačková J, Gotvaldová K, Ježek J, Dlasková A, Smolková K, Ježek P. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD + Ratio. Antioxid Redox Signal 2020; 33:789-815. [PMID: 32517485 PMCID: PMC7482716 DOI: 10.1089/ars.2019.7800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Aims: Glucose-stimulated insulin secretion (GSIS) in pancreatic β cells was expected to enhance mitochondrial superoxide formation. Hence, we elucidated relevant redox equilibria. Results: Unexpectedly, INS-1E cells at transitions from 3 (11 mM; pancreatic islets from 5 mM) to 25 mM glucose decreased matrix superoxide release rates (MitoSOX Red monitoring validated by MitoB) and H2O2 (mitoHyPer, subtracting mitoSypHer emission). Novel double-channel fluorescence lifetime imaging, approximating free mitochondrial matrix NADHF, indicated its ∼20% decrease. Matrix NAD+F increased on GSIS, indicated by the FAD-emission lifetime decrease, reflecting higher quenching of FAD by NAD+F. The participation of pyruvate/malate and pyruvate/citrate redox shuttles, elevating cytosolic NADPHF (iNAP1 fluorescence monitoring) at the expense of matrix NADHF, was indicated, using citrate (2-oxoglutarate) carrier inhibitors and cytosolic malic enzyme silencing: All changes vanished on these manipulations. 13C-incorporation from 13C-L-glutamine into 13C-citrate reflected the pyruvate/isocitrate shuttle. Matrix NADPHF (iNAP3 monitored) decreased. With decreasing glucose, the suppressor of Complex III site Q electron leak (S3QEL) suppressor caused a higher Complex I IF site contribution, but a lower superoxide fraction ascribed to the Complex III site IIIQo. Thus, the diminished matrix NADHF/NAD+F decreased Complex I flavin site IF superoxide formation on GSIS. Innovation: Mutually validated methods showed decreasing superoxide release into the mitochondrial matrix in pancreatic β cells on GSIS, due to the decreasing matrix NADHF/NAD+F (NADPHF/NADP+F) at increasing cytosolic NADPHF levels. The developed innovative methods enable real-time NADH/NAD+ and NADPH/NADP+ monitoring in any distinct cell compartment. Conclusion: The export of reducing equivalents from mitochondria adjusts lower mitochondrial superoxide production on GSIS, but it does not prevent oxidative stress in pancreatic β cells.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Špaček
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Špačková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Gotvaldová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Smolková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Rutter GA, Georgiadou E, Martinez-Sanchez A, Pullen TJ. Metabolic and functional specialisations of the pancreatic beta cell: gene disallowance, mitochondrial metabolism and intercellular connectivity. Diabetologia 2020; 63:1990-1998. [PMID: 32894309 PMCID: PMC7476987 DOI: 10.1007/s00125-020-05205-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
All forms of diabetes mellitus involve the loss or dysfunction of pancreatic beta cells, with the former predominating in type 1 diabetes and the latter in type 2 diabetes. Deeper understanding of the coupling mechanisms that link glucose metabolism in these cells to the control of insulin secretion is therefore likely to be essential to develop new therapies. Beta cells display a remarkable metabolic specialisation, expressing high levels of metabolic sensing enzymes, including the glucose transporter GLUT2 (encoded by SLC2A2) and glucokinase (encoded by GCK). Genetic evidence flowing from both monogenic forms of diabetes and genome-wide association studies for the more common type 2 diabetes, supports the importance for normal glucose-stimulated insulin secretion of metabolic signalling via altered ATP generation, while also highlighting unsuspected roles for Zn2+ storage, intracellular lipid transfer and other processes. Intriguingly, genes involved in non-oxidative metabolic fates of the sugar, such as those for lactate dehydrogenase (LDHA) and monocarboxylate transporter-1 ([MCT-1] SLC16A1), as well as the acyl-CoA thioesterase (ACOT7) and others, are selectively repressed ('disallowed') in beta cells. Furthermore, mutations in genes critical for mitochondrial oxidative metabolism, such as TRL-CAG1-7 encoding tRNALeu, are linked to maternally inherited forms of diabetes. Correspondingly, impaired Ca2+ uptake into mitochondria, or collapse of a normally interconnected mitochondrial network, are associated with defective insulin secretion. Here, we suggest that altered mitochondrial metabolism may also impair beta cell-beta cell communication. Thus, we argue that defective oxidative glucose metabolism is central to beta cell failure in diabetes, acting both at the level of single beta cells and potentially across the whole islet to impair insulin secretion. Graphical abstract.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Timothy J Pullen
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Diabetes, School of Life Course Science, Faculty of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
18
|
Morphology of Mitochondria in Syncytial Annelid Female Germ-Line Cyst Visualized by Serial Block-Face SEM. Int J Cell Biol 2020; 2020:7483467. [PMID: 32395131 PMCID: PMC7199535 DOI: 10.1155/2020/7483467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Mitochondria change their morphology and distribution depending on the metabolism and functional state of a cell. Here, we analyzed the mitochondria and selected structures in female germ-line cysts in a representative of clitellate annelids – the white worm Enchytraeus albidus in which each germ cell has one cytoplasmic bridge that connects it to a common cytoplasmic mass. Using serial block-face scanning electron microscopy (SBEM), we prepared three-dimensional ultrastructural reconstructions of the entire selected compartments of a cyst at the advanced stage of oogenesis, i.e. the nurse cell, cytophore, and cytoplasmic bridges of all 16 cells (15 nurse cells and oocyte). We revealed extensive mitochondrial networks in the nurse cells, cytophore and mitochondria that pass through the cytoplasmic bridges, which indicates that a mitochondrial network can extend throughout the entire cyst. The dynamic hyperfusion state was suggested for such mitochondrial aggregations. We measured the mitochondria distribution and revealed their polarized distribution in the nurse cells and more abundant accumulation within the cytophore compared to the nurse cell. A close association of mitochondrial networks with dispersed nuage material, which seems to be the structural equivalent of a Balbiani body, not described in clitellate annelids so far, was also revealed.
Collapse
|
19
|
Abstract
Mitochondria are essential for eukaryotic life. These double-membrane organelles often form highly dynamic tubular networks interacting with many cellular structures. Their highly convoluted contiguous inner membrane compartmentalizes the organelle, which is crucial for mitochondrial function. Since the diameter of the mitochondrial tubules is generally close to the diffraction limit of light microscopy, it is often challenging, if not impossible, to visualize submitochondrial structures or protein distributions using conventional light microscopy. This renders super-resolution microscopy particularly valuable, and attractive, for studying mitochondria. Super-resolution microscopy encompasses a diverse set of approaches that extend resolution, as well as nanoscopy techniques that can even overcome the diffraction limit. In this review, we provide an overview of recent studies using super-resolution microscopy to investigate mitochondria, discuss the strengths and opportunities of the various methods in addressing specific questions in mitochondrial biology, and highlight potential future developments.
Collapse
Affiliation(s)
- Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Clinic of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Clinic of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Peter Ilgen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Clinic of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christian Brüser
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Clinic of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
20
|
Chaudhry A, Shi R, Luciani DS. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am J Physiol Endocrinol Metab 2020; 318:E87-E101. [PMID: 31846372 PMCID: PMC7052579 DOI: 10.1152/ajpendo.00457.2019] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Live-cell imaging of mitochondrial function and dynamics can provide vital insights into both physiology and pathophysiology, including of metabolic diseases like type 2 diabetes. However, without super-resolution microscopy and commercial analysis software, it is challenging to accurately extract features from dense multilayered mitochondrial networks, such as those in insulin-secreting pancreatic β-cells. Motivated by this, we developed a comprehensive pipeline and associated ImageJ plugin that enables 2D/3D quantification of mitochondrial network morphology and dynamics in mouse β-cells and by extension other similarly challenging cell types. The approach is based on standard confocal microscopy and shareware, making it widely accessible. The pipeline was validated using mitochondrial photolabeling and unsupervised cluster analysis and is capable of morphological and functional analyses on a per-organelle basis, including in 4D (xyzt). Overall, this tool offers a powerful framework for multiplexed analysis of mitochondrial state/function and provides a valuable resource to accelerate mitochondrial research in health and disease.
Collapse
Affiliation(s)
- Ahsen Chaudhry
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Diabetes Research Group, Vancouver, British Columbia, Canada
| | - Rocky Shi
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Diabetes Research Group, Vancouver, British Columbia, Canada
| | - Dan S Luciani
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Diabetes Research Group, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Esch N, Jo S, Moore M, Alejandro EU. Nutrient Sensor mTOR and OGT: Orchestrators of Organelle Homeostasis in Pancreatic β-Cells. J Diabetes Res 2020; 2020:8872639. [PMID: 33457426 PMCID: PMC7787834 DOI: 10.1155/2020/8872639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this review is to integrate the role of nutrient-sensing pathways into β-cell organelle dysfunction prompted by nutrient excess during type 2 diabetes (T2D). T2D encompasses chronic hyperglycemia, hyperlipidemia, and inflammation, which each contribute to β-cell failure. These factors can disrupt the function of critical β-cell organelles, namely, the ER, mitochondria, lysosomes, and autophagosomes. Dysfunctional organelles cause defects in insulin synthesis and secretion and activate apoptotic pathways if homeostasis is not restored. In this review, we will focus on mTORC1 and OGT, two major anabolic nutrient sensors with important roles in β-cell physiology. Though acute stimulation of these sensors frequently improves β-cell function and promotes adaptation to cell stress, chronic and sustained activity disturbs organelle homeostasis. mTORC1 and OGT regulate organelle function by influencing the expression and activities of key proteins, enzymes, and transcription factors, as well as by modulating autophagy to influence clearance of defective organelles. In addition, mTORC1 and OGT activity influence islet inflammation during T2D, which can further disrupt organelle and β-cell function. Therapies for T2D that fine-tune the activity of these nutrient sensors have yet to be developed, but the important role of mTORC1 and OGT in organelle homeostasis makes them promising targets to improve β-cell function and survival.
Collapse
Affiliation(s)
- Nicholas Esch
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seokwon Jo
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mackenzie Moore
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emilyn U. Alejandro
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Ježek P, Dlasková A. Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells. Mitochondrion 2019; 49:245-258. [DOI: 10.1016/j.mito.2019.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
|
23
|
Mitochondrial Structural Changes in the Pathogenesis of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8091363. [PMID: 31480638 PMCID: PMC6780143 DOI: 10.3390/jcm8091363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
At the core of proper mitochondrial functionality is the maintenance of its structure and morphology. Physical changes in mitochondrial structure alter metabolic pathways inside mitochondria, affect mitochondrial turnover, disturb mitochondrial dynamics, and promote mitochondrial fragmentation, ultimately triggering apoptosis. In high glucose condition, increased mitochondrial fragmentation contributes to apoptotic death in retinal vascular and Müller cells. Although alterations in mitochondrial morphology have been detected in several diabetic tissues, it remains to be established in the vascular cells of the diabetic retina. From a mechanistic standpoint, our current work supports the notion that increased expression of fission genes and decreased expression of fusion genes are involved in promoting excessive mitochondrial fragmentation. While mechanistic insights are only beginning to reveal how high glucose alters mitochondrial morphology, the consequences are clearly seen as release of cytochrome c from fragmented mitochondria triggers apoptosis. Current findings raise the prospect of targeting excessive mitochondrial fragmentation as a potential therapeutic strategy for treatment of diabetic retinopathy. While biochemical and epigenetic changes have been reported to be associated with mitochondrial dysfunction, this review focuses on alterations in mitochondrial morphology, and their impact on mitochondrial function and pathogenesis of diabetic retinopathy.
Collapse
|
24
|
Potential of Mitochondria-Targeted Antioxidants to Prevent Oxidative Stress in Pancreatic β-cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1826303. [PMID: 31249641 PMCID: PMC6556329 DOI: 10.1155/2019/1826303] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic β-cells are vulnerable to oxidative stress due to their low content of redox buffers, such as glutathione, but possess a rich content of thioredoxin, peroxiredoxin, and other proteins capable of redox relay, transferring redox signaling. Consequently, it may be predicted that cytosolic antioxidants could interfere with the cytosolic redox signaling and should not be recommended for any potential therapy. In contrast, mitochondrial matrix-targeted antioxidants could prevent the primary oxidative stress arising from the primary superoxide sources within the mitochondrial matrix, such as at the flavin (IF) and ubiquinone (IQ) sites of superoxide formation within respiratory chain complex I and the outer ubiquinone site (IIIQ) of complex III. Therefore, using time-resolved confocal fluorescence monitoring with MitoSOX Red, we investigated various effects of mitochondria-targeted antioxidants in model pancreatic β-cells (insulinoma INS-1E cells) and pancreatic islets. Both SkQ1 (a mitochondria-targeted plastoquinone) and a suppressor of complex III site Q electron leak (S3QEL) prevented superoxide production released to the mitochondrial matrix in INS-1E cells with stimulatory glucose, where SkQ1 also exhibited an antioxidant role for UCP2-silenced cells. SkQ1 acted similarly at nonstimulatory glucose but not in UCP2-silenced cells. Thus, UCP2 can facilitate the antioxidant mechanism based on SkQ1+ fatty acid anion− pairing. The elevated superoxide formation induced by antimycin A was largely prevented by S3QEL, and that induced by rotenone was decreased by SkQ1 and S3QEL and slightly by S1QEL, acting at complex I site Q. Similar results were obtained with the MitoB probe, for the LC-MS-based assessment of the 4 hr accumulation of reactive oxygen species within the mitochondrial matrix but for isolated pancreatic islets. For 2 hr INS-1E incubations, some samples were influenced by the cell death during the experiment. Due to the frequent dependency of antioxidant effects on metabolic modes, we suggest a potential use of mitochondria-targeted antioxidants for the treatment of prediabetic states after cautious nutrition-controlled tests. Their targeted delivery might eventually attenuate the vicious spiral leading to type 2 diabetes.
Collapse
|
25
|
Pinti MV, Fink GK, Hathaway QA, Durr AJ, Kunovac A, Hollander JM. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis. Am J Physiol Endocrinol Metab 2019; 316:E268-E285. [PMID: 30601700 PMCID: PMC6397358 DOI: 10.1152/ajpendo.00314.2018] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic disease characterized by hyperglycemia, hyperlipidemia, and organismic insulin resistance. This pathological shift in both circulating fuel levels and energy substrate utilization by central and peripheral tissues contributes to mitochondrial dysfunction across organ systems. The mitochondrion lies at the intersection of critical cellular pathways such as energy substrate metabolism, reactive oxygen species (ROS) generation, and apoptosis. It is the disequilibrium of these processes in T2DM that results in downstream deficits in vital functions, including hepatocyte metabolism, cardiac output, skeletal muscle contraction, β-cell insulin production, and neuronal health. Although mitochondria are known to be susceptible to a variety of genetic and environmental insults, the accumulation of mitochondrial DNA (mtDNA) mutations and mtDNA copy number depletion is helping to explain the prevalence of mitochondrial-related diseases such as T2DM. Recent work has uncovered novel mitochondrial biology implicated in disease progressions such as mtDNA heteroplasmy, noncoding RNA (ncRNA), epigenetic modification of the mitochondrial genome, and epitranscriptomic regulation of the mtDNA-encoded mitochondrial transcriptome. The goal of this review is to highlight mitochondrial dysfunction observed throughout major organ systems in the context of T2DM and to present new ideas for future research directions based on novel experimental and technological innovations in mitochondrial biology. Finally, the field of mitochondria-targeted therapeutics is discussed, with an emphasis on novel therapeutic strategies to restore mitochondrial homeostasis in the setting of T2DM.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- West Virginia University School of Pharmacy , Morgantown, West Virginia
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
26
|
Dlasková A, Engstová H, Špaček T, Kahancová A, Pavluch V, Smolková K, Špačková J, Bartoš M, Hlavatá LP, Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:829-844. [PMID: 29727614 DOI: 10.1016/j.bbabio.2018.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Špaček
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anežka Kahancová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Pavluch
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Smolková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Špačková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Bartoš
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Alef Ltd, Prague, Czech Republic
| | - Lydie Plecitá Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
27
|
Esposito S, Masala A, Sanna S, Rassu M, Pimxayvong V, Iaccarino C, Crosio C. Redox-sensitive GFP to monitor oxidative stress in neurodegenerative diseases. Rev Neurosci 2018; 28:133-144. [PMID: 28030361 DOI: 10.1515/revneuro-2016-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
Redox processes are key events in the degenerative cascade of many adult-onset neurodegenerative diseases (NDs), but the biological relevance of a single redox change is often dependent on the redox couple involved and on its subcellular origin. The biosensors based on engineered fluorescent proteins (redox-sensitive GFP [roGFP]) offer a unique opportunity to monitor redox changes in both physiological and pathological contexts in living animals and plants. Here, we review the use of roGFPs to monitor oxidative stress in different three adult-onset NDs: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite the many differences spanning from incidence to onset, the hypotheses on biological processes underlying both sporadic and familiar ND forms in humans outline a model in which noncompeting mechanisms are likely to converge in various unsuccessful patterns to mediate the selective degeneration of a specific neuronal population. roGFPs, targeted to different cell compartments, are successfully used as specific markers of cell toxicity, induced by expression of causative genes linked to a determined ND. We also report the use of roGFP to monitor oxidative stress induced by the expression of the ALS-causative gene SOD1.
Collapse
|
28
|
Špaček T, Pavluch V, Alán L, Capková N, Engstová H, Dlasková A, Berková Z, Saudek F, Ježek P. Nkx6.1 decline accompanies mitochondrial DNA reduction but subtle nucleoid size decrease in pancreatic islet β-cells of diabetic Goto Kakizaki rats. Sci Rep 2017; 7:15674. [PMID: 29142323 PMCID: PMC5688109 DOI: 10.1038/s41598-017-15958-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/04/2017] [Indexed: 01/12/2023] Open
Abstract
Hypertrophic pancreatic islets (PI) of Goto Kakizaki (GK) diabetic rats contain a lower number of β-cells vs. non-diabetic Wistar rat PI. Remaining β-cells contain reduced mitochondrial (mt) DNA per nucleus (copy number), probably due to declining mtDNA replication machinery, decreased mt biogenesis or enhanced mitophagy. We confirmed mtDNA copy number decrease down to <30% in PI of one-year-old GK rats. Studying relations to mt nucleoids sizes, we employed 3D superresolution fluorescent photoactivable localization microscopy (FPALM) with lentivirally transduced Eos conjugate of mt single-stranded-DNA-binding protein (mtSSB) or transcription factor TFAM; or by 3D immunocytochemistry. mtSSB (binding transcription or replication nucleoids) contoured "nucleoids" which were smaller by 25% (less diameters >150 nm) in GK β-cells. Eos-TFAM-visualized nucleoids, composed of 72% localized TFAM, were smaller by 10% (immunochemically by 3%). A theoretical ~70% decrease in cell nucleoid number (spatial density) was not observed, rejecting model of single mtDNA per nucleoid. The β-cell maintenance factor Nkx6.1 mRNA and protein were declining with age (>12-fold, 10 months) and decreasing with fasting hyperglycemia in GK rats, probably predetermining the impaired mtDNA replication (copy number decrease), while spatial expansion of mtDNA kept nucleoids with only smaller sizes than those containing much higher mtDNA in non-diabetic β-cells.
Collapse
Affiliation(s)
- Tomáš Špaček
- Department of Mitochondrial Physiology, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vojtěch Pavluch
- Department of Mitochondrial Physiology, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lukáš Alán
- Department of Mitochondrial Physiology, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Nikola Capková
- Department of Mitochondrial Physiology, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zuzana Berková
- Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - František Saudek
- Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
29
|
Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations. Biophys J 2017; 112:2336-2347. [PMID: 28591606 PMCID: PMC5474842 DOI: 10.1016/j.bpj.2017.04.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022] Open
Abstract
Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention.
Collapse
|
30
|
Yamazawa T, Nakamura N, Sato M, Sato C. Secretory glands and microvascular systems imaged in aqueous solution by atmospheric scanning electron microscopy (ASEM). Microsc Res Tech 2016; 79:1179-1187. [DOI: 10.1002/jemt.22773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Toshiko Yamazawa
- Department of Molecular Physiology; The Jikei University School of Medicine; Minato-ku Tokyo 105-8461 Japan
| | - Naotoshi Nakamura
- Department of Statistical Genetics, Center for Genomic Medicine; Graduate School of Medicine, Kyoto University; Kyoto 606-8507 Japan
| | - Mari Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8568 Japan
| | - Chikara Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8568 Japan
| |
Collapse
|
31
|
Kostiv U, Kotelnikov I, Proks V, Šlouf M, Kučka J, Engstová H, Ježek P, Horák D. RGDS- and TAT-Conjugated Upconversion of NaYF4:Yb(3+)/Er(3+)&SiO2 Nanoparticles: In Vitro Human Epithelioid Cervix Carcinoma Cellular Uptake, Imaging, and Targeting. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20422-20431. [PMID: 27428386 DOI: 10.1021/acsami.6b07291] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Starting NaYF4:Yb(3+)/Er(3+) nanoparticles with size tuned from 24 to 33 nm were prepared by high-temperature coprecipitation of lanthanide chlorides in high-boiling organic solvents. To enhance colloidal stability in aqueous medium, an aminosilica shell was introduced on the surface by hydrolysis and condensation of tetramethyl orthosilicate and (3-aminopropyl)trimethoxysilane using a reverse microemulsion technique; to form alkyne groups, reaction with 4-pentynoic acid followed. Finally, the cell adhesive and cell penetrating azidopentanoyl-GGGRGDSGGGY-NH2 (RGDS) and azidopentanoyl-GGGRKKRRQRRR-NH2 (TAT) peptides were conjugated to the upconversion particles via Cu(I)-catalyzed alkyne-azide cycloaddition. The concentrations of the peptides bound to the nanoparticle surfaces and amount of adsorbed residual Cu(I) catalyst were determined using an (125)I-radiolabeled RGDS peptide and a (64)Cu(I)-doped catalyst, respectively. Targeting and uptake of the RGDS- and TAT-conjugated NaYF4:Yb(3+)/Er(3+)&SiO2 nanoparticles by human cervix carcinoma HeLa cells were monitored by confocal microscopy. RGDS-conjugated nanoparticle probes were mainly localized on the cell plasma membrane due to specific binding of the peptide to the corresponding integrins. In contrast, the TAT-conjugated nanoparticles were able to cross the cell membrane and accumulate in the cell cytoplasm. Thus, this new peptide bioconjugation approach supported both extra- and intracellular nanoparticle uptake, enabling targeting and imaging of the specific tumor phenotypes.
Collapse
Affiliation(s)
- Uliana Kostiv
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Ilya Kotelnikov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Jan Kučka
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Hana Engstová
- Institute of Physiology, Academy of Sciences of the Czech Republic , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Petr Ježek
- Institute of Physiology, Academy of Sciences of the Czech Republic , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
32
|
Schultz J, Waterstradt R, Kantowski T, Rickmann A, Reinhardt F, Sharoyko V, Mulder H, Tiedge M, Baltrusch S. Precise expression of Fis1 is important for glucose responsiveness of beta cells. J Endocrinol 2016; 230:81-91. [PMID: 27179109 DOI: 10.1530/joe-16-0111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 01/27/2023]
Abstract
Mitochondrial network functionality is vital for glucose-stimulated insulin secretion in pancreatic beta cells. Altered mitochondrial dynamics in pancreatic beta cells are thought to trigger the development of type 2 diabetes mellitus. Fission protein 1 (Fis1) might be a key player in this process. Thus, the aim of this study was to investigate mitochondrial morphology in dependence of beta cell function, after knockdown and overexpression of Fis1. We demonstrate that glucose-unresponsive cells with impaired glucose-stimulated insulin secretion (INS1-832/2) showed decreased mitochondrial dynamics compared with glucose-responsive cells (INS1-832/13). Accordingly, mitochondrial morphology visualised using MitoTracker staining differed between the two cell lines. INS1-832/2 cells formed elongated and clustered mitochondria, whereas INS1-832/13 cells showed a homogenous mitochondrial network. Fis1 overexpression using lentiviral transduction significantly improved glucose-stimulated insulin secretion and mitochondrial network homogeneity in glucose-unresponsive cells. Conversely, Fis1 downregulation by shRNA, both in primary mouse beta cells and glucose-responsive INS1-832/13 cells, caused unresponsiveness and significantly greater numbers of elongated mitochondria. Overexpression of FIS1 in primary mouse beta cells indicated an upper limit at which higher FIS1 expression reduced glucose-stimulated insulin secretion. Thus, FIS1 was overexpressed stepwise up to a high concentration in RINm5F cells using the RheoSwitch system. Moderate FIS1 expression improved glucose-stimulated insulin secretion, whereas high expression resulted in loss of glucose responsiveness and in mitochondrial artificial loop structures and clustering. Our data confirm that FIS1 is a key regulator in pancreatic beta cells, because both glucose-stimulated insulin secretion and mitochondrial dynamics were clearly adapted to precise expression levels of this fission protein.
Collapse
Affiliation(s)
- Julia Schultz
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Tobias Kantowski
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Annekatrin Rickmann
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Florian Reinhardt
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Vladimir Sharoyko
- Department of Clinical SciencesUnit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Hindrik Mulder
- Department of Clinical SciencesUnit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| | - Markus Tiedge
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular BiologyUniversity of Rostock, Rostock, Germany
| |
Collapse
|
33
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
34
|
Alán L, Špaček T, Ježek P. Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:443-61. [PMID: 26846371 DOI: 10.1007/s00249-016-1114-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022]
Abstract
Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication.
Collapse
Affiliation(s)
- Lukáš Alán
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Tomáš Špaček
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Ježek
- Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
35
|
Wang H, Wang X, Zhu Y, Chen F, Sun Y, Han X. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function. J Steroid Biochem Mol Biol 2015; 154:254-66. [PMID: 26348137 DOI: 10.1016/j.jsbmb.2015.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/24/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022]
Abstract
Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hongdong Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Xiaping Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Yujie Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China
| | - Xiao Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China.
| |
Collapse
|
36
|
Sukhorukov VM, Meyer-Hermann M. Structural Heterogeneity of Mitochondria Induced by the Microtubule Cytoskeleton. Sci Rep 2015; 5:13924. [PMID: 26355039 PMCID: PMC4565121 DOI: 10.1038/srep13924] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023] Open
Abstract
By events of fusion and fission mitochondria generate a partially interconnected, irregular network of poorly specified architecture. Here, its organization is examined theoretically by taking into account the physical association of mitochondria with microtubules. Parameters of the cytoskeleton mesh are derived from the mechanics of single fibers. The model of the mitochondrial reticulum is formulated in terms of a dynamic spatial graph. The graph dynamics is modulated by the density of microtubules and their crossings. The model reproduces the full spectrum of experimentally found mitochondrial configurations. In centrosome-organized cells, the chondriome is predicted to develop strong structural inhomogeneity between the cell center and the periphery. An integrated analysis of the cytoskeletal and the mitochondrial components reveals that the structure of the reticulum depends on the balance between anterograde and retrograde motility of mitochondria on microtubules, in addition to fission and fusion. We propose that it is the combination of the two processes that defines synergistically the mitochondrial structure, providing the cell with ample capabilities for its regulative adaptation.
Collapse
Affiliation(s)
- Valerii M. Sukhorukov
- Department of Systems Immunology and Braunschweig Integrated Centre
of Systems Biology, Helmholtz Centre for Infection Research,
Inhoffenstr. 7, 38124
Braunschweig, Germany
- Frankfurt Institute for Advanced Studies, Goethe University of
Frankfurt am Main, Ruth-Moufang-Str. 1, 60438
Frankfurt am Main, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre
of Systems Biology, Helmholtz Centre for Infection Research,
Inhoffenstr. 7, 38124
Braunschweig, Germany
- Frankfurt Institute for Advanced Studies, Goethe University of
Frankfurt am Main, Ruth-Moufang-Str. 1, 60438
Frankfurt am Main, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics,
Technische Universität Braunschweig, Langer Kamp 19b,
38106
Braunschweig, Germany
| |
Collapse
|
37
|
Distribution of mitochondrial DNA nucleoids inside the linear tubules vs. bulk parts of mitochondrial network as visualized by 4Pi microscopy. J Bioenerg Biomembr 2015; 47:255-63. [PMID: 25833036 DOI: 10.1007/s10863-015-9610-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Abstract
Mitochondrial nucleoids are confined sites of mitochondrial DNA existing in complex clusters with the DNA-compacting mitochondrial (mt) transcription factor A (TFAM) and other accessory proteins and gene expression machinery proteins, such as a mt single-stranded-DNA-binding protein (mtSSB). To visualize nucleoid distribution within the mt reticular network, we have employed three-dimensional (3D) double-color 4Pi microscopy. The mt network was visualized in hepatocellular carcinoma HepG2 cells via mt-matrix-addressed GFP, while 3D immunocytochemistry of mtSSB was performed. Optimization of iso-surface computation threshold for nucleoid 4Pi images to 30 led to an average nucleoid diameter of 219 ± 110 and 224 ± 100 nm in glucose- and galactose-cultivated HepG2 cells (the latter with obligatory oxidative phosphorylation). We have positioned mtDNA nucleoids within the mt reticulum network and refined our model for nucleoid redistribution within the fragmented network--clustering of up to ten nucleoids in 2 μm diameter mitochondrial spheroids of a fragmented mt network, arising from an original 10 μm mt tubule of a 400 nm diameter. However, the theoretically fragmented bulk parts were observed most frequently as being reintegrated into the continuous mt network in 4Pi images. Since the predicted nucleoid counts within the bulk parts corresponded to the model, we conclude that fragmentation/reintegration cycles are not accompanied by mtDNA degradation or that mtDNA degradation is equally balanced by mtDNA replication.
Collapse
|
38
|
Bensellam M, Montgomery MK, Luzuriaga J, Chan JY, Laybutt DR. Inhibitor of differentiation proteins protect against oxidative stress by regulating the antioxidant-mitochondrial response in mouse beta cells. Diabetologia 2015; 58:758-70. [PMID: 25636209 DOI: 10.1007/s00125-015-3503-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Oxidative stress is implicated in beta cell glucotoxicity in type 2 diabetes. Inhibitor of differentiation (ID) proteins are transcriptional regulators induced by hyperglycaemia in islets, but the mechanisms involved and their role in beta cells are not clear. Here we investigated whether or not oxidative stress regulates ID levels in beta cells and the role of ID proteins in beta cells during oxidative stress. METHODS MIN6 cells were cultured in H2O2 or ribose to induce oxidative stress. ID1, ID3 and small MAF proteins (MAFF, MAFG and MAFK) were inhibited using small interfering RNA. Isolated islets from Id1(-/-), Id3(-/-) and diabetic db/db mice were used. RESULTS ID1-4 expression was upregulated in vivo in the islets of diabetic db/db mice and stimulated in vitro by ribose and H2O2. Id1/3 inhibition reduced the expression of multiple antioxidant genes and potentiated oxidative stress-induced apoptosis. This finding was associated with increased levels of intracellular reactive oxygen species, altered mitochondrial morphology and reduced expression of Tfam, which encodes a mitochondrial transcription factor, and respiratory chain components. Id1/3 inhibition also reduced the expression of small MAF transcription factors (MafF, MafG and MafK), interacting partners of nuclear factor, erythroid 2-like 2 (NFE2L2), master regulator of the antioxidant response. Inhibition of small MAFs reduced the expression of antioxidant genes and potentiated oxidative stress-induced apoptosis, thus recapitulating the effects of Id1/3 inhibition. CONCLUSIONS/INTERPRETATION Our study identifies IDs as a novel family of oxidative stress-responsive proteins in beta cells. IDs are crucial regulators of the adaptive antioxidant-mitochondrial response that promotes beta cell survival during oxidative stress through a novel link to the NFE2L2-small MAF pathway.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | | | | | | | | |
Collapse
|
39
|
Kaufman BA, Li C, Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Aspects Med 2015; 42:91-104. [PMID: 25659350 PMCID: PMC4404204 DOI: 10.1016/j.mam.2015.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
All forms of diabetes share the common etiology of insufficient pancreatic β-cell function to meet peripheral insulin demand. In pancreatic β-cells, mitochondria serve to integrate the metabolism of exogenous nutrients into energy output, which ultimately leads to insulin release. As such, mitochondrial dysfunction underlies β-cell failure and the development of diabetes. Mitochondrial regulation of β-cell function occurs through many diverse pathways, including metabolic coupling, generation of reactive oxygen species, maintenance of mitochondrial mass, and through interaction with other cellular organelles. In this chapter, we will focus on the importance of enzymatic regulators of mitochondrial fuel metabolism and control of mitochondrial mass to pancreatic β-cell function, describing how defects in these pathways ultimately lead to diabetes. Furthermore, we will examine the factors responsible for mitochondrial biogenesis and degradation and their roles in the balance of mitochondrial mass in β-cells. Clarifying the causes of β-cell mitochondrial dysfunction may inform new approaches to treat the underlying etiologies of diabetes.
Collapse
Affiliation(s)
- Brett A Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Alán L, Olejár T, Cahová M, Zelenka J, Berková Z, Smětáková M, Saudek F, Matěj R, Ježek P. Delta Cell Hyperplasia in Adult Goto-Kakizaki (GK/MolTac) Diabetic Rats. J Diabetes Res 2015; 2015:385395. [PMID: 26236746 PMCID: PMC4506919 DOI: 10.1155/2015/385395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/22/2015] [Accepted: 05/31/2015] [Indexed: 01/23/2023] Open
Abstract
Reduced beta cell mass in pancreatic islets (PI) of Goto-Kakizaki (GK) rats is frequently observed in this diabetic model, but knowledge on delta cells is scarce. Aiming to compare delta cell physiology/pathology of GK to Wistar rats, we found that delta cell number increased over time as did somatostatin mRNA and delta cells distribution in PI is different in GK rats. Subtle changes in 6-week-old GK rats were found. With maturation and aging of GK rats, disturbed cytoarchitecture occurred with irregular beta cells accompanied by delta cell hyperplasia and loss of pancreatic polypeptide (PPY) positivity. Unlike the constant glucose-stimulation index for insulin PI release in Wistar rats, this index declined with GK age, whereas for somatostatin it increased with age. A decrease of GK rat PPY serum levels was found. GK rat body weight decreased with increasing hyperglycemia. Somatostatin analog octreotide completely blocked insulin secretion, impaired proliferation at low autocrine insulin, and decreased PPY secretion and mitochondrial DNA in INS-1E cells. In conclusion, in GK rats PI, significant local delta cell hyperplasia and suspected paracrine effect of somatostatin diminish beta cell viability and contribute to the deterioration of beta cell mass. Altered PPY-secreting cells distribution amends another component of GK PI's pathophysiology.
Collapse
Affiliation(s)
- Lukáš Alán
- Department No. 75, Institute of Physiology, Academy of Sciences, 14220 Prague, Czech Republic
| | - Tomáš Olejár
- Department No. 75, Institute of Physiology, Academy of Sciences, 14220 Prague, Czech Republic
| | - Monika Cahová
- Institute of Clinical & Experimental Medicine, 14021 Prague, Czech Republic
| | - Jaroslav Zelenka
- Department No. 75, Institute of Physiology, Academy of Sciences, 14220 Prague, Czech Republic
| | - Zuzana Berková
- Institute of Clinical & Experimental Medicine, 14021 Prague, Czech Republic
| | - Magdalena Smětáková
- Teaching Thomayer Hospital and Third Medical School, Charles University, 14059 Prague, Czech Republic
| | - František Saudek
- Institute of Clinical & Experimental Medicine, 14021 Prague, Czech Republic
| | - Radoslav Matěj
- Teaching Thomayer Hospital and Third Medical School, Charles University, 14059 Prague, Czech Republic
| | - Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences, 14220 Prague, Czech Republic
- *Petr Ježek:
| |
Collapse
|
41
|
Alán L, Špaček T, Zelenka J, Tauber J, Berková Z, Zacharovová K, Saudek F, Ježek P. Assessment of mitochondrial DNA as an indicator of islet quality: an example in Goto Kakizaki rats. Transplant Proc 2014; 43:3281-4. [PMID: 22099777 DOI: 10.1016/j.transproceed.2011.09.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diabetic Goto Kakizaki (GK) rats represent an established model of type 2 diabetes that exhibit an onset of pancreatic islet (PI) pathology characterized by islet hypertrophy with a decreased number of insulin-secreting β-cells. Among the remaining β-cells, oxidative phosphorylation (OXPHOS) and consequently glucose-stimulated insulin secretion (GSIS) are impaired, perhaps owing to a deficit in mitochondrial DNA (mtDNA). We sought to identify this abnormality. METHODS β-Cells were obtained from Accutase-dissolved PI isolated from GK or Wistar rats and sorted based on the positive Zn(2+) signal of Newport Green. The mtDNA copy number per cell was quantified as the amplicon ratio by polymerase chain reaction using specific primers against the rat ND5 mt gene and UCP2 nuclear gene. RESULTS The 12-month-old GK rats exhibited drastically reduced copy numbers per remaining β-cell, from 7,400 ± 600 in 12-month old Wistar rats (100%) to 24 ± 4%; mtDNA content in heart and liver was 70 ± 25% and 60 ± 20%, respectively. Versus age-paired Wistar rats, 6- and 4-month-old GK rats showed reductions to 60 ± 15% and 50 ± 20%, respectively. CONCLUSIONS OXPHOS of remnant β-cells in diabetic GK was drastically impaired due to the lack of sufficient mtDNA levels. We suggest the use of mtDNA quantification to quickly assess PI quality before transplantation.
Collapse
Affiliation(s)
- L Alán
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jakobs S, Wurm CA. Super-resolution microscopy of mitochondria. Curr Opin Chem Biol 2014; 20:9-15. [PMID: 24769752 DOI: 10.1016/j.cbpa.2014.03.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 11/25/2022]
Abstract
Mitochondria, the powerhouses of the cell, are essential organelles in eukaryotic cells. With their complex inner architecture featuring a smooth outer and a highly convoluted inner membrane, they are challenging objects for microscopy. The diameter of mitochondria is generally close to the resolution limit of conventional light microscopy, rendering diffraction-unlimited super-resolution light microscopy (nanoscopy) for imaging submitochondrial protein distributions often mandatory. In this review, we discuss what can be expected when imaging mitochondria with conventional diffraction-limited and diffraction-unlimited microscopy. We provide an overview on recent studies using super-resolution microscopy to investigate mitochondria and discuss further developments and challenges in mitochondrial biology that might by addressed with these technologies in the future.
Collapse
Affiliation(s)
- Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; Department of Neurology, University of Göttingen Medical School, 37073 Göttingen, Germany.
| | - Christian A Wurm
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany
| |
Collapse
|
43
|
Hansson SF, Korsgren S, Pontén F, Korsgren O. Enteroviruses and the pathogenesis of type 1 diabetes revisited: cross-reactivity of enterovirus capsid protein (VP1) antibodies with human mitochondrial proteins. J Pathol 2013; 229:719-28. [PMID: 23335350 DOI: 10.1002/path.4166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/06/2012] [Accepted: 12/25/2012] [Indexed: 01/09/2023]
Abstract
Current or recent enteroviral infections show an association with type 1 diabetes. However, evidence for this has mainly been generated using a particular mouse monoclonal antibody (clone 5-D8/1) which binds the viral capsid protein VP1. Difficulty in confirming these findings using other independent methods has led to the concern that this might be artefactual. To address this, we examined the potential cross-reactivity of clone 5-D8/1 with normal islet proteins. Western blotting, two-dimensional gel electrophoresis, and mass spectrometry were used to identify human islet proteins bound by the clone 5-D8/1. We found a distinct reactivity with two mitochondrial proteins, creatine kinase B-type and ATP synthase beta subunit. Immunohistochemistry using the clone 5-D8/1 revealed a granular cytoplasmic staining pattern in mitochondria-rich cells, ie hepatocytes, ductal epithelial cells, vascular endothelial cells, skeletal muscle cells, and the neoplastic salivary gland oncocytoma cells, whereas connective tissue and infiltrating immune cells were negative. Staining on islets of Langerhans from subjects with recent-onset type 1 diabetes, but not on isolated human islets infected in vitro with enteroviruses, could be blocked after mixing the clone 5-D8/1 with the mitochondrial proteins. Collectively, our data show that the clone 5-D8/1 detects two human mitochondrial enzymes in addition to enteroviral VP1. The notion that the previously reported VP1 positivity in islets of recent-onset type 1 diabetes patients could reflect cross-reactivity to native islet proteins and not the presence of EV is supported by difficulties in demonstrating EV infection by independent techniques such as PCR or in situ hybridization. These findings call for revisiting the presence of enteroviruses in pancreatic islets of patients with type 1 diabetes.
Collapse
Affiliation(s)
- Sara F Hansson
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
44
|
Glucose stimulation induces dynamic change of mitochondrial morphology to promote insulin secretion in the insulinoma cell line INS-1E. PLoS One 2013; 8:e60810. [PMID: 23565276 PMCID: PMC3614983 DOI: 10.1371/journal.pone.0060810] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
Fission and fusion of mitochondrial tubules are the major processes regulating mitochondrial morphology. However, the physiological significance of mitochondrial shape change is poorly understood. Glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells requires mitochondrial ATP production which evokes Ca2+ influx through plasma membrane depolarization, triggering insulin vesicle exocytosis. Therefore, GSIS reflects mitochondrial function and can be used for evaluating functional changes associated with morphological alterations of mitochondria. Using the insulin-secreting cell line INS-1E, we found that glucose stimulation induced rapid mitochondrial shortening and recovery. Inhibition of mitochondrial fission through expression of the dominant-negative mutant DLP1-K38A eliminated this dynamic mitochondrial shape change and, importantly, blocked GSIS. We found that abolishing mitochondrial morphology change in glucose stimulation increased the mitochondrial inner membrane proton leak, and thus significantly diminished the mitochondrial ATP producing capacity in response to glucose stimulation. These results demonstrate that dynamic change of mitochondrial morphology is a previously unrecognized component for metabolism-secretion coupling of pancreatic β-cells by participating in efficient ATP production in response to elevated glucose levels.
Collapse
|
45
|
Redox homeostasis in pancreatic β cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:932838. [PMID: 23304259 PMCID: PMC3532876 DOI: 10.1155/2012/932838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022]
Abstract
We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.
Collapse
|
46
|
Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells. Int J Biochem Cell Biol 2012; 45:593-603. [PMID: 23220174 DOI: 10.1016/j.biocel.2012.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/02/2012] [Accepted: 11/28/2012] [Indexed: 01/22/2023]
Abstract
Mitochondrial DNA (mtDNA) is organized in nucleoids in complex with accessory proteins, proteins of mtDNA replication and gene expression machinery. A robust mtDNA genome is represented by hundreds to thousands of nucleoids in cell mitochondrion. Detailed information is lacking about the dynamics of nucleoid distribution within the mitochondrial network upon physiological and pathological events. Therefore, we used confocal microscopy to study mitochondrial nucleoid redistribution upon mitochondrial fission and following reintegration of the mitochondrial network. Fission was induced by oxidative stress at respiration inhibition by rotenone or upon elimination of the protonmotive force by uncoupling or upon canceling its electrical component, ΔΨ(m), by valinomycin; and by silencing of mitofusin MFN2. Agent withdrawal resulted in concomitant mitochondrial network reintegration. We found two major principal morphological states: (i) a tubular state of the mitochondrial network with equidistant nucleoid spacing, 1.10±0.2 nucleoids per μm, and (ii) a fragmented state of solitary spheroid objects in which several nucleoids were clustered. We rarely observed singular mitochondrial fragments with a single nucleoid inside and very seldom we observed empty fragments. Reintegration of fragments into the mitochondrial network re-established the tubular state with equidistant nucleoid spacing. The two major morphological states coexisted at intermediate stages. These observations suggest that both mitochondrial network fission and reconnection of the disintegrated network are nucleoid-centric, i.e., fission and new mitochondrial tubule formation are initiated around nucleoids. Analyses of combinations of these morphological icons thus provide a basis for a future mitochondrial morphology diagnostics.
Collapse
|
47
|
Abstract
Mitochondrial dynamics contribute to the regulation of mitochondrial shape as well as various mitochondrial functions and quality control. This is of particular interest in the beta-cell because of the key role mitochondria play in the regulation of beta-cell insulin secretion function. Moreover, mitochondrial dysfunction has been suggested to contribute to the development of Type 2 Diabetes. Genetic tools that shift the balance of mitochondrial fusion and fission result in alterations to beta-cell function and viability. Additionally, conditions that induce beta-cell dysfunction, such as exposure to a high nutrient environment, disrupt mitochondrial morphology and dynamics. While it has been shown that mitochondria display a fragmented morphology in islets of diabetic patients and animal models, the mechanism behind this is currently unknown. Here, we review the current literature on mitochondrial morphology and dynamics in the beta-cell as well as some of the unanswered question in this field.
Collapse
Affiliation(s)
| | - Orian S. Shirihai
- Corresponding author: Orian Shirihai, Boston University School of Medicine, 650 Albany St., EBRC X-840, Boston, MA 02118, 1-617-230-8570,
| |
Collapse
|
48
|
Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res 2012; 48:1-26. [PMID: 22504486 DOI: 10.1540/jsmr.48.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Micro- and macrovascular complications are commonly seen in diabetic patients and endothelial dysfunction contributes to the development and progression of the complications. Abnormal functions in endothelial cells lead to the increase in vascular tension and atherosclerosis, followed by systemic hypertension as well as increased incidence of ischemia and stroke in diabetic patients. Mitochondria are organelles serving as a source of energy production and as regulators of cell survival (e.g., apoptosis and cell development) and ion homeostasis (e.g., H(+), Ca(2+)). Endothelial mitochondria are mainly responsible for generation of reactive oxygen species (ROS) and maintaining the Ca(2+) concentration in the cytosol. There is increasing evidence that mitochondrial morphological and functional changes are implicated in vascular endothelial dysfunction. Enhanced mitochondrial fission and/or attenuated fusion lead to mitochondrial fragmentation and disrupt the endothelial physiological function. Abnormal mitochondrial biogenesis and disturbance of mitochondrial autophagy increase the accumulation of damaged mitochondria, such as irreversibly depolarized or leaky mitochondria, and facilitate cell death. Augmented mitochondrial ROS production and Ca(2+) overload in mitochondria not only cause the maladaptive effect on the endothelial function, but also are potentially detrimental to cell survival. In this article, we review the physiological and pathophysiological role of mitochondria in endothelial function with special focus on diabetes.
Collapse
Affiliation(s)
- Meenal Pangare
- University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
49
|
Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab 2012; 23:477-87. [PMID: 22766318 DOI: 10.1016/j.tem.2012.06.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/02/2012] [Accepted: 06/02/2012] [Indexed: 12/17/2022]
Abstract
In pancreatic β cells, mitochondria play a central role in coupling glucose metabolism to insulin exocytosis, thereby ensuring strict control of glucose-stimulated insulin secretion. Defects in mitochondrial function impair this metabolic coupling, and ultimately promote apoptosis and β cell death. Various factors have been identified that may contribute to mitochondrial dysfunction. In this review we address the emerging concept of complex links between these factors. We also discuss the role of the mitochondrial genome and mutations associated with diabetes, the effect of oxidative stress and reactive oxygen species, the sensitivity of mitochondria to lipotoxicity, and the adaptive dynamics of mitochondrial morphology. Better comprehension of the molecular mechanisms contributing to mitochondrial dysfunction will help drive the development of effective therapeutic approaches.
Collapse
Affiliation(s)
- Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
50
|
Lidke DS, Lidke KA. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures. J Cell Sci 2012; 125:2571-80. [PMID: 22685332 DOI: 10.1242/jcs.090027] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.
Collapse
Affiliation(s)
- Diane S Lidke
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|