1
|
Patarat R, Chuaybudda S, Yasom S, Mutirangura A. HMGB1 Box A gene therapy to alleviate bleomycin-induced pulmonary fibrosis in rats. BMC Pulm Med 2025; 25:52. [PMID: 39891078 PMCID: PMC11786397 DOI: 10.1186/s12890-025-03522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis is characterized by the destruction of normal lung tissue and then replacement by abnormal fibrous tissue, leading to an overall decrease in gas exchange function. The effective treatment for pulmonary fibrosis remains unknown. The upstream pathogenesis of pulmonary fibrosis may involve cellular senescence of the lung tissue. Previously, a new gene therapy technology using Box A of the HMGB1 plasmid (Box A) was used to reverse cellular senescence and cure liver fibrosis in aged rats. METHODS Here, we show that Box A is a promising medicine for the treatment of lung fibrosis. In a bleomycin-induced pulmonary fibrosis model in the male Wistar rats, Student's t-test and one-way ANOVA were used to compare groups of samples. RESULTS Box A effectively lowered fibrous tissue deposits (from 18.74 ± 0.62 to 3.45 ± 1.19%) and senescent cells (from 3.74 ± 0.40% to 0.89 ± 0.18%) to levels comparable to those of the negative control group. Moreover, after eight weeks, Box A also increased the production of the surfactant protein C (from 3.60 ± 1.68% to 6.82 ± 0.65%). CONCLUSIONS Our results demonstrate that Box A is a promising therapeutic approach for pulmonary fibrosis and other senescence-promoted fibrotic lesions.
Collapse
Affiliation(s)
- Rathasapa Patarat
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Suchanart Chuaybudda
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sakawdaurn Yasom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Hou J, Ji Q, Tang T, Xue Y, Gao L, Dai L, Xie J. CT-sensitized nanoprobe for effective early diagnosis and treatment of pulmonary fibrosis. J Nanobiotechnology 2025; 23:60. [PMID: 39881299 PMCID: PMC11776250 DOI: 10.1186/s12951-025-03128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF. An antibody fragment (Fab') targeting the platelet-derived growth factor receptor-α, which specifically binds to (myo)fibroblasts, was conjugated to the nanoprobe surface to enhance targeting of fibroblastic foci. Additionally, collagenase was employed to facilitate nanoprobe penetration by degrading the local collagen fibers within these foci. This approach led to significant accumulation of the CT sensitizer iodide in fibrotic lung tissues, resulting in enhanced CT imaging for the detection of fibroblastic foci and enabling early diagnosis of PF. Moreover, a dual-drug combination of oltipraz and rosiglitazone was co-loaded into the nanoparticles for the treatment of early-diagnosed PF. Remarkable therapeutic efficacy was observed in model mice with early PF using these nanoparticles. Our findings present a promising strategy for the early diagnosis of PF, potentially offering a valuable time window for effective treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiwei Hou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China
| | - Qijian Ji
- Department of Critical Care Medicine, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, 211700, Jiangsu, China.
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China.
| | - Tianyu Tang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yonger Xue
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lin Gao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Li Dai
- Department of cariol & endodont, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
3
|
Cui J, Xu Z, Yu Z, Zhang Q, Liu S, Du B, Gan L, Yan C, Xue G, Feng J, Fan Z, Fu T, Feng Y, Zhao H, Ding Z, Li X, Zhang R, Cui X, Tian Z, Huang K, Wang W, Bai Y, Zhou H, Sun Y, Yang X, Wan M, Ke Y, Yuan J. High-alcohol-producing Klebsiella pneumoniae aggravates lung injury by affecting neutrophils and the airway epithelium. Cell Rep Med 2025; 6:101886. [PMID: 39753141 DOI: 10.1016/j.xcrm.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
We have previously reported that high-alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut can cause endo-alcoholic fatty liver disease. Here, we discover that 91.2% of Kpn isolates from pulmonary disease samples also produce excess ethanol, which may be associated with respiratory disease severity. To further explore the potential mechanism, a murine model is established with high-dose bacteria. Kpn stimulates granular neutrophils (G0), subsequently transforming them into phagocytic neutrophils (G1). HiAlc Kpn also causes dysfunction of pyrimidine metabolism, leading to neutrophil apoptosis. These changes inhibit phagocytosis of neutrophils and possibly suppress inflammasome-dependent innate immunity. In a persistent infective murine model, HiAlc Kpn induces lung fibrosis and production of reactive oxygen species (ROS), possibly affecting epithelial cell apoptosis and lung function. The results suggest that the subtype of neutrophil is a potential biomarker for the severity of lung injury caused by HiAlc Kpn.
Collapse
Affiliation(s)
- Jinghua Cui
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziying Xu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zihui Yu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Qun Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Shiyu Liu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Bing Du
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Lin Gan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Junxia Feng
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zheng Fan
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Tongtong Fu
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanling Feng
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Hanqing Zhao
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Zanbo Ding
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaoran Li
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Rui Zhang
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaohu Cui
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Ziyan Tian
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Kewu Huang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wenjun Wang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yu Bai
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaopeng Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuehua Ke
- Capital Institute of Pediatrics, Beijing 100020, China.
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
4
|
Jeong HJ, Kang YH, Song AY, Park HI, Seo M, Park YJ. Integrative assessment of mixture toxicity of household chemicals using the toxic unit approach and mode of action. Toxicology 2025; 511:154060. [PMID: 39826869 DOI: 10.1016/j.tox.2025.154060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Household chemicals used daily are often combined, leading to inhalation exposure to mixtures. However, methods for assessing their toxic effects are limited. This study proposes an in vitro assay strategy for evaluating household chemical mixtures using benzalkonium chloride (BKC) and didecyldimethylammonium chloride (DDAC), a common disinfectant. Our approach utilizes the mode of action (MOA) of chemicals by applying toxicity units (TU) to assess the key events related to lung disease, such as reactive oxygen species (ROS) production and cell death. The TU (EC50) values for BKC and DDAC were 3.97 µg/mL and 1.89 µg/mL, respectively, from cytotoxicity results. The TU value of the mixture (5:5 ratio of BKC to DDAC) was calculated as 2.56 µg/mL. Using the OpenMRA platform, the TU values were predicted as 2.37 µg/mL with the concentration addition (CA) model and 11.26 µg/mL with the independent action (IA) model, indicating that the mixture effects were additive and closer to that predicted using the CA model. Both BKC and DDAC induced apoptosis and ROS production in human epithelial cells in a dose-dependent manner, suggesting similar modes of action in promoting cell death. Our results suggested that BKC and DDAC exhibited additive toxicity when combined. Our results demonstrate the utility of the TU-based approach, which combines cytotoxicity, ROS induction, and apoptosis measurements to evaluate mixture toxicity. This approach may be beneficial for assessing early key events relevant to lung diseases and offers a practical strategy for evaluating the inhalation toxicity of household chemical mixtures.
Collapse
Affiliation(s)
- Hye-Jin Jeong
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Yeon-Ho Kang
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Ah-Yoon Song
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Hye-In Park
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Myungwon Seo
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea.
| |
Collapse
|
5
|
Hu M, Guan XH, Wang LF, Xu HM, Ke SF, Yuan QY, Tan HL, Wu J, Yu GH, Huang QM, Liu Y, Hu L, Deng KY, Xin HB. Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis. Cell Mol Life Sci 2024; 82:30. [PMID: 39725783 DOI: 10.1007/s00018-024-05548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD+) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence. However, the roles of endothelial CD38 in pulmonary fibrosis remain unknown. In the present study, we observed that the elevated expression of CD38 was related to endothelial-to-mesenchymal transition (EndMT) of lung tissues in IPF patients and bleomycin (BLM)-induced pulmonary fibrosis mice and also in human umbilical vein endothelial cells (HUVECs) treated with BLM. Micro-computed tomography (MCT) and histopathological staining showed that endothelial cell-specific CD38 knockout (CD38EndKO) remarkably attenuated BLM-induced pulmonary fibrosis. In addition, CD38EndKO significantly inhibited TGFβ-Smad3 pathway-mediated excessive extracellular matrix (ECM), reduced Toll-like receptor4-Myeloid differentiation factor88-Mitogen-activated protein kinases (TLR4-MyD88-MAPK) pathway-mediated endothelial inflammation and suppressed nicotinamide adenine dinucleotide phosphate oxidases1 (NOX1)-mediated oxidative stress. Furthermore, we demonstrated that 3-TYP, a SIRT3-specific inhibitor, markedly reversed the protective effect of HUVECsCD38KD cells and 78 C, a CD38-specific inhibitor, on BLM-induced EndMT in HUVECs. Therefore, we concluded that CD38EndKO significantly ameliorated BLM-induced pulmonary fibrosis through inhibiting ECM, endothelial inflammation and oxidative stress, further alleviating EndMT in mice. Our findings suggest that endothelial CD38 may be a new therapeutic target for the prevention and treatment of pulmonary fibrosis clinically.
Collapse
Affiliation(s)
- Min Hu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hao-Min Xu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Shu-Fen Ke
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qing-Yun Yuan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Hui-Lan Tan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jie Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Guan-Hui Yu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi-Ming Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yu Liu
- Department of Respiratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Long Hu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- College of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
6
|
Lan YW, Chen CE, Huang TT, Huang TH, Chen CM, Chong KY. Antrodia cinnamomea extract alleviates bleomycin-induced pulmonary fibrosis in mice by inhibiting the mTOR pathway. Biomed J 2024; 47:100720. [PMID: 38679198 PMCID: PMC11550180 DOI: 10.1016/j.bj.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a progressive diffuse parenchymal lung disorder with a high mortality rate. Studies have indicated that injured lung tissues release various pro-inflammatory factors, and produce a large amount of nitric oxide. There is also accumulation of collagen and oxidative stress-induced injury, collectively leading to pulmonary fibrosis. Antrodia cinnamomea is an endemic fungal growth in Taiwan, and its fermented extracts exert anti-inflammatory effects to alleviate liver damages. Hence, we hypothesized and tested the feasibility of using A. cinnamomea extracts for treatment of pulmonary fibrosis. METHODS The TGF-β1-induced human lung fibroblast cells (MRC-5) in vitro cell assay were used to evaluate the effects of A. cinnamomea extracts on the collagen production in MRC-5. Eight-week-old ICR mice were intratracheally administered bleomycin and then fed with an A. cinnamomea extract on day 3 post-administration of bleomycin. At day 21 post-bleomycin administration, the pulmonary functional test, the expression level of inflammation- and fibrosis-related genes in the lung tissue, and the histopathological change were examined. RESULTS The A. cinnamomea extract significantly attenuated the expression level of collagen in the TGF-β1-induced MRC-5 cells. In the A. cinnamome-treated bleomycin-induced lung fibrotic mice, the bodyweight increased, pulmonary functions improved, the lung tissues expression level of inflammatory factor and the fibrotic indicator were decreased, and the histopathological results showed the reduction of thickening of the inter-alveolar septa. CONCLUSIONS The Antrodia cinnamomea extract significant protects mice against bleomycin-induced lung injuries through improvement of body weight gain and lung functions, and attenuation of expression of inflammatory and fibrotic indicators.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Chia-En Chen
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; The IEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences Division of Biotechnology, Chang Gung University, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Centre for Stem Cell Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.
| |
Collapse
|
7
|
Niayesh-Mehr R, Kalantar M, Bontempi G, Montaldo C, Ebrahimi S, Allameh A, Babaei G, Seif F, Strippoli R. The role of epithelial-mesenchymal transition in pulmonary fibrosis: lessons from idiopathic pulmonary fibrosis and COVID-19. Cell Commun Signal 2024; 22:542. [PMID: 39538298 PMCID: PMC11558984 DOI: 10.1186/s12964-024-01925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the tremendous advancements in the knowledge of the pathophysiology and clinical aspects of SARS-CoV-2 infection, still many issues remain unanswered, especially in the long-term effects. Mounting evidence suggests that pulmonary fibrosis (PF) is one of the most severe complications associated with COVID-19. Therefore, understanding the molecular mechanisms behind its development is helpful to develop successful therapeutic strategies. Epithelial to mesenchymal transition (EMT) and its cell specific variants endothelial to mesenchymal transition (EndMT) and mesothelial to mesenchymal transition (MMT) are physio-pathologic cellular reprogramming processes induced by several infectious, inflammatory and biomechanical stimuli. Cells undergoing EMT acquire invasive, profibrogenic and proinflammatory activities by secreting several extracellular mediators. Their activity has been implicated in the pathogenesis of PF in a variety of lung disorders, including idiopathic pulmonary fibrosis (IPF) and COVID-19. Aim of this article is to provide an updated survey of the cellular and molecular mechanisms, with emphasis on EMT-related processes, implicated in the genesis of PF in IFP and COVID-19.
Collapse
Affiliation(s)
- Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Kalantar
- Department of Occupational Health, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Saeedeh Ebrahimi
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Xing B, Lan H, Li H. TBPH-induced lung injury is induced by mitochondrial-derived ds-DNA-mediated inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117200. [PMID: 39490104 DOI: 10.1016/j.ecoenv.2024.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Due to the ban on the use of traditional brominated flame retardants, new brominated flame retardants, such as Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), have been developed as alternatives to traditional brominated flame retardants to replace the old ones, and TBPH has been widely used. Therefore, we need to systematically evaluate the toxicological effects of TBPH. In the current work, we analyzed the effects of TBPH on lung. In vivo model, we found that TBPH treatment caused damage to lung tissues through H&E staining, immunohistochemistry, and western-blot analysis. Furthermore, in vitro model, our study found that TBPH treatment led to a decrease in the proliferative capacity of lung cells. Furthermore, TBPH treatment led to inflammatory responses and oxidative stress in lung cells. Molecular mechanism studies showed that under exposure to TBPH, the biological function of mitochondria was disrupted, leading to the release of endogenous ds-DNA from mitochondria into the cytosol. This released ds-DNA acts as a danger signal molecule, effectively activating the cGAS-STING signaling pathway and subsequent inflammatory responses. Further research showed that the disruption of mitochondrial homeostasis by TBPH is closely related to lung injury. The current research findings not only enrich our understanding of the potential toxicological effects of new brominated flame retardants as environmental pollutants, but also provide a research foundation for further understanding TBPH toxicology.
Collapse
Affiliation(s)
- Baopeng Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130031, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130031, China
| | - Haifeng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130031, China.
| |
Collapse
|
9
|
Madl AK, Donnell MT, Covell LT. Synthetic vitreous fibers (SVFs): adverse outcome pathways (AOPs) and considerations for next generation new approach methods (NAMs). Crit Rev Toxicol 2024; 54:754-804. [PMID: 39287182 DOI: 10.1080/10408444.2024.2390020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Fiber dimension, durability/dissolution, and biopersistence are critical factors for the risk of fibrogenesis and carcinogenesis. In the modern era, to reduce, refine, and replace animals in toxicology research, the application of in vitro test methods is paramount for hazard evaluation and designing synthetic vitreous fibers (SVFs) for safe use. The objectives of this review are to: (1) summarize the international frameworks and acceptability criteria for implementation of new approach methods (NAMs), (2) evaluate the adverse outcome pathways (AOPs), key events (KEs), and key event relationships (KERs) for fiber-induced fibrogenesis and carcinogenesis in accordance with Organization for Economic Co-operation and Development (OECD) guidelines, (3) consider existing and emerging technologies for in silico and in vitro toxicity testing for the respiratory system and the ability to predict effects in vivo, (4) outline a recommended testing strategy for evaluating the hazard and safety of novel SVFs, and (5) reflect on methods needs for in vitro in vivo correlation (IVIVC) and predictive approaches for safety assessment of new SVFs. AOP frameworks following the conceptual model of the OECD were developed through an evaluation of available molecular and cellular initiating events, which lead to KEs and KERs in the development of fiber-induced fibrogenesis and carcinogenesis. AOP framework development included consideration of fiber physicochemical properties, respiratory deposition and clearance patterns, biosolubility, and biopersistence, as well as cellular, organ, and organism responses. Available data support that fiber AOPs begin with fiber physicochemical characteristics which influence fiber exposure and biosolubility and subsequent key initiating events are dependent on fiber biopersistence and reactivity. Key cellular events of pathogenic fibers include oxidative stress, chronic inflammation, and epithelial/fibroblast proliferation and differentiation, which ultimately lead to hyperplasia, metaplasia, and fibrosis/tumor formation. Available in vitro models (e.g. single-, multi-cellular, organ system) provide promising NAMs tools to evaluate these intermediate KEs. However, data on SVFs demonstrate that in vitro biosolubility is a reasonable predictor for downstream events of in vivo biopersistence and biological effects. In vitro SVF fiber dissolution rates >100 ng/cm2/hr (glass fibers in pH 7 and stone fibers in pH 4.5) and in vivo SVF fiber clearance half-life less than 40 or 50 days were not associated with fibrosis or tumors in animals. Long (fiber lengths >20 µm) biodurable and biopersistent fibers exceeding these fiber dissolution and clearance thresholds may pose a risk of fibrosis and cancer. In vitro fiber dissolution assays provide a promising avenue and potentially powerful tool to predict in vivo SVF fiber biopersistence, hazard, and health risk. NAMs for fibers (including SVFs) may involve a multi-factor in vitro approach leveraging in vitro dissolution data in complement with cellular- and tissue- based in vitro assays to predict health risk.
Collapse
Affiliation(s)
- Amy K Madl
- Valeo Sciences LLC, Ladera Ranch, CA, USA
| | | | | |
Collapse
|
10
|
Kang YH, Jeong HJ, Park YJ. Hydramethylnon induces mitochondria-mediated apoptosis in BEAS-2B human bronchial epithelial cells. Toxicol Appl Pharmacol 2024; 492:117102. [PMID: 39270854 DOI: 10.1016/j.taap.2024.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Typically used household chemicals comprise numerous compounds. Determining mixture toxicity, as observed when using household chemicals containing multiple substances, is of considerable importance from a regulatory perspective. Upon examining the toxic effects of household chemical mixtures, we observed that hydramethylnon combined with tetramethrin resulted in synergistic toxicity. To determine the unknown toxicity mechanism of hydramethylnon, which carries the risk of inhalation exposure when using household chemicals, we conducted a further investigation using BEAS-2B cells, a human bronchial epithelial cell line. Hydramethylnon-induced cytotoxicity was determined following 24 and 48 h of exposure using the water-soluble tetrazolium 1 and lactate dehydrogenase assays. To elucidate the toxicity mechanism, we utilized flow cytometry and measured the levels of apoptosis-related proteins and caspase activities. Given that hydramethylnon, as an insecticide, disrupts the mitochondrial electron transfer chain, we analyzed the relevant mechanisms, including mitochondrial superoxide levels as well as the mitochondrial membrane potential (MMP). Hydramethylnon dose-dependently induced BEAS-2B cell apoptosis via the intrinsic pathway. Furthermore, it significantly increased mitochondrial superoxide levels and disrupted the MMP. Pre-treatment with a caspase inhibitor (Z-DEVD-FMK) confirmed that hydramethylnon induced caspase-dependent apoptosis. Apoptosis, a key event in the toxicological process of chemicals, can lead to lung diseases, including fibrosis and cancer. The results of the present study suggest a mechanism of toxicity of hydramethrylnon, an organofluorine biocide whose toxicity has been little studied, to the lung epithelium. Considering the potential risks associated with inhalation exposure, these results highlight the need for careful management and regulation of hydramethylnon.
Collapse
Affiliation(s)
- Yeon-Ho Kang
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Hye-Jin Jeong
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea.
| |
Collapse
|
11
|
Pasvanis Z, Kong RCK, Shah MH, Chan EC, Fan Gaskin JC. 3',4'-Dihydroxyflavonol Inhibits Fibrotic Response in a Rabbit Model of Glaucoma Filtration Surgery. Int J Mol Sci 2024; 25:10767. [PMID: 39409096 PMCID: PMC11476621 DOI: 10.3390/ijms251910767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Post-operative fibrosis of the filtering bleb limits the success of glaucoma filtration surgery (GFS). To minimise subconjunctival scarring following GFS, treatment with antimetabolites such as Mitomycin C (MMC) has become standard practice; however, their use is associated with considerable side effects. This study aimed to investigate the anti-scarring properties of 3',4'-dihydroxyflavonol (DiOHF). GFS was performed in New Zealand white rabbits who received eye drops of DiOHF three times daily and vehicle eye drops after surgery (n = 5) or a single intraoperative treatment of MMC (n = 5). Blebs were imaged immediately following surgery and on days 7, 15, 21, and 28 for clinical examination. On day 28, eyes were harvested to assess collagen deposition, expression of α-SMA, oxidative stress, angiogenesis, fibroblast activity, and inflammation in the conjunctiva/Tenon's layer. At 7 and 28 days post-GFS, MMC-treated blebs were more ischaemic than DiOHF- or vehicle-treated blebs. On day 28, DiOHF treatment significantly suppressed collagen accumulation, CD31 expression, Vimentin expression, and CD45 expression compared to the vehicle control. No difference was observed in 3-Nitrotyrosine or αSMA expression between treatment groups. Treatment with DiOHF reduced conjunctival scarring and angiogenesis in rabbits with GFS, which was comparable to MMC. DiOHF may be a safer and more effective wound-modulating agent than conventional antifibrotic therapy in GFS.
Collapse
Affiliation(s)
- Zoe Pasvanis
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Roy C. K. Kong
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Manisha H. Shah
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Elsa C. Chan
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Jennifer C. Fan Gaskin
- Ophthalmology, Department of Surgery, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Glaucoma Research and Investigation Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| |
Collapse
|
12
|
Wang W, Zhou K, Wang L, Qin Q, Liu H, Qin L, Yang M, Yuan L, Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur J Pharmacol 2024; 980:176846. [PMID: 39067566 DOI: 10.1016/j.ejphar.2024.176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Qiuyan Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| |
Collapse
|
13
|
Fan Y, Kang S, Shao T, Xu L, Chen J. Activation of SIRT3 by Tanshinone IIA ameliorates renal fibrosis by suppressing the TGF-β/TSP-1 pathway and attenuating oxidative stress. Cell Signal 2024; 122:111348. [PMID: 39153586 DOI: 10.1016/j.cellsig.2024.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Although doxorubicin (DOX) is a common chemotherapeutic drug, the serious nephrotoxicity caused by DOX-induced renal fibrosis remains a considerable clinical problem. Tanshinone IIA (Tan IIA), a compound extracted from Salvia miltiorrhiza, has been reported to have an anti-fibrotic effect. Therefore, this study investigated the molecular pathway whereby Tan IIA protects the kidneys from DOX administration. DOX (3 mg/kg body weight) was intraperitoneally administered every 3 d for a total of 7 injections (cumulative dose of 21 mg/kg) to induce nephrotoxicity. Then, Tan IIA (5 or 10 mg/kg/d) was administered by intraperitoneal injection for 28 d. In an in vitro study, 293 T cells were cultured and treated with DOX and Tan IIA for 24 h. Tan IIA reduced the blood urea nitrogen levels elevated by DOX while increasing superoxide dismutase activity, down-regulating reactive oxygen species, ameliorating renal-tubule thickening, and rescuing mitochondrial morphology. Additionally, Tan IIA reduced the renal collagen deposition, increased ATP production and complex-I activity, down-regulated transforming growth factor-β1 (TGF-β1) and thrombospondin-1 (TSP-1), and up-regulated sirtuin 3 (SIRT3). Tan IIA significantly increased cell viability. Additionally, RNA interference was employed to silence the expression of SIRT3, which eliminated the effect of Tan IIA in suppressing the expression of TGF-β1 and TSP-1. In conclusion, Tan IIA ameliorated DOX-induced nephrotoxicity by attenuating oxidative injury and fibrosis. The Tan IIA-induced rescue of mitochondrial morphology and function while alleviating renal fibrosis may be associated with the activation of SIRT3 to suppress the TGF-β/TSP-1 pathway.
Collapse
Affiliation(s)
- Yifeng Fan
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shengyu Kang
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Tong Shao
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Linhao Xu
- Department of Cardiology, Hangzhou, First People's Hospital, Hangzhou, 310006, China; Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Jian Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
14
|
Göksu AY, Dirol H, Kocanci FG. Cromolyn sodium and masitinib combination inhibits fibroblast-myofibroblast transition and exerts additive cell-protective and antioxidant effects on a bleomycin-induced in vitro fibrosis model. Pharmacol Res Perspect 2024; 12:e70018. [PMID: 39360479 PMCID: PMC11447456 DOI: 10.1002/prp2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal fibrotic lung disease. While recent studies have suggested the potential efficacy of tyrosine kinase inhibitors in managing IPF, masitinib, a clinically used tyrosine kinase inhibitor, has not yet been investigated for its efficacy in fibrotic lung diseases. In a previous study on an in vitro neurodegenerative model, we demonstrated the synergistic antitoxic and antioxidant effects of masitinib combined with cromolyn sodium, an FDA-approved mast cell stabilizer. This study aims to investigate the anti-fibrotic and antioxidant effects of the masitinib-cromolyn sodium combination in an in vitro model of pulmonary fibrosis. Fibroblast cell cultures treated with bleomycin and/or hydrogen peroxide (H2O2) were subjected to masitinib and/or cromolyn sodium, followed by assessments of cell viability, morphological and apoptotic nuclear changes, triple-immunofluorescence labeling, and total oxidant/antioxidant capacities, besides ratio of Bax and Bcl-2 mRNA expressions as an indication of apoptosis. The combined treatment of masitinib and cromolyn sodium effectively prevented the fibroblast myofibroblast transition, a hallmark of fibrosis, and significantly reduced bleomycin / H2O2-induced apoptosis and oxidative stress. This study is the first to demonstrate the additive anti-fibrotic, cell-protective, and antioxidant effects of the masitinib-cromolyn sodium combination in an in vitro fibrosis model, suggesting its potential as an innovative therapeutic approach for pulmonary fibrosis. Combination therapy may be more advantageous in that both drugs could be administered in lower doses, exerting less side effects, and at the same time providing diverse mechanisms of action simultaneously.
Collapse
Affiliation(s)
- Azize Yasemin Göksu
- Department of Histology and EmbryologyAkdeniz University, School of MedicineAntalyaTurkey
- Department of Gene and Cell TherapyAkdeniz University, School of MedicineAntalyaTurkey
| | - Hulya Dirol
- Department of Chest DiseasesAkdeniz University, School of MedicineAntalyaTurkey
| | - Fatma Gonca Kocanci
- Vocational High School of Health Services, Department of Medical Laboratory TechniquesAlanya Alaaddin Keykubat UniversityAlanyaTurkey
| |
Collapse
|
15
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
16
|
Boateng E, Bonilla-Martinez R, Ahlemeyer B, Garikapati V, Alam MR, Trompak O, Oruqaj G, El-Merhie N, Seimetz M, Ruppert C, Günther A, Spengler B, Karnati S, Baumgart-Vogt E. It takes two peroxisome proliferator-activated receptors (PPAR-β/δ and PPAR-γ) to tango idiopathic pulmonary fibrosis. Respir Res 2024; 25:345. [PMID: 39313791 PMCID: PMC11421181 DOI: 10.1186/s12931-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung epithelial phenotypes, fibroblast activation, and increased extracellular matrix deposition. Transforming growth factor-beta (TGF-β)1-induced Smad signaling and downregulation of peroxisomal genes are involved in the pathogenesis and can be inhibited by peroxisome proliferator-activated receptor (PPAR)-α activation. However, the three PPARs, that is PPAR-α, PPAR-β/δ, and PPAR-γ, are known to interact in a complex crosstalk. METHODS To mimic the pathogenesis of lung fibrosis, primary lung fibroblasts from control and IPF patients with comparable levels of all three PPARs were treated with TGF-β1 for 24 h, followed by the addition of PPAR ligands either alone or in combination for another 24 h. Fibrosis markers (intra- and extracellular collagen levels, expression and activity of matrix metalloproteinases) and peroxisomal biogenesis and metabolism (gene expression of peroxisomal biogenesis and matrix proteins, protein levels of PEX13 and catalase, targeted and untargeted lipidomic profiles) were analyzed after TGF-β1 treatment and the effects of the PPAR ligands were investigated. RESULTS TGF-β1 induced the expected phenotype; e.g. it increased the intra- and extracellular collagen levels and decreased peroxisomal biogenesis and metabolism. Agonists of different PPARs reversed TGF-β1-induced fibrosis even when given 24 h after TGF-β1. The effects included the reversals of (1) the increase in collagen production by repressing COL1A2 promoter activity (through PPAR-β/δ activation); (2) the reduced activity of matrix metalloproteinases (through PPAR-β/δ activation); (3) the decrease in peroxisomal biogenesis and lipid metabolism (through PPAR-γ activation); and (4) the decrease in catalase protein levels in control (through PPAR-γ activation) and IPF (through a combined activation of PPAR-β/δ and PPAR-γ) fibroblasts. Further experiments to explore the role of catalase showed that an overexpression of catalase protein reduced collagen production. Additionally, the beneficial effect of PPAR-γ but not of PPAR-β/δ activation on collagen synthesis depended on catalase activity and was thus redox-sensitive. CONCLUSION Our data provide evidence that IPF patients may benefit from a combined activation of PPAR-β/δ and PPAR-γ.
Collapse
Affiliation(s)
- Eistine Boateng
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Rocio Bonilla-Martinez
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Vannuruswamy Garikapati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392, Giessen, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Mohammad Rashedul Alam
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Omelyan Trompak
- Department of Internal Medicine VIII, Eberhard Karls University, 72076, Tübingen, Germany
| | - Gani Oruqaj
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Department of Internal Medicine II, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, 35392, Giessen, Germany
| | - Natalia El-Merhie
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute for Lung Health (ILH), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University, 35392, Giessen, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Clemens Ruppert
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
- UGMLC Giessen Biobank, Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Andreas Günther
- Excellence Cluster Cardio-Pulmonary System, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
- Center for Interstitial and Rare Lung Diseases, Department of Internal Medicine, German Center for Lung Research, Universities of Giessen and Marburg Lung Center, 35392, Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University, 35392, Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
- Institute for Anatomy and Cell Biology, Julius Maximilians University, 97070, Würzburg, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Aulweg 123, 35392, Giessen, Germany.
| |
Collapse
|
17
|
Inada S, Nakashima T, Masuda T, Shimoji K, Sakamoto S, Yamaguchi K, Horimasu Y, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Sex-related differences in efficacy of bone marrow-derived high aldehyde dehydrogenase activity cells against pulmonary fibrosis. Stem Cell Res Ther 2024; 15:304. [PMID: 39278922 PMCID: PMC11404015 DOI: 10.1186/s13287-024-03933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Although bone marrow-derived cells with high aldehyde dehydrogenase activity (ALDHbr) have shown therapeutic potential against various diseases in animal studies, clinical trials have failed to show concurrent findings. We aimed to clarify the optimal conditions for the efficacy of ALDHbr cells by using a murine bleomycin-induced pulmonary fibrosis model. METHODS We intravenously transferred male or female donor C57BL/6 mice-derived ALDHbr cells into recipient C57BL/6 mice under various conditions, and used mCherry-expressing mice as a donor to trace the transferred ALDHbr cells. RESULTS Pulmonary fibrosis improved significantly when (1) female-derived, not male-derived, and (2) lineage (Lin)-negative, not lineage-positive, ALDHbr cells were transferred during the (3) fibrotic, not inflammatory, phase. Consistent with the RNA-sequencing results, female-derived Lin-/ALDHbr cells were more resistant to oxidative stress than male-derived cells in vitro, and transferred female-derived Lin-/ALDHbr cells were more viable than male-derived cells in the fibrotic lung. The mechanism underlying the antifibrotic effects of Lin-/ALDHbr cells was strongly associated with reduction of oxidative stress. CONCLUSIONS Our results indicated that Lin-/ALDHbr cell therapy could ameliorate pulmonary fibrosis by reducing oxidative stress and suggested that their efficacy was mediated by sex-related differences. Thus, sex-awareness strategies may be important for clinical application of bone marrow ALDHbr cells as a therapeutic tool.
Collapse
Affiliation(s)
- Shugo Inada
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kiyofumi Shimoji
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
18
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
19
|
Yıldırım AB, Göl M, Yiğin A, Çimen L, Dinç H, Yıldız H, Kayar B. Therapeutic use of fisetin and pirfenidone combination in bleomycin-induced pulmonary fibrosis in adult male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03363-6. [PMID: 39162796 DOI: 10.1007/s00210-024-03363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Pulmonary fibrosis is an important health problem; one of the drugs used in its treatment is pirfenidone (PFD). Fisetin (FST) is a flavonoid with antioxidative, anti-inflammatory, and antifibrotic effects. The aim of this study was to induce PF in rats with bleomycin (BLM) and to investigate the combined effect of PFD and FST in the treatment of fibrosis. In the study, 40 male Wistar rats were divided into five groups (n = 8). Sham group was administered saline on day 0 and BLM (5 mg/kg, i.t.) was administered to the other groups; BLM + PFD group: PFD (50 mg/kg) was administered every day between the first and 15th days; BLM + FST group: FST (25 mg/kg) was administered between the first and 15th days; BLM + PFD + FST group: PFD (50 mg/kg) and FST (25 mg/kg) were administered by gavage every day between the first and 15th days. At the end of the 15th day, BAL was performed under anaesthesia and lung tissues were removed. Histopathological, biochemical, and RT-PCR analyses were performed in the lung tissue. In our study, the concomitant use of FST and PFD caused downregulation of NF-κB p65, TGF-β1, and α-SMA expressions; downregulation of TIMP-1, MMP-2, and MMP-9 genes; downregulation of HYP, MPO, and MDA activity; decrease in the number of differential cells in BAL; and upregulation of GSH. This shows that FST and PFD have antifibrotic, antioxidative, and anti-inflammatory effects. Our results show that the combined use of PFD and FST in BLM-induced pulmonary fibrosis reduces extracellular matrix accumulation, downregulates the level of gelatinases and their inhibitors, and provides significant improvements in antioxidative defence parameters.
Collapse
Affiliation(s)
- Ayşegül Burçin Yıldırım
- Department of Histology and Embryology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| | - Mehmet Göl
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Akın Yiğin
- Department of Veterinary Genetics, Faculty of Veterinary, Harran University, Şanlıurfa, Turkey
| | - Leyla Çimen
- Department of Biochemistry, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Hikmet Dinç
- Department of Pharmacology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Hamit Yıldız
- Department of Internal Diseases, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Begüm Kayar
- Department of Microbiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| |
Collapse
|
20
|
Li C, An Q, Jin Y, Jiang Z, Li M, Wu X, Dang H. Identification of oxidative stress-related diagnostic markers and immune infiltration features for idiopathic pulmonary fibrosis by bibliometrics and bioinformatics. Front Med (Lausanne) 2024; 11:1356825. [PMID: 39165378 PMCID: PMC11333355 DOI: 10.3389/fmed.2024.1356825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) garners considerable attention due to its high fatality rate and profound impact on quality of life. Our study conducts a comprehensive literature review on IPF using bibliometric analysis to explore existing hot research topics, and identifies novel diagnostic and therapeutic targets for IPF using bioinformatics analysis. Publications related to IPF from 2013 to 2023 were searched on the Web of Science Core Collection (WoSCC) database. Data analysis and visualization were conducted using CiteSpace and VOSviewer software primarily. The gene expression profiles GSE24206 and GSE53845 were employed as the training dataset. The GSE110147 dataset was employed as the validation dataset. We identified differentially expressed genes (DEGs) and differentially expressed genes related to oxidative stress (DEOSGs) between IPF and normal samples. Then, we conducted Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub genes were screened by protein-protein interaction (PPI) networks and machine learning algorithms. The CIBERSORT was used to analyze the immune infiltration of 22 kinds of immune cells. Finally, we conducted the expression and validation of hub genes. The diagnostic efficacy of hub genes was evaluated by employing Receiver Operating Characteristic (ROC) curves and the associations between hub genes and immune cells were analyzed. A total of 6,500 articles were identified, and the annual number of articles exhibited an upward trend. The United States emerged as the leading contributor in terms of publication count, institutional affiliations, highly cited articles, and prolific authorship. According to co-occurrence analysis, oxidative stress and inflammation are hot topics in IPF research. A total of 1,140 DEGs were identified, and 72 genes were classified as DEOSGs. By employing PPI network analysis and machine learning algorithms, PON2 and TLR4 were identified as hub genes. A total of 10 immune cells exhibited significant differences between IPF and normal samples. PON2 and TLR4, as oxidative stress-related genes, not only exhibit high diagnostic efficacy but also show close associations with immune cells. In summary, our study highlights oxidative stress and inflammation are hot topics in IPF research. Oxidative stress and immune cells play a vital role in the pathogenesis of IPF. Our findings suggest the potential of PON2 and TLR4 as novel diagnostic and therapeutic targets for IPF.
Collapse
Affiliation(s)
- Chang Li
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qing An
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi Jin
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zefei Jiang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meihe Li
- Department of Renal Transplantation, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Kilic KD, Erisik D, Taskiran D, Turhan K, Kose T, Cetin EO, Sendemi R A, Uyanikgil Y. Protective effects of E-CG-01 (3,4-lacto cycloastragenol) against bleomycin-induced lung fibrosis in C57BL/6 mice. Biomed Pharmacother 2024; 177:117016. [PMID: 38943992 DOI: 10.1016/j.biopha.2024.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
Idiopathic pulmonary fibrosis is an aging-related, chronic lung disease, with unclear pathogenesis and no effective treatment. One of the triggering factors in cell aging is oxidative stress and it is known to have a role in idiopathic pulmonary fibrosis. In this paper, the protective effect of the E-CG-01 (3,4-lacto-cycloastragenol) molecule in terms of its antioxidant properties was evaluated in the bleomycin induced mice lung fibrosis model. Bleomycin sulfate was administered as a single dose (2.5 U/kg body weight) intratracheally to induce lung fibrosis. E-CG-01 was administered intraperitoneally in three different doses (2 mg/kg/day, 6 mg/kg/day, and 10 mg/kg/day) for 14 days, starting three days before the bleomycin administration. Fibrosis was examined by Hematoxylin-Eosin, Masson Trichrome, and immunohistochemical staining for TGF-beta1, Type I collagen Ki-67, and gama-H2AX markers. Activity analysis of catalase and Superoxide dismutase enzymes, measurement of total oxidant, total glutathione, and Malondialdehyde levels. In histological analysis, it was determined that all three different doses of the molecule provided a prophylactic effect against the progression of fibrosis compared to the bleomycin control group. However, it was observed that only the molecule applied in the high dose decreased the total oxidant stress level. Lung weight ratio increased in the BLM group but significantly reduced with high-dose E-CG-01. E-CG-01 at all doses reduced collagen deposition, TGF-β expression, and Ki-67 expression compared to the BLM group. Intermediate and high doses of E-CG-01 also significantly reduced alveolar wall thickness and edema formation. These findings suggest that E-CG-01 has potential therapeutic effects in mitigating lung fibrosis through its antioxidant properties.
Collapse
Affiliation(s)
- Kubilay Dogan Kilic
- Ege University, Faculty of Medicine, Department of Histology and Embryology, İzmir, Turkiye; Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany.
| | - Derya Erisik
- Ege University, Faculty of Medicine, Department of Histology and Embryology, İzmir, Turkiye
| | - Dilek Taskiran
- Ege University, Faculty of Medicine, Department of Physiology, İzmir, Turkiye
| | - Kutsal Turhan
- Ege University, Faculty of Medicine, Department of Thoracic Surgery, İzmir, Turkiye; Acibadem Kent Hospital, Department of Thoracic Surgery, İzmir, Türkiye
| | - Timur Kose
- Ege University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, İzmir, Turkiye
| | - Emel Oyku Cetin
- Ege University, Faculty of Pharmacy, Department of Biopharmaceutics and Pharmacokinetics, İzmir, Turkiye
| | - Aylin Sendemi R
- Ege University, Faculty of Engineering, Department of Bioengineering, İzmir, Turkiye
| | - Yiğit Uyanikgil
- Ege University, Faculty of Medicine, Department of Histology and Embryology, İzmir, Turkiye; Ege University, Cord Blood Cell - Tissue Research and Application Center, İzmir, Turkiye; Ege University, Institute of Health Sciences, Department of Stem Cell, İzmir, Turkiye
| |
Collapse
|
22
|
Liang W, Yang H, Pan L, Wei S, Li Z, Zhang P, Li R, Wu Y, Liu M, Liu X. Ginkgo biloba Extract 50 (GBE50) Exerts Antifibrotic and Antioxidant Effects on Pulmonary Fibrosis in Mice by Regulating Nrf2 and TGF-β1/Smad Pathways. Appl Biochem Biotechnol 2024; 196:4807-4822. [PMID: 37971580 DOI: 10.1007/s12010-023-04755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a progressive lung disorder with a poor prognosis. GBE50 is a new standardized Ginkgo biloba extract that has been widely used in cardiovascular diseases. However, the protective mechanism of GBE50 against PF remains to be elucidated. METHODS C57BL/6J mice were treated with bleomycin (Bleo) to induce PF in the presence or absence of GBE50. Protein content in bronchoalveolar lavage fluid (BALF) and wet weight/dry weight ratio were examined for analysis of pulmonary edema. Hematoxylin-eosin staining and Masson trichrome staining were used for histopathological observation of murine lung tissues. Ashcroft score was used for semi-quantitation of lung fibrosis degree. RT-qPCR was utilized for assessing mRNA levels of pro-fibrotic mediators in lung tissues. TUNEL staining was implemented for cell apoptosis assessment. The levels of oxidative stress- and inflammation-related markers were evaluated by corresponding commercial assay kits. Western blotting was used to evaluate levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling- and transforming growth factor (TGF)-β1/SMAD signaling-related proteins. RESULTS GBE50 alleviated lung injury and severity of fibrosis, reduced collagen deposition and cell apoptosis in lung tissues, and suppressed inflammatory response and oxidative stress injury in Bleo-stimulated PF mice. GBE50 activated Nrf2 signaling pathway and inactivated TGF-β1/SMAD signaling pathway in the lungs of Bleo-induced PF mice. Inhibition of Nrf2 signaling reversed GBE50-mediated inactivation of TGF-β1/SMAD signaling and attenuation of inflammation and oxidative stress in Bleo-induced PF mice. CONCLUSION GBE50 protects against Bleo-induced PF in mice by mitigating fibrosis, inflammation and oxidative stress via Nrf2 and TGF-β1/SMAD signaling pathways.
Collapse
Affiliation(s)
- Wei Liang
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
| | - Hongmei Yang
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Ling Pan
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China.
| | - Sizun Wei
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China.
| | - Zhanhua Li
- Department of Pulmonary and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, 10 Huadong Road, Nanning, 530000, Guangxi, China
| | - Pengfei Zhang
- Department of Pulmonary and Critical Care Medicine, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, 545001, Guangxi, China
| | - Ruixiang Li
- Intensive Care Unit, Ruikang Hospital Affiliated to Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Yangcong Wu
- Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Maohua Liu
- Guangxi Traditional Chinese Medicine University, Nanning530000, Guangxi, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
23
|
Boothe PF, Kumar VP, Kong Y, Wang K, Levinson H, Mu D, Brown ML. Radiation Induced Skin Fibrosis (RISF): Opportunity for Angiotensin II-Dependent Intervention. Int J Mol Sci 2024; 25:8261. [PMID: 39125831 PMCID: PMC11312688 DOI: 10.3390/ijms25158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Medical procedures, such as radiation therapy, are a vital element in treating many cancers, significantly contributing to improved survival rates. However, a common long-term complication of such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy may achieve long-term remission, resulting in a significant number of survivors managing the aftereffects of their treatment. This article delves into the intricate relationship between RISF, reactive oxygen species (ROS), and angiotensin II (Ang II) signaling. It proposes the underlying mechanisms and examines potential treatments for mitigating skin fibrosis. The primary goal is to offer essential insights in order to better care for and improve the quality of life of cancer survivors who face the risk of developing RISF.
Collapse
Affiliation(s)
- Patricia F. Boothe
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, The Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Yali Kong
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Kan Wang
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
| | - Howard Levinson
- The Center for Plastic Surgery at Sentara, 301 Riverview Ave. #400, Norfolk, VA 23510, USA;
| | - David Mu
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA; (Y.K.); (D.M.)
- Leroy T. Canoles Jr. Cancer Research Center, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| | - Milton L. Brown
- Department of Internal Medicine, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA 23507, USA
| |
Collapse
|
24
|
Roodnat AW, Callaghan B, Doyle C, Vallabh NA, Atkinson SD, Willoughby CE. Genome-wide RNA sequencing of ocular fibroblasts from glaucomatous and normal eyes: Implications for glaucoma management. PLoS One 2024; 19:e0307227. [PMID: 38990974 PMCID: PMC11239048 DOI: 10.1371/journal.pone.0307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Primary open angle glaucoma is a leading cause of visual impairment and blindness which is commonly treated with drugs or laser but may require surgery. Tenon's ocular fibroblasts are involved in wound-healing after glaucoma filtration surgery and may compromise a favourable outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene expression and key pathways contributing to the glaucomatous state we performed genome-wide RNA sequencing. Human Tenon's ocular fibroblasts were cultured from normal and glaucomatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-Seq performed on the Illumina platform. Differentially expressed genes were identified using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in biological functions and pathways were determined using Enrichr and clustered using Cytoscape. A total of 5817 genes were differentially expressed between Tenon's ocular fibroblasts from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly different biological functions and pathways which were clustered into 176 clusters. Tenon's ocular fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast transdifferentiation and associated changes in mitochondrial fission, remodeling of the extracellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma therapies. Altered gene expression in glaucomatous Tenon's ocular fibroblasts may contribute to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-wide transcriptome of glaucomatous versus normal Tenon's ocular fibroblasts which may identify genes or pathways of therapeutic value to improve surgical outcomes.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Breedge Callaghan
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chelsey Doyle
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Neeru A. Vallabh
- Department of Eye and Vision Science, Insitute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- St. Paul’s Eye Unit, Liverpool University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Sarah D. Atkinson
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Colin E. Willoughby
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
25
|
Wu M, Li H, Zhai R, Shan B, Guo C, Chen J. Tanshinone IIA positively regulates the Keap1-Nrf2 system to alleviate pulmonary fibrosis via the sestrin2-sqstm1 signaling axis-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155620. [PMID: 38669964 DOI: 10.1016/j.phymed.2024.155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Activation of myofibroblasts, linked to oxidative stress, emerges as a pivotal role in the progression of pulmonary fibrosis (PF). Our prior research has underscored the therapeutic promise of tanshinone IIA (Tan-IIA) in mitigating PF by enhancing nuclear factor-erythroid 2-related factor 2 (Nrf2) activity. Nevertheless, the molecular basis through which Tan-IIA influences Nrf2 activity has yet to be fully elucidated. METHODS The influence of Tan-IIA on PF was assessed in vivo and in vitro models. Inhibitors, overexpression plasmids, and small interfering RNA (siRNA) were utilized to probe its underlying mechanism of action in vitro. RESULTS We demonstrate that Tan-IIA effectively activates the kelch-like ECH-associated protein 1 (Keap1)-Nrf2 antioxidant pathway, which in turn inhibits myofibroblast activation and ameliorates PF. Notably, the stability and nucleo-cytoplasmic shuttling of Nrf2 is shown to be dependent on augmented autophagic flux, which is in alignment with the observation that Tan-IIA induces autophagy. Inhibition of autophagy, conversely, fosters the activation of extracellular matrix (ECM)-producing myofibroblasts. Further, Tan-IIA initiates an autophagy program through the sestrin 2 (Sesn2)-sequestosome 1 (Sqstm1) signaling axis, crucial for protecting Nrf2 from Keap1-mediated degradation. Meanwhile, these findings were corroborated in a murine model of PF. CONCLUSION Collectively, we observed for the first time that the Sqstm1-Sesn2 axis-mediated autophagic degradation of Keap1 effectively prevents myofibroblast activation and reduces the synthesis of ECM. This autophagy-dependent degradation of Keap1 can be initiated by the Tan-IIA treatment, which solidifies its potential as an Nrf2-modulating agent for PF treatment.
Collapse
Affiliation(s)
- Mingyu Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongxia Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 22530, China
| | - Rao Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Baixi Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Congying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Singh H, Almabhouh FA, Alshaikhli HSI, Hassan MJM, Daud S, Othman R, Md Salleh MFRR. Leptin in reproduction and hypertension in pregnancy. Reprod Fertil Dev 2024; 36:RD24060. [PMID: 39038160 DOI: 10.1071/rd24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Leptin has important roles in numerous physiological functions, including those in the regulation of energy balance, and in immune and reproductive systems. However, in the recent years, evidence has implicated it in a number of obesity-related diseases, where its concentrations in serum are significantly elevated. Elevated serum leptin concentrations and increased placental leptin secretion have been reported in women with hypertensive disorders of pregnancy. Whether leptin is responsible for this disorder remains to be established. Leptin injections in healthy rats and mice during pregnancy result in endothelial activation, increased blood pressure and proteinuria. A potential role for leptin in the pathogenesis of pre-eclampsia is hypothesised, particularly in women who are overweight or obese where serum leptin concentrations are often elevated. This review summarises pertinent information in the literature on the role of leptin in puberty, pregnancy, and hypertensive disorders of pregnancy. In particular, the possible mechanism that may be involved in leptin-induced increase in blood pressure and proteinuria during pregnancy and the potential role of marinobufagenin in this disease entity. We hypothesise a significant role for oxidative stress in this, and propose a conceptual framework on the events that lead to endothelial activation, raised blood pressure and proteinuria following leptin administration.
Collapse
Affiliation(s)
- Harbindarjeet Singh
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Fayez A Almabhouh
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sg Buloh, Selangor, Malaysia; and Department of Biology and Biotechnology, Faculty of Science Islamic University of Gaza, Gaza Strip, Palestine
| | | | | | - Suzanna Daud
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Rosfayati Othman
- Department of Physiology, Faculty of Medicine, MAHSA University, Bandar Saujana Putra, Kuala Langat, Selangor, Malaysia
| | - Muhd Fakh Rur Razi Md Salleh
- Department of Physiology, Faculty of Medicine, MAHSA University, Bandar Saujana Putra, Kuala Langat, Selangor, Malaysia
| |
Collapse
|
27
|
Wang Z, Zhang Y, Li X. Mitigation of Oxidative Stress in Idiopathic Pulmonary Fibrosis Through Exosome-Mediated Therapies. Int J Nanomedicine 2024; 19:6161-6176. [PMID: 38911503 PMCID: PMC11193999 DOI: 10.2147/ijn.s453739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/01/2024] [Indexed: 06/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) poses a formidable clinical challenge, characterized by the thickening of alveolar septa and the onset of pulmonary fibrosis. The pronounced activation of oxidative stress emerges as a pivotal hallmark of inflammation. Traditional application of exogenous antioxidants proves inadequate in addressing oxidative stress, necessitating exploration into strategies to augment their antioxidant efficacy. Exosomes, nano-sized extracellular vesicles harboring a diverse array of bioactive factors, present as promising carriers with the potential to meet this challenge. Recent attention has been directed towards the clinical applications of exosomes in IPF, fueling the impetus for this comprehensive review. We have compiled fresh insights into the role of exosomes in modulating oxidative stress in IPF and delved into their potential as carriers for regulating endogenous reactive oxygen species generation. This review endeavors to bridge the divide between exosome research and IPF, traversing from bedside to bench. Through the synthesis of recent findings, we propose exosomes as a novel and promising strategy for improving the outcomes of IPF therapy.
Collapse
Affiliation(s)
- Zaiyan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| | - Xiaoning Li
- Department of Geriatric Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| |
Collapse
|
28
|
Kim SG, Jeon JH, Shin SH, Varias DC, Moon SH, Ryu BY. Inhibition of reactive oxygen species generation by N-Acetyl Cysteine can mitigate male germ cell toxicity induced by bisphenol analogs. Food Chem Toxicol 2024; 188:114652. [PMID: 38583502 DOI: 10.1016/j.fct.2024.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The estrogen-like effect of bisphenol A (BPA) disrupting the maintenance of functional male germ cells is associated with male sub-fertility. This study investigated toxicity of male germ cells induced by four bisphenol analogs: BPA, BPAF, BPF, and BPS. The investigation of bisphenol analogs' impact on male germ cells included assessing proliferation, apoptosis induction, and the capacity to generate reactive oxygen species (ROS) in GC-1 spermatogonia (spg) cells, specifically type B spermatogonia. Additionally, the therapeutic potential and protective effects of N-Acetyl Cysteine (NAC) and NF-κB inhibitor parthenolide was evaluated. In comparison to BPA, BPF and BPS, BPAF exhibited the most pronounced adverse effect in GC-1 spg cell proliferation. This effect was characterized by pronounced inhibition of phosphorylation of PI3K, AKT, and mTOR, along with increased release of cytochrome c and subsequent cleavages of caspase 3, caspase 7, and poly (ADP-ribose) polymerase. Both NAC and parthenolide were effective reducing cellular ROS induced by BPAF. However, only NAC demonstrated a substantial recovery in proliferation, accompanied by a significant reduction in cytochrome c release and cleaved PARP. These results suggest that NAC supplementation may play an effective therapeutic role in countering germ cell toxicity induced by environmental pollutants with robust oxidative stress-generating capacity.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Jeong Hoon Jeon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Daniel Chavez Varias
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
29
|
Bo C, Liu F, Zhang Z, Du Z, Xiu H, Zhang Z, Li M, Zhang C, Jia Q. Simvastatin attenuates silica-induced pulmonary inflammation and fibrosis in rats via the AMPK-NOX pathway. BMC Pulm Med 2024; 24:224. [PMID: 38720270 PMCID: PMC11080310 DOI: 10.1186/s12890-024-03014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α and transforming growth factor-β1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.
Collapse
Affiliation(s)
- Cunxiang Bo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fang Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Guangzhou Huaxia Vocational College, Guangzhou, China
| | - Zewen Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haidi Xiu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ming Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Caiqing Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Pulmonary and Critical Care Medicine, Shandong Province's Second General Hospital (Shandong Province ENT Hospital), Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, Shandong, China.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
30
|
Cao X, Yu C, Cheng S, Wang Y, Zhang Z, Huang J. Co-Delivery of Astaxanthin and si TGF-β1 via Ionizable Liposome Nanoparticles for Improved Idiopathic Pulmonary Fibrosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597290 DOI: 10.1021/acsami.4c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Alleviating the injury of type II alveolar epithelial cells (AEC 2s) and inhibiting the activation and differentiation of fibroblasts are significant for improving the therapeutic effect of idiopathic pulmonary fibrosis (IPF). To this aim, ionizable liposome nanoparticles (ASNPs) coloaded with antioxidant drug astaxanthin (AST) and small interfering RNA targeting transforming growth factor β1 (siTGF-β1) were developed for enhanced IPF therapy. ASNPs showed high loading and intracellular delivery efficiency for AST and siTGF-β1. After the injection of ASNPs in an IPF mice model, the loaded AST largely scavenged reactive oxygen species (ROS) in the diseased lung to reduce AEC2 apoptosis, thereby ensuring the integrity of the alveolar epithelium. Meanwhile, siTGF-β1, delivered by ASNPs, significantly silenced the expression of TGF-β1 in fibroblasts, inhibiting the differentiation of fibroblasts into myofibroblasts as well as reducing the excessive deposition of extracellular matrix (ECM). The combined use of the two drugs exhibited an excellent synergistic antifibrotic effect and was conducive to minimizing alveolar epithelial damage. This work provides a codelivery strategy of AST and siTGF-β1, which shows great promise for the treatment of IPF by simultaneously reducing alveolar epithelial damage and inhibiting fibroblast activation.
Collapse
Affiliation(s)
- Xiaoling Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chenggong Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China institution, Hefei 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
31
|
Zeng Q, Wen BB, Liu X, Luo YY, Hu ZG, Huang L, Zhang XH, Huang XT, Zhou TT, Sang XX, Luo YY, Xiong DY, Luo ZQ, Liu W, Tang SY. NBR1-p62-Nrf2 mediates the anti-pulmonary fibrosis effects of protodioscin. Chin Med 2024; 19:60. [PMID: 38589903 PMCID: PMC11003024 DOI: 10.1186/s13020-024-00930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a persistent disease of the lung interstitium for which there is no efficacious pharmacological therapy. Protodioscin, a steroidal saponin, possesses diverse pharmacological properties; however, its function in pulmonary fibrosis is yet to be established. Hence, in this investigation, it was attempted to figure out the anti-pulmonary fibrosis influences of protodioscin and its pharmacological properties related to oxidative stress. METHODS A mouse lung fibrosis model was generated using tracheal injections of bleomycin, followed by intraperitoneal injection of different concentrations of protodioscin, and the levels of oxidative stress and fibrosis were detected in the lungs. Multiple fibroblasts were treated with TGF-β to induce their transition to myofibroblasts. It was attempted to quantify myofibroblast markers' expression levels and reactive oxygen species levels as well as Nrf2 activation after co-incubation of TGF-β with fibroblasts and different concentrations of protodioscin. The influence of protodioscin on the expression and phosphorylation of p62, which is associated with Nrf2 activation, were detected, and p62 related genes were predicted by STRING database. The effects of Nrf2 inhibitor or silencing of the Nrf2, p62 and NBR1 genes, respectively, on the activation of Nrf2 by protodioscin were examined. The associations between p62, NBR1, and Keap1 in the activation of Nrf2 by protodioscin was demonstrated using a co-IP assay. Nrf2 inhibitor were used when protodioscin was treated in mice with pulmonary fibrosis and lung tissue fibrosis and oxidative stress levels were detected. RESULTS In vivo, protodioscin decreased the levels of fibrosis markers and oxidative stress markers and activated Nrf2 in mice with pulmonary fibrosis, and these effects were inhibited by Nrf2 inhibitor. In vitro, protodioscin decreased the levels of myofibroblast markers and oxidative stress markers during myofibroblast transition and promoted Nrf2 downstream gene expression, with reversal of these effects after Nrf2, p62 and NBR1 genes were silenced or Nrf2 inhibitors were used, respectively. Protodioscin promoted the binding of NBR1 to p62 and Keap1, thereby reducing Keap1-Nrf2 binding. CONCLUSION The NBR1-p62-Nrf2 axis is targeted by protodioscin to reduce oxidative stress and inhibit pulmonary fibrosis.
Collapse
Affiliation(s)
- Qian Zeng
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin-Bin Wen
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xin Liu
- The Orthopedics Hospital of Traditional Chinese Medicine Zhuzhou City, Zhuzhou, Hunan, China
| | - Yong-Yu Luo
- Guiyang Second People's Hospital, Guiyang, Guizhou, China
| | - Zhen-Gang Hu
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Huang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Hua Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting-Ting Zhou
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiao-Xue Sang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Yang Luo
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Da-Yan Xiong
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zi-Qiang Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
32
|
Luo L, Zhang W, You S, Cui X, Tu H, Yi Q, Wu J, Liu O. The role of epithelial cells in fibrosis: Mechanisms and treatment. Pharmacol Res 2024; 202:107144. [PMID: 38484858 DOI: 10.1016/j.phrs.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.
Collapse
Affiliation(s)
- Liuyi Luo
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Oral Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siyao You
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Xinyan Cui
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Qiao Yi
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| | - Ousheng Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, China; Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Qi YT, Zhang FL, Tian SY, Wu HQ, Zhao Y, Zhang XW, Liu YL, Fu P, Amatore C, Huang WH. Nanosensor detection of reactive oxygen and nitrogen species leakage in frustrated phagocytosis of nanofibres. NATURE NANOTECHNOLOGY 2024; 19:524-533. [PMID: 38172432 DOI: 10.1038/s41565-023-01575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages. We show the existence of an intense prolonged release of reactive oxygen and nitrogen species by single macrophages near their phagocytic cups. This continued massive leakage of reactive oxygen and nitrogen species damages peripheral cells and eventually translates into chronic inflammation and lung injury, as seen during in vitro co-culture and in vivo experiments.
Collapse
Affiliation(s)
- Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hui-Qian Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, People's Republic of China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China.
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, Paris, France.
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
34
|
Jeong E, Hong H, Lee YA, Kim KS. Potential Rheumatoid Arthritis-Associated Interstitial Lung Disease Treatment and Computational Approach for Future Drug Development. Int J Mol Sci 2024; 25:2682. [PMID: 38473928 PMCID: PMC11154459 DOI: 10.3390/ijms25052682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by swelling in at least one joint. Owing to an overactive immune response, extra-articular manifestations are observed in certain cases, with interstitial lung disease (ILD) being the most common. Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by chronic inflammation of the interstitial space, which causes fibrosis and the scarring of lung tissue. Controlling inflammation and pulmonary fibrosis in RA-ILD is important because they are associated with high morbidity and mortality. Pirfenidone and nintedanib are specific drugs against idiopathic pulmonary fibrosis and showed efficacy against RA-ILD in several clinical trials. Immunosuppressants and disease-modifying antirheumatic drugs (DMARDs) with anti-fibrotic effects have also been used to treat RA-ILD. Immunosuppressants moderate the overexpression of cytokines and immune cells to reduce pulmonary damage and slow the progression of fibrosis. DMARDs with mild anti-fibrotic effects target specific fibrotic pathways to regulate fibrogenic cellular activity, extracellular matrix homeostasis, and oxidative stress levels. Therefore, specific medications are required to effectively treat RA-ILD. In this review, the commonly used RA-ILD treatments are discussed based on their molecular mechanisms and clinical trial results. In addition, a computational approach is proposed to develop specific drugs for RA-ILD.
Collapse
Affiliation(s)
- Eunji Jeong
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Hyunseok Hong
- Yale College, Yale University, New Haven, CT 06520, USA;
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon-Ah Lee
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea;
| | - Kyoung-Soo Kim
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| |
Collapse
|
35
|
Lee JU, Song KS, Hong J, Shin H, Park E, Baek J, Park S, Baek AR, Lee J, Jang AS, Kim DJ, Chin SS, Kim UJ, Jeong SH, Park SW. Role of lung ornithine aminotransferase in idiopathic pulmonary fibrosis: regulation of mitochondrial ROS generation and TGF-β1 activity. Exp Mol Med 2024; 56:478-490. [PMID: 38413821 PMCID: PMC10907606 DOI: 10.1038/s12276-024-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 02/29/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling and the excessive accumulation of extracellular matrix (ECM) proteins. In a previous study, we found that the levels of ornithine aminotransferase (OAT), a principal enzyme in the proline metabolism pathway, were increased in the lungs of patients with IPF. However, the precise role played by OAT in the pathogenesis of IPF is not yet clear. The mechanism by which OAT affects fibrogenesis was assessed in vitro using OAT-overexpressing and OAT-knockdown lung fibroblasts. The therapeutic effects of OAT inhibition were assessed in the lungs of bleomycin-treated mice. OAT expression was increased in fibrotic areas, principally in interstitial fibroblasts, of lungs affected by IPF. OAT levels in the bronchoalveolar lavage fluid of IPF patients were inversely correlated with lung function. The survival rate was significantly lower in the group with an OAT level >75.659 ng/mL than in the group with an OAT level ≤75.659 ng/mL (HR, 29.53; p = 0.0008). OAT overexpression and knockdown increased and decreased ECM component production by lung fibroblasts, respectively. OAT knockdown also inhibited transforming growth factor-β1 (TGF)-β1 activity and TGF-β1 pathway signaling. OAT overexpression increased the generation of mitochondrial reactive oxygen species (ROS) by activating proline dehydrogenase. The OAT inhibitor L-canaline significantly attenuated bleomycin-induced lung injury and fibrosis. In conclusion, increased OAT levels in lungs affected by IPF contribute to the progression of fibrosis by promoting excessive mitochondrial ROS production, which in turn activates TGF-β1 signaling. OAT may be a useful target for treating patients with fibrotic lung diseases, including IPF.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Ki Sung Song
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Hyesun Shin
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Eunji Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Junyeong Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Ae-Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Junehyuk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - An Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea
| | - U-Jin Kim
- Department of Internal Medicine, Environmental Health Center Kangwon National University, Gangwondaehakgil, Chuncheon-si, Gangwon-do, South Korea
| | - Sung Hwan Jeong
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University, Gil Medical Center, Incheon, South Korea
| | - Sung-Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Gyeonggi-Do, South Korea.
| |
Collapse
|
36
|
Ye Y, Liu B, Wang Z, Liu L, Zhang Q, Zhang Q, Jiang W. Sodium p-perfluorous nonenoxybenzene sulfonate induces ROS-mediated necroptosis by directly targeting catalase in HepG2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168446. [PMID: 37949132 DOI: 10.1016/j.scitotenv.2023.168446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has been widely used as a substitute for perfluorooctane sulfonic acid (PFOS) because of its high surface activity and low cost, but the knowledge of its biological effects is still limited. In this study, we compared the toxic effects of OBS and PFOS on human hepatoma cells (HepG2). OBS resulted in lower cell viability, higher ROS levels, and more severe necrosis than PFOS, indicating that OBS caused higher cytotoxicity than PFOS. In this process, OBS induced a burst of ROS and downregulation of catalase (CAT). OBS-induced oxidative stress was recovered after the CAT overexpression, but the CAT levels were not reversed after N-acetylcysteine (NAC) pretreatment. This indicates that the downregulated CAT is an upstream signal of the ROS burst. Moreover, drug affinity targeting assay, spectroscopic analysis and molecular docking were conducted, showing that OBS directly targeted CAT and therefore downregulated CAT. In addition, we found that OBS-induced necrosis is RIP1/RIP3-dependent programmed necroptosis. In summary, OBS directly targets CAT to reduce CAT levels and induces oxidative stress and necroptosis. Our findings are helpful to understand the toxicity of OBS and to evaluate the safety of OBS as a substitute for PFOS.
Collapse
Affiliation(s)
- Yiyuan Ye
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zijian Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Qiu Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
37
|
Imaduddin UK, Berbudi A, Rohmawaty E. The Effect of Physalis angulata L. Administration on Gene Expressions Related to Lung Fibrosis Resolution in Mice-Induced Bleomycin. J Exp Pharmacol 2024; 16:49-60. [PMID: 38317831 PMCID: PMC10840535 DOI: 10.2147/jep.s439932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose To explore the potential therapeutic effects of Physalis angulata L. (Ciplukan) extract on lung fibrosis resolution in a Bleomycin-induced mouse model, researchers conducted a comprehensive study. The study focused on key genes associated with fibrosis progression, including Nox4, Mmp8, Klf4, and FAS, and assessed their mRNA expression levels following the administration of Ciplukan extract. Methods A Bleomycin-induced mice model was divided into seven groups to investigate the effects of ciplukan extract on fibrosis-related gene expressions. Mice were induced with subcutaneously injected Bleomycin to generate lung fibrosis and given different doses of the Ciplukan extract for four weeks. Lung fibrosis mRNA expression was analyzed by semi-quantitative PCR for Nox4, Klf4, Mmp8, and FAS. Results The administration of ciplukan extract resulted in a significant decrease in mRNA expression of Nox4 with p-value=0.000, Mmp8 with p-value =0.002, and Klf4 with p-value =0.007, indicating potential antifibrotic effects. However, FAS expression remained unchanged (p-value=0.127). Conclusion Ciplukan extract exhibited promising effects on fibrosis-related gene expressions, particularly Nox4, Mmp8, and Klf4. This study suggests that the extract has the potential to intervene in fibrosis progression, offering a potential avenue for therapeutic strategies.
Collapse
Affiliation(s)
- Ummul Khair Imaduddin
- Graduate School of Master Program in Anti Aging and Aesthetic Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Afiat Berbudi
- Parasitology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Enny Rohmawaty
- Pharmacology & Therapy Division, Departement of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
38
|
Liu H, Chen B, Guo Y, Liu H, Ran J, Liu R, Yin G, Xie Q. Hypouricemia as a novel predictor of mortality in anti-MDA5 positive dermatomyositis patients with ILD: A retrospective cohort study. Respir Med 2024; 222:107530. [PMID: 38228214 DOI: 10.1016/j.rmed.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
OBJECTIVE Anti-melanoma differentiation-associated gene 5 antibody positive dermatomyositis (MDA5+ DM) is a unique subtype of idiopathic inflammatory myopathy (IIM) that is associated with rapidly progressive interstitial lung disease (RPILD) and high mortality. This retrospective study aimed to identify predictors of mortality and discover novel easily detectable indicators. METHODS We retrospectively reviewed 183 MDA5+ DM-ILD patients who were from West China Hospital of Sichuan University myositis cohort, the largest single-center cohort of southwest China, from January 2016 to October 2021. Clinical characteristics were reviewed, and risk factors for mortality were determined by univariate and multivariable Cox regression analyses. RESULTS Of the 183 MDA5+ DM-ILD patients, 59 were presented with RP-ILD, and 53 died during the follow-up period. Compared with the survived patients, deceased patients had higher rates of dyspnea, higher concentrations of CRP, and LDH, but lower rates of heliotrope sign, lower quantity of lymphocyte and lower levels of serum uric acid (SUA). Notably, patients with hypouricemia (SUA <154 μmol/L) had higher concentrations of CRP and LDH, higher neutrophil counts, lower lymphocyte counts and higher mortality rate when compared with the non-hypouricemia group. Multivariate Cox regression analyses confirmed that hypouricemia, smoking, RPILD, high HRCT score, elevated LDH, and lymphopenia were independent risk factors for mortality in MDA5+ DM-ILD patients. Moreover, patients with hypouricemia had significantly lower survival rates than non-hypouricemia patients. CONCLUSION Our study identified hypouricemia as a non-redundant promising prognostic factor for the mortality of MDA5+ DM-ILD patients, which may hopefully provide insight into the prevention and pathogenesis study.
Collapse
Affiliation(s)
- Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yixue Guo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiting Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Taylor MJ, Chitwood CP, Xie Z, Miller HA, van Berkel VH, Fu XA, Frieboes HB, Suliman SA. Disease diagnosis and severity classification in pulmonary fibrosis using carbonyl volatile organic compounds in exhaled breath. Respir Med 2024; 222:107534. [PMID: 38244700 DOI: 10.1016/j.rmed.2024.107534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Pathophysiological conditions underlying pulmonary fibrosis remain poorly understood. Exhaled breath volatile organic compounds (VOCs) have shown promise for lung disease diagnosis and classification. In particular, carbonyls are a byproduct of oxidative stress, associated with fibrosis in the lungs. To explore the potential of exhaled carbonyl VOCs to reflect underlying pathophysiological conditions in pulmonary fibrosis, this proof-of-concept study tested the hypothesis that volatile and low abundance carbonyl compounds could be linked to diagnosis and associated disease severity. METHODS Exhaled breath samples were collected from outpatients with a diagnosis of Idiopathic Pulmonary Fibrosis (IPF) or Connective Tissue related Interstitial Lung Disease (CTD-ILD) with stable lung function for 3 months before enrollment, as measured by pulmonary function testing (PFT) DLCO (%), FVC (%) and FEV1 (%). A novel microreactor was used to capture carbonyl compounds in the breath as direct output products. A machine learning workflow was implemented with the captured carbonyl compounds as input features for classification of diagnosis and disease severity based on PFT (DLCO and FVC normal/mild vs. moderate/severe; FEV1 normal/mild/moderate vs. moderately severe/severe). RESULTS The proposed approach classified diagnosis with AUROC=0.877 ± 0.047 in the validation subsets. The AUROC was 0.820 ± 0.064, 0.898 ± 0.040, and 0.873 ± 0.051 for disease severity based on DLCO, FEV1, and FVC measurements, respectively. Eleven key carbonyl VOCs were identified with the potential to differentiate diagnosis and to classify severity. CONCLUSIONS Exhaled breath carbonyl compounds can be linked to pulmonary function and fibrotic ILD diagnosis, moving towards improved pathophysiological understanding of pulmonary fibrosis.
Collapse
Affiliation(s)
- Matthew J Taylor
- Division of Pulmonary Medicine, University of Louisville, Louisville, KY, USA
| | - Corey P Chitwood
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - Hunter A Miller
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Victor H van Berkel
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY, USA
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA; Department of Pharmacology/Toxicology, University of Louisville, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| | - Sally A Suliman
- Banner University Medical Center, Phoenix, AZ, USA; Formerly at: Division of Pulmonary Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
40
|
Sheng M, Li Q, Huang W, Yu D, Pan H, Qian K, Ren F, Luo L, Tang L. Ang-(1-7)/Mas axis ameliorates bleomycin-induced pulmonary fibrosis in mice via restoration of Nox4-Nrf2 redox homeostasis. Eur J Pharmacol 2024; 962:176233. [PMID: 38043775 DOI: 10.1016/j.ejphar.2023.176233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive interstitial lung disease characterized by diffuse alveolar inflammation, fibroblast differentiation, and the excessive deposition of extracellular matrix. During the progression of PF, redox imbalance caused by excessive reactive oxygen species (ROS) production can result in further destruction of lung tissue. At present, data on the role of NADPH oxidase-4 (Nox4)-nuclear factor erythroid 2-related factor 2 (Nrf2) redox imbalance in PF are limited. The angiotensin (1-7) [Ang-(1-7)]/Mas axis is a protective axis in the renin-angiotensin system (RAS) that exerts antifibrotic effects. Therefore, this study aimed to investigate the role of the Ang-(1-7)/Mas axis in PF and to explore its mechanism in depth. The results revealed that the Ang-(1-7)/Mas axis inhibited TGF-β1-induced lung fibroblast differentiation, inflammation and fibrosis in bleomycin (BLM)-treated lung tissue. A mechanistic study suggested that the Ang-(1-7)/Mas axis may restore Nox4-Nrf2 redox homeostasis by upregulating the level of p62, reducing oxidative stress and the inflammatory response and thus delaying the progression of lung fibrosis. This study provides a theoretical basis for exploring the mechanisms of PF and therapeutic targets for PF.
Collapse
Affiliation(s)
- Min Sheng
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinke Li
- Department of Urology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhan Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Yu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Pan
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kechen Qian
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feifeng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Luo
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Tang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
41
|
Aouey B, Boukholda K, Ciobica A, Burlui V, Soulimani R, Chigr F, Fetoui H. Renal Fibrosis and Oxidative Stress Induced by Silica Nanoparticles in Male Rats and Its Molecular Mechanisms. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e143703. [PMID: 38655071 PMCID: PMC11036645 DOI: 10.5812/ijpr-143703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 04/26/2024]
Abstract
Background The utilization of amorphous silica nanoparticles (SiNPs) is gaining popularity in various applications, but it poses a potential risk to human and environmental health. However, the underlying causes and mechanisms of SiNPs-induced kidney damage are still largely unknown. Objectives This study aimed to investigate the SiNPs-induced damage in the kidney and further explore the possible mechanisms of SiNPs-induced nephrotoxicity. Methods Thirty adult male rats were divided into 3 different groups. Rats in groups 2 and 3 were administered SiNPs at 2 dosage levels (25 and 100 mg/kg of body weight), while the rats in the control group received no treatment for 28 days. Reactive oxygen species (ROS), antioxidant enzyme activities (glutathione peroxidase [GPx], superoxide dismutase [SOD], and catalase [CAT]), glutathione (GSH) levels, and oxidation markers (such as lipid peroxidation [malondialdehyde (MDA)] and protein oxidation [protein carbonyl (PCO)]) were analyzed in the kidney tissue. Additionally, renal fibrogenesis was studied through histopathological examination and the expression levels of fibrotic biomarkers. Results The findings revealed that in vivo treatment with SiNPs significantly triggered oxidative stress in kidney tissues in a dose-dependent manner. This was characterized by increased production of ROS, elevated levels of MDA, PCO, and nitric oxide (NO), along with a significant decline in the activities of SOD, CAT, GPx, and reduced GSH. These changes were consistent with the histopathological analysis, which indicated interstitial fibrosis with mononuclear inflammatory cell aggregation, tubular degeneration, glomerulonephritis, and glomerular atrophy. The fibrosis index was confirmed using Masson's trichrome staining. Additionally, there was a significant upregulation of fibrosis-related genes, including transforming growth factor-beta 1 (TGF-β1), matrix metalloproteinases 2 and 9 (MMP-2/9), whereas the expression of tissue inhibitor of metalloproteinase 2 (TIMP2) was downregulated. Conclusions This study provided a new research clue for the role of ROS and deregulated TGF-β signaling pathway in SiNPs nephrotoxicity.
Collapse
Affiliation(s)
- Bakhta Aouey
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Bd. Carol I 20A, 700505 Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044, Bucharest, Romania
| | - Vasile Burlui
- Academy of Romanian Scientists, 3 Ilfov, 050044, Bucharest, Romania
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511 Iasi, Romania
| | - Rachid Soulimani
- Neurotoxicology and Bioactivity/LCOMS, Campus Bridoux, University of Lorraine, 57070, Metz, France
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| |
Collapse
|
42
|
Dwivedi J, Wal P, Dash B, Ovais M, Sachan P, Verma V. Diabetic Pneumopathy- A Novel Diabetes-associated Complication: Pathophysiology, the Underlying Mechanism and Combination Medication. Endocr Metab Immune Disord Drug Targets 2024; 24:1027-1052. [PMID: 37817659 DOI: 10.2174/0118715303265960230926113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The "diabetic lung" has been identified as a possible target organ in diabetes, with abnormalities in ventilation control, bronchomotor tone, lung volume, pulmonary diffusing capacity, and neuroadrenergic bronchial innervation. OBJECTIVE This review summarizes studies related to diabetic pneumopathy, pathophysiology and a number of pulmonary disorders including type 1 and type 2 diabetes. METHODS Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL), Scopus, Elsevier, ScienceDirect, and Google Scholar using standard keywords "diabetes," "diabetes Pneumopathy," "Pathophysiology," "Lung diseases," "lung infection" for review articles published between 1978 to 2023 very few previous review articles based their focus on diabetic pneumopathy and its pathophysiology. RESULTS Globally, the incidence of diabetes mellitus has been rising. It is a chronic, progressive metabolic disease. The "diabetic lung" may serve as a model of accelerated ageing since diabetics' rate of respiratory function deterioration is two to three-times higher than that of normal, non-smoking people. CONCLUSION Diabetes-induced pulmonary dysfunction has not gained the attention it deserves due to a lack of proven causality and changes in cellular properties. The mechanism underlying a particular lung illness can still only be partially activated by diabetes but there is evidence that hyperglycemia is linked to pulmonary fibrosis in diabetic people.
Collapse
Affiliation(s)
- Jyotsana Dwivedi
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Biswajit Dash
- Department of Pharmaceutical Technology, ADAMAS University, West Bengal, India
| | | | - Pranjal Sachan
- PSIT- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | | |
Collapse
|
43
|
Reghelin CK, Bastos MS, de Souza Basso B, Costa BP, Lima KG, de Sousa AC, Haute GV, Diz FM, Dias HB, Luft C, Rodrigues KF, Garcia MCR, Matzenbacher LS, Adami BS, Xavier LL, Donadio MVF, de Oliveira JR, da Silva Melo DA. Bezafibrate reduces the damage, activation and mechanical properties of lung fibroblast cells induced by hydrogen peroxide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3857-3866. [PMID: 37358795 DOI: 10.1007/s00210-023-02595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In pulmonary fibrosis, the proliferation of fibroblasts and their differentiation into myofibroblasts is often caused by tissue damage, such as oxidative damage caused by reactive oxygen species, which leads to progressive rupture and thus destruction of the alveolar architecture, resulting in cell proliferation and tissue remodeling. Bezafibrate (BZF) is an important member of the peroxisome proliferator-activated receptor (PPARs) family agonists, used in clinical practice as antihyperlipidemic. However, the antifibrotic effects of BZF are still poorly studied. The objective of this study was to evaluate the effects of BZF on pulmonary oxidative damage in lung fibroblast cells. MRC-5 cells were treated with hydrogen peroxide (H2O2) to induce oxidative stress activation and BZF treatment was administered at the same moment as H2O2 induction. The outcomes evaluated were cell proliferation and cell viability; oxidative stress markers such as reactive oxygen species (ROS), catalase (CAT) levels and thiobarbituric acid reactive substances (TBARS); col-1 and α-SMA mRNA expression and cellular elasticity through Young's modulus analysis evaluated by atomic force microscopy (AFM). The H2O2-induced oxidative damage decreased the cell viability and increased ROS levels and decreased CAT activity in MRC-5 cells. The expression of α-SMA and the cell stiffness increased in response to H2O2 treatment. Treatment with BZF decreased the MRC-5 cell proliferation, ROS levels, reestablished CAT levels, decreased the mRNA expression of type I collagen protein (col-1) and α-smooth muscle actin (α-SMA), and cellular elasticity even with H2O2 induction. Our results suggest that BZF has a potential protective effect on H2O2-induced oxidative stress. These results are based on an in vitro experiment, derived from a fetal lung cell line and may emerge as a possible new therapy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Camille Kirinus Reghelin
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Matheus Scherer Bastos
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Laboratório de Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Ave., Porto Alegre, RS, Zip Code: 90619-900, Brazil.
| | - Bruno de Souza Basso
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bruna Pasqualotto Costa
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Kelly Goulart Lima
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Arieli Cruz de Sousa
- Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Gabriela Viegas Haute
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fernando Mendonça Diz
- Programa de Pós-Graduação Em Engenharia E Tecnologia de Materiais, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Henrique Bregolin Dias
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carolina Luft
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Kétlin Fernanda Rodrigues
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Maria Cláudia Rosa Garcia
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Lucas Strassburger Matzenbacher
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bruno Silveira Adami
- Laboratório Central de Microscopia E Microanálise (LabCEMM), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Laboratório Central de Microscopia E Microanálise (LabCEMM), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Atividade Física Pediátrica, Centro Infantil, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denizar Alberto da Silva Melo
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
44
|
Zhu L, Zhang Q, Hua C, Ci X. Melatonin alleviates particulate matter-induced liver fibrosis by inhibiting ROS-mediated mitophagy and inflammation via Nrf2 activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115717. [PMID: 37992643 DOI: 10.1016/j.ecoenv.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE Fine particulate matter (PM2.5) is a source of pollution worldwide, that causes inflammation and liver fibrosis. Melatonin, as the predominant hormone secreted by the pineal gland, can inhibit PM2.5-induced lung injury by activating nuclear factor erythroid 2-related factor 2 (Nrf2) to inhibit ferroptosis. However, the possible role of melatonin in PM2.5-induced liver damage remains unclear. EXPERIMENTAL APPROACH In vitro, the effects of melatonin on PM2.5-induced oxidative stress and LX-2 cell activation were examined. In vivo, a PM2.5-induced inflammation and liver fibrosis mouse model was used to evaluate the hepatoprotective effect of melatonin. RESULTS In vitro, melatonin induced the expression of Nrf2 and its downstream genes and inhibited PM2.5-induced reactive oxygen species (ROS) production and mitochondrial damage. Melatonin also ameliorated the PM2.5-induced oxidative stress and fibrogenic marker upregulation. However, the antifibrotic effect of melatonin was abolished in siNrf2-treated LX-2 cells. In vivo, we observed mitochondrial abnormalities and mitochondrial fragmentation, which were accompanied by increased PTEN-induced kinase 1 (PINK1) and Parkin expression, in PM2.5-treated mouse hepatocytes. These changes were partially reversed by melatonin. In addition, melatonin activated the Nrf2 signaling pathway and protected against PM2.5-induced oxidative stress. Furthermore, melatonin alleviated inflammation and liver fibrosis. Moreover, Nrf2-KO mice exhibited more severe inflammation and liver fibrosis after PM2.5 exposure than wild-type mice, and the protective effect of melatonin on PM2.5- treated Nrf2-KO mice was greatly compromised. CONCLUSION These data suggest that melatonin effectively inhibits PM2.5-induced liver fibrosis by activating Nrf2 and inhibiting ROS-mediated mitophagy and inflammation.
Collapse
Affiliation(s)
- Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Qi Zhang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Cong Hua
- Department of Surgical Neuro-oncology, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China.
| |
Collapse
|
45
|
Li S, Zhao J, Han G, Zhang X, Li N, Zhang Z. Silicon dioxide-induced endoplasmic reticulum stress of alveolar macrophages and its role on the formation of silicosis fibrosis: a review article. Toxicol Res (Camb) 2023; 12:1024-1033. [PMID: 38145097 PMCID: PMC10734631 DOI: 10.1093/toxres/tfad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/01/2023] [Accepted: 10/07/2023] [Indexed: 12/26/2023] Open
Abstract
Silicosis is a chronic lung inflammatory disease induced by long-term inhalation of high concentrations of silicon dioxide (SiO2), characterized by pulmonary fibrosis. Inhalation of silica invades alveolar macrophages (AMs) and changes the micro-environment of the cell, resulting in abnormal morphology and dysfunction of the endoplasmic reticulum (ER). Once beyond the range of cell regulation, the endoplasmic reticulum stress (ERS) will occur, which will lead to cell damage, necrosis, and apoptosis, eventually causing silicosis fibrosis through various mechanisms. This is a complex and delicate process accompanied by various macrophage-derived cytokines. Unfortunately, the details have not been systematically summarized yet. In this review, we systematically introduce the basic two processes: the process of inducing ERS by inhaling SiO2 and the process of inducing pulmonary fibrosis by ERS. Moreover, the underlying mechanism of the above two sequential events is also be discussed. We conclude that the ERS of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis. Therefore, changing the states of SiO2-induced ERS of macrophage may be an attractive therapeutic target for silicosis fibrosis.
Collapse
Affiliation(s)
- Shuang Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Jiahui Zhao
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
- Department of Public Health, Weifang Medical University, Baotong west Street 7166, Weifang 261053, Shandong Province, China
| | - Guizhi Han
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| | - Xin Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Ning Li
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
| | - Zhaoqiang Zhang
- Department of Public Health and Management, Binzhou Medical University, Guanhai Road 346, Yantai 264003, Shandong Province, China
- Department of Public Health, Jining Medical University, Jianshe South Road 45, Jining 272067, Shandong Province, China
| |
Collapse
|
46
|
Liu Y, Zhang X, Yang S, Zhou Z, Tian L, Li W, Wei J, Abliz Z, Wang Z. Integrated mass spectrometry imaging reveals spatial-metabolic alteration in diabetic cardiomyopathy and the intervention effects of ferulic acid. J Pharm Anal 2023; 13:1496-1509. [PMID: 38223449 PMCID: PMC10785252 DOI: 10.1016/j.jpha.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a metabolic disease and a leading cause of heart failure among people with diabetes. Mass spectrometry imaging (MSI) is a versatile technique capable of combining the molecular specificity of mass spectrometry (MS) with the spatial information of imaging. In this study, we used MSI to visualize metabolites in the rat heart with high spatial resolution and sensitivity. We optimized the air flow-assisted desorption electrospray ionization (AFADESI)-MSI platform to detect a wide range of metabolites, and then used matrix-assisted laser desorption ionization (MALDI)-MSI for increasing metabolic coverage and improving localization resolution. AFADESI-MSI detected 214 and 149 metabolites in positive and negative analyses of rat heart sections, respectively, while MALDI-MSI detected 61 metabolites in negative analysis. Our study revealed the heterogenous metabolic profile of the heart in a DCM model, with over 105 region-specific changes in the levels of a wide range of metabolite classes, including carbohydrates, amino acids, nucleotides, and their derivatives, fatty acids, glycerol phospholipids, carnitines, and metal ions. The repeated oral administration of ferulic acid during 20 weeks significantly improved most of the metabolic disorders in the DCM model. Our findings provide novel insights into the molecular mechanisms underlying DCM and the potential of ferulic acid as a therapeutic agent for treating this condition.
Collapse
Affiliation(s)
- Yanhua Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xin Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Institute of Materia Medica, Peking Union Medical College, Beijing, 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Peking Union Medical College, Beijing, 100050, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Institute of Materia Medica, Peking Union Medical College, Beijing, 100050, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
47
|
Liu Q, Ren Y, Jia H, Yuan H, Tong Y, Kotha S, Mao X, Huang Y, Chen C, Zheng Z, Wang L, He W. Vanadium Carbide Nanosheets with Broad-Spectrum Antioxidant Activity for Pulmonary Fibrosis Therapy. ACS NANO 2023; 17:22527-22538. [PMID: 37933888 DOI: 10.1021/acsnano.3c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Idiopathic pulmonary fibrosis is a chronic and highly lethal lung disease that largely results from oxidative stress; however, effective antioxidant therapy by targeting oxidative stress pathogenesis is still lacking. The big challenge is to develop an ideal antioxidant material with superior antifibrotic effects. Herein, we report that V4C3 nanosheets (NSs) can serve as a potential antioxidant for treatment of pulmonary fibrosis by scavenging reactive oxygen and nitrogen species. Interestingly, subtle autoxidation can adjust the valence composition of V4C3 NSs and significantly improve their antioxidant behavior. Valence engineering triggers multiple antioxidant mechanisms including electron transfer, H atom transfer, and enzyme-like catalysis, thus endowing V4C3 NSs with broad-spectrum, high-efficiency, and persistent antioxidant capacity. Benefiting from antioxidant properties and good biocompatibility, V4C3 NSs can significantly prevent myofibroblast proliferation and extracellular matrix abnormality, thus alleviating the progression of bleomycin-induced pulmonary fibrosis in vivo by scavenging ROS, anti-inflammation, and rebuilding antioxidant defenses. This study not only provides an important strategy for designing excellent antioxidant nanomaterials, but also proposes a proof-of-concept demonstration for the treatment of pulmonary fibrosis and other oxidative stress-related diseases.
Collapse
Affiliation(s)
- Quan Liu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, P. R. China
| | - Yaping Ren
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou 450046, P. R. China
| | - Huimin Jia
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Hao Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuping Tong
- School of Materials, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, P. R. China
| | - Sumasri Kotha
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xiaobo Mao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Zhengzhou 450046, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhi Zheng
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, P. R. China
| |
Collapse
|
48
|
Evangelista-Leite D, Carreira ACO, Nishiyama MY, Gilpin SE, Miglino MA. The molecular mechanisms of extracellular matrix-derived hydrogel therapy in idiopathic pulmonary fibrosis models. Biomaterials 2023; 302:122338. [PMID: 37820517 DOI: 10.1016/j.biomaterials.2023.122338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressively debilitating lung condition characterized by oxidative stress, cell phenotype shifts, and excessive extracellular matrix (ECM) deposition. Recent studies have shown promising results using decellularized ECM-derived hydrogels produced through pepsin digestion in various lung injury models and even a human clinical trial for myocardial infarction. This study aimed to characterize the composition of ECM-derived hydrogels, assess their potential to prevent fibrosis in bleomycin-induced IPF models, and unravel their underlying molecular mechanisms of action. Porcine lungs were decellularized and pepsin-digested for 48 h. The hydrogel production process, including visualization of protein molecular weight distribution and hydrogel gelation, was characterized. Peptidomics analysis of ECM-derived hydrogel contained peptides from 224 proteins. Probable bioactive and cell-penetrating peptides, including collagen IV, laminin beta 2, and actin alpha 1, were identified. ECM-derived hydrogel treatment was administered as an early intervention to prevent fibrosis advancement in rat models of bleomycin-induced pulmonary fibrosis. ECM-derived hydrogel concentrations of 1 mg/mL and 2 mg/mL showed subtle but noticeable effects on reducing lung inflammation, oxidative damage, and protein markers related to fibrosis (e.g., alpha-smooth muscle actin, collagen I). Moreover, distinct changes were observed in macroscopic appearance, alveolar structure, collagen deposition, and protein expression between lungs that received ECM-derived hydrogel and control fibrotic lungs. Proteomic analyses revealed significant protein and gene expression changes related to cellular processes, pathways, and components involved in tissue remodeling, inflammation, and cytoskeleton regulation. RNA sequencing highlighted differentially expressed genes associated with various cellular processes, such as tissue remodeling, hormone secretion, cell chemotaxis, and cytoskeleton engagement. This study suggests that ECM-derived hydrogel treatment influence pathways associated with tissue repair, inflammation regulation, cytoskeleton reorganization, and cellular response to injury, potentially offering therapeutic benefits in preventing or mitigating lung fibrosis.
Collapse
Affiliation(s)
- Daniele Evangelista-Leite
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; School of Medical Sciences, State University of Campinas, Campinas, São Paulo, 13083-970, Brazil.
| | - Ana C O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, University of São Paulo, São Paulo, 05360-130, Brazil; Center for Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| | - Milton Y Nishiyama
- Laboratory of Applied Toxinology, Butantan Institute, São Paulo, 05503-900, Brazil.
| | - Sarah E Gilpin
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| | - Maria A Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| |
Collapse
|
49
|
Ediga HH, Hester P, Yepuri A, Reddy GB, Madala SK. Nε-Carboxymethyl-Lysine Modification of Extracellular Matrix Proteins Augments Fibroblast Activation. Int J Mol Sci 2023; 24:15811. [PMID: 37958795 PMCID: PMC10650592 DOI: 10.3390/ijms242115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The extracellular matrix (ECM) is a dynamic complex protein network that provides structural integrity and plays an active role in shaping fibroblast behavior both in health and disease. Despite its essential functions, the impact of age-associated post-translational modifications on ECM-driven fibroblast activities such as proliferation, survival, fibroblast-to-myofibroblast transformation (FMT), and extracellular matrix production remains largely unknown. Nε-carboxymethyl-lysine (CML) is one of the well-characterized advanced glycation end-products (AGEs) that can occur on lysine residues within ECM proteins through non-enzymatic glycation. In this study, we determined the accumulation and the effects of the CML-modified ECM (CML-ECM) on fibroblast activation. Immunostainings and immunoblot analysis demonstrated significant increases in CML-AGE content in idiopathic pulmonary fibrosis (IPF) compared to age-matched healthy lungs. Gene expression analysis and fibroblast activation assays collectively implicate the ECM as a negative regulator of fibroblast activation. Notably, the CML modification of the ECM resulted in a significant decrease in its anti-fibrotic effects including proliferation, FMT, apoptosis, and ECM production. Together, the results of this study revealed an unexplored pathological role played by the CML-ECM on fibroblast activation, which has wide implications in IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Harshavardhana H. Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA (P.H.)
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Patrick Hester
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA (P.H.)
| | - Adithi Yepuri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA (P.H.)
| | | | - Satish K. Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0564, USA (P.H.)
| |
Collapse
|
50
|
Macias-Ceja DC, Mendoza-Ballesteros MT, Ortega-Albiach M, Barrachina MD, Ortiz-Masià D. Role of the epithelial barrier in intestinal fibrosis associated with inflammatory bowel disease: relevance of the epithelial-to mesenchymal transition. Front Cell Dev Biol 2023; 11:1258843. [PMID: 37822869 PMCID: PMC10562728 DOI: 10.3389/fcell.2023.1258843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
In inflammatory bowel disease (IBD), chronic inflammation in the gastrointestinal tract can lead to tissue damage and remodelling, which can ultimately result in fibrosis. Prolonged injury and inflammation can trigger the activation of fibroblasts and extracellular matrix (ECM) components. As fibrosis progresses, the tissue becomes increasingly stiff and less functional, which can lead to complications such as intestinal strictures, obstructive symptoms, and eventually, organ dysfunction. Epithelial cells play a key role in fibrosis, as they secrete cytokines and growth factors that promote fibroblast activation and ECM deposition. Additionally, epithelial cells can undergo a process called epithelial-mesenchymal transition, in which they acquire a more mesenchymal-like phenotype and contribute directly to fibroblast activation and ECM deposition. Overall, the interactions between epithelial cells, immune cells, and fibroblasts play a critical role in the development and progression of fibrosis in IBD. Understanding these complex interactions may provide new targets for therapeutic interventions to prevent or treat fibrosis in IBD. In this review, we have collected and discussed the recent literature highlighting the contribution of epithelial cells to the pathogenesis of the fibrotic complications of IBD, including evidence of EMT, the epigenetic control of the EMT, the potential influence of the intestinal microbiome in EMT, and the possible therapeutic strategies to target EMT. Finally we discuss the pro-fibrotic interactions epithelial-immune cells and epithelial-fibroblasts cells.
Collapse
Affiliation(s)
- Dulce C. Macias-Ceja
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | - M. Dolores Barrachina
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masià
- Departamento de Farmacología and CIBEREHD, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|