1
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
3
|
Chapman MJ, Orsoni A, Mellett NA, Nguyen A, Robillard P, Shaw JE, Giral P, Thérond P, Swertfeger D, Davidson WS, Meikle PJ. Pitavastatin treatment remodels the HDL subclass lipidome and proteome in hypertriglyceridemia. J Lipid Res 2024; 65:100494. [PMID: 38160756 PMCID: PMC10850136 DOI: 10.1016/j.jlr.2023.100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
HDL particles vary in lipidome and proteome, which dictate their individual physicochemical properties, metabolism, and biological activities. HDL dysmetabolism in nondiabetic hypertriglyceridemia (HTG) involves subnormal HDL-cholesterol and apoAI levels. Metabolic anomalies may impact the qualitative features of both the HDL lipidome and proteome. Whether particle content of bioactive lipids and proteins may differentiate HDL subclasses (HDL2b, 2a, 3a, 3b, and 3c) in HTG is unknown. Moreover, little is known of the effect of statin treatment on the proteolipidome of hypertriglyceridemic HDL and its subclasses. Nondiabetic, obese, HTG males (n = 12) received pitavastatin calcium (4 mg/day) for 180 days in a single-phase, unblinded study. ApoB-containing lipoproteins were normalized poststatin. Individual proteolipidomes of density-defined HDL subclasses were characterized prestatin and poststatin. At baseline, dense HDL3c was distinguished by marked protein diversity and peak abundance of surface lysophospholipids, amphipathic diacylglycerol and dihydroceramide, and core cholesteryl ester and triacylglycerol, (normalized to mol phosphatidylcholine), whereas light HDL2b showed peak abundance of free cholesterol, sphingomyelin, glycosphingolipids (monohexosylceramide, dihexosylceramide, trihexosylceramide, and anionic GM3), thereby arguing for differential lipid transport and metabolism between subclasses. Poststatin, bioactive lysophospholipid (lysophosphatidylcholine, lysoalkylphosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylinositol) cargo was preferentially depleted in HDL3c. By contrast, baseline lipidomic profiles of ceramide, dihydroceramide and related glycosphingolipids, and GM3/phosphatidylcholine were maintained across particle subclasses. All subclasses were depleted in triacylglycerol and diacylglycerol/phosphatidylcholine. The abundance of apolipoproteins CI, CII, CIV, and M diminished in the HDL proteome. Statin treatment principally impacts metabolic remodeling of the abnormal lipidome of HDL particle subclasses in nondiabetic HTG, with lesser effects on the proteome.
Collapse
Affiliation(s)
- M John Chapman
- Cardiovascular Disease Prevention Unit, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France.
| | - Alexina Orsoni
- Service de Biochimie, AP-HP, Paris-Saclay University, Bicetre University Hospital, and EA 7357, Paris-Saclay University, Orsay, France
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Paul Robillard
- Cardiovascular Disease Prevention Unit, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France
| | - Jonathan E Shaw
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Philippe Giral
- INSERM UMR1166 and Cardiovascular Prevention Units, ICAN-Institute of CardioMetabolism and Nutrition, AP-HP, Pitie-Salpetriere University Hospital, Paris, France
| | - Patrice Thérond
- Service de Biochimie, AP-HP, Paris-Saclay University, Bicetre University Hospital, and EA 7357, Paris-Saclay University, Orsay, France
| | - Debi Swertfeger
- Department of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
4
|
Wang G, Wang X, Song J, Wang H, Ruan C, Zhang W, Guo Z, Li W, Guo W. Cotton peroxisome-localized lysophospholipase counteracts the toxic effects of Verticillium dahliae NLP1 and confers wilt resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37026387 DOI: 10.1111/tpj.16236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Plasma membrane represents a critical battleground between plants and attacking microbes. Necrosis-and-ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), cytolytic toxins produced by some bacterial, fungal and oomycete species, are able to target on lipid membranes by binding eudicot plant-specific sphingolipids (glycosylinositol phosphorylceramide) and form transient small pores, causing membrane leakage and subsequent cell death. NLP-producing phytopathogens are a big threat to agriculture worldwide. However, whether there are R proteins/enzymes that counteract the toxicity of NLPs in plants remains largely unknown. Here we show that cotton produces a peroxisome-localized enzyme lysophospholipase, GhLPL2. Upon Verticillium dahliae attack, GhLPL2 accumulates on the membrane and binds to V. dahliae secreted NLP, VdNLP1, to block its contribution to virulence. A higher level of lysophospholipase in cells is required to neutralize VdNLP1 toxicity and induce immunity-related genes expression, meanwhile maintaining normal growth of cotton plants, revealing the role of GhLPL2 protein in balancing resistance to V. dahliae and growth. Intriguingly, GhLPL2 silencing cotton plants also display high resistance to V. dahliae, but show severe dwarfing phenotype and developmental defects, suggesting GhLPL2 is an essential gene in cotton. GhLPL2 silencing results in lysophosphatidylinositol over-accumulation and decreased glycometabolism, leading to a lack of carbon sources required for plants and pathogens to survive. Furthermore, lysophospholipases from several other crops also interact with VdNLP1, implying that blocking NLP virulence by lysophospholipase may be a common strategy in plants. Our work demonstrates that overexpressing lysophospholipase encoding genes have great potential for breeding crops with high resistance against NLP-producing microbial pathogens.
Collapse
Affiliation(s)
- Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaofeng Ruan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenshu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Lau MJ, Nie S, Yang Q, Harshman LG, Mao C, Williamson NA, Hoffmann AA. Lipidomic Profiling Reveals Concerted Temporal Patterns of Functionally Related Lipids in Aedes aegypti Females Following Blood Feeding. Metabolites 2023; 13:421. [PMID: 36984861 PMCID: PMC10051423 DOI: 10.3390/metabo13030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
We conducted a lipidomic analysis of the whole body of female Aedes aegypti mosquitoes at different time points over the course of feeding and reproduction. There were temporal biphasic increases of more than 80% of lipids identified at the time of feeding and from 16 h to 30 h post blood meal (PBM). During these two increases, the abundance of many lipids dropped while body weight remained stable, probably reflecting blood lipid digestion and the synthesis of vitellogenin in this period. A concerted temporal pattern was particularly strong at the second peak for membrane and signalling lipids such as phosphatidylethanolamine (PE), phosphatidylinositol (PI), cardiolipin (CL), hexosylceramide (HexCer) and lyso-phosphatidic acid (LPA). Lyso-glycerophospholipids showed three distinct change patterns that are functionally related: Lyso-PE and Lyso-phosphatidylcholine (LPC), which are membrane lipids, showed little change; LPA, a signalling lipid, showed a significant increase from 16 to 30 h PBM; Lyso-PI, a bioactive lipid, and both lyso-phosphatidylglycerol (LPG) and lyso-phosphatidylserine (LPS), which are bacterial membrane lipids, showed one significant increase from the time of feeding to 16 h post blood meal. The result of our study on the anautogenous insect Ae. aegypti point to specific lipids likely to be important in the reproductive process with a role in the formation and growth of ovarian follicles.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lawrence G. Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, NY 11794, USA
| | - Nicholas A. Williamson
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
Barchi M, Guida E, Dolci S, Rossi P, Grimaldi P. Endocannabinoid system and epigenetics in spermatogenesis and testicular cancer. VITAMINS AND HORMONES 2023; 122:75-106. [PMID: 36863802 DOI: 10.1016/bs.vh.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In mammals, male germ cell development starts during fetal life and is carried out in postnatal life with the formation of sperms. Spermatogenesis is the complex and highly orderly process during which a group of germ stem cells is set at birth, starts to differentiate at puberty. It proceeds through several stages: proliferation, differentiation, and morphogenesis and it is strictly regulated by a complex network of hormonal, autocrine and paracrine factors and it is associated with a unique epigenetic program. Altered epigenetic mechanisms or inability to respond to these factors can impair the correct process of germ development leading to reproductive disorders and/or testicular germ cell cancer. Among factors regulating spermatogenesis an emerging role is played by the endocannabinoid system (ECS). ECS is a complex system comprising endogenous cannabinoids (eCBs), their synthetic and degrading enzymes, and cannabinoid receptors. Mammalian male germ cells have a complete and active ECS which is modulated during spermatogenesis and that crucially regulates processes such as germ cell differentiation and sperm functions. Recently, cannabinoid receptor signaling has been reported to induce epigenetic modifications such as DNA methylation, histone modifications and miRNA expression. Epigenetic modifications may also affect the expression and function of ECS elements, highlighting the establishment of a complex mutual interaction. Here, we describe the developmental origin and differentiation of male germ cells and testicular germ cell tumors (TGCTs) focusing on the interplay between ECS and epigenetic mechanisms involved in these processes.
Collapse
Affiliation(s)
- Marco Barchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
7
|
Structure of the Sec14 domain of Kalirin reveals a distinct class of lipid-binding module in RhoGEFs. Nat Commun 2023; 14:96. [PMID: 36609407 PMCID: PMC9823006 DOI: 10.1038/s41467-022-35678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Gated entry of lipophilic ligands into the enclosed hydrophobic pocket in stand-alone Sec14 domain proteins often links lipid metabolism to membrane trafficking. Similar domains occur in multidomain mammalian proteins that activate small GTPases and regulate actin dynamics. The neuronal RhoGEF Kalirin, a central regulator of cytoskeletal dynamics, contains a Sec14 domain (KalbSec14) followed by multiple spectrin-like repeats and catalytic domains. Previous studies demonstrated that Kalirin lacking its Sec14 domain fails to maintain cell morphology or dendritic spine length, yet whether and how KalbSec14 interacts with lipids remain unknown. Here, we report the structural and biochemical characterization of KalbSec14. KalbSec14 adopts a closed conformation, sealing off the canonical ligand entry site, and instead employs a surface groove to bind a limited set of lysophospholipids. The low-affinity interactions of KalbSec14 with lysolipids are expected to serve as a general model for the regulation of Rho signaling by other Sec14-containing Rho activators.
Collapse
|
8
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Modified lipidomic profile of cancer-associated small extracellular vesicles facilitates tumorigenic behaviours and contributes to disease progression. Adv Biol Regul 2023; 87:100935. [PMID: 36443198 DOI: 10.1016/j.jbior.2022.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Metabolic rewiring is a key feature of cancer cells, which involves the alteration of amino acids, glucose and lipids to support aggressive cancer phenotypes. Changes in lipid metabolism alter cancer growth characteristics, membrane integrity and signalling pathways. Small extracellular vesicles (sEVs) are membrane-bound vesicles secreted by cells into the extracellular environment, where they participate in cell-to-cell communication. Lipids are involved in the formation and cargo assortment of sEVs, resulting in their selective packaging in these vesicles. Further, sEVs participate in different aspects of cancer development, such as proliferation, migration and angiogenesis. Various lipidomic studies have indicated the enrichment of specific lipids in sEVs derived from tumour cells, which aid in their pathological functioning. This paper summarises how the modified lipid profile of sEVs contributes to carcinogenesis and disease progression.
Collapse
|
10
|
Tiszlavicz Á, Gombos I, Péter M, Hegedűs Z, Hunya Á, Dukic B, Nagy I, Peksel B, Balogh G, Horváth I, Vígh L, Török Z. Distinct Cellular Tools of Mild Hyperthermia-Induced Acquired Stress Tolerance in Chinese Hamster Ovary Cells. Biomedicines 2022; 10:1172. [PMID: 35625909 PMCID: PMC9138356 DOI: 10.3390/biomedicines10051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Mild stress could help cells to survive more severe environmental or pathophysiological conditions. In the current study, we investigated the cellular mechanisms which contribute to the development of stress tolerance upon a prolonged (0-12 h) fever-like (40 °C) or a moderate (42.5 °C) hyperthermia in mammalian Chinese Hamster Ovary (CHO) cells. Our results indicate that mild heat triggers a distinct, dose-dependent remodeling of the cellular lipidome followed by the expression of heat shock proteins only at higher heat dosages. A significant elevation in the relative concentration of saturated membrane lipid species and specific lysophosphatidylinositol and sphingolipid species suggests prompt membrane microdomain reorganization and an overall membrane rigidification in response to the fluidizing heat in a time-dependent manner. RNAseq experiments reveal that mild heat initiates endoplasmic reticulum stress-related signaling cascades resulting in lipid rearrangement and ultimately in an elevated resistance against membrane fluidization by benzyl alcohol. To protect cells against lethal, protein-denaturing high temperatures, the classical heat shock protein response was required. The different layers of stress response elicited by different heat dosages highlight the capability of cells to utilize multiple tools to gain resistance against or to survive lethal stress conditions.
Collapse
Affiliation(s)
- Ádám Tiszlavicz
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Zoltán Hegedűs
- Core Facilities, Biological Research Centre, 6726 Szeged, Hungary; (Z.H.); (I.N.)
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ákos Hunya
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Barbara Dukic
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - István Nagy
- Core Facilities, Biological Research Centre, 6726 Szeged, Hungary; (Z.H.); (I.N.)
- Seqomics Biotechnology Ltd., 6782 Mórahalom, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (Á.T.); (I.G.); (M.P.); (Á.H.); (B.D.); (B.P.); (G.B.); (I.H.); (L.V.)
| |
Collapse
|
11
|
Falasca V, Falasca M. Targeting the Endocannabinoidome in Pancreatic Cancer. Biomolecules 2022; 12:320. [PMID: 35204820 PMCID: PMC8869154 DOI: 10.3390/biom12020320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic Ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is an aggressive and lethal form of cancer with a very high mortality rate. High heterogeneity, asymptomatic initial stages and a lack of specific diagnostic markers result in an end-stage diagnosis when the tumour has locally advanced or metastasised. PDAC is resistant to most of the available chemotherapy and radiation therapy treatments, making surgery the most potent curative treatment. The desmoplastic tumour microenvironment contributes to determining PDAC pathophysiology, immune response and therapeutic efficacy. The existing therapeutic approaches such as FDA-approved chemotherapeutics, gemcitabine, abraxane and folfirinox, prolong survival marginally and are accompanied by adverse effects. Several studies suggest the role of cannabinoids as anti-cancer agents. Cannabinoid receptors are known to be expressed in pancreatic cells, with a higher expression reported in pancreatic cancer patients. Therefore, pharmacological targeting of the endocannabinoid system might offer therapeutic benefits in pancreatic cancer. In addition, emerging data suggest that cannabinoids in combination with chemotherapy can increase survival in transgenic pancreatic cancer murine models. This review provides an overview of the regulation of the expanded endocannabinoid system, or endocannabinoidome, in PDAC and will explore the potential of targeting this system for novel anticancer approaches.
Collapse
Affiliation(s)
- Valerio Falasca
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
12
|
Paoletti F, Lamba D. Small Endogenous Ligands Modulation of Nerve Growth Factor Bioactivity: A Structural Biology Overview. Cells 2021; 10:cells10123462. [PMID: 34943971 PMCID: PMC8700322 DOI: 10.3390/cells10123462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023] Open
Abstract
Experiments with cell cultures and animal models have provided solid support for the assumption that Nerve Growth Factor (NGF) plays a key role in the regulation of neuronal cell survival and death. Recently, endogenous ligands have been proposed as physiological modulators of NGF biological activity as part of this regulatory cascade. However, the structural and mechanistic determinants for NGF bioactivity remain to be elucidated. We recently unveiled, by an integrated structural biology approach, the ATP binding sites of NGF and investigated the effects on TrkA and p75NTR receptors binding. These results pinpoint ATP as a genuine endogenous modulator of NGF signaling, paving the way to the characterization of not-yet-identified chemical diverse endogenous biological active small molecules as novel modulators of NGF. The present review aims at providing an overview of the currently available 3D structures of NGF in complex with different small endogenous ligands, featuring the molecular footprints of the small molecules binding. This knowledge is essential for further understanding the functional role of small endogenous ligands in the modulation of neurotrophins signaling in physiological and pathological conditions and for better exploiting the therapeutic potentialities of NGF.
Collapse
Affiliation(s)
- Francesca Paoletti
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, SI-1001 Ljubljana, Slovenia
- Correspondence:
| | - Doriano Lamba
- Institute of Crystallography—C.N.R.—Trieste Outstation, Area Science Park—Basovizza, I-34149 Trieste, Italy;
- Interuniversity Consortium “Biostructures and Biosystems National Institute”, I-00136 Roma, Italy
| |
Collapse
|
13
|
Shao L, Liu Y, Zhao Y, Zou B, Li X, Dai R. Integrated transcriptomic and metabolomic analysis of the global response of Staphylococcus aureus to ohmic heating. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Bang G, Ghil S. BRET analysis reveals interaction between the lysophosphatidic acid receptor LPA2 and the lysophosphatidylinositol receptor GPR55 in live cells. FEBS Lett 2021; 595:1806-1818. [PMID: 33959968 DOI: 10.1002/1873-3468.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
Lysophosphatidic acid (LPA) and lysophosphatidylinositol bind to the G protein-coupled receptors (GPCRs) LPA and GPR55, respectively. LPA2 , a type 2 LPA receptor, and GPR55 are highly expressed in colon cancer and involved in cancer progression. However, crosstalk between the two receptors and potential effects on cellular physiology are not fully understood. Here, using BRET analysis, we found that LPA2 and GPR55 interact in live cells. In the presence of both receptors, LPA2 and/or GPR55 activation facilitated co-internalization, and activation of GPR55, uncoupled with Gαi , induced reduction of intracellular cAMP. Notably, co-activation of receptors synergistically triggered further decline in the cAMP level, promoted cell proliferation, and increased the expression of cancer progression-related genes, suggesting that physical and functional crosstalk between LPA2 and GRR55 is involved in cancer progression.
Collapse
Affiliation(s)
- Gwantae Bang
- Department of Life Science, Kyonggi University, Suwon, Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Korea
| |
Collapse
|
15
|
Fan S, Zhang K, Lv A, Ma Y, Fang X, Zhang J. Characteristics of the intestinal microbiota and metabolism in infants with extrauterine growth restriction. Transl Pediatr 2021; 10:1259-1270. [PMID: 34189084 PMCID: PMC8193004 DOI: 10.21037/tp-20-431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Infants with extrauterine growth restriction (EUGR) experience significant postnatal growth restriction in the first week after birth, which indicates a failure of energy absorption. This study aimed to determine the different intestinal microbial species and metabolites between infants with EUGR and those without EUGR. METHODS A total of 73 infants hospitalized in a neonatal intensive care unit were enrolled and divided into the EUGR group (n=50) and the non-EUGR group (n=23). Fecal samples were collected during hospitalization. Bacterial species and their relative abundance were identified with metagenome sequencing. The metabolites in the feces and blood were identified with a liquid chromatography-mass spectrometry (LC-MS) based non-targeted metabolome. RESULTS The intestinal microbiota of the EUGR group contained less Bacteroides vulgatus, Dorea unclassified, Lachnospiraceae bacterium 1_1_57FAA, and Roseburia unclassified compared to that of the non-EUGR group. More importantly, the intestinal microbiota of the EUGR group contained Streptococcus mitis_oralis_pneumoniae, while that of the non-EUGR group did not. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) prediction and a correlation analysis identified that the majority of different microbial species higher in the non-EUGR group were related to metabolism. The results of the non-targeted metabolome revealed that several metabolites in the feces and blood were much higher in either group, and some of which were related to the different microbial species. CONCLUSIONS This study identified several different intestinal microbial species and metabolites in the patients' feces and blood, which may provide evidence to identify the biomarkers of infants with EUGR.
Collapse
Affiliation(s)
- Sainan Fan
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kun Zhang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Anping Lv
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yanan Ma
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaohui Fang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinping Zhang
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
16
|
Carrard J, Gallart-Ayala H, Infanger D, Teav T, Wagner J, Knaier R, Colledge F, Streese L, Königstein K, Hinrichs T, Hanssen H, Ivanisevic J, Schmidt-Trucksäss A. Metabolic View on Human Healthspan: A Lipidome-Wide Association Study. Metabolites 2021; 11:metabo11050287. [PMID: 33946321 PMCID: PMC8146132 DOI: 10.3390/metabo11050287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022] Open
Abstract
As ageing is a major risk factor for the development of non-communicable diseases, extending healthspan has become a medical and societal necessity. Precise lipid phenotyping that captures metabolic individuality could support healthspan extension strategies. This study applied ‘omic-scale lipid profiling to characterise sex-specific age-related differences in the serum lipidome composition of healthy humans. A subset of the COmPLETE-Health study, composed of 73 young (25.2 ± 2.6 years, 43% female) and 77 aged (73.5 ± 2.3 years, 48% female) clinically healthy individuals, was investigated, using an untargeted liquid chromatography high-resolution mass spectrometry approach. Compared to their younger counterparts, aged females and males exhibited significant higher levels in 138 and 107 lipid species representing 15 and 13 distinct subclasses, respectively. Percentage of difference ranged from 5.8% to 61.7% (females) and from 5.3% to 46.0% (males), with sphingolipid and glycerophophospholipid species displaying the greatest amplitudes. Remarkably, specific sphingolipid and glycerophospholipid species, previously described as cardiometabolically favourable, were found elevated in aged individuals. Furthermore, specific ether-glycerophospholipid and lyso-glycerophosphocholine species displayed higher levels in aged females only, revealing a more favourable lipidome evolution in females. Altogether, age determined the circulating lipidome composition, while lipid species analysis revealed additional findings that were not observed at the subclass level.
Collapse
Affiliation(s)
- Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland;
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Karsten Königstein
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Timo Hinrichs
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Rue du Bugnon 19, CH-1005 Lausanne, Switzerland; (H.G.-A.); (T.T.)
- Correspondence: (J.I.); (A.S.-T.)
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Birsstrasse 320B, CH-4052 Basel, Switzerland; (J.C.); (D.I.); (J.W.); (R.K.); (L.S.); (K.K.); (T.H.); (H.H.)
- Correspondence: (J.I.); (A.S.-T.)
| |
Collapse
|
17
|
Choi SH, Lee R, Nam SM, Kim DG, Cho IH, Kim HC, Cho Y, Rhim H, Nah SY. Ginseng gintonin, aging societies, and geriatric brain diseases. Integr Med Res 2021; 10:100450. [PMID: 32817818 PMCID: PMC7426447 DOI: 10.1016/j.imr.2020.100450] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A dramatic increase in aging populations and low birth rates rapidly drive aging societies and increase aging-associated neurodegenerative diseases. However, functional food or medicinal formulations to prevent geriatric brain disorders are not readily available. Panax ginseng is a candidate, since ginseng has long-been consumed as a rejuvenating agent. However, the underlying molecular mechanisms and the components of ginseng that are responsible for brain rejuvenation and human longevity are unknown. Accumulating evidence shows that gintonin is a candidate for the anti-aging ingredient of ginseng, especially in brain senescence. METHODS Gintonin, a glycolipoprotein complex, contains three lipid-derived G protein-coupled receptor ligands: lysophosphatidic acids (LPAs), lysophosphatidylinositols (LPIs), and linoleic acid (LA). LPA, LPI, and LA act on six LPA receptor subtypes, GPR55, and GPR40, respectively. These G protein-coupled receptors are distributed within the nervous and non-nervous systems of the human body. RESULTS Gintonin-enriched fraction (GEF) exhibits anti-brain senescence and effects against disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Oral administration of gintonin in animal models of d-galactose-induced brain aging, AD, HD, and PD restored cognitive and motor functions. The underlying molecular mechanisms of gintonin-mediated anti-brain aging and anti-neurodegenerative diseases include neurogenesis, autophagy stimulation, anti-apoptosis, anti-oxidative stress, and anti-inflammatory activities. This review describes the characteristics of gintonin and GEF, and how gintonin exerts its effects on brain aging and brain associated-neurodegenerative diseases. CONCLUSION Finally, we describe how GEF can be applied to improve the quality of life of senior citizens in aging societies.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Do-Geun Kim
- Neurovascular Biology Laboratory, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Yoonjeong Cho
- Center for Neuroscience Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Kim Y, Lee S, Yoo J, Kim E, Nam MS, Kim KK. Effects of Gouda cheese and Allium hookeri on thermogenesis in mice. Food Sci Nutr 2021; 9:1232-1239. [PMID: 33598207 PMCID: PMC7866615 DOI: 10.1002/fsn3.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022] Open
Abstract
Cheese contains various beneficial nutrients, including calcium and whey protein, as well as large amounts of saturated fatty acids. Thus, intake of cheese increases the production of low-density lipoprotein-cholesterol (LDL-C), a well-defined risk factor for cardiovascular disease. Therefore, identification of natural products that inhibit LDL-C production following cheese intake and verification of the efficacy of such products in animal models are essential. Here, we evaluated the effects of Allium hookeri, a well-known traditional herbal remedy, on metabolism and thermogenesis in mice consuming a cheese-containing diet. Intake of A. hookeri extracts significantly blocked increases in body weight and fat mass caused by intake of Gouda cheese in mice. Additionally, increases in blood triglyceride levels following intake of Gouda cheese were alleviated by A. hookeri. Moreover, intake of Gouda cheese enhanced thermogenesis efficiency. Thus, A. hookeri may have applications as an important additive for reducing the risk of metabolic disease resulting from cheese consumption.
Collapse
Affiliation(s)
- Yong‐An Kim
- Department of BiochemistryChungnam National UniversityDaejeonKorea
| | - Sang‐Soo Lee
- Department of BiochemistryChungnam National UniversityDaejeonKorea
| | - Jayeon Yoo
- National Institute of Animal ScienceRDAWanju‐gunJeolabuk‐doKorea
| | - Eun‐Mi Kim
- Department of Predictive ToxicologyKorea Institute of ToxicologyDaejeonKorea
| | - Myoung Soo Nam
- Division of Animal Resource ScienceChungnam National UniversityDaejeonKorea
| | - Kee K. Kim
- Department of BiochemistryChungnam National UniversityDaejeonKorea
| |
Collapse
|
19
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
20
|
Mannekote Thippaiah S, Iyengar SS, Vinod KY. Exo- and Endo-cannabinoids in Depressive and Suicidal Behaviors. Front Psychiatry 2021; 12:636228. [PMID: 33967855 PMCID: PMC8102729 DOI: 10.3389/fpsyt.2021.636228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cannabis (marijuana) has been known to humans for thousands of years but its neurophysiological effects were sparsely understood until recently. Preclinical and clinical studies in the past two decades have indisputably supported the clinical proposition that the endocannabinoid system plays an important role in the etiopathogeneses of many neuropsychiatric disorders, including mood and addictive disorders. In this review, we discuss the existing knowledge of exo- and endo-cannabinoids, and role of the endocannabinoid system in depressive and suicidal behavior. A dysfunction in this system, located in brain regions such as prefrontal cortex and limbic structures is implicated in mood regulation, impulsivity and decision-making, may increase the risk of negative mood and cognition as well as suicidality. The literature discussed here also suggests that the endocannabinoid system may be a viable target for treatments of these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Srinagesh Mannekote Thippaiah
- Valleywise Behavioral Health, Phoenix, AZ, United States.,Creighton University School of Medicine, Phoenix, AZ, United States
| | - Sloka S Iyengar
- The American Museum of Natural History, New York, NY, United States
| | - K Yaragudri Vinod
- Department of Analytical Psychopharmacology, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Child & Adolescent Psychiatry, New York University Langone Health, New York, NY, United States
| |
Collapse
|
21
|
Inhibition of the Lysophosphatidylinositol Transporter ABCC1 Reduces Prostate Cancer Cell Growth and Sensitizes to Chemotherapy. Cancers (Basel) 2020; 12:cancers12082022. [PMID: 32718079 PMCID: PMC7465469 DOI: 10.3390/cancers12082022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022] Open
Abstract
Expression of ATP-binding cassette (ABC) transporters has long been implicated in cancer chemotherapy resistance. Increased expression of the ABCC subfamily transporters has been reported in prostate cancer, especially in androgen-resistant cases. ABCC transporters are known to efflux drugs but, recently, we have demonstrated that they can also have a more direct role in cancer progression. The pharmacological potential of targeting ABCC1, however, remained to be assessed. In this study, we investigated whether the blockade of ABCC1 affects prostate cancer cell proliferation using both in vitro and in vivo models. Our data demonstrate that pharmacological inhibition of ABCC1 reduced prostate cancer cell growth in vitro and potentiated the effects of Docetaxel in vitro and in mouse models of prostate cancer in vivo. Collectively, these data identify ABCC1 as a novel and promising target in prostate cancer therapy.
Collapse
|
22
|
Chapman MJ, Orsoni A, Tan R, Mellett NA, Nguyen A, Robillard P, Giral P, Thérond P, Meikle PJ. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J Lipid Res 2020; 61:911-932. [PMID: 32295829 PMCID: PMC7269759 DOI: 10.1194/jlr.p119000543] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/01/2020] [Indexed: 01/05/2023] Open
Abstract
Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity? What is the effect of statin treatment? Obese hypertriglyceridemic hypercholesterolemic males [n = 12; lipoprotein (a) <10 mg/dl] received pitavastatin calcium (4 mg/day) for 180 days in a single-phase unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids {LPC, lysophosphatidylinositol (LPI), lysoalkylphosphatidylcholine [LPC(O)]; 9, 0.2, and 0.14 mol per mole of apoB, respectively; all P < 0.001 vs. LDL1-4}, suggesting elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI, and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5-3 mol per mole of apoB; 3-7 mmol per mole of PC) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.
Collapse
Affiliation(s)
- M John Chapman
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France; Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. mailto:
| | - Alexina Orsoni
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Ricardo Tan
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Paul Robillard
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France
| | - Philippe Giral
- INSERM UMR1166 and Cardiovascular Prevention Units, ICAN-Institute of CardioMetabolism and Nutrition, AP-HP, Pitié-Salpetrière University Hospital, Paris, France
| | - Patrice Thérond
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Prabhu AH, Kant S, Kesarwani P, Ahmed K, Forsyth P, Nakano I, Chinnaiyan P. Integrative cross-platform analyses identify enhanced heterotrophy as a metabolic hallmark in glioblastoma. Neuro Oncol 2020; 21:337-347. [PMID: 30476237 DOI: 10.1093/neuonc/noy185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although considerable progress has been made in understanding molecular alterations driving gliomagenesis, the diverse metabolic programs contributing to the aggressive phenotype of glioblastoma remain unclear. The aim of this study was to define and provide molecular context to metabolic reprogramming driving gliomagenesis. METHODS Integrative cross-platform analyses coupling global metabolomic profiling with genomics in patient-derived glioma (low-grade astrocytoma [LGA; n = 28] and glioblastoma [n = 80]) were performed. Identified programs were then metabolomically, genomically, and functionally evaluated in preclinical models. RESULTS Clear metabolic programs were identified differentiating LGA from glioblastoma, with aberrant lipid, peptide, and amino acid metabolism representing dominant metabolic nodes associated with malignant transformation. Although the metabolomic profiles of glioblastoma and LGA appeared mutually exclusive, considerable metabolic heterogeneity was observed in glioblastoma. Surprisingly, integrative analyses demonstrated that O6-methylguanine-DNA methyltransferase methylation and isocitrate dehydrogenase mutation status were equally distributed among glioblastoma metabolic profiles. Transcriptional subtypes, on the other hand, tightly clustered by their metabolomic signature, with proneural and mesenchymal tumor profiles being mutually exclusive. Integrating these metabolic phenotypes with gene expression analyses uncovered tightly orchestrated and highly redundant transcriptional programs designed to support the observed metabolic programs by actively importing these biochemical substrates from the microenvironment, contributing to a state of enhanced metabolic heterotrophy. These findings were metabolomically, genomically, and functionally recapitulated in preclinical models. CONCLUSION Despite disparate molecular pathways driving the progression of glioblastoma, metabolic programs designed to maintain its aggressive phenotype remain conserved. This contributes to a state of enhanced metabolic heterotrophy supporting survival in diverse microenvironments implicit in this malignancy.
Collapse
Affiliation(s)
| | - Shiva Kant
- Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | | | - Kamran Ahmed
- Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter Forsyth
- Neuro-oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ichiro Nakano
- Neurosurgery, University of Alabama, Birmingham, Alabama
| | - Prakash Chinnaiyan
- Neurosurgery, University of Alabama, Birmingham, Alabama.,Oakland University William Beaumont School of Medicine, Royal Oak, Michigan
| |
Collapse
|
24
|
Cas MD, Roda G, Li F, Secundo F. Functional Lipids in Autoimmune Inflammatory Diseases. Int J Mol Sci 2020; 21:E3074. [PMID: 32349258 PMCID: PMC7246500 DOI: 10.3390/ijms21093074] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lipids are apolar small molecules known not only as components of cell membranes but also, in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive lipids that can influence the immune responses and inflammatory processes regulating vascular hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on their biochemical function, these lipids can be divided into different families, including eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids. These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| |
Collapse
|
25
|
Ye L, Cao Z, Wang W, Zhou N. New Insights in Cannabinoid Receptor Structure and Signaling. Curr Mol Pharmacol 2020; 12:239-248. [PMID: 30767756 DOI: 10.2174/1874467212666190215112036] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cannabinoid has long been used for medicinal purposes. Cannabinoid signaling has been considered the therapeutic target for treating pain, addiction, obesity, inflammation, and other diseases. Recent studies have suggested that in addition to CB1 and CB2, there are non-CB1 and non-CB2 cannabinoid-related orphan GPCRs including GPR18, GPR55, and GPR119. In addition, CB1 and CB2 display allosteric binding and biased signaling, revealing correlations between biased signaling and functional outcomes. Interestingly, new investigations have indicated that CB1 is functionally present within the mitochondria of striated and heart muscles directly regulating intramitochondrial signaling and respiration. CONCLUSION In this review, we summarize the recent progress in cannabinoid-related orphan GPCRs, CB1/CB2 structure, Gi/Gs coupling, allosteric ligands and biased signaling, and mitochondria-localized CB1, and discuss the future promise of this research.
Collapse
Affiliation(s)
- Lingyan Ye
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Zheng Cao
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Weiwei Wang
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Naiming Zhou
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Baptista LC, Sun Y, Carter CS, Buford TW. Crosstalk Between the Gut Microbiome and Bioactive Lipids: Therapeutic Targets in Cognitive Frailty. Front Nutr 2020; 7:17. [PMID: 32219095 PMCID: PMC7078157 DOI: 10.3389/fnut.2020.00017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cognitive frailty is a geriatric condition defined by the coexistence of cognitive impairment and physical frailty. This "composite" aging phenotype is associated with a higher risk of several adverse health-related outcomes, including dementia. In the last decade, cognitive frailty has gained increased attention from the scientific community that has focused on understanding the clinical impact and the physiological and pathological mechanisms of development and on identifying preventive and/or rehabilitative therapeutic interventions. The emergence of gut microbiome in neural signaling increased the interest in targeting the gut-brain axis as a modulation strategy. Multiple studies on gastroenteric, metabolic, and neurodegenerative diseases support the existence of a wide bidirectional communication network of signaling mediators, e.g., bioactive lipids, that can modulate inflammation, gut permeability, microbiota composition, and the gut-brain axis. This crosstalk between the gut-brain axis, microbiome, and bioactive lipids may emerge as the basis of a promising therapeutic strategy to counteract cognitive frailty. In this review, we summarize the evidence in the literature regarding the link between the gut microbiome, brain, and several families of bioactive lipids. In addition, we also explore the applicability of several bioactive lipid members as a potential routes for therapeutic interventions to combat cognitive frailty.
Collapse
Affiliation(s)
- Liliana C. Baptista
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yi Sun
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christy S. Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Christy S. Carter
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States,Thomas W. Buford ; Twitter: @twbuford
| |
Collapse
|
27
|
Cho YJ, Choi SH, Lee R, Hwang H, Rhim H, Cho IH, Kim HC, Lee JI, Hwang SH, Nah SY. Ginseng Gintonin Contains Ligands for GPR40 and GPR55. Molecules 2020; 25:molecules25051102. [PMID: 32121640 PMCID: PMC7179172 DOI: 10.3390/molecules25051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Gintonin, a novel ginseng-derived glycolipoprotein complex, has an exogenous ligand for lysophosphatidic acid (LPA) receptors. However, recent lipid analysis of gintonin has shown that gintonin also contains other bioactive lipids besides LPAs, including linoleic acid and lysophosphatidylinositol (LPI). Linoleic acid, a free fatty acid, and LPI are known as ligands for the G-protein coupled receptors (GPCR), GPR40, and GPR55, respectively. We, herein, investigated whether gintonin could serve as a ligand for GPR40 and GPR55, using the insulin-secreting beta cell-derived cell line INS-1 and the human prostate cancer cell line PC-3, respectively. Gintonin dose-dependently enhanced insulin secretion from INS-1 cells. Gintonin-stimulated insulin secretion was partially inhibited by a GPR40 receptor antagonist but not an LPA1/3 receptor antagonist and was down-regulated by small interfering RNA (siRNA) against GPR40. Gintonin dose-dependently induced [Ca2+]i transients and Ca2+-dependent cell migration in PC-3 cells. Gintonin actions in PC-3 cells were attenuated by pretreatment with a GPR55 antagonist and an LPA1/3 receptor antagonist or by down-regulating GPR55 with siRNA. Taken together, these results demonstrated that gintonin-mediated insulin secretion by INS-1 cells and PC-3 cell migration were regulated by the respective activation of GPR40 and GPR55 receptors. These findings indicated that gintonin could function as a ligand for both receptors. Finally, we demonstrated that gintonin contained two more GPCR ligands, in addition to that for LPA receptors. Gintonin, with its multiple GPCR ligands, might provide the molecular basis for the multiple pharmacological actions of ginseng.
Collapse
Affiliation(s)
- Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
| | - Hongik Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.H.); (H.R.)
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea; (H.H.); (H.R.)
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea;
| | - Jeong-Ik Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea;
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
- Correspondence: (S.-H.H.); (S.-Y.N.); Tel.: +82-33-738-7922 (S.-H.H.); +82-2-450-4154 (S.-Y.N.)
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (Y.-J.C.); (S.-H.C.); (R.L.)
- Correspondence: (S.-H.H.); (S.-Y.N.); Tel.: +82-33-738-7922 (S.-H.H.); +82-2-450-4154 (S.-Y.N.)
| |
Collapse
|
28
|
Mayneris-Perxachs J, Mousa A, Naderpoor N, Fernández-Real JM, de Courten B. Plasma Phospholipids with Long-Chain Polyunsaturated Fatty Acids and Dihydroceramides at the Crossroads of Iron Stores and Insulin Resistance. Mol Nutr Food Res 2020; 64:e1901055. [PMID: 31945260 DOI: 10.1002/mnfr.201901055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Indexed: 11/07/2022]
Abstract
SCOPE Iron plays an important role in the pathogenesis of insulin resistance (IR) and type 2 diabetes. Recent studies suggest a role of specific lipids in the induction of IR, but the potential relationships between iron and lipid metabolites in relation to IR have not been explored. Therefore, the aim of the study is to evaluate the association among iron, IR, and the lipidome. METHODS AND RESULTS The plasma lipidome, IR, parameters of iron metabolism, and several cytokines and adipokines in 65 overweight/obese participants are measured. Measurements of IR correlate positively with ferritin, a measure of iron storage (r = 0.35, p = 0.005), and negatively with adiponectin (r = -0.30, p = 0.02). The serum ferritin/adiponectin ratio has a stronger association with IR (r = 0.41, p < 0.001). From multivariate analyses adjusted for age, sex, and BMI, several phospholipids containing long chain polyunsaturated fatty acids (PUFA) with 20-22 carbons (phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, and a phosphatidylserine), are positively associated with ferritin and the ferritin/adiponectin ratio. Two dihydroceramides (Cer(18:0/22:0), Cer(18:0/24:0)) and several diglycerides and triglycerides, mainly comprised of C14:0, C16:0, C18:0, C18:1, and C18:2, also have positive correlations with ferritin and the ferritin/adiponectin ratio. CONCLUSIONS The positive associations between these lipid species and ferritin or the ferritin/adiponectin ratio suggest a potential crosstalk between iron and lipid metabolism in obesity and IR.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta" , University of Girona and CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - José-Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Hospital of Girona "Dr Josep Trueta" , University of Girona and CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Schurman LD, Lu D, Kendall DA, Howlett AC, Lichtman AH. Molecular Mechanism and Cannabinoid Pharmacology. Handb Exp Pharmacol 2020; 258:323-353. [PMID: 32236882 PMCID: PMC8637936 DOI: 10.1007/164_2019_298] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since antiquity, Cannabis has provoked enormous intrigue for its potential medicinal properties as well as for its unique pharmacological effects. The elucidation of its major cannabinoid constituents, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), led to the synthesis of new cannabinoids (termed synthetic cannabinoids) to understand the mechanisms underlying the pharmacology of Cannabis. These pharmacological tools were instrumental in the ultimate discovery of the endogenous cannabinoid system, which consists of CB1 and CB2 cannabinoid receptors and endogenously produced ligands (endocannabinoids), which bind and activate both cannabinoid receptors. CB1 receptors mediate the cannabimimetic effects of THC and are highly expressed on presynaptic neurons in the nervous system, where they modulate neurotransmitter release. In contrast, CB2 receptors are primarily expressed on immune cells. The endocannabinoids are tightly regulated by biosynthetic and hydrolytic enzymes. Accordingly, the endocannabinoid system plays a modulatory role in many physiological processes, thereby generating many promising therapeutic targets. An unintended consequence of this research was the emergence of synthetic cannabinoids sold for human consumption to circumvent federal laws banning Cannabis use. Here, we describe research that led to the discovery of the endogenous cannabinoid system and show how knowledge of this system benefitted as well as unintentionally harmed human health.
Collapse
Affiliation(s)
- Lesley D Schurman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dai Lu
- Rangel College of Pharmacy, Health Science Center, Texas A&M University, Kingsville, TX, USA
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Allyn C Howlett
- Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
30
|
Gao X, Liu W, Mei J, Xie J. Quantitative Analysis of Cold Stress Inducing Lipidomic Changes in Shewanella putrefaciens Using UHPLC-ESI-MS/MS. Molecules 2019; 24:E4609. [PMID: 31888284 PMCID: PMC6943694 DOI: 10.3390/molecules24244609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Shewanella putrefaciens is a well-known specific spoilage organism (SSO) and cold-tolerant microorganism in refrigerated fresh marine fish. Cold-adapted mechanism includes increased fluidity of lipid membranes by the ability to finely adjust lipids composition. In the present study, the lipid profile of S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C was explored using ultra-high-pressure liquid chromatography/electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) to discuss the effect of lipid composition on cold-adapted tolerance. Lipidomic analysis detected a total of 27 lipid classes and 606 lipid molecular species in S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C. S. putrefaciens cultivated at 30 °C (SP-30) had significantly higher content of glycerolipids, sphingolipids, saccharolipids, and fatty acids compared with that at 0 °C (SP-0); however, the lower content of phospholipids (13.97%) was also found in SP-30. PE (30:0), PE (15:0/15:0), PE (31:0), PA (33:1), PE (32:1), PE (33:1), PE (25:0), PC (22:0), PE (29:0), PE (34:1), dMePE (15:0/16:1), PE (31:1), dMePE (15:1/15:0), PG (34:2), and PC (11:0/11:0) were identified as the most abundant lipid molecular species in S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C. The increase of PG content contributes to the construction of membrane lipid bilayer and successfully maintains membrane integrity under cold stress. S. putrefaciens cultivated at low temperature significantly increased the total unsaturated liquid contents but decreased the content of saturated liquid contents.
Collapse
Affiliation(s)
- Xin Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.G.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.G.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.G.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.G.); (W.L.)
- National Experimental Teaching Demonstration Center for Food Science Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
31
|
Adamska A, Domenichini A, Capone E, Damiani V, Akkaya BG, Linton KJ, Di Sebastiano P, Chen X, Keeton AB, Ramirez-Alcantara V, Maxuitenko Y, Piazza GA, De Laurenzi V, Sala G, Falasca M. Pharmacological inhibition of ABCC3 slows tumour progression in animal models of pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:312. [PMID: 31378204 PMCID: PMC6681491 DOI: 10.1186/s13046-019-1308-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
Abstract
Background Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive and lethal disease, lacking effective therapeutic approaches. Available therapies only marginally prolong patient survival and are frequently coupled with severe adverse events. It is therefore pivotal to investigate novel and safe pharmacological approaches. We have recently identified the ABC transporter, ABCC3, whose expression is dependent on mutation of TP53, as a novel target in PDAC. ABCC3-mediated regulation of PDAC cell proliferation and tumour growth in vivo was demonstrated and was shown to be conferred by upregulation of STAT3 signalling and regulation of apoptosis. Methods To verify the potential of ABCC3 as a pharmacological target, a small molecule inhibitor of ABCC3, referred to here as MCI-715, was designed. In vitro assays were performed to assess the effects of ABCC3 inhibition on anchorage-dependent and anchorage-independent PDAC cell growth. The impact of ABCC3 inhibition on specific signalling pathways was verified by Western blotting. The potential of targeting ABCC3 with MCI-715 to counteract PDAC progression was additionally tested in several animal models of PDAC, including xenograft mouse models and transgenic mouse model of PDAC. Results Using both mouse models and human cell lines of PDAC, we show that the pharmacological inhibition of ABCC3 significantly decreased PDAC cell proliferation and clonal expansion in vitro and in vivo, remarkably slowing tumour growth in mice xenografts and patient-derived xenografts and increasing the survival rate in a transgenic mouse model. Furthermore, we show that stromal cells in pancreatic tumours, which actively participate in PDAC progression, are enriched for ABCC3, and that its inhibition may contribute to stroma reprogramming. Conclusions Our results indicate that ABCC3 inhibition with MCI-715 demonstrated strong antitumor activity and is well tolerated, which leads us to conclude that ABCC3 inhibition is a novel and promising therapeutic strategy for a considerable cohort of patients with pancreatic cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1308-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Alice Domenichini
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Verena Damiani
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Begum Gokcen Akkaya
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, Newark Street, London, E1 2AT, UK
| | - Kenneth J Linton
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, Newark Street, London, E1 2AT, UK
| | - Pierluigi Di Sebastiano
- Department of Surgery, Unit of Surgical Oncology, SS. Annunziata Hospital, G. D'Annunzio University, I-66100, Chieti, Italy
| | - Xi Chen
- Drug Discovery Research Center, USA Health Mitchell Cancer Institute, Mobile, AL, USA
| | - Adam B Keeton
- Drug Discovery Research Center, USA Health Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Yulia Maxuitenko
- Drug Discovery Research Center, USA Health Mitchell Cancer Institute, Mobile, AL, USA
| | - Gary A Piazza
- Drug Discovery Research Center, USA Health Mitchell Cancer Institute, Mobile, AL, USA
| | - Vincenzo De Laurenzi
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" di Chieti-Pescara, Centro Studi sull'Invecchiamento, CeSI-MeT, 66100, Chieti, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, 6102, Australia. .,Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Cell Biology and Cutaneous Research, Newark Street, London, E1 2AT, UK.
| |
Collapse
|
32
|
GPR55-mediated effects on brain microvascular endothelial cells and the blood-brain barrier. Neuroscience 2019; 414:88-98. [PMID: 31279825 DOI: 10.1016/j.neuroscience.2019.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
GPR55, an atypical cannabinoid receptor activated by lysophosphatidylinositol (LPI) has been involved in various physiological and pathological processes. We examined the effect of GPR55 activation on rat brain microvascular endothelial cells (RBMVEC), an essential component of the blood-brain barrier (BBB). GPR55 was detected in RBMVEC by western blot and immunocytochemistry. Treatment of RBMVEC with LPI increased cytosolic Ca2+ concentration, [Ca2+]i, in a concentration-dependent manner; the effect was abolished by the GPR55 antagonist, ML-193. Repetitive application of LPI induced tachyphylaxis. LPI-induced increase in [Ca2+]i was not sensitive to U-73122, a phospholipase C inhibitor, but was abolished by the blockade of voltage-gated Ca2+ channels or in Ca2+-free saline, indicating that Ca2+ influx was involved in this response. LPI induced a biphasic change in RBMVEC membrane potential: a fast depolarization followed by a long-lasting hyperpolarization. The hyperpolarization phase was prevented by apamin and charibdotoxin, inhibitors of small- and intermediate-conductance Ca2+-activated K+ channels (KCa). Immunofluorescence studies indicate that LPI produced transient changes in tight and adherens junctions proteins and F-actin stress fibers. LPI decreased the electrical resistance of RBMVEC monolayer assessed with Electric Cell-Substrate Impedance Sensing (ECIS) in a dose-dependent manner. In vivo studies indicate that systemic administration of LPI increased the permeability of the BBB, assessed with Evans Blue method. Taken together, our results indicate that GPR55 activation modulates the function of endothelial cells of brain microvessels, produces a transient reduction in endothelial barrier function and increases BBB permeability.
Collapse
|
33
|
Hawken ER, Normandeau CP, Gardner Gregory J, Cécyre B, Bouchard JF, Mackie K, Dumont ÉC. A novel GPR55-mediated satiety signal in the oval Bed Nucleus of the Stria Terminalis. Neuropsychopharmacology 2019; 44:1274-1283. [PMID: 30647449 PMCID: PMC6785105 DOI: 10.1038/s41386-018-0309-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022]
Abstract
Nestled within feeding circuits, the oval (ov) region of the Bed Nucleus of the Stria Terminalis (BNST) may be critical for monitoring energy balance through changes in synaptic strength. Here we report that bidirectional plasticity at ovBNST GABA synapses was tightly linked to the caloric state of male rats, seesawing between long-term potentiation (iLTP, fed) and depression (iLTD, food restricted). L-α-lysophosphatidylinositol (LPI) acting on GPR55 receptors and 2-arachidonoylglycerol (2-AG) through CB1R were respectively responsible for fed (iLTP) and food restricted (iLTD) states. Thus, we have characterized a potential gating mechanism within the ovBNST that may signal metabolic state within the rat brain feeding circuitry.
Collapse
Affiliation(s)
- E. R. Hawken
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - C. P. Normandeau
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - J. Gardner Gregory
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - B. Cécyre
- 0000 0001 2292 3357grid.14848.31École d’optométrie, Université de Montréal, Montréal, QC Canada
| | - J.-F. Bouchard
- 0000 0001 2292 3357grid.14848.31École d’optométrie, Université de Montréal, Montréal, QC Canada
| | - K. Mackie
- 0000 0001 0790 959Xgrid.411377.7Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana USA
| | - É. C. Dumont
- 0000 0004 1936 8331grid.410356.5Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| |
Collapse
|
34
|
Mousa A, Naderpoor N, Mellett N, Wilson K, Plebanski M, Meikle PJ, de Courten B. Lipidomic profiling reveals early-stage metabolic dysfunction in overweight or obese humans. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:335-343. [PMID: 30586632 DOI: 10.1016/j.bbalip.2018.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Advances in mass spectrometry and lipidomics techniques are providing new insights into the role of lipid metabolism in obesity-related diseases. However, human lipidomic studies have been inconsistent, owing to the use of indirect proxy measures of metabolic outcomes and relatively limited coverage of the lipidome. Here, we employed comprehensive lipid profiling and gold-standard metabolic measures to test the hypothesis that distinct lipid signatures in obesity may signify early stages of pathogenesis toward type 2 diabetes. METHODS Using high-performance liquid chromatography-electrospray tandem mass spectrometry, we profiled >450 lipid species across 26 classes in 65 overweight or obese non-diabetic individuals. Intensive metabolic testing was conducted using direct gold-standard measures of adiposity (% body fat by dual X-ray absorptiometry), insulin sensitivity (hyperinsulinaemic-euglycaemic clamps), and insulin secretion (intravenous glucose tolerance tests), as well as measurement of serum inflammatory cytokines and adipokines (multiplex assays; flow cytometry). Univariable and multivariable linear regression models were computed using Matlab R2011a, and all analyses were corrected for multiple testing using the Benjamini-Hochberg method. RESULTS We present new evidence showing a strong and independent positive correlation between the lysophosphatidylinositol (LPI) lipid class and insulin secretion in vivo in humans (β [95% CI] = 781.9 [353.3, 1210.4], p = 0.01), supporting the insulinotropic effects of LPI demonstrated in mouse islets. Dihydroceramide, a sphingolipid precursor, was independently and negatively correlated with insulin sensitivity (β [95% CI] = -1.9 [-2.9, -0.9], p = 0.01), indicating a possible upregulation in sphingolipid synthesis in obese individuals. These associations remained significant in multivariable models adjusted for age, sex, and % body fat. The dihexosylceramide class correlated positively with interleukin-10 before and after adjustment for age, sex, and % body fat (p = 0.02), while the phosphatidylethanolamine class and its vinyl ether-linked (plasmalogen) derivatives correlated negatively with % body fat in both univariable and age- and sex-adjusted models (all p < 0.04). CONCLUSIONS Our data suggest that these lipid classes may signify early pathogenesis toward type 2 diabetes and could serve as novel therapeutic targets or biomarkers for diabetes prevention.
Collapse
Affiliation(s)
- Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| | - Natalie Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Kirsty Wilson
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Sciences, RMIT University, Corner Janefield Dr and Plenty Road, Bundoora, VIC 3083, Australia.
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| |
Collapse
|
35
|
ABC transporters as cancer drivers: Potential functions in cancer development. Biochim Biophys Acta Gen Subj 2018; 1863:52-60. [PMID: 30268729 DOI: 10.1016/j.bbagen.2018.09.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND ABC transporters have attracted considerable attention for their function as drug transporters in a broad range of tumours and are therefore considered as major players in cancer chemoresistance. However, less attention has been focused on their potential role as active players in cancer development and progression. SCOPE OF REVIEW This review presents the evidence suggesting that ABC transporters might have a more active role in cancer other than the well known involvement in multidrug resistance and discusses the potential strategies to target each ABC transporter for a specific tumour setting. MAJOR CONCLUSIONS Emerging evidence suggests that ABC transporters are able to transport bioactive molecules capable of playing key roles in tumour development. Characterization of the effects of these transporters in specific cancer settings opens the possibility for the development of personalized treatments. GENERAL SIGNIFICANCE A more targeted approach of ABC transporters should be implemented that considers which specific transporter is playing a major role in a particular tumour setting in order to achieve a more successful outcome for ABC transporters inhibitors in cancer therapy.
Collapse
|
36
|
Munsch-Alatossava P, Käkelä R, Ibarra D, Youbi-Idrissi M, Alatossava T. Phospholipolysis Caused by Different Types of Bacterial Phospholipases During Cold Storage of Bovine Raw Milk Is Prevented by N 2 Gas Flushing. Front Microbiol 2018; 9:1307. [PMID: 29971053 PMCID: PMC6018212 DOI: 10.3389/fmicb.2018.01307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Cold storage aims to preserve the quality and safety of raw milk from farms to dairies; unfortunately, low temperatures also promote the growth of psychrotrophic bacteria, some of which produce heat-stable enzymes that cause spoilage of milk or dairy products. Previously, N2 gas flushing of raw milk has demonstrated significant potential as a method to hinder bacterial growth at both laboratory and pilot plant scales. Using a mass spectrometry-based lipidomics approach, we examined the impact of cold storage [at 6°C for up to 7 days, the control condition (C)], on the relative amounts of major phospholipids (phosphatidylethanolamine/PE, phosphatidylcholine/PC, phosphatidylserine/PS, phosphatidylinositol/PI, and sphingomyelin/SM) in three bovine raw milk samples, and compared it to the condition that received additional N2 gas flushing (N). As expected, bacterial growth was hindered by the N2-based treatment (over 4 log-units lower at day 7) compared to the non-treated control condition. At the end of the cold storage period, the control condition (C7) revealed higher hydrolysis of PC, SM, PE, and PS (the major species reached 27.2, 26.7, 34.6, and 9.9 μM, respectively), compared to the N2-flushed samples (N7) (the major species reached 55.6, 35.9, 54.0, and 18.8 μM, respectively). C7 samples also exhibited a three-fold higher phosphatidic acid (PA) content (6.8 μM) and a five-fold higher content (17.3 μM) of lysophospholipids (LPE, LPC, LPS, and LPI) whereas both lysophospholipids and PA remained at their initial levels for 7 days in N7 samples. Taking into consideration the significant phospholipid losses in the controls, the lipid profiling results together with the microbiological data suggest a major role of phospholipase (PLase) C (PLC) in phospholipolysis during cold storage. However, the experimental data also indicate that bacterial sphingomyelinase C, together with PLases PLD and PLA contributed to the degradation of phospholipids present in raw milk as well, and potential contributions from PLB activity cannot be excluded. Altogether, this lipidomics study highlights the beneficial effects of N2 flushing treatment on the quality and safety of raw milk through its ability to effectively hinder phospholipolysis during cold storage.
Collapse
Affiliation(s)
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dominique Ibarra
- Air Liquide, Centre de Recherches Paris-Saclay, Jouy-en-Josas, France
| | | | - Tapani Alatossava
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Arifin SA, Paternoster S, Carlessi R, Casari I, Ekberg JH, Maffucci T, Newsholme P, Rosenkilde MM, Falasca M. Oleoyl-lysophosphatidylinositol enhances glucagon-like peptide-1 secretion from enteroendocrine L-cells through GPR119. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1132-1141. [PMID: 29883799 DOI: 10.1016/j.bbalip.2018.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/24/2018] [Accepted: 06/02/2018] [Indexed: 02/08/2023]
Abstract
The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119-/- mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119-/- mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55-/- mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensable.
Collapse
Affiliation(s)
- Syamsul A Arifin
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom; Department of Basic Medical Science for Nursing, Kulliyyah of Nursing, IIUM, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Silvano Paternoster
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rodrigo Carlessi
- Cell and Molecular Metabolism Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Jeppe Hvidtfeldt Ekberg
- Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom
| | - Philip Newsholme
- Cell and Molecular Metabolism Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marco Falasca
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT London, United Kingdom; Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
38
|
Mangini M, Iaccino E, Mosca MG, Mimmi S, D'Angelo R, Quinto I, Scala G, Mariggiò S. Peptide-guided targeting of GPR55 for anti-cancer therapy. Oncotarget 2018; 8:5179-5195. [PMID: 28029647 PMCID: PMC5354900 DOI: 10.18632/oncotarget.14121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022] Open
Abstract
Expression of the lysophosphatidylinositol receptor GPR55 correlates with invasive potential of metastatic cells and bone metastasis formation of different types of tumors. These findings suggest a role for GPR55 signaling in cancer progression, including in lymphoproliferative diseases. Here, we screened a M13-phage-displayed random library using the bait of HEK293 cells that heterologously expressed full-length HA-GPR55. We selected a set of phagotopes that carried 7-mer insert peptides flanked by a pair of cysteine residues, which resulted in cyclized peptides. Sequencing of selected phagotopes dictated the primary structure for the synthetic FITC-labeled peptide P1, which was analyzed for binding specificity to immunoprecipitated HA-GPR55, and to endogenously expressed GPR55, using cells interfered or not for GPR55, as well as for co-localization imaging with HA-GPR55 at the membrane level. The peptide P1 stimulated GPR55 endocytosis and inhibited GPR55-dependent proliferation of EHEB and DeFew cells, two human B-lymphoblastoid cell lines. Our data support the potential therapeutic application of peptide ligands of GPR55 for targeting and inhibiting growth of neoplastic cells, which overexpress GPR55 and are dependent on GPR55 signaling for their proliferation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | | | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Rosa D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
39
|
Lu Y, Wang Y, Zou L, Liang X, Ong CN, Tavintharan S, Yuan JM, Koh WP, Pan A. Serum Lipids in Association With Type 2 Diabetes Risk and Prevalence in a Chinese Population. J Clin Endocrinol Metab 2018; 103:671-680. [PMID: 29267865 PMCID: PMC5800830 DOI: 10.1210/jc.2017-02176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
CONTEXT We previously reported an association between lysophosphatidylinositol (LPI) (16:1) and risk for type 2 diabetes in a Chinese population using an untargeted analysis. OBJECTIVE To examine the overall associations of LPIs and their related metabolites, such as nonesterified fatty acids (NEFAs) and acylcarnitines, with incident and prevalent type 2 diabetes using a targeted approach. DESIGN AND SETTING A case-control study was nested within the Singapore Chinese Health Study. Cases and controls were individually matched by age, sex, and date of blood collection. We used both liquid and gas chromatography tandem mass spectrometry to measure serum metabolite levels at baseline, including 8 LPIs, 19 NEFAs, and 34 acylcarnitines. Conditional logistic regression models were used to estimate the associations between metabolites and diabetes risk. PARTICIPANTS Participants included 160 incident and 144 prevalent cases with type 2 diabetes and 304 controls. MAIN OUTCOME MEASURE Incident and prevalent type 2 diabetes. RESULTS On the basis of a false discovery rate <0.1, we identified 37 metabolites associated with prevalent type 2 diabetes, including 7 LPIs, 18 NEFAs, and 12 acylcarnitines, and 11 metabolites associated with incident type 2 diabetes, including 2 LPIs and 9 NEFAs. Two metabolites, LPI (16:1) and dihomo-γ-linolenic acid, showed independent associations with incident type 2 diabetes and significantly enhanced the risk prediction. CONCLUSIONS We found several LPIs and NEFAs that were associated with risk for type 2 diabetes and may improve our understanding of the pathogenesis. The findings suggest that lipid profiles could aid in diabetes risk assessment in Chinese populations.
Collapse
Affiliation(s)
- Yonghai Lu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
| | - Yeli Wang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
| | - Li Zou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
| | - Xu Liang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Subramaniam Tavintharan
- Department of General Medicine, Diabetes Centre, Khoo Teck Puat Hospital, Singapore 768828, Republic of Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15261
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Republic of Singapore
- Duke-NUS Medical School Singapore, Singapore 169857, Republic of Singapore
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People’s Republic of China
- Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People’s Republic of China
| |
Collapse
|
40
|
Chiurchiù V, Leuti A, Maccarrone M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front Immunol 2018; 9:38. [PMID: 29434586 PMCID: PMC5797284 DOI: 10.3389/fimmu.2018.00038] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids—namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids—in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| |
Collapse
|
41
|
Hurst K, Badgley C, Ellsworth T, Bell S, Friend L, Prince B, Welch J, Cowan Z, Williamson R, Lyon C, Anderson B, Poole B, Christensen M, McNeil M, Call J, Edwards JG. A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity. Hippocampus 2017; 27:985-998. [PMID: 28653801 DOI: 10.1002/hipo.22747] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 11/08/2022]
Abstract
GPR55, an orphan G-protein coupled receptor, is activated by lysophosphatidylinositol (LPI) and the endocannabinoid anandamide, as well as by other compounds including THC. LPI is a potent endogenous ligand of GPR55 and neither GPR55 nor LPIs' functions in the brain are well understood. While endocannabinoids are well known to modulate brain synaptic plasticity, the potential role LPI could have on brain plasticity has never been demonstrated. Therefore, we examined not only GPR55 expression, but also the role its endogenous ligand could play in long-term potentiation, a common form of synaptic plasticity. Using quantitative RT-PCR, electrophysiology, and behavioral assays, we examined hippocampal GPR55 expression and function. qRT-PCR results indicate that GPR55 is expressed in hippocampi of both rats and mice. Immunohistochemistry and single cell PCR demonstrates GPR55 protein in pyramidal cells of CA1 and CA3 layers in the hippocampus. Application of the GPR55 endogenous agonist LPI to hippocampal slices of GPR55+/+ mice significantly enhanced CA1 LTP. This effect was absent in GPR55-/- mice, and blocked by the GPR55 antagonist CID 16020046. We also examined paired-pulse ratios of GPR55-/- and GPR55+/+ mice with or without LPI and noted significant enhancement in paired-pulse ratios by LPI in GPR55+/+ mice. Behaviorally, GPR55-/- and GPR55+/+ mice did not differ in memory tasks including novel object recognition, radial arm maze, or Morris water maze. However, performance on radial arm maze and elevated plus maze task suggests GPR55-/- mice have a higher frequency of immobile behavior. This is the first demonstration of LPI involvement in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Katrina Hurst
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Corinne Badgley
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Tanner Ellsworth
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Spencer Bell
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Lindsey Friend
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Brad Prince
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Jacob Welch
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Zack Cowan
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Ryan Williamson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Chris Lyon
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Brandon Anderson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Brian Poole
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Michael Christensen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| | - Michael McNeil
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Jarrod Call
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602
| | - Jeffrey G Edwards
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, 84602.,Neuroscience Center, Brigham Young University, Provo, Utah, 84602
| |
Collapse
|
42
|
Hernandes VV, Barbas C, Dudzik D. A review of blood sample handling and pre-processing for metabolomics studies. Electrophoresis 2017; 38:2232-2241. [PMID: 28543881 DOI: 10.1002/elps.201700086] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/06/2023]
Abstract
Metabolomics has been found to be applicable to a wide range of clinical studies, bringing a new era for improving clinical diagnostics, early disease detection, therapy prediction and treatment efficiency monitoring. A major challenge in metabolomics, particularly untargeted studies, is the extremely diverse and complex nature of biological specimens. Despite great advances in the field there still exist fundamental needs for considering pre-analytical variability that can introduce bias to the subsequent analytical process and decrease the reliability of the results and moreover confound final research outcomes. Many researchers are mainly focused on the instrumental aspects of the biomarker discovery process, and sample related variables sometimes seem to be overlooked. To bridge the gap, critical information and standardized protocols regarding experimental design and sample handling and pre-processing are highly desired. Characterization of a range variation among sample collection methods is necessary to prevent results misinterpretation and to ensure that observed differences are not due to an experimental bias caused by inconsistencies in sample processing. Herein, a systematic discussion of pre-analytical variables affecting metabolomics studies based on blood derived samples is performed. Furthermore, we provide a set of recommendations concerning experimental design, collection, pre-processing procedures and storage conditions as a practical review that can guide and serve for the standardization of protocols and reduction of undesirable variation.
Collapse
Affiliation(s)
- Vinicius Veri Hernandes
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Madrid, Spain.,ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, Brazil
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Madrid, Spain
| | - Danuta Dudzik
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Madrid, Spain
| |
Collapse
|
43
|
Busnelli M, Manzini S, Hilvo M, Parolini C, Ganzetti GS, Dellera F, Ekroos K, Jänis M, Escalante-Alcalde D, Sirtori CR, Laaksonen R, Chiesa G. Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoE -/- mice. Sci Rep 2017; 7:44503. [PMID: 28291223 PMCID: PMC5349609 DOI: 10.1038/srep44503] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/08/2017] [Indexed: 01/13/2023] Open
Abstract
The PLPP3 gene encodes for a ubiquitous enzyme that dephosphorylates several lipid substrates. Genome-wide association studies identified PLPP3 as a gene that plays a role in coronary artery disease susceptibility. The aim of the study was to investigate the effect of Plpp3 deletion on atherosclerosis development in mice. Because the constitutive deletion of Plpp3 in mice is lethal, conditional Plpp3 hepatocyte-specific null mice were generated by crossing floxed Plpp3 mice with animals expressing Cre recombinase under control of the albumin promoter. The mice were crossed onto the athero-prone apoE-/- background to obtain Plpp3f/fapoE-/-Alb-Cre+ and Plpp3f/fapoE-/-Alb-Cre- offspring, the latter of which were used as controls. The mice were fed chow or a Western diet for 32 or 12 weeks, respectively. On the Western diet, Alb-Cre+ mice developed more atherosclerosis than Alb-Cre- mice, both at the aortic sinus and aorta. Lipidomic analysis showed that hepatic Plpp3 deletion significantly modified the levels of several plasma lipids involved in atherosclerosis, including lactosylceramides, lysophosphatidic acids, and lysophosphatidylinositols. In conclusion, Plpp3 ablation in mice worsened atherosclerosis development. Lipidomic analysis suggested that the hepatic Plpp3 deletion may promote atherosclerosis by increasing plasma levels of several low-abundant pro-atherogenic lipids, thus providing a molecular basis for the observed results.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Giulia S Ganzetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Dellera
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Minna Jänis
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Diana Escalante-Alcalde
- Instituto de Fisiología Celular, División de Neurociencias Universidad Nacional Autónoma de México, Cd. Mx. 04510, México
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
44
|
Kim J, Yin T, Shinozaki K, Lampe JW, Becker LB. Potential of lysophosphatidylinositol as a prognostic indicator of cardiac arrest using a rat model. Biomarkers 2016; 22:755-763. [DOI: 10.1080/1354750x.2016.1265002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Junhwan Kim
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Joshua W. Lampe
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Department of Emergency Medicine, Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
45
|
Montecucco F, Bondarenko AI, Lenglet S, Burger F, Piscitelli F, Carbone F, Roth A, Liberale L, Dallegri F, Brandt KJ, Fraga-Silva RA, Stergiopulos N, Di Marzo V, Mach F. Treatment with the GPR55 antagonist CID16020046 increases neutrophil activation in mouse atherogenesis. Thromb Haemost 2016; 116:987-997. [PMID: 27465665 DOI: 10.1160/th16-02-0139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Endocannabinoids modulate atherogenesis by triggering different receptors. Recently, orphan G protein-coupled receptors (GPRs) were suggested to be activated by endocannabinoids, possibly regulating vasorelaxation. Here, we investigated whether GPR55 antagonism with CID16020046 would impact on atherosclerotic size and inflammation in two mouse models of early and more advanced atherogenesis. Eleven-week old ApoE-/- mice were fed either a normal diet ([ND] for 16 weeks) or a high-cholesterol diet ([HD] for 11 weeks), resulting in different degrees of hypercholesterolaemia and size of atherosclerosis. CID16020046 (0.5 mg/kg) or vehicle were intraperitoneally administrated five times per week in the last three weeks before euthanasia. Treatment with CID1602004 was well-tolerated, but failed to affect atherosclerotic plaque and necrotic core size, fibrous cap thickness, macrophage and smooth muscle cell content as well as Th cell polarisation. In ND mice, treatment with CID1602004 was associated with increased chemokine production, neutrophil and MMP-9 intraplaque content as well as reduced collagen as compared to vehicle-treated animals. In HD mice, CID1602004 increased intraplaque MMP-9 and abrogated collagen content without affecting neutrophils. In vitro, serum from CID1602004-treated ND mice increased mouse neutrophil chemotaxis towards CXCL2 as compared to serum from vehicle-treated animals. CID1602004 dose-dependently induced neutrophil degranulation that was reverted by co-incubation with the GPR55 agonist Abn-CBD. In supernatants from degranulation experiments, increased levels of the endocannabinoid and putative GPR55 ligand anandamide (AEA) were found, suggesting its possible autocrine control of neutrophil activity. These results indicate that GPR55 is critical for the negative control of neutrophil activation in different phases of atherogenesis.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Prof. Fabrizio Montecucco, MD, PhD, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy, Tel.: +39 010 353 86 94, Fax: +39 010 353 86 86, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ailte I, Lingelem ABD, Kavaliauskiene S, Bergan J, Kvalvaag AS, Myrann AG, Skotland T, Sandvig K. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding. Sci Rep 2016; 6:30336. [PMID: 27458147 PMCID: PMC4960542 DOI: 10.1038/srep30336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin (Stx), an AB5 toxin, binds specifically to the neutral glycosphingolipid Gb3 at the cell surface before being transported into cells. We here demonstrate that addition of conical lysophospholipids (LPLs) with large head groups inhibit Stx binding to cells whereas LPLs with small head groups do not. Lysophosphatidylinositol (LPI 18:0), the most efficient LPL with the largest head group, was selected for in-depth investigations to study how the binding of Stx is regulated. We show that the inhibition of Stx binding by LPI is reversible and possibly regulated by cholesterol since addition of methyl-β-cyclodextrin (mβCD) reversed the ability of LPI to inhibit binding. LPI-induced inhibition of Stx binding is independent of signalling and membrane turnover as it occurs in fixed cells as well as after depletion of cellular ATP. Furthermore, data obtained with fluorescent membrane dyes suggest that LPI treatment has a direct effect on plasma membrane lipid packing with shift towards a liquid disordered phase in the outer leaflet, while lysophosphoethanolamine (LPE), which has a small head group, does not. In conclusion, our data show that cellular treatment with conical LPLs with large head groups changes intrinsic properties of the plasma membrane and modulates Stx binding to Gb3.
Collapse
Affiliation(s)
- Ieva Ailte
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.,Department of Research and Innovation, Østfold Hospital, Sarpsborg, Norway
| | - Audun Sverre Kvalvaag
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Anne-Grethe Myrann
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Development and validation of a specific and sensitive HPLC-ESI-MS method for quantification of lysophosphatidylinositols and evaluation of their levels in mice tissues. J Pharm Biomed Anal 2016; 126:132-40. [PMID: 27208623 DOI: 10.1016/j.jpba.2016.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/19/2016] [Accepted: 04/10/2016] [Indexed: 11/20/2022]
Abstract
Increasing evidence suggests that lysophosphatidylinositols (LPIs), a subspecies of lysophospholipids, are important endogenous mediators. Although LPIs long remained among the less studied lysophospholipids, the identification of GPR55 as their molecular target sparked a renewed interest in the study of these bioactive lipids. Furthermore, increasing evidence points towards a role for LPIs in cancer development. However, a better understanding of the role and functions of LPIs in physiology and disease requires methods that allow for the quantification of LPI levels in cells and tissues. Because dedicated efficient methods for quantifying LPIs were missing, we decided to develop and validate an HPLC-ESI-MS method for the quantification of LPI species from tissues. LPIs are extracted from tissues by liquid/liquid extraction, pre-purified by solid-phase extraction, and finally analyzed by HPLC-ESI-MS. We determined the method's specificity and selectivity, we established calibration curves, determined the carry over (< 2%), LOD and LLOQ (between 0.116-7.82 and 4.62-92.5pmol on column, respectively), linearity (0.988<R(2)<0.997), repeatability (CV<20%), accuracy (> 80%), intermediate precision (CV<20%) as well as the recovery from tissues. We then applied the method to determine the relative abundance of the LPI species in 15 different mouse tissues. Finally, we quantified the absolute LPI levels in six different mouse tissues. We found that while 18:0 LPI represents more than 60% of all the LPI species in the periphery (e.g. liver, gastrointestinal tract, lungs, spleen) it is much less abundant in the central nervous system where the levels of 20:4 LPI are significantly higher. Thus this validated HPLC-ESI-MS method for quantifying LPIs represents a powerful tool that will facilitate the comprehension of the pathophysiological roles of LPIs.
Collapse
|
48
|
Morales P, Whyte LS, Chicharro R, Gómez-Cañas M, Pazos MR, Goya P, Irving AJ, Fernández-Ruiz J, Ross RA, Jagerovic N. Identification of Novel GPR55 Modulators Using Cell-Impedance-Based Label-Free Technology. J Med Chem 2016; 59:1840-53. [DOI: 10.1021/acs.jmedchem.5b01331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Lauren S. Whyte
- Department
of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Roberto Chicharro
- Instituto de Química Médica, CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - María Gómez-Cañas
- Departamento
de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - M. Ruth Pazos
- Departamento
de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Andrew J. Irving
- School of
Biomolecular and Biomedical Science, University College Dublin, Dublin D4, Ireland
| | - Javier Fernández-Ruiz
- Departamento
de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain
| | - Ruth A. Ross
- Department
of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Nadine Jagerovic
- Instituto de Química Médica, CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
49
|
Lysophosphatidylinositol Signalling and Metabolic Diseases. Metabolites 2016; 6:metabo6010006. [PMID: 26784247 PMCID: PMC4812335 DOI: 10.3390/metabo6010006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/28/2022] Open
Abstract
Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis.
Collapse
|
50
|
Falasca M, Ferro R. Role of the lysophosphatidylinositol/GPR55 axis in cancer. Adv Biol Regul 2016; 60:88-93. [PMID: 26588872 DOI: 10.1016/j.jbior.2015.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Lysophosphatidylinositol (LPI) is a well-known bioactive lipid that is able to activate signalling cascades relevant to cell proliferation, migration, survival and tumourigenesis. It is well-established that the G protein-coupled receptor 55 (GPR55) is the specific receptor for LPI. Several investigations have demonstrated that the signalling pathways activated by LPI through its receptor GPR55 play a pivotal role in different cancer type. This review focuses on the role of the LPI/GPR55 axis, in particular with regards to its pharmacological potential therapeutic exploitation.
Collapse
Affiliation(s)
- Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, CHIRI Biosciences, Curtin University, Perth, Western Australia 6102, Australia; Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark Street, London E1 2AT, UK.
| | - Riccardo Ferro
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark Street, London E1 2AT, UK
| |
Collapse
|