1
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Jiang L, Kang Y. Biomolecular condensates: A new lens on cancer biology. Biochim Biophys Acta Rev Cancer 2024; 1880:189245. [PMID: 39675392 DOI: 10.1016/j.bbcan.2024.189245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Cells are compartmentalized into different organelles to ensure precise spatial temporal control and efficient operation of cellular processes. Membraneless organelles, also known as biomolecular condensates, are emerging as previously underappreciated ways of organizing cellular functions. Condensates allow local concentration of protein, RNA, or DNA molecules with shared functions, thus facilitating spatiotemporal control of biochemical reactions spanning a range of cellular processes. Studies discussed herein have shown that aberrant formation of condensates is associated with various diseases such as cancers. Here, we summarize how condensates mechanistically contribute to malignancy-related cellular processes, including genomic instability, epigenetic rewiring, oncogenic transcriptional activation, and signaling. An improved understanding of condensate formation and dissolution will enable development of new cancer therapies. Finally, we address the remaining challenges in the field and suggest future efforts to better integrate condensates into cancer research.
Collapse
Affiliation(s)
- Lifei Jiang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ 08544, USA; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
3
|
Russo A, Maiorano G, Cortese B, D'Amone S, Invidia A, Quattrini A, Romano A, Gigli G, Palamà IE. Optimizing TDP-43 silencing with siRNA-loaded polymeric nanovectors in neuronal cells for therapeutic applications: balancing knockdown and function. NANOSCALE 2024; 16:22337-22349. [PMID: 39541203 DOI: 10.1039/d4nr03159h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
TAR DNA-binding protein 43 (TDP-43) is a ubiquitously expressed DNA/RNA binding protein critical for regulating gene expression, including transcription, splicing, mRNA stability, and protein translation. Aggregation of pathological TDP-43 proteins in the cytoplasm of neurons and glial cells appears to be a common feature of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases such as frontotemporal dementia (FTD), contributing to motor neuron degeneration and clinical symptoms. Downregulation of TDP-43 expression to prevent or reduce the formation of pathological aggregates is a potential therapeutic approach for treating TDP-43-related diseases. However, therapeutic strategies to reduce TDP-43 aggregation face significant challenges, as the downregulation of TDP-43 must balance the need to maintain its normal functions, which are essential for RNA metabolism and cellular homeostasis. In this study, we developed novel polymeric nanovectors for the delivery of TDP-43 siRNAs in neuronal cells. These nanovectors were designed to provide adequate TDP-43 silencing to achieve the desired functional reduction of TDP-43 levels, thereby optimizing its impact on cellular functions. Our results demonstrate that the polymeric nanovector formulations effectively reduced TDP-43 mRNA and protein levels to an extent comparable to those observed with traditional lipid-based systems. Concurrently, the polymeric nanovectors exhibited an enhanced capacity to reduce stress granules (SG) formation and facilitate TDP-43-containing SG disassembly, while preserving its essential cellular functions. This study provides the first evidence that polymeric nanovectors may be a valuable tool for developing therapeutic strategies to treat TDP-43 protein diseases, such as ALS and FTD, by directly silencing TDP-43 to reduce its aggregation.
Collapse
Affiliation(s)
- Annamaria Russo
- Nanotechnology Institute, CNR-NANOTEC, Monteroni street, 73100 Lecce, Italy.
| | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Monteroni street, 73100 Lecce, Italy.
| | - Barbara Cortese
- Nanotechnology Institute, CNR-NANOTEC, c/o La Sapienza University, P. le A. Moro, 00185 Rome, Italy
| | - Stefania D'Amone
- Nanotechnology Institute, CNR-NANOTEC, Monteroni street, 73100 Lecce, Italy.
| | - Alessandra Invidia
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy
| | - Angelo Quattrini
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Milan, 20132 Italy.
| | - Alessandro Romano
- IRCCS San Raffaele Scientific Institute, Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Milan, 20132 Italy.
- Department of Life Sciences, Health and Health Professions, Link Campus University, del Casale di San Pio V street, 44, I-00165 Rome, Italy
| | - Giuseppe Gigli
- Nanotechnology Institute, CNR-NANOTEC, Monteroni street, 73100 Lecce, Italy.
- Department of Experimental Medicine, University of Salento, c/o Campus Ecotekne, Monteroni street, 73100 Lecce, Italy
| | - Ilaria E Palamà
- Nanotechnology Institute, CNR-NANOTEC, Monteroni street, 73100 Lecce, Italy.
| |
Collapse
|
4
|
Shaw B, Thwin PH, Jia N, Weng H, Ma C, Zhu H, Wang L. Stress granules play a critical role in hexavalent chromium-induced malignancy in a G3BP1 dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124997. [PMID: 39306064 PMCID: PMC11563910 DOI: 10.1016/j.envpol.2024.124997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles influencing multiple cellular pathways including cell survival, proliferation, and malignancy. Hexavalent chromium [Cr(VI)] is a toxic heavy metal associated with severe environmental health risks. Low-level environmental exposure to Cr(VI) has been reported to cause cancer, but the role of SGs in Cr(VI)-induced health effects remains unclear. This study was intended to elucidate the impact of Cr(VI) exposure on SG dynamics and the role of SGs in Cr(VI)-induced malignancy. Results showed that both acute exposure to high concentration of Cr(VI) and prolonged exposure to low concentration of Cr(VI)-induced SG formation in human bronchial epithelium BEAS-2B cells. Cells pre-exposed to Cr(VI) exhibited a more robust SG response compared to cells without pre-exposure. An up-regulated SG response was associated with increased malignant properties in cells exposed to low concentration Cr(VI) for an extended period of time up to 12 months. Knocking out the SG core protein G3BP1 in Cr(VI)-transformed (CrT) cells reduced SG formation and malignant properties, including proliferation rate, sphere formation, and malignant markers. The results support a critical role for SGs in mediating Cr(VI)-induced malignancy in a G3BP1-dependent manner, representing a novel mechanism and a potential therapeutic target.
Collapse
Affiliation(s)
- Brian Shaw
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Phyo Han Thwin
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Nan Jia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hope Weng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Haining Zhu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; Research Service, Department of Veteran Affairs Southern Arizona Health Care, Tucson, AZ, 85723, USA.
| | - Lei Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Huang Z, Zhang H, Huang C, Yi R, Zhang X, Ma K, Huang W, Wu Q, Zhuang Y, Liu J, Liu W, Guo Y, Kang X, Hu X, Bai X, Chen Z. Cytoplasmic Aggregates of Splicing Factor Proline-Glutamine Rich Disrupt Nucleocytoplasmic Transport and Induce Persistent Stress Granules. J Cell Mol Med 2024; 28:e70261. [PMID: 39636149 PMCID: PMC11619156 DOI: 10.1111/jcmm.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Splicing factor proline-glutamine rich (SFPQ), a multifunctional RNA-binding protein (RBP), shows cytoplasmic colocalisation with stress granule (SG) markers; however, the causative relationship and mechanism underlying this coalescence of SFPQ aggregates and SGs remain unclear. In this study, we demonstrate that SFPQ lacking its nuclear localisation sequence spontaneously forms cytoplasmic aggregates that abnormally incorporate immature RNA and induce persistent SGs. mRNA profiling showed that SFPQ mislocalisation induced extensive changes in RNA processing, with a subset of alternatively spliced transcripts associated with nucleocytoplasmic transport. Notably, these altered transporters were sequestered into SFPQ aggregates, constituting aberrant protein-RNA complexes. Importantly, suppression of SG nucleation could not block cytoplasmic SFPQ aggregation with immature RNA and nucleocytoplasmic transporters, both of which, however, were moderately ameliorated by the inhibition of alternative splicing or nuclear export. Our results unveil the physiopathological role and mechanism for mislocalised SFPQ in the RNA metabolism, nucleocytoplasmic transport and pathological SGs.
Collapse
Affiliation(s)
- Zicong Huang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Hanbin Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chuyu Huang
- Department of Obstetrics and Gynecology, Center for Reproductive MedicineNanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Runduan Yi
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaoyuan Zhang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ke Ma
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wei Huang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qingqing Wu
- Department of key Laboratory of Oral Medicine, Guangzhou Institute of Oral DiseaseStomatological Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yuge Zhuang
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jinsheng Liu
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenyuan Liu
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yunhui Guo
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xiao Hu
- Department of Plastic and Burn SurgeryGuangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University)GuangzhouGuangdongChina
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongChina
- Department of AnesthesiologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), southern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
6
|
Kosmas K, Papathanasiou AE, Spyropoulos F, Rehman R, Cunha AA, Fredenburgh LE, Perrella MA, Christou H. Stress Granule Assembly in Pulmonary Arterial Hypertension. Cells 2024; 13:1796. [PMID: 39513903 PMCID: PMC11544768 DOI: 10.3390/cells13211796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The role of stress granules (SGs) in pulmonary arterial hypertension (PAH) is unknown. We hypothesized that SG formation contributes to abnormal vascular phenotypes, and cardiac and skeletal muscle dysfunction in PAH. Using the rat Sugen/hypoxia (SU/Hx) model of PAH, we demonstrate the formation of SG puncta and increased expression of SG proteins compared to control animals in lungs, right ventricles, and soleus muscles. Acetazolamide (ACTZ) treatment ameliorated the disease and reduced SG formation in all of these tissues. Primary pulmonary artery smooth muscle cells (PASMCs) from diseased animals had increased SG protein expression and SG number after acute oxidative stress and this was ameliorated by ACTZ. Pharmacologic inhibition of SG formation or genetic ablation of the SG assembly protein (G3BP1) altered the SU/Hx-PASMC phenotype by decreasing proliferation, increasing apoptosis and modulating synthetic and contractile marker expression. In human PAH lungs, we found increased SG puncta in pulmonary arteries compared to control lungs and in human PAH-PASMCs we found increased SGs after acute oxidative stress compared to healthy PASMCs. Genetic ablation of G3BP1 in human PAH-PASMCs resulted in a phenotypic switch to a less synthetic and more contractile phenotype. We conclude that increased SG formation in PASMCs and other tissues may contribute to PAH pathogenesis.
Collapse
Affiliation(s)
- Kosmas Kosmas
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Aimilia Eirini Papathanasiou
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fotios Spyropoulos
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rakhshinda Rehman
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ashley Anne Cunha
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Mark A. Perrella
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Helen Christou
- Department of Pediatrics, Division of Newborn Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Gavrilova AA, Neklesova MV, Zagryadskaya YA, Kuznetsova IM, Turoverov KK, Fonin AV. Stress-Induced Evolution of the Nucleolus: The Role of Ribosomal Intergenic Spacer (rIGS) Transcripts. Biomolecules 2024; 14:1333. [PMID: 39456266 PMCID: PMC11505599 DOI: 10.3390/biom14101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
It became clear more than 20 years ago that the nucleolus not only performs the most important biological function of assembling ribonucleic particles but is also a key controller of many cellular processes, participating in cellular adaptation to stress. The nucleolus's multifunctionality is due to the peculiarities of its biogenesis. The nucleolus is a multilayered biomolecular condensate formed by liquid-liquid phase separation (LLPS). In this review, we focus on changes occurring in the nucleolus during cellular stress, molecular features of the nucleolar response to abnormal and stressful conditions, and the role of long non-coding RNAs transcribed from the intergenic spacer region of ribosomal DNA (IGS rDNA).
Collapse
Affiliation(s)
- Anastasia A. Gavrilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Margarita V. Neklesova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | | | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (A.A.G.); (M.V.N.); (I.M.K.); (K.K.T.)
| |
Collapse
|
8
|
Qin M, Fan W, Chen F, Ruan K, Liu D. Caprin1 Bridges PRMT1 to G3BP1 and Spaces Them to Ensure Proper Stress Granule Formation. J Mol Biol 2024; 436:168727. [PMID: 39079611 DOI: 10.1016/j.jmb.2024.168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Stress granules (SGs) are dynamic biomolecular condensates that form in the cytoplasm in response to cellular stress, encapsulating proteins and RNAs. Methylation is a key factor in the assembly of SGs, with PRMT1, which acts as an arginine methyltransferase, localizing to SGs. However, the precise mechanism of PRMT1 localization within SGs remains unknown. In this study, we identified that Caprin1 plays a primary role in the recruitment of PRMT1 to SGs, particularly through its C-terminal domain. Our findings demonstrate that Caprin1 serves a dual function as both a linker, facilitating the formation of a PRMT1-G3BP1 complex, and as a spacer, preventing the aberrant formation of SGs under non-stress conditions. This study sheds new lights on the regulatory mechanisms governing SG formation and suggests that Caprin1 plays a critical role in cellular responses to stress.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
9
|
Qin M, Fan W, Li L, Xu T, Zhang H, Chen F, Man J, Kombe AJK, Zhang J, Shi Y, Yao X, Yang Z, Hou Z, Ruan K, Liu D. PRMT1 and TDRD3 promote stress granule assembly by rebuilding the protein-RNA interaction network. Int J Biol Macromol 2024; 277:134411. [PMID: 39097054 DOI: 10.1016/j.ijbiomac.2024.134411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Stress granules (SGs) are membrane-less organelles (MLOs) or cytosolic compartments formed upon exposure to environmental cell stress-inducing stimuli. SGs are based on ribonucleoprotein complexes from a set of cytoplasmic proteins and mRNAs, blocked in translation due to stress cell-induced polysome disassembly. Post-translational modifications (PTMs) such as methylation, are involved in SG assembly, with the methylation writer PRMT1 and its reader TDRD3 colocalizing to SGs. However, the role of this writer-reader system in SG assembly remains unclear. Here, we found that PRMT1 methylates SG constituent RNA-binding proteins (RBPs) on their RGG motifs. Besides, we report that TDRD3, as a reader of asymmetric dimethylarginines, enhances RNA binding to recruit additional RNAs and RBPs, lowering the percolation threshold and promoting SG assembly. Our study enriches our understanding of the molecular mechanism of SG formation by elucidating the functions of PRMT1 and TDRD3. We anticipate that our study will provide a new perspective for comprehensively understanding the functions of PTMs in liquid-liquid phase separation driven condensate assembly.
Collapse
Affiliation(s)
- Mengtong Qin
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Weiwei Fan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Linge Li
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hanyu Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingwen Man
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhonghuai Hou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei 230026, China.
| | - Ke Ruan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
10
|
Xie Z, Zhao S, Tu Y, Liu E, Li Y, Wang X, Chen C, Zhai S, Qi J, Wu C, Wu H, Zhou M, Wang W. Proteasome resides in and dismantles plant heat stress granules constitutively. Mol Cell 2024; 84:3320-3335.e7. [PMID: 39173636 DOI: 10.1016/j.molcel.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China; Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China
| | - Shuwei Zhai
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Qi
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengyun Wu
- The National Engineering Lab of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Honghong Wu
- Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
11
|
Alirzayeva H, Loureiro R, Koyuncu S, Hommen F, Nabawi Y, Zhang WH, Dao TTP, Wehrmann M, Lee HJ, Vilchez D. ALS-FUS mutations cause abnormal PARylation and histone H1.2 interaction, leading to pathological changes. Cell Rep 2024; 43:114626. [PMID: 39167487 DOI: 10.1016/j.celrep.2024.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
The majority of severe early-onset and juvenile cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the FUS gene, resulting in rapid disease progression. Mutant FUS accumulates within stress granules (SGs), thereby affecting the dynamics of these ribonucleoprotein complexes. Here, we define the interactome of the severe mutant FUSP525L variant in human induced pluripotent stem cell (iPSC)-derived motor neurons. We find increased interaction of FUSP525L with the PARP1 enzyme, promoting poly-ADP-ribosylation (PARylation) and binding of FUS to histone H1.2. Inhibiting PARylation or reducing H1.2 levels alleviates mutant FUS aggregation, SG alterations, and apoptosis in human motor neurons. Conversely, elevated H1.2 levels exacerbate FUS-ALS phenotypes, driven by the internally disordered terminal domains of H1.2. In C. elegans models, knockdown of H1.2 and PARP1 orthologs also decreases FUSP525L aggregation and neurodegeneration, whereas H1.2 overexpression worsens ALS-related changes. Our findings indicate a link between PARylation, H1.2, and FUS with potential therapeutic implications.
Collapse
Affiliation(s)
- Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Rute Loureiro
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Franziska Hommen
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yara Nabawi
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - William Hongyu Zhang
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Thien T P Dao
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Markus Wehrmann
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
12
|
Scott-Hewitt N, Mahoney M, Huang Y, Korte N, Yvanka de Soysa T, Wilton DK, Knorr E, Mastro K, Chang A, Zhang A, Melville D, Schenone M, Hartigan C, Stevens B. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 2024; 187:4193-4212.e24. [PMID: 38942014 DOI: 10.1016/j.cell.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.
Collapse
Affiliation(s)
- Nicole Scott-Hewitt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Matthew Mahoney
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youtong Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nils Korte
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel K Wilton
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emily Knorr
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Mastro
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Allison Chang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allison Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - David Melville
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica Schenone
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Hartigan
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2024. [PMID: 39056295 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
14
|
Scaber J, Thomas-Wright I, Clark AJ, Xu Y, Vahsen BF, Carcolé M, Dafinca R, Farrimond L, Isaacs AM, Bennett DL, Talbot K. Cellular and axonal transport phenotypes due to the C9ORF72 HRE in iPSC motor and sensory neurons. Stem Cell Reports 2024; 19:957-972. [PMID: 38876108 PMCID: PMC11252479 DOI: 10.1016/j.stemcr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) from patients with amyotrophic lateral sclerosis (ALS) and the C9ORF72 hexanucleotide repeat expansion (HRE) have multiple cellular phenotypes, but which of these accurately reflect the biology underlying the cell-specific vulnerability of ALS is uncertain. We therefore compared phenotypes due to the C9ORF72 HRE in MNs with sensory neurons (SNs), which are relatively spared in ALS. The iPSC models were able to partially reproduce the differential gene expression seen between adult SNs and MNs. We demonstrated that the typical hallmarks of C9ORF72-ALS, including RNA foci and dipeptide formation, as well as specific axonal transport defects, occurred equally in MNs and SNs, suggesting that these in vitro phenotypes are not sufficient to explain the cell-type selectivity of ALS in isolation.
Collapse
Affiliation(s)
- Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK.
| | - Iona Thomas-Wright
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Alex J Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University, E1 2AT London, UK
| | - Yinyan Xu
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, OX3 7FZ Oxford, UK
| | - Björn F Vahsen
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, WCIN 3BG London, UK
| | - Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Lucy Farrimond
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, WCIN 3BG London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK.
| |
Collapse
|
15
|
Muralidharan C, Huang F, Enriquez JR, Wang JE, Nelson JB, Nargis T, May SC, Chakraborty A, Figatner KT, Navitskaya S, Anderson CM, Calvo V, Surguladze D, Mulvihill MJ, Yi X, Sarkar S, Oakes SA, Webb-Robertson BJM, Sims EK, Staschke KA, Eizirik DL, Nakayasu ES, Stokes ME, Tersey SA, Mirmira RG. Inhibition of the eukaryotic initiation factor-2α kinase PERK decreases risk of autoimmune diabetes in mice. J Clin Invest 2024; 134:e176136. [PMID: 38889047 PMCID: PMC11324307 DOI: 10.1172/jci176136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Preventing the onset of autoimmune type 1 diabetes (T1D) is feasible through pharmacological interventions that target molecular stress-responsive mechanisms. Cellular stresses, such as nutrient deficiency, viral infection, or unfolded proteins, trigger the integrated stress response (ISR), which curtails protein synthesis by phosphorylating eukaryotic translation initiation factor-2α (eIF2α). In T1D, maladaptive unfolded protein response (UPR) in insulin-producing β cells renders these cells susceptible to autoimmunity. We found that inhibition of the eIF2α kinase PKR-like ER kinase (PERK), a common component of the UPR and ISR, reversed the mRNA translation block in stressed human islets and delayed the onset of diabetes, reduced islet inflammation, and preserved β cell mass in T1D-susceptible mice. Single-cell RNA-Seq of islets from PERK-inhibited mice showed reductions in the UPR and PERK signaling pathways and alterations in antigen-processing and presentation pathways in β cells. Spatial proteomics of islets from these mice showed an increase in the immune checkpoint protein programmed death-ligand 1 (PD-L1) in β cells. Golgi membrane protein 1, whose levels increased following PERK inhibition in human islets and EndoC-βH1 human β cells, interacted with and stabilized PD-L1. Collectively, our studies show that PERK activity enhances β cell immunogenicity and that inhibition of PERK may offer a strategy for preventing or delaying the development of T1D.
Collapse
Affiliation(s)
- Charanya Muralidharan
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Fei Huang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jacob R. Enriquez
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jiayi E. Wang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Jennifer B. Nelson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Titli Nargis
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Sarah C. May
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Advaita Chakraborty
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Kayla T. Figatner
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Svetlana Navitskaya
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Cara M. Anderson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Xiaoyan Yi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Scott A. Oakes
- Department of Pathology, The University of Chicago, Chicago, Illinois, USA
| | | | - Emily K. Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, and
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology and the Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Sarah A. Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Ren QS, Sun Q, Cheng SQ, Du LM, Guo PX. Hepatocellular carcinoma: An analysis of the expression status of stress granules and their prognostic value. World J Gastrointest Oncol 2024; 16:2559-2579. [DOI: 10.4251/wjgo.v16.i6.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a global popular malignant tumor, which is difficult to cure, and the current treatment is limited.
AIM To analyze the impacts of stress granule (SG) genes on overall survival (OS), survival time, and prognosis in HCC.
METHODS The combined The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC), GSE25097, and GSE36376 datasets were utilized to obtain genetic and clinical information. Optimal hub gene numbers and corresponding coefficients were determined using the Least absolute shrinkage and selection operator model approach, and genes for constructing risk scores and corresponding correlation coefficients were calculated according to multivariate Cox regression, respectively. The prognostic model’s receiver operating characteristic (ROC) curve was produced and plotted utilizing the time ROC software package. Nomogram models were constructed to predict the outcomes at 1, 3, and 5-year OS prognostications with good prediction accuracy.
RESULTS We identified seven SG genes (DDX1, DKC1, BICC1, HNRNPUL1, CNOT6, DYRK3, CCDC124) having a prognostic significance and developed a risk score model. The findings of Kaplan-Meier analysis indicated that the group with a high risk exhibited significantly reduced OS in comparison with those of the low-risk group (P < 0.001). The nomogram model’s findings indicate a significant enhancement in the accuracy of OS prediction for individuals with HCC in the TCGA-HCC cohort. Gene Ontology and Gene Set Enrichment Analysis suggested that these SGs might be involved in the cell cycle, RNA editing, and other biological processes.
CONCLUSION Based on the impact of SG genes on HCC prognosis, in the future, it will be used as a biomarker as well as a unique therapeutic target for the identification and treatment of HCC.
Collapse
Affiliation(s)
- Qing-Shuai Ren
- Department of Cardiovascular Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Qiu Sun
- Department of Hepatobiliary, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Shu-Qin Cheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300000, China
| | - Li-Ming Du
- Department of Traditional Chinese Medicine, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Ping-Xuan Guo
- Department of Anesthesiology, Kailuan General Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
17
|
Ren QS, Sun Q, Cheng SQ, Du LM, Guo PX. Hepatocellular carcinoma: An analysis of the expression status of stress granules and their prognostic value. World J Gastrointest Oncol 2024; 16:2571-2591. [PMID: 38994142 PMCID: PMC11236250 DOI: 10.4251/wjgo.v16.i6.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a global popular malignant tumor, which is difficult to cure, and the current treatment is limited. AIM To analyze the impacts of stress granule (SG) genes on overall survival (OS), survival time, and prognosis in HCC. METHODS The combined The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC), GSE25097, and GSE36376 datasets were utilized to obtain genetic and clinical information. Optimal hub gene numbers and corresponding coefficients were determined using the Least absolute shrinkage and selection operator model approach, and genes for constructing risk scores and corresponding correlation coefficients were calculated according to multivariate Cox regression, respectively. The prognostic model's receiver operating characteristic (ROC) curve was produced and plotted utilizing the time ROC software package. Nomogram models were constructed to predict the outcomes at 1, 3, and 5-year OS prognostications with good prediction accuracy. RESULTS We identified seven SG genes (DDX1, DKC1, BICC1, HNRNPUL1, CNOT6, DYRK3, CCDC124) having a prognostic significance and developed a risk score model. The findings of Kaplan-Meier analysis indicated that the group with a high risk exhibited significantly reduced OS in comparison with those of the low-risk group (P < 0.001). The nomogram model's findings indicate a significant enhancement in the accuracy of OS prediction for individuals with HCC in the TCGA-HCC cohort. Gene Ontology and Gene Set Enrichment Analysis suggested that these SGs might be involved in the cell cycle, RNA editing, and other biological processes. CONCLUSION Based on the impact of SG genes on HCC prognosis, in the future, it will be used as a biomarker as well as a unique therapeutic target for the identification and treatment of HCC.
Collapse
Affiliation(s)
- Qing-Shuai Ren
- Department of Cardiovascular Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Qiu Sun
- Department of Hepatobiliary, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Shu-Qin Cheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300000, China
| | - Li-Ming Du
- Department of Traditional Chinese Medicine, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Ping-Xuan Guo
- Department of Anesthesiology, Kailuan General Hospital, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| |
Collapse
|
18
|
Mahboubi H, Yu H, Malca M, McCusty D, Stochaj U. Pifithrin-µ Induces Stress Granule Formation, Regulates Cell Survival, and Rewires Cellular Signaling. Cells 2024; 13:885. [PMID: 38891018 PMCID: PMC11172192 DOI: 10.3390/cells13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
(1) Background: Stress granules (SGs) are cytoplasmic protein-RNA condensates that assemble in response to various insults. SG production is driven by signaling pathways that are relevant to human disease. Compounds that modulate SG characteristics are therefore of clinical interest. Pifithrin-µ is a candidate anti-tumor agent that inhibits members of the hsp70 chaperone family. While hsp70s are required for granulostasis, the impact of pifithrin-µ on SG formation is unknown. (2) Methods: Using HeLa cells as model system, cell-based assays evaluated the effects of pifithrin-µ on cell viability. Quantitative Western blotting assessed cell signaling events and SG proteins. Confocal microscopy combined with quantitative image analyses examined multiple SG parameters. (3) Results: Pifithrin-µ induced bona fide SGs in the absence of exogenous stress. These SGs were dynamic; their properties were determined by the duration of pifithrin-µ treatment. The phosphorylation of eIF2α was mandatory to generate SGs upon pifithrin-µ exposure. Moreover, the formation of pifithrin-µ SGs was accompanied by profound changes in cell signaling. Pifithrin-µ reduced the activation of 5'-AMP-activated protein kinase, whereas the pro-survival protein kinase Akt was activated. Long-term pifithrin-µ treatment caused a marked loss of cell viability. (4) Conclusions: Our study identified stress-related changes in cellular homeostasis that are elicited by pifithrin-µ. These insights are important knowledge for the appropriate therapeutic use of pifithrin-µ and related compounds.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Henry Yu
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Michael Malca
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - David McCusty
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
19
|
Jiao D, Sun H, Zhao X, Chen Y, Lv Z, Shi Q, Li Y, Wang C, Gao K. mTORC1/S6K1 signaling promotes sustained oncogenic translation through modulating CRL3 IBTK-mediated ubiquitination of eIF4A1 in cancer cells. eLife 2024; 12:RP92236. [PMID: 38738857 PMCID: PMC11090508 DOI: 10.7554/elife.92236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.
Collapse
Affiliation(s)
- Dongyue Jiao
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Huiru Sun
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yingji Chen
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Qing Shi
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Shanghai Stomatological Hospital & School of Stomatology, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
20
|
Mann N, Hill J, Wang K, Hughes RM. OptoProfilin: A Single Component Biosensor of Applied Cellular Stress. Chembiochem 2024; 25:e202400007. [PMID: 38457348 PMCID: PMC11218921 DOI: 10.1002/cbic.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as stress granules formed in response to energetic and oxidative stress are closely linked to ageing, cancer, cardiovascular disease, and viral infection. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin ('OptoProfilin') can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of preexisting work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.
Collapse
Affiliation(s)
- Noah Mann
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Jahiem Hill
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Kenneth Wang
- Department of Chemistry, Davidson College, Davidson, North Carolina, United States
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
21
|
Al Wardat S, Frassinelli L, Orecchini E, Rey F, Ciafrè SA, Galardi S, Garau J, Gagliardi S, Orcesi S, Tonduti D, Carelli S, Cereda C, Picardi E, Michienzi A. Characterization of the molecular dysfunctions occurring in Aicardi-Goutières syndrome patients with mutations in ADAR1. Genes Dis 2024; 11:101028. [PMID: 38292175 PMCID: PMC10827400 DOI: 10.1016/j.gendis.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Sofian Al Wardat
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Federica Rey
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences, University of Milano, Milano 20157, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milano 20154, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Jessica Garau
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Stella Gagliardi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Simona Orcesi
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), Buzzi Children's Hospital, Milano 20154, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences, University of Milano, Milano 20157, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milano 20154, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milano 20154, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Bari 70125, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari 70126, Italy
- Biostructures and Biosystems National Institute (INBB), Rome 00136, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
22
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
23
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
24
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
25
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
26
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Huai Y, Wang X, Mao W, Wang X, Zhao Y, Chu X, Huang Q, Ru K, Zhang L, Li Y, Chen Z, Qian A. HuR-positive stress granules: Potential targets for age-related osteoporosis. Aging Cell 2024; 23:e14053. [PMID: 38375951 PMCID: PMC10928564 DOI: 10.1111/acel.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
Aging impairs osteoblast function and bone turnover, resulting in age-related bone degeneration. Stress granules (SGs) are membrane-less organelles that assemble in response to stress via the recruitment of RNA-binding proteins (RBPs), and have emerged as a novel mechanism in age-related diseases. Here, we identified HuR as a bone-related RBP that aggregated into SGs and facilitated osteogenesis during aging. HuR-positive SG formation increased during osteoblast differentiation, and HuR overexpression mitigated the reduction in SG formation observed in senescent osteoblasts. Moreover, HuR positively regulated the mRNA stability and expression of its target β-catenin by binding and recruiting β-catenin into SGs. As a potential therapeutic target, HuR activator apigenin (API) enhanced its expression and thus aided osteoblasts differentiation. API treatment increased HuR nuclear export, enhanced the recruitment of β-catenin into HuR-positive SGs, facilitated β-catenin nuclear translocation, and contributed osteogenesis. Our findings highlight the roles of HuR and its SGs in promoting osteogenesis during skeletal aging and lay the groundwork for novel therapeutic strategies against age-related skeletal disorders.
Collapse
Affiliation(s)
- Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Department of OrthopedicsTangdu Hospital, Air Force Military Medical UniversityXi'anChina
| | - Xue Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Wenjing Mao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Xuehao Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yipu Zhao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Xiaohua Chu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Qian Huang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Ling Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health EngineeringNorthwestern Polytechnical UniversityXi'anChina
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems EngineeringNorthwestern Polytechnical UniversityXi'anChina
- NPU‐UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
28
|
Pernin F, Cui QL, Mohammadnia A, Fernandes MGF, Hall JA, Srour M, Dudley RWR, Zandee SEJ, Klement W, Prat A, Salapa HE, Levin MC, Moore GRW, Kennedy TE, Vande Velde C, Antel JP. Regulation of stress granule formation in human oligodendrocytes. Nat Commun 2024; 15:1524. [PMID: 38374028 PMCID: PMC10876533 DOI: 10.1038/s41467-024-45746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.
Collapse
Affiliation(s)
- Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Milton G F Fernandes
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jeffery A Hall
- Department of Neurosurgery, McGill University Health Centre, Montreal, QC, Canada
| | - Myriam Srour
- Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Roy W R Dudley
- Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, QC, Canada
| | - Stephanie E J Zandee
- Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Wendy Klement
- Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Alexandre Prat
- Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Hannah E Salapa
- Cameco Multiple Sclerosis Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Cameco Multiple Sclerosis Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - G R Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Timothy E Kennedy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Mokin YI, Ilyinsky NS, Nesterov SV, Smirnov EY, Sergeeva OS, Romanovich AE, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. Stress-granules, P-bodies, and cell aging: A bioinformatics study. Biochem Biophys Res Commun 2024; 694:149404. [PMID: 38147698 DOI: 10.1016/j.bbrc.2023.149404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
At the molecular level, aging is often accompanied by dysfunction of stress-induced membrane-less organelles (MLOs) and changes in their physical state (or material properties). In this work, we analyzed the proteins included in the proteome of stress granules (SGs) and P-bodies for their tendency to transform the physical state of these MLOs. Particular attention was paid to the proteins whose gene expression changes during replicative aging. It was shown that the proteome of the studied MLOs consists of intrinsically disordered proteins, 30-40% of which are potentially capable of liquid-liquid phase separation (LLPS). Proteins whose gene expression changes during the transition of human cells to a senescent state make up about 20% of the studied proteomes. There is a statistically significant increase in the number of positively charged proteins in both datasets studied compared to the complete proteomes of these organelles. An increase in the relative content of DNA-, but not RNA-binding proteins, was also found in the SG dataset with senescence-related processes. Among SGs proteins potentially involved in senescent processes, there is an increase in the abundance of potentially amyloidogenic proteins compared to the whole proteome. Proteins common to SGs and P-bodies, potentially involved in processes associated with senescence, form clusters of interacting proteins. The largest cluster is represented by RNA-binding proteins involved in RNA processing and translation regulation. These data indicate that SG proteins, but not proteins of P-bodies, are more likely to transform the physical state of MLOs. Furthermore, these MLOs can participate in processes associated with aging in a coordinated manner.
Collapse
Affiliation(s)
- Yakov I Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia.
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Eugene Y Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia.
| | - Olga S Sergeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia.
| | - Anna E Romanovich
- Resource Center of Molecular and Cell Technologies, St-Petersburg State University Research Park, Universitetskaya Emb. 7-9, 199034, St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia.
| |
Collapse
|
30
|
Fan WW, Xu T, Gao J, Zhang HY, Li Y, Hu DD, Gao S, Zhang JH, Liu X, Liu D, Li PL, Wong CCL, Yao XB, Shi YY, Yang ZY, Wang XS, Ruan K. A bivalent inhibitor against TDRD3 to suppress phase separation of methylated G3BP1. Chem Commun (Camb) 2024; 60:762-765. [PMID: 38126399 DOI: 10.1039/d3cc04654k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The formation of membrane-less organelles is driven by multivalent weak interactions while mediation of such interactions by small molecules remains an unparalleled challenge. Here, we uncovered a bivalent inhibitor that blocked the recruitment of TDRD3 by the two methylated arginines of G3BP1. Relative to the monovalent inhibitor, this bivalent inhibitor demonstrated an enhanced binding affinity to TDRD3 and capability to suppress the phase separation of methylated G3BP1, TDRD3, and RNAs, and in turn inhibit the stress granule growth in cells. Our result paves a new path to mediate multivalent interactions involved in SG assembly for potential combinational chemotherapy by bivalent inhibitors.
Collapse
Affiliation(s)
- Wei-Wei Fan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Tian Xu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Jia Gao
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Han-Yu Zhang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yan Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Duo-Duo Hu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Shuaixin Gao
- Center for Precision Medicine Multi-omics Research, Peking University Health Science Center, Peking University First Hospital; School of Basic Medical Sciences, Peking University Health Science Center; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Hai Zhang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xing Liu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Dan Liu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Pi-Long Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-omics Research, Peking University Health Science Center, Peking University First Hospital; School of Basic Medical Sciences, Peking University Health Science Center; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue-Biao Yao
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yun-Yu Shi
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Zhen-Ye Yang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
31
|
Yang T, Wang G, Zhang M, Hu X, Li Q, Yun F, Xing Y, Song X, Zhang H, Hu G, Qian Y. Triggering endogenous Z-RNA sensing for anti-tumor therapy through ZBP1-dependent necroptosis. Cell Rep 2023; 42:113377. [PMID: 37922310 DOI: 10.1016/j.celrep.2023.113377] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023] Open
Abstract
ZBP1 senses viral Z-RNAs to induce necroptotic cell death to restrain viral infection. ZBP1 is also thought to recognize host cell-derived Z-RNAs to regulate organ development and tissue inflammation in mice. However, it remains unknown how the host-derived Z-RNAs are formed and how these endogenous Z-RNAs are sensed by ZBP1. Here, we report that oxidative stress strongly induces host cell endogenous Z-RNAs, and the Z-RNAs then localize to stress granules for direct sensing by ZBP1 to trigger necroptosis. Oxidative stress triggers dramatically increase Z-RNA levels in tumor cells, and the Z-RNAs then directly trigger tumor cell necroptosis through ZBP1. Localization of the induced Z-RNAs to stress granules is essential for ZBP1 sensing. Oxidative stress-induced Z-RNAs significantly promote tumor chemotherapy via ZBP1-driven necroptosis. Thus, our study identifies oxidative stress as a critical trigger for Z-RNA formation and demonstrates how Z-RNAs are directly sensed by ZBP1 to trigger anti-tumor necroptotic cell death.
Collapse
Affiliation(s)
- Tao Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guodong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingxiang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xiaohu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fenglin Yun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingying Xing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyang Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haibing Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.
| |
Collapse
|
32
|
Chathuranga WAG, Nikapitiya C, Kim JH, Chathuranga K, Weerawardhana A, Dodantenna N, Kim DJ, Poo H, Jung JU, Lee CH, Lee JS. Gadd45β is critical for regulation of type I interferon signaling by facilitating G3BP-mediated stress granule formation. Cell Rep 2023; 42:113358. [PMID: 37917584 DOI: 10.1016/j.celrep.2023.113358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Stress granules (SGs) constitute a signaling hub that plays a critical role in type I interferon responses. Here, we report that growth arrest and DNA damage-inducible beta (Gadd45β) act as a positive regulator of SG-mediated interferon signaling by targeting G3BP upon RNA virus infection. Gadd45β deficiency markedly impairs SG formation and SG-mediated activation of interferon signaling in vitro. Gadd45β knockout mice are highly susceptible to RNA virus infection, and their ability to produce interferon and cytokines is severely impaired. Specifically, Gadd45β interacts with the RNA-binding domain of G3BP, leading to conformational expansion of G3BP1 via dissolution of its autoinhibitory electrostatic intramolecular interaction. The acidic loop 1- and RNA-binding properties of Gadd45β markedly increase the conformational expansion and RNA-binding affinity of the G3BP1-Gadd45β complex, thereby promoting assembly of SGs. These findings suggest a role for Gadd45β as a component and critical regulator of G3BP1-mediated SG formation, which facilitates RLR-mediated interferon signaling.
Collapse
Affiliation(s)
- W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea; Livestock Products Analysis Division, Division of Animal Health, Daejeon Metropolitan City Institute of Health and Environment, Daejeon 34146, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae U Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRRIB), Daejeon 34141, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea.
| |
Collapse
|
33
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
34
|
Bhagat R, Minaya MA, Renganathan A, Mehra M, Marsh J, Martinez R, Eteleeb AM, Nana AL, Spina S, Seeley WW, Grinberg LT, Karch CM. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. Mol Psychiatry 2023; 28:4889-4901. [PMID: 37730840 PMCID: PMC10914599 DOI: 10.1038/s41380-023-02237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10 + 16, or p.R406W mutation and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer's disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels in immortalized cells and in MAPT mutant neurons, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Miguel A Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Muneshwar Mehra
- Department of Neuroscience, Washington University in St Louis, St Louis, MO, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Abdallah M Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Alissa L Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo, São Paulo, Brazil
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA.
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
35
|
Paolillo I, Costanzo G, Delicato A, Villano F, Arena C, Calabrò V. Light Quality Potentiates the Antioxidant Properties of Brassica rapa Microgreen Extracts against Oxidative Stress and DNA Damage in Human Cells. Antioxidants (Basel) 2023; 12:1895. [PMID: 37891974 PMCID: PMC10604222 DOI: 10.3390/antiox12101895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants are an inexhaustible source of bioactive compounds beneficial for contrasting oxidative stress, leading to many degenerative pathologies. Brassica rapa L. subsp. rapa is well known for its nutraceutical properties among edible vegetable species. In our work, we aimed to explore an eco-friendly way to enhance the beneficial dietary phytochemicals in this vast world of crop-growing plants at selected light quality conditions. White broad-spectrum (W) and red-blue (RB) light regimes were used for growing brassica microgreens. The organic extracts were tested on keratinocytes upon oxidative stress to explore their capability to act as natural antioxidant cell protectors. Our results show that both W and RB extracts caused a notable reduction in reactive oxygen species (ROS) levels induced by H2O2. Interestingly, according to its higher contents of polyphenols and flavonoids, the RB was more efficient in reducing ROS amount and DNA damage than the W extract, particularly at the lowest concentration tested. However, at higher concentrations (up to 100 μg/mL), the antioxidant effect reached a plateau, and there was little added benefit. These findings confirm that RB light effectively increases the antioxidant compounds in Brassica rapa L. microgreens, thus contributing to their enhanced activity against oxidative-induced genotoxicity compared to microgreens grown under W light.
Collapse
Affiliation(s)
- Ida Paolillo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Giulia Costanzo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Antonella Delicato
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Filippo Villano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Viola Calabrò
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (I.P.); (G.C.); (A.D.); (F.V.); (V.C.)
| |
Collapse
|
36
|
Kairouani A, Pontier D, Picart C, Mounet F, Martinez Y, Le-Bot L, Fanuel M, Hammann P, Belmudes L, Merret R, Azevedo J, Carpentier MC, Gagliardi D, Couté Y, Sibout R, Bies-Etheve N, Lagrange T. Cell-type-specific control of secondary cell wall formation by Musashi-type translational regulators in Arabidopsis. eLife 2023; 12:RP88207. [PMID: 37773033 PMCID: PMC10541177 DOI: 10.7554/elife.88207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Deciphering the mechanism of secondary cell wall/SCW formation in plants is key to understanding their development and the molecular basis of biomass recalcitrance. Although transcriptional regulation is essential for SCW formation, little is known about the implication of post-transcriptional mechanisms in this process. Here we report that two bonafide RNA-binding proteins homologous to the animal translational regulator Musashi, MSIL2 and MSIL4, function redundantly to control SCW formation in Arabidopsis. MSIL2/4 interactomes are similar and enriched in proteins involved in mRNA binding and translational regulation. MSIL2/4 mutations alter SCW formation in the fibers, leading to a reduction in lignin deposition, and an increase of 4-O-glucuronoxylan methylation. In accordance, quantitative proteomics of stems reveal an overaccumulation of glucuronoxylan biosynthetic machinery, including GXM3, in the msil2/4 mutant stem. We showed that MSIL4 immunoprecipitates GXM mRNAs, suggesting a novel aspect of SCW regulation, linking post-transcriptional control to the regulation of SCW biosynthesis genes.
Collapse
Affiliation(s)
- Alicia Kairouani
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Dominique Pontier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, INP, UMR5546Castanet-TolosanFrance
| | - Yves Martinez
- FRAIB-CNRS Plateforme ImagerieCastanet-TolosanFrance
| | - Lucie Le-Bot
- Biopolymères Interactions Assemblages, UR1268 BIA, INRAENantesFrance
| | - Mathieu Fanuel
- Biopolymères Interactions Assemblages, UR1268 BIA, INRAENantesFrance
- PROBE research infrastructure, BIBS Facility, INRAENantesFrance
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade de CNRS, Université de StrasbourgStrasbourgFrance
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, UA13 BGE, CNRS, CEA, FR2048GrenobleFrance
| | - Remy Merret
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Jacinthe Azevedo
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, IBMP, CNRS, Université de StrasbourgStrasbourgFrance
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, UA13 BGE, CNRS, CEA, FR2048GrenobleFrance
| | - Richard Sibout
- Biopolymères Interactions Assemblages, UR1268 BIA, INRAENantesFrance
| | - Natacha Bies-Etheve
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Thierry Lagrange
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| |
Collapse
|
37
|
Danino YM, Molitor L, Rosenbaum-Cohen T, Kaiser S, Cohen Y, Porat Z, Marmor-Kollet H, Katina C, Savidor A, Rotkopf R, Ben-Isaac E, Golani O, Levin Y, Monchaud D, Hickson I, Hornstein E. BLM helicase protein negatively regulates stress granule formation through unwinding RNA G-quadruplex structures. Nucleic Acids Res 2023; 51:9369-9384. [PMID: 37503837 PMCID: PMC10516661 DOI: 10.1093/nar/gkad613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Bloom's syndrome (BLM) protein is a known nuclear helicase that is able to unwind DNA secondary structures such as G-quadruplexes (G4s). However, its role in the regulation of cytoplasmic processes that involve RNA G-quadruplexes (rG4s) has not been previously studied. Here, we demonstrate that BLM is recruited to stress granules (SGs), which are cytoplasmic biomolecular condensates composed of RNAs and RNA-binding proteins. BLM is enriched in SGs upon different stress conditions and in an rG4-dependent manner. Also, we show that BLM unwinds rG4s and acts as a negative regulator of SG formation. Altogether, our data expand the cellular activity of BLM and shed light on the function that helicases play in the dynamics of biomolecular condensates.
Collapse
Affiliation(s)
- Yehuda M Danino
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lena Molitor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Rosenbaum-Cohen
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Brain science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sebastian Kaiser
- Center for Chromosome Stability, Dept. of Cellular and Molecular Medicine, Panum Institute, Copenhagen Univ, 2200 København N., Denmark
| | - Yahel Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagai Marmor-Kollet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- 1E therapeutics, Rehovot, Israel
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal Ben-Isaac
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofra Golani
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Monchaud
- Institut de Chimie Moleculaire, ICMUB CNRS UMR 6302, uB Dijon, France
| | - Ian D Hickson
- Center for Chromosome Stability, Dept. of Cellular and Molecular Medicine, Panum Institute, Copenhagen Univ, 2200 København N., Denmark
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
38
|
Xie Z, Zhao S, Li Y, Deng Y, Shi Y, Chen X, Li Y, Li H, Chen C, Wang X, Liu E, Tu Y, Shi P, Tong J, Gutierrez-Beltran E, Li J, Bozhkov PV, Qian W, Zhou M, Wang W. Phenolic acid-induced phase separation and translation inhibition mediate plant interspecific competition. NATURE PLANTS 2023; 9:1481-1499. [PMID: 37640933 DOI: 10.1038/s41477-023-01499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Phenolic acids (PAs) secreted by donor plants suppress the growth of their susceptible plant neighbours. However, how structurally diverse ensembles of PAs are perceived by plants to mediate interspecific competition remains a mystery. Here we show that a plant stress granule (SG) marker, RNA-BINDING PROTEIN 47B (RBP47B), is a sensor of PAs in Arabidopsis. PAs, including salicylic acid, 4-hydroxybenzoic acid, protocatechuic acid and so on, directly bind RBP47B, promote its phase separation and trigger SG formation accompanied by global translation inhibition. Salicylic acid-induced global translation inhibition depends on RBP47 family members. RBP47s regulate the proteome rather than the absolute quantity of SG. The rbp47 quadruple mutant shows a reduced sensitivity to the inhibitory effect of the PA mixture as well as to that of PA-rich rice when tested in a co-culturing ecosystem. In this Article, we identified the long sought-after PA sensor as RBP47B and illustrated that PA-induced SG-mediated translational inhibition was one of the PA perception mechanisms.
Collapse
Affiliation(s)
- Zhouli Xie
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Shuai Zhao
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Yuhua Deng
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yabo Shi
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoyuan Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yue Li
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Haiwei Li
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Changtian Chen
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Xingwei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Enhui Liu
- College of Life Sciences, Capital Normal University, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China
| | - Yuchen Tu
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Peng Shi
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Jinjin Tong
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Emilio Gutierrez-Beltran
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, University of Sevilla, Sevilla, Spain
| | - Jiayu Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Weiqiang Qian
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Center for Life Sciences, Beijing, China
| | - Mian Zhou
- College of Life Sciences, Capital Normal University, Beijing, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory for Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Beijing, China.
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
39
|
Solis-Miranda J, Chodasiewicz M, Skirycz A, Fernie AR, Moschou PN, Bozhkov PV, Gutierrez-Beltran E. Stress-related biomolecular condensates in plants. THE PLANT CELL 2023; 35:3187-3204. [PMID: 37162152 PMCID: PMC10473214 DOI: 10.1093/plcell/koad127] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, 2 of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Monika Chodasiewicz
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion 71409, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Emilio Gutierrez-Beltran
- Institutode Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 41092 Sevilla, Spain
- Departamento de Bioquimica Vegetal y Biologia Molecular, Facultad de Biologia, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
40
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
41
|
Tong F, Hu H, Xu Y, Zhou Y, Xie R, Lei T, Du Y, Yang W, He S, Huang Y, Gong T, Gao H. Hollow copper sulfide nanoparticles carrying ISRIB for the sensitized photothermal therapy of breast cancer and brain metastases through inhibiting stress granule formation and reprogramming tumor-associated macrophages. Acta Pharm Sin B 2023; 13:3471-3488. [PMID: 37655313 PMCID: PMC10465875 DOI: 10.1016/j.apsb.2022.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
As known, the benefits of photothermal therapy (PTT) are greatly limited by the heat tolerance of cancer cells resulting from overexpressed heat shock proteins (HSPs). Then HSPs further trigger the formation of stress granules (SGs) that regulate protein expression and cell viability under various stress conditions. Inhibition of SG formation can sensitize tumor cells to PTT. Herein, we developed PEGylated pH (low) insertion peptide (PEG-pHLIP)-modified hollow copper sulfide nanoparticles (HCuS NPs) encapsulating the SG inhibitor ISRIB, with the phase-change material lauric acid (LA) as a gate-keeper, to construct a pH-driven and NIR photo-responsive controlled smart drug delivery system (IL@H-PP). The nanomedicine could specifically target slightly acidic tumor sites. Upon irradiation, IL@H-PP realized PTT, and the light-controlled release of ISRIB could effectively inhibit the formation of PTT-induced SG to sensitize tumor cells to PTT, thereby increasing the antitumor effect and inducing potent immunogenic cell death (ICD). Moreover, IL@H-PP could promote the production of reactive oxygen species (ROS) by tumor-associated macrophages (TAMs), repolarizing them towards the M1 phenotype and remodeling the immunosuppressive microenvironment. In vitro/vivo results revealed the potential of PTT combined with SG inhibitors, which provides a new paradigm for antitumor and anti-metastases.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haili Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rou Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yufan Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Chen S, Zhang J, Zhao F. Screening Linear and Circular RNA Transcripts from Stress Granules. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:886-893. [PMID: 35085777 PMCID: PMC10787114 DOI: 10.1016/j.gpb.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Stress granules (SGs) are cytoplasmic ribonucleoprotein assemblies formed under stress conditions and are related to various biological processes and human diseases. Previous studies have reported the regulatory role of some proteins and linear RNAs in SG assembly. However, the relationship between circular RNAs (circRNAs) and SGs has not been discovered. Here, we screened both linear RNAs and circRNAs in SGs using improved total RNA sequencing of purified SG cores in mammalian cells and identified circular transcripts specifically localized in SGs. circRNAs with higher SG-related RNA-binding protein (RBP) binding abilities are more likely to be enriched in SGs. Furthermore, some SG-enriched circRNAs are differentially expressed in hepatocellular carcinoma (HCC) and adjacent tissues. These results suggest the regulatory role of circRNAs in SG formation and provide insights into the biological function of circRNAs and SGs in HCC.
Collapse
Affiliation(s)
- Shuai Chen
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyang Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China.
| |
Collapse
|
43
|
Sun CL, Van Gilst M, Crowder CM. Hypoxia-induced mitochondrial stress granules. Cell Death Dis 2023; 14:448. [PMID: 37468471 PMCID: PMC10356818 DOI: 10.1038/s41419-023-05988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Perturbations of mitochondrial proteostasis have been associated with aging, neurodegenerative diseases, and recently with hypoxic injury. While examining hypoxia-induced mitochondrial protein aggregation in C. elegans, we found that sublethal hypoxia, sodium azide, or heat shock-induced abundant ethidium bromide staining mitochondrial granules that preceded evidence of protein aggregation. Genetic manipulations that reduce cellular and organismal hypoxic death block the formation of these mitochondrial stress granules (mitoSG). Knockdown of mitochondrial nucleoid proteins also blocked the formation of mitoSG by a mechanism distinct from the mitochondrial unfolded protein response. Lack of the major mitochondrial matrix protease LONP-1 resulted in the constitutive formation of mitoSG without external stress. Ethidium bromide-staining RNA-containing mitochondrial granules were also observed in rat cardiomyocytes treated with sodium azide, a hypoxia mimetic. Mitochondrial stress granules are an early mitochondrial pathology controlled by LONP and the nucleoid, preceding hypoxia-induced protein aggregation.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Marc Van Gilst
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Mitochondrial and Metabolism Center, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
- Department of Genome Science, University of Washington School of Medicine, Seattle, Washington, 98109, USA.
| |
Collapse
|
44
|
Yang C, Wang Z, Kang Y, Yi Q, Wang T, Bai Y, Liu Y. Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules. Autophagy 2023; 19:1934-1951. [PMID: 36692217 PMCID: PMC10283440 DOI: 10.1080/15548627.2022.2164427] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic stress granules (SGs) are highly dynamic assemblies of untranslated mRNAs and proteins that form through liquid-liquid phase separation (LLPS) under cellular stress. SG formation and elimination process is a conserved cellular strategy to promote cell survival, although the precise regulation of this process is poorly understood. Here, we screened six E3 ubiquitin ligases present in SGs and identified TRIM21 (tripartite motif containing 21) as a central regulator of SG homeostasis that is highly enriched in SGs of cells under arsenite-induced oxidative stress. Knockdown of TRIM21 promotes SG formation whereas overexpression of TRIM21 inhibits the formation of physiological and pathological SGs associated with neurodegenerative diseases. TRIM21 catalyzes K63-linked ubiquitination of the SG core protein, G3BP1 (G3BP stress granule assembly factor 1), and G3BP1 ubiquitination can effectively inhibit LLPS, in vitro. Recent reports suggested the involvement of macroautophagy/autophagy, as a stress response pathway, in the regulation of SG homeostasis. We systematically investigated well-defined autophagy receptors and identified SQSTM1/p62 (sequestosome 1) and CALCOCO2/NDP52 (calcium binding and coiled-coil domain 2) as the primary receptors that directly interact with G3BP1 during arsenite-induced stress. Endogenous SQSTM1 and CALCOCO2 localize to the periphery of SGs under oxidative stress and mediate SG elimination, as single knockout of each receptor causes accumulation of physiological and pathological SGs. Collectively, our study broadens the understanding in the regulation of SG homeostasis by showing that TRIM21 and autophagy receptors modulate SG formation and elimination respectively, suggesting the possibility of clinical targeting of these molecules in therapeutic strategies for neurodegenerative diseases.Abbreviations: ACTB: actin beta; ALS: amyotrophic lateral sclerosis; BafA1: bafilomycin A1; BECN1: beclin 1; C9orf72: C9orf72-SMCR8 complex subunit; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; FTD: frontotemporal dementia; FUS: FUS RNA binding protein; G3BP1: G3BP stress granule assembly factor 1; GFP: green fluorescent protein; LLPS: liquid-liquid phase separation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NBR1: NBR1 autophagy cargo receptor; NES: nuclear export signal; OPTN: optineurin; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; SG: stress granule; TAX1BP1: Tax1 binding protein 1; TOLLIP: toll interacting protein; TRIM21: tripartite motif containing 21; TRIM56: tripartite motif containing 56; UB: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.
Collapse
Affiliation(s)
- Cuiwei Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yingjin Kang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qianqian Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yun Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
45
|
Moon S, Namkoong S. Ribonucleoprotein Granules: Between Stress and Transposable Elements. Biomolecules 2023; 13:1027. [PMID: 37509063 PMCID: PMC10377603 DOI: 10.3390/biom13071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Transposable elements (TEs) are DNA sequences that can transpose and replicate within the genome, leading to genetic changes that affect various aspects of host biology. Evolutionarily, hosts have also developed molecular mechanisms to suppress TEs at the transcriptional and post-transcriptional levels. Recent studies suggest that stress-induced formation of ribonucleoprotein (RNP) granules, including stress granule (SG) and processing body (P-body), can play a role in the sequestration of TEs to prevent transposition, suggesting an additional layer of the regulatory mechanism for TEs. RNP granules have been shown to contain factors involved in RNA regulation, including mRNA decay enzymes, RNA-binding proteins, and noncoding RNAs, which could potentially contribute to the regulation of TEs. Therefore, understanding the interplay between TEs and RNP granules is crucial for elucidating the mechanisms for maintaining genomic stability and controlling gene expression. In this review, we provide a brief overview of the current knowledge regarding the interplay between TEs and RNP granules, proposing RNP granules as a novel layer of the regulatory mechanism for TEs during stress.
Collapse
Affiliation(s)
- Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
46
|
Koppenol R, Conceição A, Afonso IT, Afonso-Reis R, Costa RG, Tomé S, Teixeira D, da Silva JP, Côdesso JM, Brito DVC, Mendonça L, Marcelo A, Pereira de Almeida L, Matos CA, Nóbrega C. The stress granule protein G3BP1 alleviates spinocerebellar ataxia-associated deficits. Brain 2023; 146:2346-2363. [PMID: 36511898 PMCID: PMC10232246 DOI: 10.1093/brain/awac473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 09/09/2023] Open
Abstract
Polyglutamine diseases are a group of neurodegenerative disorders caused by an abnormal expansion of CAG repeat tracts in the codifying regions of nine, otherwise unrelated, genes. While the protein products of these genes are suggested to play diverse cellular roles, the pathogenic mutant proteins bearing an expanded polyglutamine sequence share a tendency to self-assemble, aggregate and engage in abnormal molecular interactions. Understanding the shared paths that link polyglutamine protein expansion to the nervous system dysfunction and the degeneration that takes place in these disorders is instrumental to the identification of targets for therapeutic intervention. Among polyglutamine diseases, spinocerebellar ataxias (SCAs) share many common aspects, including the fact that they involve dysfunction of the cerebellum, resulting in ataxia. Our work aimed at exploring a putative new therapeutic target for the two forms of SCA with higher worldwide prevalence, SCA type 2 (SCA2) and type 3 (SCA3), which are caused by expanded forms of ataxin-2 (ATXN2) and ataxin-3 (ATXN3), respectively. The pathophysiology of polyglutamine diseases has been described to involve an inability to properly respond to cell stress. We evaluated the ability of GTPase-activating protein-binding protein 1 (G3BP1), an RNA-binding protein involved in RNA metabolism regulation and stress responses, to counteract SCA2 and SCA3 pathology, using both in vitro and in vivo disease models. Our results indicate that G3BP1 overexpression in cell models leads to a reduction of ATXN2 and ATXN3 aggregation, associated with a decrease in protein expression. This protective effect of G3BP1 against polyglutamine protein aggregation was reinforced by the fact that silencing G3bp1 in the mouse brain increases human expanded ATXN2 and ATXN3 aggregation. Moreover, a decrease of G3BP1 levels was detected in cells derived from patients with SCA2 and SCA3, suggesting that G3BP1 function is compromised in the context of these diseases. In lentiviral mouse models of SCA2 and SCA3, G3BP1 overexpression not only decreased protein aggregation but also contributed to the preservation of neuronal cells. Finally, in an SCA3 transgenic mouse model with a severe ataxic phenotype, G3BP1 lentiviral delivery to the cerebellum led to amelioration of several motor behavioural deficits. Overall, our results indicate that a decrease in G3BP1 levels may be a contributing factor to SCA2 and SCA3 pathophysiology, and that administration of this protein through viral vector-mediated delivery may constitute a putative approach to therapy for these diseases, and possibly other polyglutamine disorders.
Collapse
Affiliation(s)
- Rebekah Koppenol
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - André Conceição
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Inês T Afonso
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ricardo Afonso-Reis
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rafael G Costa
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sandra Tomé
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Diogo Teixeira
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
| | | | - José Miguel Côdesso
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - David V C Brito
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adriana Marcelo
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos A Matos
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
47
|
Zhou H, Luo J, Mou K, Peng L, Li X, Lei Y, Wang J, Lin S, Luo Y, Xiang L. Stress granules: functions and mechanisms in cancer. Cell Biosci 2023; 13:86. [PMID: 37179344 PMCID: PMC10182661 DOI: 10.1186/s13578-023-01030-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Stress granules (SGs) are non-enveloped structures formed primarily via protein and RNA aggregation under various stress conditions, including hypoxia and viral infection, as well as oxidative, osmotic, and heat-shock stress. SGs assembly is a highly conserved cellular strategy to reduce stress-related damage and promote cell survival. At present, the composition and dynamics of SGs are well understood; however, data on the functions and related mechanisms of SGs are limited. In recent years, SGs have continued to attract attention as emerging players in cancer research. Intriguingly, SGs regulate the biological behavior of tumors by participating in various tumor-associated signaling pathways, including cell proliferation, apoptosis, invasion and metastasis, chemotherapy resistance, radiotherapy resistance, and immune escape. This review discusses the roles and mechanisms of SGs in tumors and suggests novel directions for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoyue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
48
|
Fujikawa D, Nakamura T, Yoshioka D, Li Z, Moriizumi H, Taguchi M, Tokai-Nishizumi N, Kozuka-Hata H, Oyama M, Takekawa M. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases. Curr Biol 2023; 33:1967-1981.e8. [PMID: 37119817 DOI: 10.1016/j.cub.2023.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023]
Abstract
Cytoplasmic stress granules (SGs) are phase-separated membrane-less organelles that form in response to various stress stimuli. SGs are mainly composed of non-canonical stalled 48S preinitiation complexes. In addition, many other proteins also accumulate into SGs, but the list is still incomplete. SG assembly suppresses apoptosis and promotes cell survival under stress. Furthermore, hyperformation of SGs is frequently observed in various human cancers and accelerates tumor development and progression by reducing stress-induced damage of cancer cells. Therefore, they are of clinical importance. However, the precise mechanism underlying SG-mediated inhibition of apoptosis remains ill-defined. Here, using a proximity-labeling proteomic approach, we comprehensively analyzed SG-resident proteins and identified the executioner caspases, caspase-3 and -7, as SG components. We demonstrate that accumulation of caspase-3/7 into SGs is mediated by evolutionarily conserved amino acid residues within their large catalytic domains and inhibits caspase activities and consequent apoptosis induced by various stresses. Expression of an SG-localization-deficient caspase-3 mutant in cells largely counteracted the anti-apoptotic effect of SGs, whereas enforced relocalization of the caspase-3 mutant to SGs restored it. Thus, SG-mediated sequestration of executioner caspases is a mechanism underlying the broad cytoprotective function of SGs. Furthermore, using a mouse xenograft tumor model, we show that this mechanism prevents cancer cells from apoptosis in tumor tissues, thereby promoting cancer progression. Our results reveal the functional crosstalk between SG-mediated cell survival and caspase-mediated cell death signaling pathways and delineate a molecular mechanism that dictates cell-fate decisions under stress and promotes tumorigenesis.
Collapse
Affiliation(s)
- Daichi Fujikawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daisuke Yoshioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Zizheng Li
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Mari Taguchi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Tokai-Nishizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan; Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
49
|
Campbell T, Hawsawi O, Henderson V, Dike P, Hwang BJ, Liadi Y, White EZ, Zou J, Wang G, Zhang Q, Bowen N, Scott D, Hinton CV, Odero-Marah V. Novel roles for HMGA2 isoforms in regulating oxidative stress and sensitizing to RSL3-Induced ferroptosis in prostate cancer cells. Heliyon 2023; 9:e14810. [PMID: 37113783 PMCID: PMC10126861 DOI: 10.1016/j.heliyon.2023.e14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs. truncated HMGA2 in prostate cancer (PCa). We analyzed the expression of wild-type vs. truncated HMGA2 and showed that prostate cancer patient tissue and some cell lines expressed increasing amounts of both wild-type and truncated HMGA2 with increasing tumor grade, compared to normal epithelial cells. RNA-Seq analysis of LNCaP prostate cancer cells stably overexpressing wild-type HMGA2 (HMGA2-WT), truncated HMGA2 (HMGA2-TR) or empty vector (Neo) control revealed that HMGA2-TR cells exhibited higher oxidative stress compared to HMGA2-WT or Neo control cells, which was also confirmed by analysis of basal reactive oxygen species (ROS) levels using 2', 7'-dichlorofluorescin diacetate (DCFDA) dye, the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and NADP/NADPH using metabolomics. This was associated with increased sensitivity to RAS-selective lethal 3 (RSL3)-induced ferroptosis that could be antagonized by ferrostatin-1. Additionally, proteomic and immunoprecipitation analyses showed that cytoplasmic HMGA2 protein interacted with Ras GTPase-activating protein-binding protein 1 (G3BP1), a cytoplasmic stress granule protein that responds to oxidative stress, and that G3BP1 transient knockdown increased sensitivity to ferroptosis even further. Endogenous knockdown of HMGA2 or G3BP1 in PC3 cells reduced proliferation which was reversed by ferrostatin-1. In conclusion, we show a novel role for HMGA2 in oxidative stress, particularly the truncated HMGA2, which may be a therapeutic target for ferroptosis-mediated prostate cancer therapy.
Collapse
Affiliation(s)
- Taaliah Campbell
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Ohuod Hawsawi
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Veronica Henderson
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Precious Dike
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Bor-Jang Hwang
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - Yusuf Liadi
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
| | - ElShaddai Z. White
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Jin Zou
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - GuangDi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, USA
| | - Qiang Zhang
- Department of Chemistry, Xavier University, New Orleans, LA, 70125, USA
| | - Nathan Bowen
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Derrick Scott
- Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA
| | - Cimona V. Hinton
- Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Valerie Odero-Marah
- Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA
- Corresponding author. Center for Urban Health Disparities Research and Innovation, Department of Biology, Morgan State University, Baltimore, MD, 21251, USA.
| |
Collapse
|
50
|
Bhagat R, Minaya MA, Renganathan A, Mehra M, Marsh J, Martinez R, Nana AL, Spina S, Seeley WW, Grinberg LT, Karch CM. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286548. [PMID: 36909621 PMCID: PMC10002771 DOI: 10.1101/2023.02.27.23286548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10+16, or p.R406W mutation, and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer’s disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.
Collapse
|