1
|
Thangaraj SV, Bellingham M, Lea R, Evans N, Sinclair K, Padmanabhan V. Developmental Programming: Sex-specific Effects of Prenatal Exposure to a Real-Life Mixture of Environmental Chemicals on Liver Function and Transcriptome in Sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125630. [PMID: 39756566 DOI: 10.1016/j.envpol.2025.125630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
Humans are chronically exposed to a mixture of environmental chemicals (ECs), many with metabolic and endocrine disrupting potential, contributing to non-communicable disease burden. Understanding the effects of chronic exposure to low-level mixtures of ECs requires an animal model that reflects real-world conditions, lags behind studies on single ECs. Biosolids, from wastewater treatment, offers a real-life model to investigate the developmental health risks from EC mixtures. Prenatal biosolids exposure studies have documented metabolic perturbations including heavier thyroid glands in male fetuses and reduced bodyweight in prepubertal male lambs followed by catchup growth. We hypothesized that maternal preconceptional and gestational exposure of sheep to biosolids programs sex-specific transcriptional and functional changes in the offspring liver. Ewes (F0) were grazed on either inorganic fertilizer (C) or biosolids-treated pastures (BTP) preconception till parturition. All lambs (n = 15/group with male n= 7/group and females n=8/group) were raised on Control pastures until euthanasia at 9.5 weeks. Next generation sequencing of liver RNA and DESeq2 was used to identify exposure-specific differentially expressed genes (DEG) and sex-differentially expressed genes (SDG). Liver function was assessed with markers of oxidative stress, triglyceride and fibrosis markers. Control lambs exhibited 647 SDGs confirming the inherent sexual dimorphism in hepatic gene expression. A sex-stratified analysis identified 10 DEG, mostly affecting metabolism, in male and none in female lambs. Biosolids exposure diminished the sexual dimorphism in hepatic gene expression barring 41 genes, potentially due to the increase in androgenic steroids found in F0 maternal circulation. Additionally, BTP male lambs showed elevated plasma triglyceride and a trend towards increased liver triglyceride concentrations. The identified effects of prenatal exposure to low-dose mixture of ECs via biosolids, in a precocial species paralleling human developmental patterns holds translational importance for understanding the sexually dimorphic origin of non-communicable diseases.
Collapse
Affiliation(s)
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
2
|
Abrego-Guandique DM, Galmés S, García-Rodríguez A, Cannataro R, Caroleo MC, Ribot J, Bonet ML, Cione E. β-Carotene Impacts the Liver MicroRNA Profile in a Sex-Specific Manner in Mouse Offspring of Western Diet-Fed Mothers: Results from Microarray Analysis by Direct Hybridization. Int J Mol Sci 2024; 25:12899. [PMID: 39684610 DOI: 10.3390/ijms252312899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Maternal unbalanced diets cause adverse metabolic programming and affect the offspring's liver microRNA (miRNA) profile. The liver is a site of β-carotene (BC) metabolism and a target of BC action. We studied the interaction of maternal Western diet (WD) and early-life BC supplementation on the epigenetic remodeling of offspring's liver microRNAs. Mouse offspring of WD-fed mothers were given a daily placebo (controls) or BC during suckling. Biometric parameters and liver miRNAome by microarray hybridization were analyzed in newly weaned animals. BC sex-dependently impacted the liver triacylglycerol content. The liver miRNAome was also differently affected in male and female offspring, with no overlap in differentially expressed (DE) miRNAs between sexes and more impact in females. Bioinformatic analysis of DE miRNA predicted target genes revealed enrichment in biological processes/pathways related to metabolic processes, regulation of developmental growth and circadian rhythm, liver homeostasis and metabolism, insulin resistance, and neurodegeneration, among others, with differences between sexes. Fifty-five percent of the overlapping target genes in both sexes identified were targeted by DE miRNAs changed in opposite directions in males and females. The results identify sex-dependent responses of the liver miRNA expression profile to BC supplementation during suckling and may sustain further investigations regarding the long-term impact of early postnatal life BC supplementation on top of an unbalanced maternal diet.
Collapse
Affiliation(s)
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adrián García-Rodríguez
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá 110311, Colombia
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Research Group, Universitat de les Illes Balears, 07122 Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Artificial Intelligence Research Institute of the Balearic Islands (IAIB), University of the Balearic Islands, 07122 Palma, Spain
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
Fougerat A, Bruse J, Polizzi A, Montagner A, Guillou H, Wahli W. Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting. Prog Lipid Res 2024; 96:101303. [PMID: 39521352 DOI: 10.1016/j.plipres.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Peroxisome proliferator-activated receptors (PPARs) constitute a small family of three nuclear receptors that act as lipid sensors, and thereby regulate the transcription of genes having key roles in hepatic and whole-body energy homeostasis, and in other processes (e.g., inflammation), which have far-reaching health consequences. Peroxisome proliferator-activated receptor isotype α (PPARα) is expressed in oxidative tissues, particularly in the liver, carrying out critical functions during the adaptive fasting response. Advanced omics technologies have provided insight into the vast complexity of the regulation of PPAR expression and activity, as well as their downstream effects on the physiology of the liver and its associated metabolic organs. Here, we provide an overview of the gene regulatory networks controlled by PPARα in the liver in response to fasting. We discuss impacts on liver metabolism, the systemic repercussions and benefits of PPARα-regulated ketogenesis and production of fibroblast growth factor 21 (FGF21), a fasting- and stress-inducible metabolic hormone. We also highlight current challenges in using novel methods to further improve our knowledge of PPARα in health and disease.
Collapse
Affiliation(s)
- Anne Fougerat
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France.
| | - Justine Bruse
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Alexandra Montagner
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM UMR1297, Toulouse III University, University Paul Sabatier (UPS), Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, France; Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Peter A, Schleicher E, Kliemank E, Szendroedi J, Königsrainer A, Häring HU, Nawroth PP, Fleming T. Accumulation of Non-Pathological Liver Fat Is Associated with the Loss of Glyoxalase I Activity in Humans. Metabolites 2024; 14:209. [PMID: 38668337 PMCID: PMC11051733 DOI: 10.3390/metabo14040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The underlying molecular mechanisms for the development of non-alcoholic fatty liver (NAFL) and its progression to advanced liver diseases remain elusive. Glyoxalase 1 (Glo1) loss, leading to elevated methylglyoxal (MG) and dicarbonyl stress, has been implicated in various diseases, including obesity-related conditions. This study aimed to investigate changes in the glyoxalase system in individuals with non-pathological liver fat. Liver biopsies were obtained from 30 individuals with a narrow range of BMI (24.6-29.8 kg/m2). Whole-body insulin sensitivity was assessed using HOMA-IR. Liver biopsies were analyzed for total triglyceride content, Glo1 and Glo2 mRNA, protein expression, and activity. Liquid chromatography-tandem mass spectrometry determined liver dicarbonyl content and oxidation and glycation biomarkers. Liver Glo1 activity showed an inverse correlation with HOMA-IR and liver triglyceride content, but not BMI. Despite reduced Glo1 activity, no associations were found with elevated liver dicarbonyls or glycation markers. A sex dimorphism was observed in Glo1, with females exhibiting significantly lower liver Glo1 protein expression and activity, and higher liver MG-H1 content compared to males. This study demonstrates that increasing liver fat, even within a non-pathological range, is associated with reduced Glo1 activity.
Collapse
Affiliation(s)
- Andreas Peter
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72016 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72016 Tübingen, Germany
| | - Erwin Schleicher
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72016 Tübingen, Germany
| | - Elisabeth Kliemank
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
| | - Julia Szendroedi
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, Eberhard-Karls-University Tübingen, 72016 Tübingen, Germany
| | - Hans-Ulrich Häring
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, 72016 Tübingen, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls-University Tübingen, 72016 Tübingen, Germany
| | - Peter P. Nawroth
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, 69120 Heidelberg, Germany
| | - Thomas Fleming
- German Centre for Diabetes Research (DZD), Helmholtz Centre Munich, 85764 Munich, Germany
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Internal Medicine I, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Gebreyesus LH, Choi S, Neequaye P, Mahmoud M, Mahmoud M, Ofosu-Boateng M, Twum E, Nnamani DO, Wang L, Yadak N, Ghosh S, Gonzalez FJ, Gyamfi MA. Pregnane X receptor knockout mitigates weight gain and hepatic metabolic dysregulation in female C57BL/6 J mice on a long-term high-fat diet. Biomed Pharmacother 2024; 173:116341. [PMID: 38428309 PMCID: PMC10983615 DOI: 10.1016/j.biopha.2024.116341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Obesity is a significant risk factor for several chronic diseases. However, pre-menopausal females are protected against high-fat diet (HFD)-induced obesity and its adverse effects. The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor, promotes short-term obesity-associated liver disease only in male mice but not in females. Therefore, the current study investigated the metabolic and pathophysiological effects of a long-term 52-week HFD in female wild-type (WT) and PXR-KO mice and characterized the PXR-dependent molecular pathways involved. After 52 weeks of HFD ingestion, the body and liver weights and several markers of hepatotoxicity were significantly higher in WT mice than in their PXR-KO counterparts. The HFD-induced liver injury in WT female mice was also associated with upregulation of the hepatic mRNA levels of peroxisome proliferator-activated receptor gamma (Pparg), its target genes, fat-specific protein 27 (Fsp27), and the liver-specific Fsp27b involved in lipid accumulation, apoptosis, and inflammation. Notably, PXR-KO mice displayed elevated hepatic Cyp2a5 (anti-obesity gene), aldo-keto reductase 1b7 (Akr1b7), glutathione-S-transferase M3 (Gstm3) (antioxidant gene), and AMP-activated protein kinase (AMPK) levels, contributing to protection against long-term HFD-induced obesity and inflammation. RNA sequencing analysis revealed a general blunting of the transcriptomic response to HFD in PXR-KO compared to WT mice. Pathway enrichment analysis demonstrated enrichment by HFD for several pathways, including oxidative stress and redox pathway, cholesterol biosynthesis, and glycolysis/gluconeogenesis in WT but not PXR-KO mice. In conclusion, this study provides new insights into the molecular mechanisms by which PXR deficiency protects against long-term HFD-induced severe obesity and its adverse effects in female mice.
Collapse
Affiliation(s)
- Lidya H Gebreyesus
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Mattia Mahmoud
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Mia Mahmoud
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Elizabeth Twum
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Daniel O Nnamani
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA
| | - Lijin Wang
- Center for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore
| | - Nour Yadak
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sujoy Ghosh
- Center for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore; Bioinformatics and Computational Biology Core, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Maxwell A Gyamfi
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
6
|
Inyang I, White HE, Timme K, Keating AF. Biological sex differences in hepatic response to in utero dimethylbenz(a)anthracene exposure. Reprod Toxicol 2024; 124:108553. [PMID: 38307155 DOI: 10.1016/j.reprotox.2024.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Fetal hepatic dimethylbenz(a)anthracene (DMBA) biotransformation is not defined, thus, this study investigated whether the fetal liver metabolizes DMBA and differs with biological sex. KK.Cg-a/a (lean; n = 20) or KK.Cg-Ay/J (obese; n = 20) pregnant mice were exposed to corn oil (CT) or DMBA (1 mg/kg bw/day) by intraperitoneal injection (n = 10/treatment) from gestation day 7-14. Postnatal day 2 male or female offspring livers were collected. Total RNA (n = 6) and protein (n = 6) were analyzed via a PCR-based array or LC-MS/MS, respectively. The level of Mgst3 was lower (P < 0.05) in livers of female compared to male offspring. Furthermore, in utero DMBA exposure increased (P < 0.1) Cyp2c29 and Gpx3 levels (P < 0.05) in female offspring. In male offspring, the abundance of Ahr, Comt (P < 0.1), Alox5, and Asna1 (P < 0.05) decreased due to DMBA exposure. Female and male offspring had 34 and 21 hepatic proteins altered (P < 0.05) by in utero DMBA exposure, respectively. Opposing patterns for hepatic CD81 and KRT78 occurred, being decreased in females but increased in males, while YWHAG was decreased by DMBA exposure in both. Functional KEGG pathway analysis identified enrichment of 26 and 13 hepatic metabolic proteins in male and female offspring, respectively, due to in utero DMBA exposure. In silico transcription factor analysis of differentially expressed proteins predicted involvement of female NRF1 but male AHR. Thus, hepatic biological sex differences and capacity to respond to toxicants in utero are supported.
Collapse
Affiliation(s)
| | - Hunter E White
- Department of Animal Science, Iowa State University, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, USA
| | | |
Collapse
|
7
|
Attema B, Kummu O, Pitkänen S, Weisell J, Vuorio T, Pennanen E, Vorimo M, Rysä J, Kersten S, Levonen AL, Hakkola J. Metabolic effects of nuclear receptor activation in vivo after 28-day oral exposure to three endocrine-disrupting chemicals. Arch Toxicol 2024; 98:911-928. [PMID: 38182912 PMCID: PMC10861694 DOI: 10.1007/s00204-023-03658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Environmental exposure to endocrine-disrupting chemicals (EDCs) can lead to metabolic disruption, resulting in metabolic complications including adiposity, dyslipidemia, hepatic lipid accumulation, and glucose intolerance. Hepatic nuclear receptor activation is one of the mechanisms mediating metabolic effects of EDCs. Here, we investigated the potential to use a repeated dose 28-day oral toxicity test for identification of EDCs with metabolic endpoints. Bisphenol A (BPA), pregnenolone-16α-carbonitrile (PCN), and perfluorooctanoic acid (PFOA) were used as reference compounds. Male and female wild-type C57BL/6 mice were orally exposed to 5, 50, and 500 μg/kg of BPA, 1000, 10 000, and 100 000 µg/kg of PCN and 50 and 300 μg/kg of PFOA for 28 days next to normal chow diet. Primary endpoints were glucose tolerance, hepatic lipid accumulation, and plasma lipids. After 28-day exposure, no changes in body weight and glucose tolerance were observed in BPA-, PCN-, or PFOA-treated males or females. PCN and PFOA at the highest dose in both sexes and BPA at the middle and high dose in males increased relative liver weight. PFOA reduced plasma triglycerides in males and females, and increased hepatic triglyceride content in males. PCN and PFOA induced hepatic expression of typical pregnane X receptor (PXR) and peroxisome proliferator-activated receptor (PPAR)α target genes, respectively. Exposure to BPA resulted in limited gene expression changes. In conclusion, the observed changes on metabolic health parameters were modest, suggesting that a standard repeated dose 28-day oral toxicity test is not a sensitive method for the detection of the metabolic effect of EDCs.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Sini Pitkänen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna Weisell
- Finnish Institute of Occupational Health, Kuopio, Finland
| | - Taina Vuorio
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Erika Pennanen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Vorimo
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Anna-Liisa Levonen
- A.I. Virtanen-Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
8
|
Toews JNC, Philippe TJ, Dordevic M, Hill LA, Hammond GL, Viau V. Corticosteroid-Binding Globulin (SERPINA6) Consolidates Sexual Dimorphism of Adult Rat Liver. Endocrinology 2023; 165:bqad179. [PMID: 38015819 PMCID: PMC10699879 DOI: 10.1210/endocr/bqad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Produced by the liver, corticosteroid-binding globulin (CBG) regulates the plasma distribution and actions of glucocorticoids. A sex difference in pituitary growth hormone secretion patterns established during puberty in rats results in increased hepatic CBG production and 2-fold higher plasma corticosterone levels in females. Glucocorticoids control hepatic development and metabolic activities, and we have therefore examined how disrupting the SerpinA6 gene encoding CBG influences plasma corticosterone dynamics, as well as liver gene expression in male and female rats before and after puberty. Comparisons of corticosterone plasma clearance and hepatic uptake in adult rats, with or without CBG, indicated that CBG limits corticosterone clearance by reducing its hepatic uptake. Hepatic transcriptomic profiling revealed minor sex differences (207 differentially expressed genes) and minimal effect of CBG deficiency in 30-day-old rats before puberty. While liver transcriptomes in 60-day-old males lacking CBG remained essentially unchanged, 2710 genes were differentially expressed in wild-type female vs male livers at this age. Importantly, ∼10% of these genes lost their sexually dimorphic expression in adult females lacking CBG, including those related to cholesterol biosynthesis, inflammation, and lipid and amino acid catabolism. Another 203 genes were altered by the loss of CBG specifically in adult females, including those related to xenobiotic metabolism, circadian rhythm, and gluconeogenesis. Our findings reveal that CBG consolidates the sexual dimorphism of the rat liver initiated by sex differences in growth hormone secretion patterns and provide insight into how CBG deficiencies are linked to glucocorticoid-dependent diseases.
Collapse
Affiliation(s)
- Julia N C Toews
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Dordevic
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Hopkins KE, McKinney MA, Letcher RJ, Fernie KJ. The influence of environmental and ecological factors on the accumulation and distribution of short- and long-chain perfluoroalkyl acids in a mid-trophic avian insectivore. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121133. [PMID: 36690292 DOI: 10.1016/j.envpol.2023.121133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Perfluoroalkyl acids (PFAAs) include perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorodecane sulfonic acid (PFDS), as well as increasingly used alternative short-chain perfluorosulfonic acids (PFSAs) and short- and long-chain (≥C9) perfluorocarboxylic acids (PFCAs). In the present study, tissues of tree swallows (Tachycineta bicolor) from two sites in southern Ontario, Canada, were analyzed for 17 individual PFAAs and showed egg and nestling tissue (liver, carcass) profiles dominated by PFOS (57-66%). The remaining PFAAs contributed ≤7% each, although collectively the long-chain PFCAs comprised 21-29% of the PFAAs. The short-chain PFSAs and PFCAs were among the lowest concentrations, suggesting that despite increased production and use of these alternative PFAAs, they are not accumulated to the same extent as the long-chain PFSAs and PFCAs. PFOS, PFDS, and some long-chain PFCAs were significantly higher in eggs than in livers and carcasses, whereas PFOA and the two short-chain PFCAs were significantly higher in nestling tissues than in eggs. For the two short-chain PFSAs, concentrations were similar among tissues. Tree swallow tissues at the site near a wastewater treatment plant (WWTP) outfall showed higher concentrations of PFOS, PFDS, PFHxS, and some long-chain PFCAs than tree swallows sampled at the nearby reference site; however, the influence of the WWTP was more equivocal for PFOA, other long-chain PFCAs, and short-chain PFSAs and PFCAs. Carbon stable isotopes (δ13C) and fatty acid signatures indicated that the diets of the WWTP swallows were more terrestrial than the reference swallows. Nonetheless, models considering environmental and ecological variables indicated that site was often the primary driver of PFAA variation among the swallows, with less or no influence of dietary patterns, or sex or body condition, revealing that of WWTP effluent can be an important environmental source of the major PFAAs in tree swallows.
Collapse
Affiliation(s)
- Kailee E Hopkins
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1A 0H3, Canada
| | - Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON, L7S 1A1, Canada; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
10
|
Solanas E, Sanchez-Fuentes N, Serrablo A, Lue A, Lorente S, Cortés L, Lanas A, Baptista PM, Serrano MT. How Donor and Surgical Factors Affect the Viability and Functionality of Human Hepatocytes Isolated From Liver Resections. Front Med (Lausanne) 2022; 9:875147. [PMID: 35646956 PMCID: PMC9132360 DOI: 10.3389/fmed.2022.875147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Liver resections are a significant source of primary human hepatocytes used mainly in artificial liver devices and pharmacological and biomedical studies. However, it is not well known how patient-donor and surgery-dependent factors influence isolated hepatocytes’ yield, viability, and function. Hence, we aimed to analyze the impact of all these elements on the outcome of human hepatocyte isolation.
Collapse
Affiliation(s)
- Estela Solanas
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Nieves Sanchez-Fuentes
- Hepato-Pancreato-Biliary Surgical Division, Miguel Servet University Hospital, Zaragoza, Spain
| | - Alejandro Serrablo
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Hepato-Pancreato-Biliary Surgical Division, Miguel Servet University Hospital, Zaragoza, Spain
| | - Alberto Lue
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Department of Digestive Diseases, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Sara Lorente
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Department of Digestive Diseases, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Luis Cortés
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Department of Digestive Diseases, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Angel Lanas
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Department of Digestive Diseases, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Pedro M Baptista
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,ARAID Foundation, Zaragoza, Spain.,Department of Biomedical Engineering, Carlos III University of Madrid, Madrid, Spain
| | - M Trinidad Serrano
- Aragón Institute for Health Research (IIS Aragón), Zaragoza, Spain.,Department of Digestive Diseases, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
11
|
Tanaka K, Besson V, Rivagorda M, Oury F, Marazzi G, Sassoon DA. Paternally expressed gene 3 (Pw1/Peg3) promotes sexual dimorphism in metabolism and behavior. PLoS Genet 2022; 18:e1010003. [PMID: 35025875 PMCID: PMC8791484 DOI: 10.1371/journal.pgen.1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/26/2022] [Accepted: 12/20/2021] [Indexed: 01/06/2023] Open
Abstract
The paternally expressed gene 3 (Pw1/Peg3) is a mammalian-specific parentally imprinted gene expressed in stem/progenitor cells of the brain and endocrine tissues. Here, we compared phenotypic characteristics in Pw1/Peg3 deficient male and female mice. Our findings indicate that Pw1/Peg3 is a key player for the determination of sexual dimorphism in metabolism and behavior. Mice carrying a paternally inherited Pw1/Peg3 mutant allele manifested postnatal deficits in GH/IGF dependent growth before weaning, sex steroid dependent masculinization during puberty, and insulin dependent fat accumulation in adulthood. As a result, Pw1/Peg3 deficient mice develop a sex-dependent global shift of body metabolism towards accelerated adiposity, diabetic-like insulin resistance, and fatty liver. Furthermore, Pw1/Peg3 deficient males displayed reduced social dominance and competitiveness concomitant with alterations in the vasopressinergic architecture in the brain. This study demonstrates that Pw1/Peg3 provides an epigenetic context that promotes male-specific characteristics through sex steroid pathways during postnatal development. Pw1/Peg3 is under parental specific epigenetic regulation. We propose that Pw1/Peg3 confers a selective advantage in mammals by regulating sexual dimorphism. To address this question, we examined the consequences of Pw1/Peg3 loss of function in mice in an age- and sex-dependent context and found that Pw1/Peg3 mutants display reduced sexual dimorphism in growth, metabolism and behaviors. Our findings support the intralocus sexual conflict model of genomic imprinting where it contributes in sexual differentiation. Furthermore, our observations provide a unifying role of sex steroid signaling as a common property of Pw1/Peg3 expressing stem/progenitor cells and differentiated endocrine cells, both of which remain proliferative in response to gonadal hormones in adult life.
Collapse
Affiliation(s)
- Karo Tanaka
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Vanessa Besson
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Manon Rivagorda
- Hormonal Regulation of Brain Development and Functions, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Franck Oury
- Hormonal Regulation of Brain Development and Functions, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - David A. Sassoon
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Lefebvre P, Staels B. Hepatic sexual dimorphism - implications for non-alcoholic fatty liver disease. Nat Rev Endocrinol 2021; 17:662-670. [PMID: 34417588 DOI: 10.1038/s41574-021-00538-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The liver is often thought of as a single functional unit, but both its structural and functional architecture make it highly multivalent and adaptable. In any given physiological situation, the liver can maintain metabolic homeostasis, conduct appropriate inflammatory responses, carry out endobiotic and xenobiotic transformation and synthesis reactions, as well as store and release multiple bioactive molecules. Moreover, the liver is a very resilient organ. This resilience means that chronic liver diseases can go unnoticed for decades, yet culminate in life-threatening clinical complications once the adaptive capacity of the liver is overwhelmed. Non-alcoholic fatty liver disease (NAFLD) predisposes individuals to cirrhosis and increases liver-related and cardiovascular disease-related mortality. This Review discusses the accumulating evidence of sexual dimorphism in NAFLD, which is currently rarely considered in preclinical and clinical studies. Increased awareness of the mechanistic causes of hepatic sexual dimorphism could lead to improved understanding of the biological processes that are dysregulated in NAFLD, to the identification of relevant therapeutic targets and to improved risk stratification of patients with NAFLD undergoing therapeutic intervention.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Bart Staels
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
13
|
Mesnage R, Mahmud N, Mein CA, Antoniou MN. Alterations in small RNA profiles in liver following a subchronic exposure to a low-dose pesticide mixture in Sprague-Dawley rats. Toxicol Lett 2021; 353:20-26. [PMID: 34626815 DOI: 10.1016/j.toxlet.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Small RNAs have emerged as a promising new type of biomarker to monitor health status and track the development of diseases. Here we report changes in the levels of small RNAs in the liver of rats exposed to a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole). Multivariate analysis with OPLS-DA methods showed that small RNA profiles can discriminate samples from pesticide treated rats from their concurrent controls. A total of 9 miRNAs were found to have their levels altered in the liver of the pesticide-treated rats in comparison to the controls, which included 7 that were downregulated (miR-22-5p, miR-193a-3p, miR-32-5p, miR-33-5p, miR-122-5p, miR-22-3p, miR-130a-3p) and 2 that were upregulated (miR-486-5p, miR-146a-5p). These miRNAs were predicted to regulate genes, which were found to have their expression altered by the pesticide mixture and have known health implications in the regulation of hepatic metabolism. This supports and extends our recent conclusions that high- throughput 'omics' analyses can reveal molecular perturbations, which can potentially act as sensitive and accurate markers of health risks arising from exposure to environmental pollutants such as pesticides.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Nadiya Mahmud
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, E1 2AT, United Kingdom
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, E1 2AT, United Kingdom
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, United Kingdom.
| |
Collapse
|
14
|
Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver. Metabolites 2021; 11:metabo11080502. [PMID: 34436443 PMCID: PMC8398935 DOI: 10.3390/metabo11080502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a vital organ that sustains multiple functions beneficial for the whole organism. It is sexually dimorphic, presenting sex-biased gene expression with implications for the phenotypic differences between males and females. Estrogens are involved in this sex dimorphism and their actions in the liver of several reptiles, fishes, amphibians, and birds are discussed. The liver participates in reproduction by producing vitellogenins (yolk proteins) and eggshell proteins under the control of estrogens that act via two types of receptors active either mainly in the cell nucleus (ESR) or the cell membrane (GPER1). Estrogens also control hepatic lipid and lipoprotein metabolisms, with a triglyceride carrier role for VLDL from the liver to the ovaries during oogenesis. Moreover, the activation of the vitellogenin genes is used as a robust biomarker for exposure to xenoestrogens. In the context of liver diseases, high plasma estrogen levels are observed in fatty liver hemorrhagic syndrome (FLHS) in chicken implicating estrogens in the disease progression. Fishes are also used to investigate liver diseases, including models generated by mutation and transgenesis. In conclusion, studies on the roles of estrogens in the non-mammalian oviparous vertebrate liver have contributed enormously to unveil hormone-dependent physiological and physiopathological processes.
Collapse
|
15
|
Dean AE, Reichardt F, Anakk S. Sex differences feed into nuclear receptor signaling along the digestive tract. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166211. [PMID: 34273530 DOI: 10.1016/j.bbadis.2021.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sex differences in physiology are noted in clinical and animal studies. However, mechanisms underlying these observed differences between males and females remain elusive. Nuclear receptors control a wide range of physiological pathways and are expressed in the gastrointestinal tract, including the mouth, stomach, liver and intestine. We investigated the literature pertaining to ER, AR, FXR, and PPAR regulation and highlight the sex differences in nutrient metabolism along the digestive system. We chose these nuclear receptors based on their metabolic functions, and hormonal actions. Intriguingly, we noted an overlap in target genes of ER and FXR that modulate mucosal integrity and GLP-1 secretion, whereas overlap in target genes of PPARα with ER and AR modulate lipid metabolism. Sex differences were seen not only in the basal expression of nuclear receptors, but also in activation as their endogenous ligand concentrations fluctuate depending on nutrient availability. Finally, in this review, we speculate that interactions between the nuclear receptors may influence overall metabolic decisions in the gastrointestinal tract in a sex-specific manner.
Collapse
Affiliation(s)
- Angela E Dean
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - François Reichardt
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Sayeepriyadarshini Anakk
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States of America; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| |
Collapse
|
16
|
Sex-dependent dynamics of metabolism in primary mouse hepatocytes. Arch Toxicol 2021; 95:3001-3013. [PMID: 34241659 PMCID: PMC8380230 DOI: 10.1007/s00204-021-03118-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022]
Abstract
The liver is one of the most sexually dimorphic organs. The hepatic metabolic pathways that are subject to sexual dimorphism include xenobiotic, amino acid and lipid metabolism. Non-alcoholic fatty liver disease and hepatocellular carcinoma are among diseases with sex-dependent prevalence, progression and outcome. Although male and female livers differ in their abilities to metabolize foreign compounds, including drugs, sex-dependent treatment and pharmacological dynamics are rarely applied in all relevant cases. Therefore, it is important to consider hepatic sexual dimorphism when developing new treatment strategies and to understand the underlying mechanisms in model systems. We isolated primary hepatocytes from male and female C57BL6/N mice and examined the sex-dependent transcriptome, proteome and extracellular metabolome parameters in the course of culturing them for 96 h. The sex-specific gene expression of the general xenobiotic pathway altered and the female-specific expression of Cyp2b13 and Cyp2b9 was significantly reduced during culture. Sex-dependent differences of several signaling pathways increased, including genes related to serotonin and melatonin degradation. Furthermore, the ratios of male and female gene expression were inversed for other pathways, such as amino acid degradation, beta-oxidation, androgen signaling and hepatic steatosis. Because the primary hepatocytes were cultivated without the influence of known regulators of sexual dimorphism, these results suggest currently unknown modulatory mechanisms of sexual dimorphism in vitro. The large sex-dependent differences in the regulation and dynamics of drug metabolism observed during cultivation can have an immense influence on the evaluation of pharmacodynamic processes when conducting initial preclinical trials to investigate potential new drugs.
Collapse
|
17
|
Gil NL, Azevedo GA, Balbino AM, Silva MM, Carvalho MHC, Akamine EH, Keller AC, Landgraf RG, Landgraf MA. Intrauterine growth restriction leads to a high-corticosterone producing offspring: An implication for pulmonary infection susceptibility. Life Sci 2021; 281:119764. [PMID: 34186045 DOI: 10.1016/j.lfs.2021.119764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
AIMS Although intrauterine growth restriction (IUGR) impairs immune system homeostasis and lung development, its relationship with the susceptibility to pulmonary infections remains unclear. Thus, this study aimed to investigate the impact of IUGR on acute lung inflammatory response induced by bacterial stimulus. MATERIALS AND METHODS Pregnant female Wistar rats were subjected to 50% caloric-protein food restriction during gestation. To mimic bacterial lung infection, adult male offspring (12 weeks old) were challenged with a single lipopolysaccharide (LPS) intranasal instillation, and 6 h later, we assessed the acute inflammatory response. Normal birth weight (NBW) animals represent the control group. KEY FINDINGS LPS instillation increased the protein levels in the airways of both the NBW and low birth weight (LBW) groups, indicating vascular leakage. LBW animals exhibited a lower number of neutrophils, reduced production of interleukin-6 and macrophage-inflammatory protein-2 and decreased upregulation of intercellular adhesion molecule-1 gene expression in lung tissues. Further analysis revealed that the LBW group produced lower levels of prostaglandin-E2 and failed to secrete leukotriene-B4 upon LPS stimulation, which correlated with impaired cyclooxygenase-2 and 5-lipoxygenase expression. These results were probably associated with their inability to upregulate the expression of Toll-like receptor-4 and downstream signaling proteins, such as nuclear factor kappa-B, in the lungs. The LBW group also exhibited abnormal airway thickening and high corticosterone levels under basal conditions. SIGNIFICANCE This study suggests that IUGR-induced foetal programming in LBW offspring threatens HPA axis physiology and corticosterone biodisponibility, and impairs the innate response to bacterial antigens, increasing future susceptibility to pulmonary infection.
Collapse
Affiliation(s)
- Noemi L Gil
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Gabriela A Azevedo
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Aleksandro M Balbino
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Marina M Silva
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | | | - Eliana H Akamine
- Department of Pharmacology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alexandre C Keller
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Richardt G Landgraf
- Department of Pharmaceuticals Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil.
| | | |
Collapse
|
18
|
Paraiso IL, Tran TQ, Magana AA, Kundu P, Choi J, Maier CS, Bobe G, Raber J, Kioussi C, Stevens JF. Xanthohumol ameliorates Diet-Induced Liver Dysfunction via Farnesoid X Receptor-Dependent and Independent Signaling. Front Pharmacol 2021; 12:643857. [PMID: 33959012 PMCID: PMC8093804 DOI: 10.3389/fphar.2021.643857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The farnesoid X receptor (FXR) plays a critical role in the regulation of lipid and bile acid (BA) homeostasis. Hepatic FXR loss results in lipid and BA accumulation, and progression from hepatic steatosis to nonalcoholic steatohepatitis (NASH). This study aimed to evaluate the effects of xanthohumol (XN), a hop-derived compound mitigating metabolic syndrome, on liver damage induced by diet and FXR deficiency in mice. Wild-type (WT) and liver-specific FXR-null mice (FXRLiver−/−) were fed a high-fat diet (HFD) containing XN or the vehicle formation followed by histological characterization, lipid, BA and gene profiling. HFD supplemented with XN resulted in amelioration of hepatic steatosis and decreased BA concentrations in FXRLiver−/− mice, the effect being stronger in male mice. XN induced the constitutive androstane receptor (CAR), pregnane X receptor (PXR) and glucocorticoid receptor (GR) gene expression in the liver of FXRLiver−/− mice. These findings suggest that activation of BA detoxification pathways represents the predominant mechanism for controlling hydrophobic BA concentrations in FXRLiver−/− mice. Collectively, these data indicated sex-dependent relationship between FXR, lipids and BAs, and suggest that XN ameliorates HFD-induced liver dysfunction via FXR-dependent and independent signaling.
Collapse
Affiliation(s)
- Ines L Paraiso
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Thai Q Tran
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Armando Alcazar Magana
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Payel Kundu
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Jacob Raber
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Department of Neurology, Psychiatry and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, United States
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
19
|
Mesnage R, Teixeira M, Mandrioli D, Falcioni L, Ibragim M, Ducarmon QR, Zwittink RD, Amiel C, Panoff JM, Bourne E, Savage E, Mein CA, Belpoggi F, Antoniou MN. Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats. Commun Biol 2021; 4:471. [PMID: 33854195 PMCID: PMC8046807 DOI: 10.1038/s42003-021-01990-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Health effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metagenomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low concentrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - Maxime Teixeira
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | | | | | - Mariam Ibragim
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK
| | - Quinten Raymond Ducarmon
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Romy Daniëlle Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Amiel
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | - Jean-Michel Panoff
- UR Aliments Bioprocédés Toxicologie Environnements, EA 4651, University of Caen Normandy (UCN), Caen, France
| | - Emma Bourne
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Emanuel Savage
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Charles A Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | | | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, UK.
| |
Collapse
|
20
|
Le Magueresse-Battistoni B. Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side? CHEMOSPHERE 2021; 268:129212. [PMID: 33359838 DOI: 10.1016/j.chemosphere.2020.129212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are linked to the worldwide epidemic incidence of metabolic disorders and fatty liver diseases, which affects quality of life and represents a high economic cost to society. Energy homeostasis exhibits strong sexual dimorphic traits, and metabolic organs respond to EDCs depending on sex, such as the liver, which orchestrates both drug elimination and glucose and lipid metabolism. In addition, fatty liver diseases show a strong sexual bias, which in part could also originate from sex differences observed in gut microbiota. The aim of this review is to highlight significant differences in endocrine and metabolic aspects of the liver, between males and females throughout development and into adulthood. It is also to illustrate how the male and female liver differently cope with exposure to various EDCs such as bisphenols, phthalates and persistent organic chemicals in order to draw attention to the need to include both sexes in experimental studies. Interesting data come from analyses of the composition and diversity of the gut microbiota in males exposed to the mentioned EDCs showing significant correlations with hepatic lipid accumulation and metabolic disorders but information on females is lacking or incomplete. As industrialization increases, the list of anthropogenic chemicals to which humans will be exposed will also likely increase. In addition to strengthening existing regulations, encouraging populations to protect themselves and promoting the substitution of harmful chemicals with safe products, innovative strategies based on sex differences in the gut microbiota and in the gut-liver axis could be optimistic outlook.
Collapse
|
21
|
PPARs in liver physiology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166097. [PMID: 33524529 DOI: 10.1016/j.bbadis.2021.166097] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and transcriptional modulators with crucial functions in hepatic and whole-body energy homeostasis. Besides their well-documented roles in lipid and glucose metabolism, emerging evidence also implicate PPARs in the control of other processes such as inflammatory responses. Recent technological advances, such as single-cell RNA sequencing, have allowed to unravel an unexpected complexity in the regulation of PPAR expression, activity and downstream signaling. Here we provide an overview of the latest advances in the study of PPARs in liver physiology, with a specific focus on formerly neglected aspects of PPAR regulation, such as tissular zonation, cellular heterogeneity, circadian rhythms, sexual dimorphism and species-specific features.
Collapse
|
22
|
Ullah I, Shin Y, Kim Y, Oh KB, Hwang S, Kim YI, Lee JW, Hur TY, Lee S, Ock SA. Effect of sex-specific differences on function of induced hepatocyte-like cells generated from male and female mouse embryonic fibroblasts. Stem Cell Res Ther 2021; 12:79. [PMID: 33494802 PMCID: PMC7831237 DOI: 10.1186/s13287-020-02100-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The liver is one of the vital organs involved in detoxification and metabolism. The sex-based differences between the functionality of male and female liver have been previously reported, i.e., male's liver are good in alcohol clearance and lipid metabolism, while female's liver are better in cholesterol metabolism. To date, studies on novel drug toxicity have not considered the sex-specific dimorphic nature of the liver. However, the use of hepatocyte-like cells to treat liver diseases has increased recently. METHODS Mouse embryos were isolated from a pregnant female C57BL/6J mouse where mouse embryonic fibroblasts (MEFs) were isolated from back skin tissue of each embryo. MEFs were transduced with human transcription factors hHnf1α, hHnf4α, and hFoxa3 using the lentiviral system. The transduced MEFs were further treated with hepatocyte-conditioned media followed by its analysis through RT-qPCR, immunofluorescence, functional assays, and finally whole-transcriptome RNA sequencing analysis. For in vivo investigation, the mouse hepatocyte-like cells (miHep) were transplanted into CCl4-induced acute liver mouse model. RESULTS In this study, we evaluated the sex-specific effect of miHep induced from male- and female-specific mouse embryonic fibroblasts (MEFs). We observed miHeps with a polygonal cytoplasm and bipolar nucleus and found that male miHeps showed higher mHnf4a, albumin secretion, and polyploidization than female miHeps. Transcriptomes from miHeps were similar to those from the liver, especially for Hnf4a of male miHeps. Male Cyps were normalized to those from females, which revealed Cyp expression differences between liver and miHeps. In both liver and miHeps, Cyp 4a12a and Cyp 4b13a/2b9 predominated in males and females, respectively. After grafting of miHeps, AST/ALT decreased, regardless of mouse sex. CONCLUSION In conclusion, activation of endogenic Hnf4a is important for generation of successful sex-specific miHeps; furthermore, the male-derived miHep exhibits comparatively enhanced hepatic features than those of female miHep.
Collapse
Affiliation(s)
- Imran Ullah
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea.,Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yurianna Shin
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Yeongji Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Young-Im Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwakhak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tai-Young Hur
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Seunghoon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi-ro, Isero-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea.
| |
Collapse
|
23
|
Savva C, Helguero LA, González-Granillo M, Couto D, Melo T, Li X, Angelin B, Domingues MR, Kutter C, Korach-André M. Obese mother offspring have hepatic lipidic modulation that contributes to sex-dependent metabolic adaptation later in life. Commun Biol 2021; 4:14. [PMID: 33398027 PMCID: PMC7782679 DOI: 10.1038/s42003-020-01513-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
With the increasing prevalence of obesity in women of reproductive age, there is an urgent need to understand the metabolic impact on the fetus. Sex-related susceptibility to liver diseases has been demonstrated but the underlying mechanism remains unclear. Here we report that maternal obesity impacts lipid metabolism differently in female and male offspring. Males, but not females, gained more weight and had impaired insulin sensitivity when born from obese mothers compared to control. Although lipid mass was similar in the livers of female and male offspring, sex-specific modifications in the composition of fatty acids, triglycerides and phospholipids was observed. These overall changes could be linked to sex-specific regulation of genes controlling metabolic pathways. Our findings revised the current assumption that sex-dependent susceptibility to metabolic disorders is caused by sex-specific postnatal regulation and instead we provide molecular evidence supporting in utero metabolic adaptations in the offspring of obese mothers.
Collapse
Affiliation(s)
- Christina Savva
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Daniela Couto
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Xidan Li
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marion Korach-André
- Department of Medicine, Cardio Metabolic Unit (CMU) and KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
24
|
Pilorz V, Kolms B, Oster H. Rapid Jetlag Resetting of Behavioral, Physiological, and Molecular Rhythms in Proestrous Female Mice. J Biol Rhythms 2020; 35:612-627. [PMID: 33140660 DOI: 10.1177/0748730420965291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A gradual adaptation to a shifted light-dark (LD) cycle is a key element of the circadian clock system and believed to be controlled by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Endocrine factors have a strong influence on the regulation of the circadian clock network and alter acute photic responses of the SCN clock. In females, endocrine function depends on the stage of the ovarian cycle. So far, however, little is known about the effect of the estrous cycle on behavioral and molecular responses to shifts in the LD rhythm. Based on this, we investigated whether estrous state affects the kinetics of phase shift during jetlag in behavior, physiology, and molecular clock rhythms in the SCN and in peripheral tissues. Female mice exposed to an advanced LD phase at proestrous or metestrous showed different phase-shift kinetics, with proestrous females displaying accelerated adaptation in behavior and physiology. Constant darkness release experiments suggest that these fast phase shifts do not reflect resetting of the SCN pacemaker. Explant experiments on SCN, adrenal gland, and uterus confirmed this finding with proestrous females showing significantly faster clock phase shifts in peripheral tissues compared with the SCN. Together, these findings provide strong evidence for an accelerated adaptation of proestrous compared with metestrous females to new LD conditions that is accompanied by rapid behavioral, physiological, and molecular rhythm resetting. Not only do these findings open up a new avenue to understand the effect of estrous cycle on the clock network under changing environmental conditions but also imply a greater susceptibility in proestrous females.
Collapse
Affiliation(s)
- Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Beke Kolms
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Luebeck, Germany
| |
Collapse
|
25
|
Melo L, Tilmant K, Hagar A, Klaunig JE. Effect of endurance exercise training on liver gene expression in male and female mice. Appl Physiol Nutr Metab 2020; 46:356-367. [PMID: 33052711 DOI: 10.1139/apnm-2020-0379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic endurance exercise is a therapeutic strategy in the treatment of many chronic diseases in humans, including the prevention and treatment of metabolic diseases such as diabetes mellitus. Metabolic, cardiorespiratory, and endocrine pathways targeted by chronic endurance exercise have been identified. In the liver, however, the cellular and molecular pathways that are modified by exercise and have preventive or therapeutic relevance to metabolic disease need to be elucidated. The mouse model used in the current study allows for the quantification of a human-relevant exercise "dosage". In this study we show hepatic gene expression differences between sedentary female and sedentary male mice and that chronic exercise modifies the transcription of hepatic genes related to metabolic disease and steatosis in both male and female mice. Chronic exercise induces molecular pathways involved in glucose tolerance, glycolysis, and gluconeogenesis while producing a decrease in pathways related to insulin resistance, steatosis, fibrosis, and inflammation. Given these findings, this mouse exercise model has potential to dissect the cellular and molecular hepatic changes following chronic exercise with application to understanding the role that chronic exercise plays in preventing human diseases. Novelty: Exercise modifies the hepatic gene expression and hepatic pathways related to metabolic disease in male and female mice. Sex differences were seen in hepatic gene expression between sedentary and exercised mice. The mouse exercise model used in this study allows for application and evaluation of exercise effects in human disease.
Collapse
Affiliation(s)
- Luma Melo
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Karen Tilmant
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | - Amit Hagar
- History & Philosophy of Science & Medicine Department, Indiana University, Bloomington, IN 47405, USA.,Intelligent Systems Engineering Department, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public Health, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
26
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Hepatic PGC-1α is not essential for fasting-induced cytochrome p450 regulation in mouse liver. Biochem Pharmacol 2019; 172:113736. [PMID: 31786263 DOI: 10.1016/j.bcp.2019.113736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
Fasting has been shown to regulate the expression of the cytochrome p450 (CYP) enzyme system in the liver. However, the exact mechanism behind the fasting-induced regulation of the CYP's remains unknown. In the present study we tested the hypothesis that the peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), which is a key-regulator of energy metabolism, is responsible for the fasting-induced regulation of the CYP's. Lox/lox and liver specific PGC-1α (LKO) mice of both sexes, fasted for 18 h and the content of the CYP's as well as the hepatic metabolome was assessed. Fasting increased the mRNA content of Cyp2a4, Cyp2e1, Cyp3a11 and Cyp4a10. The fasting-induced response in Cyp4a10 mRNA content was different between lox/lox and LKO mice, while the absence of PGC-1α had no effect on the fasting-induced response for the other Cyp's. Moreover, the fasting-induced response in mRNA content of Sirtinus 1 and Perilipin 2 was different between lox/lox and LKO mice. Only the CYP1A isoform showed a fasting-induced response at the protein level. Absence of hepatic PGC-1α had no effect on the apparent metabolome, where fasting vs fed was the only discriminate in the following multivariate analysis. In conclusion, hepatic PGC-1α is not essential for the fasting-induced regulation of hepatic CYP's.
Collapse
|
28
|
Phelps T, Snyder E, Rodriguez E, Child H, Harvey P. The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol Sex Differ 2019; 10:52. [PMID: 31775872 PMCID: PMC6880483 DOI: 10.1186/s13293-019-0265-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity and elevated serum lipids are associated with a threefold increase in the risk of developing atherosclerosis, a condition that underlies stroke, myocardial infarction, and sudden cardiac death. Strategies that aim to reduce serum cholesterol through modulation of liver enzymes have been successful in decreasing the risk of developing atherosclerosis and reducing mortality. Statins, which inhibit cholesterol biosynthesis in the liver, are considered among the most successful compounds developed for the treatment of cardiovascular disease. However, recent debate surrounding their effectiveness and safety prompts consideration of alternative cholesterol-lowering therapies, including increasing cholesterol catabolism through bile acid (BA) synthesis. Targeting the enzymes that convert cholesterol to BAs represents a promising alternative to other cholesterol-lowering approaches that treat atherosclerosis as well as fatty liver diseases and diabetes mellitus. Compounds that modify the activity of these pathways have been developed; however, there remains a lack of consideration of biological sex. This is necessary in light of strong evidence for sexual dimorphisms not only in the incidence and progression of the diseases they influence but also in the expression and activity of the proteins affected and in the manner in which men and women respond to drugs that modify lipid handling in the liver. A thorough understanding of the enzymes involved in cholesterol catabolism and modulation by biological sex is necessary to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Taylor Phelps
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Hailey Child
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Pamela Harvey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
29
|
Guigueno MF, Head JA, Letcher RJ, Karouna-Renier N, Peters L, Hanas AM, Fernie KJ. Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:899-908. [PMID: 31351298 DOI: 10.1016/j.envpol.2019.05.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Triphenyl phosphate (TPHP; CAS # 115-86-6), a commonly used plasticizer and flame retardant, has been reported in wild birds and identified as a potential high-risk chemical. We exposed Japanese quail (Coturnix japonica) by in ovo injection, and once hatched, orally each day for 5 days to safflower oil (controls) or TPHP dissolved in vehicle at low (5 ng TPHP/g), mid (50 ng TPHP/g), or high (100 ng TPHP/g) nominal TPHP doses. The low TPHP dose reflected concentrations in wild bird eggs, with mid and high doses 10x and 20x greater to reflect potential increases in environmental TPHP concentrations in the future. Despite no effects on mRNA expression in thyroid-related genes, TPHP exposure enhanced thyroid gland structure in high TPHP males, but in females, suppressed thyroid gland structure and activity (all TPHP females), and circulating free triiodothyronine (high TPHP females only). Consistent with thyroidal changes, and compared to controls, mid and high TPHP chicks experienced significantly reduced resting metabolic rate (≤13%) and growth (≤53%); mid TPHP males and high TPHP females were significantly smaller. The observed thyroidal effects and suppressed growth and metabolic rate of the quail chicks suggest that TPHP may adversely affect the health of wild birds.
Collapse
Affiliation(s)
- M F Guigueno
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario, L7S 1A1, Canada; Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada, H9X 3V9
| | - J A Head
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada, H9X 3V9
| | - R J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - N Karouna-Renier
- U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - L Peters
- Riddell Faculty of Earth Environment and Resources, University of Manitoba, 125 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - A M Hanas
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada, H9X 3V9
| | - K J Fernie
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario, L7S 1A1, Canada; Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada, H9X 3V9.
| |
Collapse
|
30
|
Dittmann A, Kennedy NJ, Soltero NL, Morshed N, Mana MD, Yilmaz ÖH, Davis RJ, White FM. High-fat diet in a mouse insulin-resistant model induces widespread rewiring of the phosphotyrosine signaling network. Mol Syst Biol 2019; 15:e8849. [PMID: 31464373 PMCID: PMC6674232 DOI: 10.15252/msb.20198849] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected molecular features in our data, SRC-family kinase activity and elevated reactive oxygen species, significantly abrogated the effects of saturated fat exposure in vitro and high-fat diet in vivo. In summary, we present a comprehensive view of diet-induced alterations of tyrosine signaling networks, including proteins involved in fundamental metabolic pathways.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Fatty Acids/pharmacology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Phosphorylation/drug effects
- Phosphotyrosine/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational
- Proteomics/methods
- Rats
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Antje Dittmann
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Norman J Kennedy
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Nina L Soltero
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Nader Morshed
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Miyeko D Mana
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Roger J Davis
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Howard Hughes Medical InstituteWorcesterMAUSA
| | - Forest M White
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
31
|
Grossmann M, Wierman ME, Angus P, Handelsman DJ. Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease. Endocr Rev 2019; 40:417-446. [PMID: 30500887 DOI: 10.1210/er.2018-00158] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The liver and the reproductive system interact in a multifaceted bidirectional fashion. Sex steroid signaling influences hepatic endobiotic and xenobiotic metabolism and contributes to the pathogenesis of functional and structural disorders of the liver. In turn, liver function affects the reproductive axis via modulating sex steroid metabolism and transport to tissues via sex hormone-binding globulin (SHBG). The liver senses the body's metabolic status and adapts its energy homeostasis in a sex-dependent fashion, a dimorphism signaled by the sex steroid milieu and possibly related to the metabolic costs of reproduction. Sex steroids impact the pathogenesis of nonalcoholic fatty liver disease, including development of hepatic steatosis, fibrosis, and carcinogenesis. Preclinical studies in male rodents demonstrate that androgens protect against hepatic steatosis and insulin resistance both via androgen receptor signaling and, following aromatization to estradiol, estrogen receptor signaling, through regulating genes involved in hepatic lipogenesis and glucose metabolism. In female rodents in contrast to males, androgens promote hepatic steatosis and dysglycemia, whereas estradiol is similarly protective against liver disease. In men, hepatic steatosis is associated with modest reductions in circulating testosterone, in part consequent to a reduction in circulating SHBG. Testosterone treatment has not been demonstrated to improve hepatic steatosis in randomized controlled clinical trials. Consistent with sex-dimorphic preclinical findings, androgens promote hepatic steatosis and dysglycemia in women, whereas endogenous estradiol appears protective in both men and women. In both sexes, androgens promote hepatic fibrosis and the development of hepatocellular carcinoma, whereas estradiol is protective.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Peter Angus
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Departments of Gastroenterology and Hepatology, Heidelberg, Victoria, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Filis P, Walker N, Robertson L, Eaton-Turner E, Ramona L, Bellingham M, Amezaga MR, Zhang Z, Mandon-Pepin B, Evans NP, Sharpe RM, Cotinot C, Rees WD, O'Shaughnessy P, Fowler PA. Long-term exposure to chemicals in sewage sludge fertilizer alters liver lipid content in females and cancer marker expression in males. ENVIRONMENT INTERNATIONAL 2019; 124:98-108. [PMID: 30641261 DOI: 10.1016/j.envint.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The increased incidence of diseases, including metabolic syndrome and infertility, may be related to exposure to the mixture of chemicals, which are ubiquitous in the modern environment (environmental chemicals, ECs). Xeno-detoxification occurs within the liver which is also the source of many plasma proteins and growth factors and plays an important role in the regulation of homeostasis. OBJECTIVES The objective of this study was to investigate the effects of ECs on aspects of liver function, in a well characterized ovine model of exposure to a real-life EC mixture. METHODS Four groups of sheep (n = 10-12/sex/treatment) were maintained long-term on control or sewage sludge-fertilized pastures: from conception to culling at 19 months of age in females and from conception to 7 months of age and thereafter in control plots until culling at 19 months of age in males. Environmental chemicals were measured in sheep livers and RNA and protein extracts were assessed for exposure markers. Liver proteins were resolved using 2D differential in-gel electrophoresis and differentially expressed protein spots were identified by liquid chromatography/tandem mass spectroscopy. RESULTS Higher levels of polycyclic aromatic hydrocarbons (PAHs) and lower levels of polychlorinated biphenyls (PCBs) in the livers of control males compared to control females indicated sexually dimorphic EC body burdens. Increased levels of the PAHs Benzo[a]anthracene and chrysene and reduced levels of PCB 153 and PCB 180 were observed in the livers of continuously exposed females. EC exposure affected xenobiotic and detoxification responses and the liver proteome in both sexes and included major plasma-secreted and blood proteins, and metabolic enzymes whose pathway analysis predicted dysregulation of cancer-related pathways and altered lipid dynamics. The latter were confirmed by a reduction in total lipids in female livers and up-regulation of cancer-related transcript markers in male livers respectively by sewage sludge exposure. CONCLUSIONS Our results demonstrate that chronic exposure to ECs causes major physiological changes in the liver, likely to affect multiple systems in the body and which may predispose individuals to increased disease risks.
Collapse
Affiliation(s)
- Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Natasha Walker
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Linda Robertson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Emily Eaton-Turner
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lauma Ramona
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Maria R Amezaga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | | | - Neil P Evans
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Corinne Cotinot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - William D Rees
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter O'Shaughnessy
- Institute of Biodiversity, Animal Health & Comparative Medicine (IBAHCM), College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Campus, Bearsden Rd, Glasgow G61 1QH, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
33
|
Intrauterine Malnutrition Reduced Long Leptin Receptor Isoform Expression and Proinflammatory Cytokine Production in Male Rat Pulmonary Endothelial Cells Stimulated by Lipopolysaccharide. Mediators Inflamm 2018; 2018:8597361. [PMID: 30116155 PMCID: PMC6079436 DOI: 10.1155/2018/8597361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/08/2018] [Accepted: 05/27/2018] [Indexed: 12/26/2022] Open
Abstract
Background/Aims We have previously shown that low birth weight (LBW) rats exposed to intrauterine malnutrition have an impaired lung inflammatory response and reduced levels of inflammatory mediators; however, circulating leptin levels were not increased. We evaluated long leptin receptor isoform (ObRb) expression in lung endothelial cells from low birth weight rats and examined its role in the production of lipid mediators and cytokines. Methods Lung endothelial cells were obtained from normal birth weight (NBW) rats or LBW rats subjected to intrauterine malnutrition. These cells were stimulated with leptin (10 ng/mL), LPS (lipopolysaccharide, 1 μg/mL), or leptin plus LPS. Six hours after stimulation, the production of inflammatory mediators (PGE2, LTB4, IL-1β, and IL-6) was evaluated using commercial ELISA kits, and Western blotting was performed to investigate p38MAPK, NF-κB, and ObRb expression. Results Leptin increased IL-1β levels in only cells from the NBW group, whereas LPS increased PGE2 and LTB4 levels in cells from both groups; leptin addition potentiated lipid mediator production induced by LPS in the NBW group. LPS enhanced the production of IL-1β and IL-6 in only endothelial cells from NBW rats. Leptin receptor expression was decreased (63%) in endothelial cells from LBW rats. None of the stimuli increased NF-κB or p38 signaling pathway expression in cells from LBW rats. Conclusion These results suggest that intrauterine malnutrition compromises leptin receptor expression and cytokine production in pulmonary endothelial cells stimulated by LPS; these effects seem to involve the NF-κB and p38MAPK signaling pathways.
Collapse
|
34
|
Abstract
Due to declining estrogen levels during menopause, NAFLD prevalence is higher in postmenopausal women compared to in premenopausal women or in men. Postmenopausal women are more susceptible to weight gain, fat redistribution and dyslipidemia, all major hallmarks of metabolic syndrome associated with increased NAFLD risk. Gut microbiota plays important roles in development of gastrointestinal tract, metabolism and immunity. Host-microbe interactions allows regulation of a wide range of pathways that affect healthy and diseased physiology. Recent advances in - omics technologies, such as microbiome, transcriptome and metabolome analysis, provided evidence that estrogens and intestinal microbiota (IM) can collectively influence obesity, inflammatory disease, diabetes, and cancers. By understanding underlying mechanisms of estrogens and microbiota crosstalk, we might design dietary and pharmacological interventions to alleviate the metabolic syndrome and NAFLD.
Collapse
Affiliation(s)
- Karen L Chen
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
35
|
Cvitanović Tomaš T, Urlep Ž, Moškon M, Mraz M, Rozman D. LiverSex Computational Model: Sexual Aspects in Hepatic Metabolism and Abnormalities. Front Physiol 2018; 9:360. [PMID: 29706895 PMCID: PMC5907313 DOI: 10.3389/fphys.2018.00360] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022] Open
Abstract
The liver is to date the best example of a sexually dimorphic non-reproductive organ. Over 1,000 genes are differentially expressed between sexes indicating that female and male livers are two metabolically distinct organs. The spectrum of liver diseases is broad and is usually prevalent in one or the other sex, with different contributing genetic and environmental factors. It is thus difficult to predict individual's disease outcomes and treatment options. Systems approaches including mathematical modeling can aid importantly in understanding the multifactorial liver disease etiology leading toward tailored diagnostics, prognostics and therapy. The currently established computational models of hepatic metabolism that have proven to be essential for understanding of non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) are limited to the description of gender-independent response or reflect solely the response of the males. Herein we present LiverSex, the first sex-based multi-tissue and multi-level liver metabolic computational model. The model was constructed based on in silico liver model SteatoNet and the object-oriented modeling. The crucial factor in adaptation of liver metabolism to the sex is the inclusion of estrogen and androgen receptor responses to respective hormones and the link to sex-differences in growth hormone release. The model was extensively validated on literature data and experimental data obtained from wild type C57BL/6 mice fed with regular chow and western diet. These experimental results show extensive sex-dependent changes and could not be reproduced in silico with the uniform model SteatoNet. LiverSex represents the first large-scale liver metabolic model, which allows a detailed insight into the sex-dependent complex liver pathologies, and how the genetic and environmental factors interact with the sex in disease appearance and progression. We used the model to identify the most important sex-dependent metabolic pathways, which are involved in accumulation of triglycerides representing initial steps of NAFLD. We identified PGC1A, PPARα, FXR, and LXR as regulatory factors that could become important in sex-dependent personalized treatment of NAFLD.
Collapse
Affiliation(s)
- Tanja Cvitanović Tomaš
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Moškon
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Mraz
- Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Faculty of Medicine, Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Yetti H, Naito H, Yuan Y, Jia X, Hayashi Y, Tamada H, Kitamori K, Ikeda K, Yamori Y, Nakajima T. Bile acid detoxifying enzymes limit susceptibility to liver fibrosis in female SHRSP5/Dmcr rats fed with a high-fat-cholesterol diet. PLoS One 2018; 13:e0192863. [PMID: 29438418 PMCID: PMC5811017 DOI: 10.1371/journal.pone.0192863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
During middle age, women are less susceptible to nonalcoholic steatohepatitis (NASH) than men. Thus, we investigated the underlying molecular mechanisms behind these sexual differences using an established rat model of NASH. Mature female and male stroke-prone spontaneously hypertensive 5/Dmcr rats were fed control or high-fat-cholesterol (HFC) diets for 2, 8, and 14 weeks. Although HFC-induced hepatic fibrosis was markedly less severe in females than in males, only minor gender differences were observed in expression levels of cytochrome P450 enzymes (CYP)7A1, CYP8B1 CYP27A1, and CYP7B1, and multidrug resistance-associated protein 3, and bile salt export pump, which are involved in fibrosis-related bile acid (BA) kinetics. However, the BA detoxification-related enzymes UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) 2A1, and the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR), were strongly suppressed in HFC-fed males, and were only slightly changed in HFC-diet fed females. Expression levels of the farnesoid X receptor and its small heterodimer partner were similarly regulated in a gender-dependent fashion following HFC feeding. Hence, the pronounced female resistance to HFC-induced liver damage likely reflects sustained expression of the nuclear receptors CAR and PXR and the BA detoxification enzymes UGT and SULT.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Cholesterol, Dietary/administration & dosage
- Cholesterol, Dietary/adverse effects
- Constitutive Androstane Receptor
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Disease Susceptibility
- Female
- Gene Expression
- Glucuronosyltransferase/metabolism
- Liver Cirrhosis/etiology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Male
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Pregnane X Receptor
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sex Characteristics
- Sulfotransferases/metabolism
Collapse
Affiliation(s)
- Husna Yetti
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuan Yuan
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Xiaofang Jia
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumi Hayashi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hazuki Tamada
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kitamori
- College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
| | - Katsumi Ikeda
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women’s University, Nishinomiya, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
- * E-mail:
| |
Collapse
|
37
|
Fornes D, White V, Higa R, Heinecke F, Capobianco E, Jawerbaum A. Sex-dependent changes in lipid metabolism, PPAR pathways and microRNAs that target PPARs in the fetal liver of rats with gestational diabetes. Mol Cell Endocrinol 2018; 461:12-21. [PMID: 28807878 DOI: 10.1016/j.mce.2017.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/18/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022]
Abstract
Gestational diabetes mellitus (GDM) is a prevalent disease that impairs fetal metabolism and development. We have previously characterized a rat model of GDM induced by developmental programming. Here, we analyzed lipid content, the levels of the three PPAR isotypes and the expression of microRNAs that regulate PPARs expression in the liver of male and female fetuses of control and GDM rats on day 21 of pregnancy. We found increased levels of triglycerides and cholesterol in the livers of male fetuses of GDM rats compared to controls, and, oppositely, reduced levels of triglycerides, cholesterol, phospholipids and free fatty acids in the livers of female fetuses of GDM rats compared to controls. Although GDM did not change PPARα levels in male and female fetal livers, PPARγ was increased in the liver of male fetuses of GDM rats, a change that occurred in parallel to a reduction in the expression of miR-130, a microRNA that targets PPARγ. In livers of female fetuses of GDM rats, no changes in PPARγ and miR-130 were evidenced, but PPARδ was increased, a change that occurred in parallel to a reduction in the expression of miR-9, a microRNA that targets PPARδ, and was unchanged in the liver of male fetuses of GDM and control rats. These results show clear sex-dependent changes in microRNAs that target different PPAR isotypes in relation to changes in the levels of their targets and the differential regulation of lipid metabolism evidenced in fetal livers of GDM pregnancies.
Collapse
Affiliation(s)
- Daiana Fornes
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Verónica White
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Romina Higa
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Florencia Heinecke
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Zhang YY, Li C, Yao GF, Du LJ, Liu Y, Zheng XJ, Yan S, Sun JY, Liu Y, Liu MZ, Zhang X, Wei G, Tong W, Chen X, Wu Y, Sun S, Liu S, Ding Q, Yu Y, Yin H, Duan SZ. Deletion of Macrophage Mineralocorticoid Receptor Protects Hepatic Steatosis and Insulin Resistance Through ERα/HGF/Met Pathway. Diabetes 2017; 66:1535-1547. [PMID: 28325853 PMCID: PMC5860190 DOI: 10.2337/db16-1354] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Although the importance of macrophages in nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) has been recognized, how macrophages affect hepatocytes remains elusive. Mineralocorticoid receptor (MR) has been implicated to play important roles in NAFLD and T2DM. However, cellular and molecular mechanisms are largely unknown. We report that myeloid MR knockout (MRKO) improves glucose intolerance, insulin resistance, and hepatic steatosis in obese mice. Estrogen signaling is sufficient and necessary for such improvements. Hepatic gene and protein expression suggests that MRKO reduces hepatic lipogenesis and lipid storage. In the presence of estrogen, MRKO in macrophages decreases lipid accumulation and increases insulin sensitivity of hepatocytes through hepatocyte growth factor (HGF)/Met signaling. MR directly regulates estrogen receptor 1 (Esr1 [encoding ERα]) in macrophages. Knockdown of hepatic Met eliminates the beneficial effects of MRKO in female obese mice. These findings identify a novel MR/ERα/HGF/Met pathway that conveys metabolic signaling from macrophages to hepatocytes in hepatic steatosis and insulin resistance and provide potential new therapeutic strategies for NAFLD and T2DM.
Collapse
Affiliation(s)
- Yu-Yao Zhang
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Chao Li
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Gao-Feng Yao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Jun Zheng
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Shuai Yan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Jian-Yong Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Zhu Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Xiaoran Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenxin Tong
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan, China
| | - Xiaobei Chen
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan, China
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Shuyang Sun
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suling Liu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University, Shanghai, China
| | - Qiurong Ding
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiyong Yin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Khazali AS, Clark AM, Wells A. A Pathway to Personalizing Therapy for Metastases Using Liver-on-a-Chip Platforms. Stem Cell Rev Rep 2017; 13:364-380. [PMID: 28425064 PMCID: PMC5484059 DOI: 10.1007/s12015-017-9735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis accounts for most cancer-related deaths. The majority of solid cancers, including those of the breast, colorectum, prostate and skin, metastasize at significant levels to the liver due to its hemodynamic as well as tumor permissive microenvironmental properties. As this occurs prior to detection and treatment of the primary tumor, we need to target liver metastases to improve patients' outcomes. Animal models, while proven to be useful in mechanistic studies, do not represent the heterogeneity of human population especially in drug metabolism lack proper human cell-cell interactions, and this gap between animals and humans results in costly and inefficient drug discovery. This underscores the need to accurately model the human liver for disease studies and drug development. Further, the occurrence of liver metastases is influenced by the primary tumor type, sex and race; thus, modeling these specific settings will facilitate the development of personalized/targeted medicine for each specific group. We have adapted such all-human 3D ex vivo hepatic microphysiological system (MPS) (a.k.a. liver-on-a-chip) to investigate human micrometastases. This review focuses on the sources of liver resident cells, especially the iPS cell-derived hepatocytes, and examines some of the advantages and disadvantages of these sources. In addition, this review also examines other potential challenges and limitations in modeling human liver.
Collapse
Affiliation(s)
- A S Khazali
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA, 15261, USA
| | - A M Clark
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA, 15261, USA
| | - A Wells
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
- Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Jaruvongvanich V, Sanguankeo A, Riangwiwat T, Upala S. Testosterone, Sex Hormone-Binding Globulin and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Ann Hepatol 2017. [PMID: 28425408 DOI: 10.5604/01.3001.0009.8593] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
| | - Anawin Sanguankeo
- Department of Internal Medicine, Bassett Medical Center and Columbia University College of Physicians and Surgeons, Cooperstown, NY, USA
| | - Tanawan Riangwiwat
- Department of Internal Medicine, University of Hawaii, Honolulu, HI, USA
| | - Sikarin Upala
- Department of Internal Medicine, Bassett Medical Center and Columbia University College of Physicians and Surgeons, Cooperstown, NY, USA
| |
Collapse
|
41
|
Landrock D, Milligan S, Martin GG, McIntosh AL, Landrock KK, Schroeder F, Kier AB. Effect of Fabp1/Scp-2/Scp-x Ablation on Whole Body and Hepatic Phenotype of Phytol-Fed Male Mice. Lipids 2017; 52:385-397. [PMID: 28382456 PMCID: PMC5500168 DOI: 10.1007/s11745-017-4249-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/28/2017] [Indexed: 11/29/2022]
Abstract
Liver fatty acid binding protein (Fabp1) and sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) genes encode proteins that enhance hepatic uptake, cytosolic transport, and peroxisomal oxidation of toxic branched-chain fatty acids derived from dietary phytol. Since male wild-type (WT) mice express markedly higher levels of these proteins than females, the impact of ablating both genes (TKO) was examined in phytol-fed males. In WT males, high phytol diet alone had little impact on whole body weight and did not alter the proportion of lean tissue mass (LTM) versus fat tissue mass (FTM). TKO conferred on dietary phytol the ability to induce weight loss as well as reduce liver weight, FTM, and even more so LTM. Concomitantly TKO induced hepatic lipid accumulation, preferentially threefold increased phospholipid (PL) at the expense of decreased triacylglycerol (TG) and total cholesterol. Increased PL was associated with upregulation of membrane fatty acid transport/translocase proteins (FATP 2,4), cytosolic fatty acid/fatty acyl-CoA binding proteins (FABP2, ACBP), and the rate limiting enzyme in PL synthesis (Gpam). Decreased TG and cholesterol levels were not attributable to altered levels in respective synthetic enzymes or nuclear receptors. These data suggest that the higher level of Fabp1 and Scp2/Scpx gene products in WT males was protective against deleterious effects of dietary phytol, but TKO significantly exacerbated phytol effects in males.
Collapse
Affiliation(s)
- Danilo Landrock
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TVMC, College Station, TX, 77843-4467, USA
| | - Sherrelle Milligan
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TVMC, College Station, TX, 77843-4467, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TVMC, College Station, TX, 77843-4467, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ann B Kier
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TVMC, College Station, TX, 77843-4467, USA.
| |
Collapse
|
42
|
Batmunkh B, Choijookhuu N, Srisowanna N, Byambatsogt U, Synn Oo P, Noor Ali M, Yamaguchi Y, Hishikawa Y. Estrogen Accelerates Cell Proliferation through Estrogen Receptor α during Rat Liver Regeneration after Partial Hepatectomy. Acta Histochem Cytochem 2017; 50:39-48. [PMID: 28386149 PMCID: PMC5374102 DOI: 10.1267/ahc.17003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
Although estrogen is implicated in the regulation of cell growth and differentiation in many organs, the exact mechanism for liver regeneration is not completely understood. We investigated the effect of estrogen on liver regeneration in male and female Wistar rats after 70% partial hepatectomy (PHx) and performed immunohistochemistry, western blotting and Southwestern histochemistry. 17β-estradiol (E2) and ICI 182,780 were injected into male rats on the day before PHx. The proliferating cell nuclear antigen (PCNA) labeling index reached a maximum at 48 hr after PHx in males, and at 36 hr in females and E2-treated male rats. Estrogen receptor α (ERα) was expressed in zones 1 and 2 in male rats, but was found in all zones in female rats. Interestingly, ERα was not detected at 6-12 hr after PHx but was found at 24-168 hr in male rats. However, ERα expression was found at all sampling time-points in female and E2-treated male rats. The activity of estrogen responsive element binding proteins was detected from 12 hr after PHx in male rats but was found from 6 hr in female and E2-treated male rats. ERα was co-expressed with PCNA during liver regeneration. These results indicate that estrogen may play an important role in liver regeneration through ERα.
Collapse
Affiliation(s)
- Baatarsuren Batmunkh
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Naparee Srisowanna
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Uugantsetseg Byambatsogt
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Phyu Synn Oo
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Mohmand Noor Ali
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yuya Yamaguchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
43
|
Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling. Sci Rep 2017; 7:40775. [PMID: 28098217 PMCID: PMC5241696 DOI: 10.1038/srep40775] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022] Open
Abstract
Development of mice with hepatocyte knockout of lanosterol 14α-demethylase (HCyp51−/−) from cholesterol synthesis is characterized by the progressive onset of liver injury with ductular reaction and fibrosis. These changes begin during puberty and are generally more aggravated in the knockout females. However, a subgroup of (pre)pubertal knockout mice (runts) exhibits a pronounced male prevalent liver dysfunction characterized by downregulated amino acid metabolism and elevated Casp12. RORC transcriptional activity is diminished in livers of all runt mice, in correlation with the depletion of potential RORC ligands subsequent to CYP51 disruption. Further evidence for this comes from the global analysis that identified a crucial overlap between hepatic Cyp51−/− and Rorc−/− expression profiles. Additionally, the reduction in RORA and RORC transcriptional activity was greater in adult HCyp51−/− females than males, which correlates well with their downregulated amino and fatty acid metabolism. Overall, we identify a global and sex-dependent transcriptional de-regulation due to the block in cholesterol synthesis during development of the Cyp51 knockout mice and provide in vivo evidence that sterol intermediates downstream of lanosterol may regulate the hepatic RORC activity.
Collapse
|
44
|
Piekos S, Pope C, Ferrara A, Zhong XB. Impact of Drug Treatment at Neonatal Ages on Variability of Drug Metabolism and Drug-drug Interactions in Adult Life. ACTA ACUST UNITED AC 2017; 3:1-9. [PMID: 28344923 DOI: 10.1007/s40495-016-0078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW As the number of patients taking more than one medication concurrently continues to increase, predicting and preventing drug-drug interactions (DDIs) is now more important than ever. Administration of one drug can cause changes in the expression and activity of drug metabolizing enzymes (DMEs) and alter the efficacy or toxicity of other medications that are substrates for these enzymes, resulting in a DDI. In today's medical practice, potential DDIs are evaluated based on the current medications a patient is taking with little regard to drugs the patient has been exposed to in the past. The purpose of this review is to discuss potential impacts of drug treatment at neonatal ages on the variability of drug metabolism and DDIs in adult life. RECENT FINDINGS Existing evidence from the last thirty years has shown that exposure to certain xenobiotics during neonatal life has the potential to persistently alter DME expression through adult life. With recent advancements in the understanding of epigenetic regulation on gene expression, this phenomenon is resurfacing in the scientific community in hopes of defining possible mechanisms. Exposure to compounds that have the ability to bind nuclear receptors and trigger epigenetic modifications at neonatal and pediatric ages may have long-term, if not permanent, consequences on gene expression and DME activity. SUMMARY The information summarized in this review should challenge the way current healthcare providers assess DDI potential and may offer an explanation to the significant interindividual variability in drug metabolism that is observed among patients.
Collapse
Affiliation(s)
- Stephanie Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Austin Ferrara
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
45
|
Fernie KJ, Cruz-Martinez L, Peters L, Palace V, Smits JEG. Inhaling Benzene, Toluene, Nitrogen Dioxide, and Sulfur Dioxide, Disrupts Thyroid Function in Captive American Kestrels (Falco sparverius). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11311-11318. [PMID: 27646166 DOI: 10.1021/acs.est.6b03026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research investigating the effects of air contaminants on biota has been limited to date. Captive adult female American kestrels (Falco sparverius) were exposed to a mixture of benzene (0.6 ppm), toluene (1 ppm), nitrogen dioxide (NO2; 2 ppm) and sulfur dioxide (SO2; 5.6 ppm), in a whole-body inhalation chamber. Thyroid axis responses to meet metabolic demands were examined through thyroid histology, plasma thyroxine (T4), and triiodothyronine (T3), and hepatic outer ring deiodination (T4-ORD). Plasma free (F) T3 and T4 were measured at baseline, and at 9 days and 18 days of exposure, whereas total (T) T3 and TT4, thyroid histology and hepatic T4-ORD were determined at the final 18 day exposure. Inhalation of these contaminants significantly suppressed plasma FT4 and TT4, and depleted follicular colloid and increased epithelial cell height at 18 days, and significantly altered the temporal pattern of plasma FT4. Significant histological changes in the follicular colloid:epithelial cell height ratio indicated sustained T4 production and release by the thyroid glands. There was no effect on plasma FT3, TT3, or hepatic T4-ORD. We hypothesize that contaminant-related activation of the hypothalamus-pituitary-thyroid axis in the kestrels increased elimination of plasma T4 through Phase II enzymes. Further research is required to test this hypothesis in wild birds.
Collapse
Affiliation(s)
- Kim J Fernie
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario Canada , L7R 4A6
| | - Luis Cruz-Martinez
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary , 3280 Hospital Drive NW, Calgary, Alberta Canada , T2N4Z6
- Ross University , School of Veterinarian Medicine, Box 334, Basseterre, St. Kitts West Indies
| | - Lisa Peters
- Stantec Consulting Ltd., 500-311 Portage Ave., Winnipeg, MB Canada R3B 2B9
| | - Vince Palace
- IISD-Experimental Lakes Area, 111 Lombard Ave., Suite 325 Winnipeg, MB Canada R3B 0T4
| | - Judit E G Smits
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary , 3280 Hospital Drive NW, Calgary, Alberta Canada , T2N4Z6
| |
Collapse
|
46
|
Nakajima T, Naito H. [Mechanism Analysis and Prevention of Pathogenesis of Nonalcoholic Steatohepatitis]. Nihon Eiseigaku Zasshi 2016; 70:197-204. [PMID: 26411937 DOI: 10.1265/jjh.70.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disease in humans having a broad spectrum of liver histology from simple fatty liver to mixed inflammatory cell infiltration and fibrosis (nonalcoholic steatohepatitis, NASH), which is a more severe and progressing form. NASH/NAFLD is significantly associated with lifestyle such as diet and exercise, obesity, insulin resistance, type 2 diabetes, dyslipidemia and hypertension. Age and gender are also associated with the development. On the other hand, NAFLD has been found in a high percentage of nonobese individuals in the Asia-Pacific area. Some characteristic animal models of NAFLD/NASH have been developed to clarify the pathogenesis of human NAFLD/NASH. We have recently developed a novel NASH rat model (stroke-prone spontaneously hypertensive rats, SHRSP5/Dmcr), which showed hepatic steatosis and inflammation at 2 weeks, ballooning, macrovesicular steatosis and fibrosis at 8 weeks, and bridging fibrosis at 14 weeks by feeding of high-fat and -cholesterol (HFC) diet alone. This animal model does not have obesity, insulin resistance or diabetes. Therefore, this may be an excellent animal model of human NASH/NAFLD without obesity and diabetes. Sex and strain differences observed in fibrogenesis by the HFC diet in SHRSP5/Dmcr may be associated with the sensitivity to detoxification enzymes in the liver, because the levels of UGP-glucuronosyltransferase and sulfotransferase and their regulating nuclear receptors only decreased in male SHRSP5/Dmcr rats, but not in female and SHRSP rats. This suggests the importance of phase II reactions of drug-metabolizing enzymes in NASH progression. Importantly, SHRSP5/Dmcr rats are spontaneously hypertensive; therefore, when we use the original strain Wistar Kyoto, which has normal blood pressure, the involvement of blood pressure in the development of human NASH/NAFLD may also be clarified.
Collapse
|
47
|
Lee S, Mardinoglu A, Zhang C, Lee D, Nielsen J. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis. Nucleic Acids Res 2016; 44:5529-39. [PMID: 27216817 PMCID: PMC4937331 DOI: 10.1093/nar/gkw462] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate and early detection of HCC is crucial for the application of effective treatment strategies. HCC is typically caused by either viral hepatitis infection or by fatty liver disease. To diagnose and treat HCC it is necessary to elucidate the underlying molecular mechanisms. As a major cause for development of HCC is fatty liver disease, we here investigated anomalies in regulation of lipid metabolism in the liver. We applied a tailored network-based approach to identify signaling hubs associated with regulation of this part of metabolism. Using transcriptomics data of HCC patients, we identified significant dysregulated expressions of lipid-regulated genes, across many different lipid metabolic pathways. Our findings, however, show that viral hepatitis causes HCC by a distinct mechanism, less likely involving lipid anomalies. Based on our analysis we suggest signaling hub genes governing overall catabolic or anabolic pathways, as novel drug targets for treatment of HCC that involves lipid anomalies.
Collapse
Affiliation(s)
- Sunjae Lee
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305 338, Republic of Korea
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Doheon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305 338, Republic of Korea
| | - Jens Nielsen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| |
Collapse
|
48
|
Kärst S, Arends D, Heise S, Trost J, Yaspo ML, Amstislavskiy V, Risch T, Lehrach H, Brockmann GA. The direction of cross affects [corrected] obesity after puberty in male but not female offspring. BMC Genomics 2015; 16:904. [PMID: 26546267 PMCID: PMC4636810 DOI: 10.1186/s12864-015-2164-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/29/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND We investigated parent-of-origin and allele-specific expression effects on obesity and hepatic gene expression in reciprocal crosses between the Berlin Fat Mouse Inbred line (BFMI) and C57Bl/6NCrl (B6N). RESULTS We found that F1-males with a BFMI mother developed 1.8 times more fat mass on a high fat diet at 10 weeks than F1-males of a BFMI father. The phenotype was detectable from six weeks on and was preserved after cross-fostering. RNA-seq data of liver provided evidence for higher biosynthesis and elongation of fatty acids (p = 0.00635) in obese male offspring of a BFMI mother versus lean offspring of a BFMI father. Furthermore, fatty acid degradation (p = 0.00198) and the peroxisome pathway were impaired (p = 0.00094). The circadian rhythm was affected as well (p = 0.00087). Among the highest up-regulated protein coding genes in obese males were Acot4 (1.82 fold, p = 0.022), Cyp4a10 (1.35 fold, p = 0.026) and Cyp4a14 (1.32 fold, p = 0.012), which hydroxylize fatty acids and which are known to be increased in liver steatosis. Obese males showed lower expression of the genetically imprinted and paternally expressed 3 (Peg3) gene (0.31 fold, p = 0.046) and higher expression of the androgen receptor (Ar) gene (2.38 fold, p = 0.068). Allelic imbalance was found for expression of ATP-binding cassette transporter gene Abca8b. Several of the differentially expressed genes contain estrogen response elements. CONCLUSIONS Parent-of-origin effects during gametogenesis and/or fetal development in an obese mother epigenetically modify the transcription of genes that lead to enhanced fatty acid synthesis and impair β-oxidation in the liver of male, but not female F1 offspring. Down-regulation of Peg3 could contribute to trigger this metabolic setting. At puberty, higher amounts of the androgen receptor and altered access to estrogen response elements in affected genes are likely responsible for male specific expression of genes that were epigenetically triggered. A suggestive lack of estrogen binding motifs was found for highly down-regulated genes in adult hepatocytes of obese F1 males (p = 0.074).
Collapse
Affiliation(s)
- Stefan Kärst
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Danny Arends
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Sebastian Heise
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Jan Trost
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Gene Regulation and Systems Biology of Cancer, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Max Planck Institute for Molecular Genetics, Gene Regulation and Systems Biology of Cancer, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Thomas Risch
- Max Planck Institute for Molecular Genetics, Gene Regulation and Systems Biology of Cancer, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Gene Regulation and Systems Biology of Cancer, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115, Berlin, Germany.
| |
Collapse
|
49
|
Eidi A, Mortazavi P, Moghadam JZ, Mardani PM. Hepatoprotective effects of Portulaca oleracea extract against CCl4-induced damage in rats. PHARMACEUTICAL BIOLOGY 2015; 53:1042-1051. [PMID: 25472695 DOI: 10.3109/13880209.2014.957783] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Purslane (Portulaca oleracea L., Portulacaceae) has been traditionally used in folk medicine to afford protection against liver injury, although its actual efficacy remains uncertain. OBJECTIVE To evaluate purslane as a hepatoprotective agent, we investigated the protective effect of its ethanol extract against carbon tetrachloride (CCl4)-induced hepatic toxicity in rats. MATERIALS AND METHODS A total of 108 male Wistar rats were randomly divided into 12 groups. The first group was maintained as normal control, whereas CCl4 (0.5 ml/kg bw, 50% CCl4 in olive oil, i.p.), purslane extract (0.005, 0.01, 0.05, 0.1, and 0.15 g/kg bw, intragastrically), and purslane extract (five doses as above) along with CCl4 were administered to the Groups II, III-VII, and VIII-XII, respectively. The rats were sacrificed on the 30th day, and blood was withdrawn by cardiac puncture. Liver damage was assessed by measuring hepatic marker enzymes (ALT, AST, ALP, GGT, and SOD) and histopathological observation. RESULTS Treatment with CCl4 resulted in increased serum activities of marker enzymes with a concomitant decrease in SOD. Histological alterations were also observed in the liver tissue upon CCl4 treatment. Administration of purslane extract (0.01, 0.05, 0.1, and 0.15 g/kg b.w.) significantly showed a marked tendency towards normalization of all measured biochemical parameters in CCl4-treated rats. Histopathological changes also paralleled the detected alteration in markers of liver function. DISCUSSION AND CONCLUSION These results demonstrate that purslane exerts protective effects against CCl4-induced damage in rat liver and supports a potential therapeutic use of purslane as an alternative for patients with liver diseases.
Collapse
Affiliation(s)
- Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | | | | | | |
Collapse
|
50
|
Wood CE, Hester SD, Chorley BN, Carswell G, George MH, Ward W, Vallanat B, Ren H, Fisher A, Lake AD, Okerberg CV, Gaillard ET, Moore TM, Deangelo AB. Latent carcinogenicity of early-life exposure to dichloroacetic acid in mice. Carcinogenesis 2015; 36:782-91. [PMID: 25913432 DOI: 10.1093/carcin/bgv057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/20/2015] [Indexed: 01/05/2023] Open
Abstract
Environmental exposures occurring early in life may have an important influence on cancer risk later in life. Here, we investigated carryover effects of dichloroacetic acid (DCA), a small molecule analog of pyruvate with metabolic programming properties, on age-related incidence of liver cancer. The study followed a stop-exposure/promotion design in which 4-week-old male and female B6C3F1 mice received the following treatments: deionized water alone (dH2O, control); dH2O with 0.06% phenobarbital (PB), a mouse liver tumor promoter; or DCA (1.0, 2.0 or 3.5g/l) for 10 weeks followed by dH2O or PB (n = 20-30/group/sex). Pathology and molecular assessments were performed at 98 weeks of age. In the absence of PB, early-life exposure to DCA increased the incidence and number of hepatocellular tumors in male and female mice compared with controls. Significant dose trends were observed in both sexes. At the high dose level, 10 weeks of prior DCA treatment induced comparable effects (≥85% tumor incidence and number) to those seen after continuous lifetime exposure. Prior DCA treatment did not enhance or inhibit the carcinogenic effects of PB, induce persistent liver cytotoxicity or preneoplastic changes on histopathology or alter DNA sequence variant profiles within liver tumors compared with controls. Distinct changes in liver messenger RNA and micro RNA profiles associated with prior DCA treatment were not apparent at 98 weeks. Our findings demonstrate that early-life exposure to DCA may be as carcinogenic as life-long exposures, potentially via epigenetic-mediated effects related to cellular metabolism.
Collapse
Affiliation(s)
- Charles E Wood
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA,
| | - Susan D Hester
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Brian N Chorley
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Gleta Carswell
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Michael H George
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - William Ward
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Beena Vallanat
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Hongzu Ren
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Anna Fisher
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Carlin V Okerberg
- Experimental Pathology Laboratories, Morrisville, NC 27560, USA Present address: Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Elias T Gaillard
- Experimental Pathology Laboratories, Morrisville, NC 27560, USA Present address: Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Tanya M Moore
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Anthony B Deangelo
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|