1
|
Delli Ponti R, Vandelli A, Tartaglia GG. Subgenomic flaviviral RNAs and human proteins: in silico exploration of anti-host defense mechanisms. Comput Struct Biotechnol J 2024; 23:3527-3536. [PMID: 39435344 PMCID: PMC11492465 DOI: 10.1016/j.csbj.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Flaviviruses pose significant global health threats, infecting over 300 million people annually. Among their evasion strategies, the production of subgenomic flaviviral RNAs (sfRNAs) from the 3' UTR of viral genomes is particularly notable. Utilizing a comprehensive in silico approach with the catRAPID algorithm, we analyzed over 300,000 interactions between sfRNAs and human proteins derived from more than 8000 flavivirus genomes, including Dengue, Zika, Yellow Fever, West Nile, and Japanese Encephalitis viruses. By providing the first extensive atlas of sfRNA interactions, we offer new insights into how flaviviruses can manipulate host cellular machinery to facilitate viral survival and persistence. Our study not only validated known interactions but also revealed novel human proteins that could be involved in sfRNA-mediated host defense evasion, including helicases, splicing factors, and chemokines. These findings significantly expand the known interactome of sfRNAs with human proteins, underscoring their role in modulating host cellular pathways. Intriguingly, we predict interaction with stress granules, a critical component of the cellular response to viral infection, suggesting a mechanism by which flaviviruses inhibit their formation to evade host defenses. Moreover, a set of highly-interacting proteins in common among the sfRNAs showed predictive power to identify sfRNA-forming regions, highlighting how protein signatures could be used to annotate viruses. This atlas not only serves as a resource for exploring therapeutic targets but also aids in the identification of sfRNA biomarkers for improved flavivirus diagnostics.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| | - Andrea Vandelli
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| |
Collapse
|
2
|
Liu X, Xie E, Wang J, Yan L, Tian T, You J, Lu L, Qian Z, Tan Z, Xiong J, Gong L, Zhang G, Luo H, Wang H. RpIFN-λ1 alleviates the clinical symptoms of porcine epidemic diarrhea. Int J Biol Macromol 2024:136712. [PMID: 39442838 DOI: 10.1016/j.ijbiomac.2024.136712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Porcine epidemic diarrhea (PED), caused by the porcine epidemic diarrhea virus (PEDV), primarily affects the jejunum and ileum of pigs. Interferons, glycoproteins with high species specificity and potent antiviral activity, are crucial in defending against viral infections. Unlike other interferons, interferon-lambda (IFN-λ) mainly acts on mucosal epithelial cells and exhibits robust antiviral activity at mucosal surfaces. However, the high cost limits the use of naturally extracted interferons in farming. In this study, we expressed recombinant porcine interferon-lambda 1 (rpIFN-λ1) in eukaryotic cells, demonstrating effective antiviral activity against PEDV in Vero E6 and IPI-FX cells. In vivo, rpIFN-λ1 alleviated clinical symptoms and intestinal damage, enhanced antioxidant capacity, reduced inflammation, and significantly improved the survival rate of piglets following PEDV infection. Both in vitro and in vivo studies confirmed that rpIFN-λ1 upregulated interferon-stimulated genes (ISGs) via the JAK-STAT pathway, thereby exerting antiviral effects. In conclusion, rpIFN-λ1 significantly inhibited PEDV replication and alleviated clinical symptoms. The selectivity of rpIFN-λ1 for intestinal cells and its ability to reduce viral shedding suggest that this agent is a promising antiviral for enteric viruses such as PEDV. Our findings highlight rpIFN-λ1 as a cost-effective, efficient, and novel strategy for antiviral treatment of PEDV.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Ermin Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Jingyu Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Luling Yan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Tao Tian
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Jianyi You
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Lechen Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | | | - Zemin Tan
- Beijing VJTBio Co., Ltd., Beijing 100085, China
| | | | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Haoshu Luo
- Beijing VJTBio Co., Ltd., Beijing 100085, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Geiger RA, Khera D, Tenthorey JL, Kochs G, Graf L, Emerman M, Malik HS. Heterozygous and generalist MxA super-restrictors overcome breadth-specificity tradeoffs in antiviral restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617484. [PMID: 39416221 PMCID: PMC11482965 DOI: 10.1101/2024.10.10.617484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Antiviral restriction factors such as MxA (myxovirus resistance protein A) inhibit a broad range of viruses. However, they face the challenge of maintaining this breadth as viruses evolve to escape their defense. Viral escape drives restriction factors to evolve rapidly, selecting for amino acid changes at their virus-binding interfaces to regain defense. How do restriction factors balance the breadth of antiviral functions against the need to evolve specificity against individual escaping viruses? We explored this question in human MxA, which uses its rapidly evolving loop L4 as the specificity determinant for orthomyxoviruses such as THOV and IAV. Previous combinatorial mutagenesis of rapidly evolving residues in human MxA loop L4 revealed variants with a ten-fold increase in potency against THOV. However, this strategy did not yield improved IAV restriction, suggesting a strong tradeoff between antiviral specificity and breadth. Here, using a modified combinatorial mutagenesis strategy, we find 'super-restrictor' MxA variants with over ten-fold enhanced restriction of the avian IAV strain H5N1 but reduced THOV restriction. Analysis of super-restrictor MxA variants reveals that the identity of residue 561 explains most of MxA's breadth-specificity tradeoff in H5N1 versus THOV restriction. However, rare 'generalist' super-restrictors with enhanced restriction of both viruses allow MxA to overcome the breadth-specificity tradeoff. Finally, we show that a heterozygous combination of two 'specialist' super-restrictors, one against THOV and the other against IAV, enhances restriction against both viruses. Thus, two strategies enable restriction factors such as MxA to increase their restriction of diverse viruses to overcome breadth-specificity tradeoffs that may be pervasive in host-virus conflicts.
Collapse
Affiliation(s)
- Rechel A. Geiger
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, USA 98195
- Molecular and Cellular Biology, University of Washington, Seattle, WA, USA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Damini Khera
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Jeannette L. Tenthorey
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA 94158
| | - Georg Kochs
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Laura Graf
- Institute of Virology, Medical Center, University of Freiburg, 79104 Freiburg, Germany
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle WA 98109
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle WA 98109
| |
Collapse
|
4
|
Siragam V, Maltseva M, Castonguay N, Galipeau Y, Srinivasan MM, Soto JH, Dankar S, Langlois MA. Seasonal human coronaviruses OC43, 229E, and NL63 induce cell surface modulation of entry receptors and display host cell-specific viral replication kinetics. Microbiol Spectr 2024; 12:e0422023. [PMID: 38864599 PMCID: PMC11218498 DOI: 10.1128/spectrum.04220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.
Collapse
MESH Headings
- Humans
- Virus Replication
- Coronavirus NL63, Human/physiology
- Coronavirus NL63, Human/genetics
- Coronavirus 229E, Human/physiology
- Coronavirus 229E, Human/genetics
- Coronavirus OC43, Human/physiology
- Coronavirus OC43, Human/genetics
- Cell Line
- Virus Internalization
- Seasons
- Kinetics
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Common Cold/virology
- Common Cold/metabolism
- SARS-CoV-2/physiology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Animals
- COVID-19/virology
- COVID-19/metabolism
- Coronavirus/physiology
- Coronavirus/genetics
Collapse
Affiliation(s)
- Vinayakumar Siragam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mrudhula Madapuji Srinivasan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Justino Hernandez Soto
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- The Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, Canada
| |
Collapse
|
5
|
Hadpech S, Thongboonkerd V. Proteomic investigations of dengue virus infection: key discoveries over the last 10 years. Expert Rev Proteomics 2024; 21:281-295. [PMID: 39049185 DOI: 10.1080/14789450.2024.2383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Dengue virus (DENV) infection remains one of the most significant infectious diseases in humans. Several efforts have been made to address its molecular mechanisms. Over the last 10 years, proteomics has been widely applied to investigate various aspects of DENV infection. AREAS COVERED In this review, we briefly introduce common proteomics approaches using various mass spectrometric modalities followed by summarizing all the discoveries obtained from proteomic investigations of DENV infection over the last 10 years. These include the data on DENV-vector interactions and host responses to address the DENV biology and disease mechanisms. Moreover, applications of proteomics to disease prevention, diagnosis, vaccine design, development of anti-DENV agents and other new treatment strategies are discussed. EXPERT OPINION Despite efforts on disease prevention, DENV infection is still a significant global healthcare burden that affects the general population. As summarized herein, proteomic technologies with high-throughput capabilities have provided more in-depth details of protein dynamics during DENV infection. More extensive applications of proteomics and other powerful research tools would provide a promise to better cope and prevent this mosquito-borne infectious disease.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
6
|
Wang Y, Fu Q, Park SY, Lee YS, Park SY, Lee DY, Yoon S. Decoding cellular mechanism of recombinant adeno-associated virus (rAAV) and engineering host-cell factories toward intensified viral vector manufacturing. Biotechnol Adv 2024; 71:108322. [PMID: 38336188 DOI: 10.1016/j.biotechadv.2024.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is one of the prominent gene delivery vehicles that has opened promising opportunities for novel gene therapeutic approaches. However, the current major viral vector production platform, triple transfection in mammalian cells, may not meet the increasing demand. Thus, it is highly required to understand production bottlenecks from the host cell perspective and engineer the cells to be more favorable and tolerant to viral vector production, thereby effectively enhancing rAAV manufacturing. In this review, we provided a comprehensive exploration of the intricate cellular process involved in rAAV production, encompassing various stages such as plasmid entry to the cytoplasm, plasmid trafficking and nuclear delivery, rAAV structural/non-structural protein expression, viral capsid assembly, genome replication, genome packaging, and rAAV release/secretion. The knowledge in the fundamental biology of host cells supporting viral replication as manufacturing factories or exhibiting defending behaviors against viral production is summarized for each stage. The control strategies from the perspectives of host cell and materials (e.g., AAV plasmids) are proposed as our insights based on the characterization of molecular features and our existing knowledge of the AAV viral life cycle, rAAV and other viral vector production in the Human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
| |
Collapse
|
7
|
Roy A, Ghosh A. Epigenetic Restriction Factors (eRFs) in Virus Infection. Viruses 2024; 16:183. [PMID: 38399958 PMCID: PMC10892949 DOI: 10.3390/v16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
8
|
Borjabad A, Dong B, Chao W, Volsky DJ, Potash MJ. Innate immune responses reverse HIV cognitive disease in mice: Profile by RNAseq in the brain. Virology 2024; 589:109917. [PMID: 37951088 PMCID: PMC10841696 DOI: 10.1016/j.virol.2023.109917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Antiretroviral therapy controls immunodeficiency in people with HIV but many develop mild neurocognitive disorder. Here we investigated HIV brain disease by infecting mice with the chimeric HIV, EcoHIV, and probing changes in brain gene expression during infection and reversal with polyinosinic-polycytidylic acid (poly I:C). EcoHIV-infected C57BL/6 mice were treated with poly I:C and monitored by assay of learning in radial arm water maze, RNAseq of striatum, and QPCR of virus burden and brain transcripts. Poly I:C reversed EcoHIV-associated cognitive impairment and reduced virus burden. Major pathways downregulated by infection involved neuronal function, these transcriptional changes were normalized by poly I:C treatment. Innate immune responses were the major pathways induced in EcoHIV-infected, poly I:C treated mice. Our findings provide a framework to identify brain cell genes dysregulated by HIV infection and identify a set of innate immune response genes that can block systemic infection and its associated dysfunction in the brain.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Baojun Dong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Chao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David J Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mary Jane Potash
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Maurya R, Swaminathan A, Shamim U, Arora S, Mishra P, Raina A, Ravi V, Tarai B, Budhiraja S, Pandey R. Co-evolution of SARS-CoV-2 variants and host immune response trajectories underlie COVID-19 pandemic to epidemic transition. iScience 2023; 26:108336. [PMID: 38025778 PMCID: PMC10663816 DOI: 10.1016/j.isci.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
COVID-19 pandemic saw emergence of multiple SAR-CoV-2 variants. Exacerbated risk of severe outcome and hospital admissions led us to comprehend differential host-immune kinetics associated with SARS-CoV-2 variants. Longitudinal investigation was conducted through different time periods of Pre-VOC and VOCs (Delta & Omicron) mapping host transcriptome features. Robust antiviral type-1 interferon response marked Omicron infection, which was largely missing during Pre-VOC and Delta waves. SARS-CoV-2-host protein-protein interactions and docking complexes highlighted N protein to interact with HNRNPA1 in Pre-VOC, demonstrating its functional role for enhanced viral replication. Omicron revealed enhanced binding efficiency of LARP1 to N protein, probably potentiating antiviral effects of LARP1. Differential expression of zinc finger protein genes, especially in Omicron, mechanistically support induction of strong IFN (Interferon) response, thereby strengthening early viral clearance. Study highlights eventual adaptation of host to immune activation patterns that interrupt virus evolution with enhanced immune-evasion mutations and counteraction mechanisms, delimiting the next phase of COVID-19 pandemic.
Collapse
Affiliation(s)
- Ranjeet Maurya
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aparna Swaminathan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Smriti Arora
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aakarshan Raina
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Baccianti F, Masson C, Delecluse S, Li Z, Poirey R, Delecluse HJ. Epstein-Barr virus infectious particles initiate B cell transformation and modulate cytokine response. mBio 2023; 14:e0178423. [PMID: 37830871 PMCID: PMC10653912 DOI: 10.1128/mbio.01784-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE The Epstein-Barr virus efficiently infects and transforms B lymphocytes. During this process, infectious viral particles transport the viral genome to the nucleus of target cells. We show here that these complex viral structures serve additional crucial roles by activating transcription of the transforming genes encoded by the virus. We show that components of the infectious particle sequentially activate proinflammatory B lymphocyte signaling pathways that, in turn, activate viral gene expression but also cause cytokine release. However, virus infection activates expression of ZFP36L1, an RNA-binding stress protein that limits the length and the intensity of the cytokine response. Thus, the infectious particles can activate viral gene expression and initiate cellular transformation at the price of a limited immune response.
Collapse
Affiliation(s)
- Francesco Baccianti
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Charlène Masson
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Susanne Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
- Nierenzentrum Heidelberg e.V., Heidelberg, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Germany
| | - Zhe Li
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Remy Poirey
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| | - Henri-Jacques Delecluse
- Pathogenesis of Virus Associated Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Unit U1074, INSERM, Heidelberg, Germany
| |
Collapse
|
11
|
Harjes S, Kurup HM, Rieffer AE, Bayarjargal M, Filitcheva J, Su Y, Hale TK, Filichev VV, Harjes E, Harris RS, Jameson GB. Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A. Nat Commun 2023; 14:6382. [PMID: 37821454 PMCID: PMC10567711 DOI: 10.1038/s41467-023-42174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The normally antiviral enzyme APOBEC3A is an endogenous mutagen in human cancer. Its single-stranded DNA C-to-U editing activity results in multiple mutagenic outcomes including signature single-base substitution mutations (isolated and clustered), DNA breakage, and larger-scale chromosomal aberrations. APOBEC3A inhibitors may therefore comprise a unique class of anti-cancer agents that work by blocking mutagenesis, slowing tumor evolvability, and preventing detrimental outcomes such as drug resistance and metastasis. Here we reveal the structural basis of competitive inhibition of wildtype APOBEC3A by hairpin DNA bearing 2'-deoxy-5-fluorozebularine in place of the cytidine in the TC substrate motif that is part of a 3-nucleotide loop. In addition, the structural basis of APOBEC3A's preference for YTCD motifs (Y = T, C; D = A, G, T) is explained. The nuclease-resistant phosphorothioated derivatives of these inhibitors have nanomolar potency in vitro and block APOBEC3A activity in human cells. These inhibitors may be useful probes for studying APOBEC3A activity in cellular systems and leading toward, potentially as conjuvants, next-generation, combinatorial anti-mutator and anti-cancer therapies.
Collapse
Affiliation(s)
- Stefan Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Amanda E Rieffer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maitsetseg Bayarjargal
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jana Filitcheva
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yongdong Su
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Pediatrics, Emory University School of Medicine, and the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Tracy K Hale
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Vyacheslav V Filichev
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Elena Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA.
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Geoffrey B Jameson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Abstract
There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA;
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Ma J, Tu Z, Du S, Zhang X, Wang J, Guo J, Feng Y, He H, Wang H, Li C, Tu C, Liu Y. IFITM3 restricts RABV infection through inhibiting viral entry and mTORC1- dependent autophagy. Vet Microbiol 2023; 284:109823. [PMID: 37392666 DOI: 10.1016/j.vetmic.2023.109823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Rabies, which caused by rabies virus (RABV), is a zoonotic and life-threatening disease with 100% mortality, and there is no effective treatment thus far due to the unclear pathogenesis and less of treatment targets. Interferon-induced transmembrane protein 3 (IFITM3) has recently been identified as an important anti-viral host effector induced by type I interferon. However, the role of IFITM3 in RABV infection has not been elucidated. In this study, we demonstrated that IFITM3 is a crucial restriction factor for RABV, the viral-induced IFITM3 significantly inhibited RABV replication, while knockdown of IFITM3 had the opposite effect. We then identified that IFNβ induces the upregulation of IFITM3 in the absence or presence of RABV infection, meanwhile, IFITM3 positively regulates RABV-triggered production of IFNβ in a feedback manner. In-depth research we found that IFITM3 not only inhibits the virus absorb and entry, but also inhibits viral replication through mTORC1-dependent autophagy. All these findings broaden our understanding of IFITM3 function and uncover a novel mechanism against RABV infection.
Collapse
Affiliation(s)
- Jiaqi Ma
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Shouwen Du
- Department of infectious diseases, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xinying Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Jie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; Engineering Research Center of Glycoconjugates of Ministry of Education, Jinlin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jianxiong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
| |
Collapse
|
14
|
Smith JR, Dowling JW, McFadden MI, Karp A, Schwerk J, Woodward JJ, Savan R, Forero A. MEF2A suppresses stress responses that trigger DDX41-dependent IFN production. Cell Rep 2023; 42:112805. [PMID: 37467105 PMCID: PMC10652867 DOI: 10.1016/j.celrep.2023.112805] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular stress in the form of disrupted transcription, loss of organelle integrity, or damage to nucleic acids can elicit inflammatory responses by activating signaling cascades canonically tasked with controlling pathogen infections. These stressors must be kept in check to prevent unscheduled activation of interferon, which contributes to autoinflammation. This study examines the role of the transcription factor myocyte enhancing factor 2A (MEF2A) in setting the threshold of transcriptional stress responses to prevent R-loop accumulation. Increases in R-loops lead to the induction of interferon and inflammatory responses in a DEAD-box helicase 41 (DDX41)-, cyclic GMP-AMP synthase (cGAS)-, and stimulator of interferon genes (STING)-dependent manner. The loss of MEF2A results in the activation of ATM and RAD3-related (ATR) kinase, which is also necessary for the activation of STING. This study identifies the role of MEF2A in sustaining transcriptional homeostasis and highlights the role of ATR in positively regulating R-loop-associated inflammatory responses.
Collapse
Affiliation(s)
- Julian R Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jack W Dowling
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew I McFadden
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Karp
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Discovery PREP, The Ohio State University, Columbus, OH 43210, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Cancer Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Kupkova K, Shetty SJ, Pray-Grant MG, Grant PA, Haque R, Petri WA, Auble DT. Globally elevated levels of histone H3 lysine 9 trimethylation in early infancy are associated with poor growth trajectory in Bangladeshi children. Clin Epigenetics 2023; 15:129. [PMID: 37568218 PMCID: PMC10422758 DOI: 10.1186/s13148-023-01548-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Stunting is a global health problem affecting hundreds of millions of children worldwide and contributing to 45% of deaths in children under the age of five. Current therapeutic interventions have limited efficacy. Understanding the epigenetic changes underlying stunting will elucidate molecular mechanisms and likely lead to new therapies. RESULTS We profiled the repressive mark histone H3 lysine 9 trimethylation (H3K9me3) genome-wide in peripheral blood mononuclear cells (PBMCs) from 18-week-old infants (n = 15) and mothers (n = 14) enrolled in the PROVIDE study established in an urban slum in Bangladesh. We associated H3K9me3 levels within individual loci as well as genome-wide with anthropometric measurements and other biomarkers of stunting and performed functional annotation of differentially affected regions. Despite the relatively small number of samples from this vulnerable population, we observed globally elevated H3K9me3 levels were associated with poor linear growth between birth and one year of age. A large proportion of the differentially methylated genes code for proteins targeting viral mRNA and highly significant regions were enriched in transposon elements with potential regulatory roles in immune system activation and cytokine production. Maternal data show a similar trend with child's anthropometry; however, these trends lack statistical significance to infer an intergenerational relationship. CONCLUSIONS We speculate that high H3K9me3 levels may result in poor linear growth by repressing genes involved in immune system activation. Importantly, changes to H3K9me3 were detectable before the overt manifestation of stunting and therefore may be valuable as new biomarkers of stunting.
Collapse
Affiliation(s)
- Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Savera J Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Marilyn G Pray-Grant
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Patrick A Grant
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Rashidul Haque
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Dhaka, 1000, Bangladesh
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
16
|
Urata S, Yamaguchi S, Nambu A, Sudo K, Nakae S, Yasuda J. The roles of BST-2 in murine B cell development and on virus propagation. Microbiol Immunol 2023; 67:105-113. [PMID: 36604771 DOI: 10.1111/1348-0421.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The bone marrow (BM) stromal cell antigen-2 (BST-2), also known as tetherin, CD317, PDCA-1, or HM1.24, is a membrane protein overexpressed in several types of tumors and may act as a promising target for cancer treatment via antibody-dependent cellular cytotoxicity. BST-2 is also expressed in human BM stromal cells (BMSC), which support B cell development. While the activity of BST-2 as an antiviral factor has been demonstrated, the expression patterns and the role of BST-2 on B-cell development and activation have not been investigated, especially in vivo. In this study, Bst2 knockout (Bst2-/- ) mice were generated to assess the role of BST-2 on B cell development and activation. It was observed that BST-2 was not expressed in BMSC or all B cell progenitors even in wild-type mice and does not play a significant role in B cell development. In addition, the loss of BST-2 had no effect on B cell activation. Furthermore and in contrast to the well-known antiviral role of BST-2, infection of vesicular stomatitis Indiana virus to the BM cells collected from the Bst2-/- mice produced less infectious virus compared with that from the WT mice. These results suggest that murine BST-2 is different from human BST-2 in the expression pattern, physiological function, in vivo, and might possess positive role on VSV replication.
Collapse
Affiliation(s)
- Shuzo Urata
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Katsuko Sudo
- Pre-clinical Research Center, Tokyo Medical University, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
18
|
Pal S, Kumar A, Vashisth H. Role of Dynamics and Mutations in Interactions of a Zinc Finger Antiviral Protein with CG-rich Viral RNA. J Chem Inf Model 2023; 63:1002-1011. [PMID: 36707411 PMCID: PMC10129844 DOI: 10.1021/acs.jcim.2c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Zinc finger antiviral protein (ZAP) is a host antiviral factor that selectively inhibits the replication of a variety of viruses. ZAP recognizes the CG-enriched RNA sequences and activates the viral RNA degradation machinery. In this work, we investigated the dynamics of a ZAP/RNA complex and computed the energetics of mutations in ZAP that affect its binding to the viral RNA. The crystal structure of a mouse-ZAP/RNA complex showed that RNA interacts with the zinc finger 2 (ZF2) and ZF3 domains. However, we found that due to the dynamic behavior of the single-stranded RNA, the terminal nucleotides C1 and G2 of RNA change their positions from the ZF3 to the ZF1 domain. Moreover, the electrostatic interactions between the zinc ions and the viral RNA provide further stability to the ZAP/RNA complex. We also provide structural and thermodynamic evidence for seven residue pairs (C1-Arg74, C1-Arg179, G2-Arg74, U3-Lys76, C4-Lys76, G5-Arg95, and U6-Glu204) that show favorable ZAP/RNA interactions, although these interactions were not observed in the ZAP/RNA crystal structure. Consistent with the observations from the mouse-ZAP/RNA crystal structure, we found that four residue pairs (C4-Lys89, C4-Leu90, C4-Tyr108, and G5-Lys107) maintained stable interactions in MD simulations. Based on experimental mutagenesis studies and our residue-level interaction analysis, we chose seven residues (Arg74, Lys76, Lys89, Arg95, Lys107, Tyr108, and Arg179) for individual alanine mutations. In addition, we studied mutations in those residues that are only observed in the crystal structures as interacting with RNA (Tyr98, Glu148, and Arg170). Out of these 10 mutations, we found that the Ala mutation in each of the five residues Arg74, Lys76, Lys89, Lys107, and Glu148 significantly reduced the binding affinity of ZAP to RNA.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire03824, United States
| | - Amit Kumar
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire03824, United States
| |
Collapse
|
19
|
Protein-Coding Region Derived Small RNA in Exosomes from Influenza A Virus-Infected Cells. Int J Mol Sci 2023; 24:ijms24010867. [PMID: 36614310 PMCID: PMC9820831 DOI: 10.3390/ijms24010867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Exosomes may function as multifactorial mediators of cell-to-cell communication, playing crucial roles in both physiological and pathological processes. Exosomes released from virus-infected cells may contain RNA and proteins facilitating infection spread. The purpose of our study was to analyze how the small RNA content of exosomes is affected by infection with the influenza A virus (IAV). Exosomes were isolated by ultracentrifugation after hemadsorption of virions and their small RNA content was identified using high-throughput sequencing. As compared to mock-infected controls, 856 RNA transcripts were significantly differentially expressed in exosomes from IAV-infected cells, including fragments of 458 protein-coding (pcRNA), 336 small, 28 long intergenic non-coding RNA transcripts, and 33 pseudogene transcripts. Upregulated pcRNA species corresponded mainly to proteins associated with translation and antiviral response, and the most upregulated among them were RSAD2, CCDC141 and IFIT2. Downregulated pcRNA species corresponded to proteins associated with the cell cycle and DNA packaging. Analysis of differentially expressed pseudogenes showed that in most cases, an increase in the transcription level of pseudogenes was correlated with an increase in their parental genes. Although the role of exosome RNA in IAV infection remains undefined, the biological processes identified based on the corresponding proteins may indicate the roles of some of its parts in IAV replication.
Collapse
|
20
|
Zinc Finger Protein BCL11A Contributes to the Abortive Infection of Hirame novirhabdovirus (HIRRV) in B Lymphocytes of Flounder (Paralichthys olivaceus). J Virol 2022; 96:e0147022. [PMID: 36448803 PMCID: PMC9769382 DOI: 10.1128/jvi.01470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) infection is characterized by a pronounced viremia, and the high viral load is typically detected in immune-related organs and the circulatory system. In the present study, we demonstrated that HIRRV has the capacity to invade part of flounder membrane-bound IgM (mIgM+) B lymphocyte. Eight quantitative real-time PCR (qRT-PCR) standard curves involving HIRRV genomic RNA (gRNA), cRNA, and six mRNAs were established based on the strand-specific reverse transcription performed with tagged primers. It was revealed that viral RNA synthesis, especially the replication of gRNA, was inhibited in B cells, and the intracellular HIRRV even failed to produce infectious viral particles. Moreover, a range of genes with nucleic acid binding activity or related to viral infection were screened out based on the transcriptome analysis of HIRRV-infected B cells, and five molecules were further selected because of their different expression patterns in HIRRV-infected B cells and hirame natural embryo (HINAE) cells. The overexpression of these genes followed by HIRRV infection and RNA binding protein immunoprecipitation (RIP) assay revealed that the flounder B cell lymphoma/leukemia 11A (BCL11A), a highly conserved zinc finger transcription factor, is able to inhibit the proliferation of HIRRV by binding with full-length viral RNA mainly via its zinc finger domains at the C terminus. In conclusion, these data indicated that the high transcriptional activity of BCL11A in flounder mIgM+ B lymphocytes is a crucial factor for the abortive infection of HIRRV, and our findings provide new insights into the interaction between HIRRV and teleost B cells. IMPORTANCE HIRRV is a fish rhabdovirus that is considered as an important pathogen threatening the fish farming industry represented by flounder because of its high infectivity and fatality rate. To date, research toward understanding the complex pathogenic mechanism of HIRRV is still in its infancy and faces many challenges. Exploration of the relationship between HIRRV and its target cells is interesting and necessary. Here, we revealed that flounder mIgM+ B cells are capable of suppressing viral RNA synthesis and result in an unproductive infection of HIRRV. In addition, our results demonstrated that zinc finger protein BCL11A, a transcription factor in B cells, is able to suppress the replication of HIRRV. These findings increased our understanding of the underlying characteristics of HIRRV infection and revealed a novel antiviral mechanism against HIRRV based on the host restriction factor in teleost B cells, which sheds new light on the research into HIRRV control.
Collapse
|
21
|
Li Q, Sun B, Zhuo Y, Jiang Z, Li R, Lin C, Jin Y, Gao Y, Wang D. Interferon and interferon-stimulated genes in HBV treatment. Front Immunol 2022; 13:1034968. [PMID: 36531993 PMCID: PMC9751411 DOI: 10.3389/fimmu.2022.1034968] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small enveloped DNA virus with a complex life cycle. It is the causative agent of acute and chronic hepatitis. HBV can resist immune system responses and often causes persistent chronic infections. HBV is the leading cause of liver cancer and cirrhosis. Interferons (IFNs) are cytokines with antiviral, immunomodulatory, and antitumor properties. IFNs are glycoproteins with a strong antiviral activity that plays an important role in adaptive and innate immune responses. They are classified into three categories (type I, II, and III) based on the structure of their cell-surface receptors. As an effective drug for controlling chronic viral infections, Type I IFNs are approved to be clinically used for the treatment of HBV infection. The therapeutic effect of interferon will be enhanced when combined with other drugs. IFNs play a biological function by inducing the expression of hundreds of IFN-stimulated genes (ISGs) in the host cells, which are responsible for the inhibiting of HBV replication, transcription, and other important processes. Animal models of HBV, such as chimpanzees, are also important tools for studying IFN treatment and ISG regulation. In the present review, we summarized the recent progress in IFN-HBV treatment and focused on its mechanism through the interaction between HBV and ISGs.
Collapse
Affiliation(s)
- Qirong Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Zhuo
- School of Acupuncture-Moxi bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| |
Collapse
|
22
|
Dang W, Li T, Xu F, Wang Y, Yang F, Zheng H. Establishment of a CRISPR/Cas9 knockout library for screening type I interferon-inducible antiviral effectors in pig cells. Front Immunol 2022; 13:1016545. [PMID: 36505425 PMCID: PMC9732717 DOI: 10.3389/fimmu.2022.1016545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2022] Open
Abstract
Diseases caused by emerging swine viruses had a great economic impact, constituting a new challenge for researchers and practicing veterinarians. Innate immune control of viral pathogen invasion is mediated by interferons (IFNs), resulting in transcriptional elevation of hundreds of IFN-stimulated genes (ISGs). However, the ISG family is vast and species-specific, and despite remarkable advancements in uncovering the breadth of IFN-induced gene expression in mouse and human, it is less characterized with respect to the repertoire of porcine ISGs and their functional annotation. Herein, with the application of RNA-sequencing (RNA-Seq) gene profiling, the breadth of IFN-induced gene expression in the context of type I IFN stimulation was explored by using IBRS-2 cell, a commonly used high-efficient cultivation system for porcine picornaviruses. By establishing inclusion criteria, a total of 359 ISGs were selected. Aiming to identify key effectors mediating type I IFN inhibition of swine viruses, a CRISPR/Cas9 knockout library of 1908 sgRNAs targeting 5' constitutive exons of 359 ISGs with an average of 5 to 6 sgRNAs per gene was constructed. Using VSV-eGFP (vesicular stomatitis virus, fused with GFP) as a model virus, a subset of highest-ranking candidates were identified, including previously validated anti-VSV genes IRF9, IFITM3, LOC100519082 and REC8, as well as several novel hits. This approach attains a high level of feasibility and reliability, and a high rate of hit identification, providing a forward-looking platform to systematically profile the effectors of type I IFN antiviral response against porcine viruses.
Collapse
Affiliation(s)
- Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Xu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yannan Wang
- Lanzhou University Second Hospital, Department of Radiology, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China,*Correspondence: Haixue Zheng,
| |
Collapse
|
23
|
Erb A, Zissler UM, Oelsner M, Chaker AM, Schmidt-Weber CB, Jakwerth CA. Genome-Wide Gene Expression Analysis Reveals Unique Genes Signatures of Epithelial Reorganization in Primary Airway Epithelium Induced by Type-I, -II and -III Interferons. BIOSENSORS 2022; 12:929. [PMID: 36354438 PMCID: PMC9688329 DOI: 10.3390/bios12110929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip for gene expression sensing was used to examine the effects of type-I, -II, and -III IFN stimulation on the epithelial expression profiles of primary organotypic 3D air-liquid interface airway cultures. All types of IFNs induced similar interferon-stimulated genes (ISGs): OAS1, OAS2, and IFIT2. However, they differentially induced transcription factors, epithelial modulators, and pro-inflammatory genes. Type-I IFN-induced genes were associated with cell-cell adhesion and tight junctions, while type-III IFNs promoted genes important for transepithelial transport. In contrast, type-II IFN stimulated proliferation-triggering genes associated and enhanced pro-inflammatory mediator secretion. In conclusion, with our microarray system, we provide evidence that the three IFN types exceed their antiviral ISG-response by inducing distinct remodeling processes, thereby likely strengthening the epithelial airway barrier by enhancing cross-cell-integrity (I), transepithelial transport (III) and finally reconstruction through proliferation (II).
Collapse
Affiliation(s)
- Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, 81675 Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| |
Collapse
|
24
|
Bonaventure B, Rebendenne A, Chaves Valadão AL, Arnaud‐Arnould M, Gracias S, Garcia de Gracia F, McKellar J, Labaronne E, Tauziet M, Vivet‐Boudou V, Bernard E, Briant L, Gros N, Djilli W, Courgnaud V, Parrinello H, Rialle S, Blaise M, Lacroix L, Lavigne M, Paillart J, Ricci EP, Schulz R, Jouvenet N, Moncorgé O, Goujon C. The
DEAD
box
RNA
helicase
DDX42
is an intrinsic inhibitor of positive‐strand
RNA
viruses. EMBO Rep 2022; 23:e54061. [PMID: 36161446 PMCID: PMC9638865 DOI: 10.15252/embr.202154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Genome‐wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV‐1. Depletion of endogenous DDX42 increases HIV‐1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV‐1 infection, whereas expression of a dominant‐negative mutant increases infection. Importantly, DDX42 also restricts LINE‐1 retrotransposition and infection with other retroviruses and positive‐strand RNA viruses, including CHIKV and SARS‐CoV‐2. However, DDX42 does not impact the replication of several negative‐strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA‐seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross‐linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV‐1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | - Ségolène Gracias
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | | | | | | - Valérie Vivet‐Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002 Strasbourg France
| | | | | | - Nathalie Gros
- CEMIPAI, CNRS Université de Montpellier Montpellier France
| | | | | | - Hugues Parrinello
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | - Stéphanie Rialle
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | | | - Laurent Lacroix
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL Paris France
| | - Marc Lavigne
- Department of Virology Institut Pasteur Paris France
| | | | | | - Reiner Schulz
- Department of Medical & Molecular Genetics King's College London London UK
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | |
Collapse
|
25
|
Abana CZY, Lamptey H, Bonney EY, Kyei GB. HIV cure strategies: which ones are appropriate for Africa? Cell Mol Life Sci 2022; 79:400. [PMID: 35794316 PMCID: PMC9259540 DOI: 10.1007/s00018-022-04421-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Although combination antiretroviral therapy (ART) has reduced mortality and improved lifespan for people living with HIV, it does not provide a cure. Patients must be on ART for the rest of their lives and contend with side effects, unsustainable costs, and the development of drug resistance. A cure for HIV is, therefore, warranted to avoid the limitations of the current therapy and restore full health. However, this cure is difficult to find due to the persistence of latently infected HIV cellular reservoirs during suppressive ART. Approaches to HIV cure being investigated include boosting the host immune system, genetic approaches to disable co-receptors and the viral genome, purging cells harboring latent HIV with latency-reversing latency agents (LRAs) (shock and kill), intensifying ART as a cure, preventing replication of latent proviruses (block and lock) and boosting T cell turnover to reduce HIV-1 reservoirs (rinse and replace). Since most people living with HIV are in Africa, methods being developed for a cure must be amenable to clinical trials and deployment on the continent. This review discusses the current approaches to HIV cure and comments on their appropriateness for Africa.
Collapse
Affiliation(s)
- Christopher Zaab-Yen Abana
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y Bonney
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B Kyei
- Department of Virology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Departments of Medicine and Molecular Microbiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, USA.
- Medical and Scientific Research Center, University of Ghana Medical Centre, Accra, Ghana.
| |
Collapse
|
26
|
Maslennikova A, Mazurov D. Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Front Cell Infect Microbiol 2022; 12:880030. [PMID: 35694537 PMCID: PMC9177041 DOI: 10.3389/fcimb.2022.880030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Although highly active antiretroviral therapy (HAART) can robustly control human immunodeficiency virus (HIV) infection, the existence of latent HIV in a form of proviral DNA integrated into the host genome makes the virus insensitive to HAART. This requires patients to adhere to HAART for a lifetime, often leading to drug toxicity or viral resistance to therapy. Current genome-editing technologies offer different strategies to reduce the latent HIV reservoir in the body. In this review, we systematize the research on CRISPR/Cas-based anti-HIV therapeutic methods, discuss problems related to viral escape and gene editing, and try to focus on the technologies that effectively and precisely introduce genetic modifications and confer strong resistance to HIV infection. Particularly, knock-in (KI) approaches, such as mature B cells engineered to produce broadly neutralizing antibodies, T cells expressing fusion inhibitory peptides in the context of inactivated viral coreceptors, or provirus excision using base editors, look very promising. Current and future advancements in the precision of CRISPR/Cas editing and its delivery will help extend its applicability to clinical HIV therapy.
Collapse
Affiliation(s)
- Alexandra Maslennikova
- Cell and Gene Technology Group, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| | - Dmitriy Mazurov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of Russian Academy of Science, Moscow, Russia
| |
Collapse
|
27
|
Rheinemann L, Downhour DM, Davenport KA, McKeown AN, Sundquist WI, Elde NC. Recurrent evolution of an inhibitor of ESCRT-dependent virus budding and LINE-1 retrotransposition in primates. Curr Biol 2022; 32:1511-1522.e6. [PMID: 35245459 PMCID: PMC9007875 DOI: 10.1016/j.cub.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Most antiviral proteins recognize specific features of viruses. In contrast, the recently described antiviral factor retroCHMP3 interferes with the "host endosomal complexes required for transport" (ESCRT) pathway to inhibit the budding of enveloped viruses. RetroCHMP3 arose independently on multiple occasions via duplication and truncation of the gene encoding the ESCRT-III factor CHMP3. However, since the ESCRT pathway is essential for cellular membrane fission reactions, ESCRT inhibition is potentially cytotoxic. This raises fundamental questions about how hosts can repurpose core cellular functions into antiviral functions without incurring a fitness cost due to excess cellular toxicity. We reveal the evolutionary process of detoxification for retroCHMP3 in New World monkeys using a combination of ancestral reconstructions, cytotoxicity, and virus release assays. A duplicated, full-length copy of retroCHMP3 in the ancestors of New World monkeys provides modest inhibition of virus budding while exhibiting subtle cytotoxicity. Ancient retroCHMP3 then accumulated mutations that reduced cytotoxicity but preserved virus inhibition before a truncating stop codon arose in the more recent ancestors of squirrel monkeys, resulting in potent inhibition. In species where full-length copies of retroCHMP3 still exist, their artificial truncation generated potent virus-budding inhibitors with little cytotoxicity, revealing the potential for future antiviral defenses in modern species. In addition, we discovered that retroCHMP3 restricts LINE-1 retrotransposition, revealing how different challenges to genome integrity might explain multiple independent origins of retroCHMP3 in different species to converge on new immune functions.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Diane Miller Downhour
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Kristen A Davenport
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Alesia N McKeown
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Drive East, Salt Lake City, UT 84112, USA
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA.
| |
Collapse
|
28
|
Bacterial origins of human cell-autonomous innate immune mechanisms. Nat Rev Immunol 2022; 22:629-638. [PMID: 35396464 DOI: 10.1038/s41577-022-00705-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
The cell-autonomous innate immune system enables animal cells to resist viral infection. This system comprises an array of sensors that, after detecting viral molecules, activate the expression of antiviral proteins and the interferon response. The repertoire of immune sensors and antiviral proteins has long been considered to be derived from extensive evolutionary innovation in vertebrates, but new data challenge this dogma. Recent studies show that central components of the cell-autonomous innate immune system have ancient evolutionary roots in prokaryotic genes that protect bacteria from phages. These include the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, Toll/IL-1 receptor (TIR) domain-containing pathogen receptors, the viperin family of antiviral proteins, SAMHD1-like nucleotide-depletion enzymes, gasdermin proteins and key components of the RNA interference pathway. This Perspective details current knowledge of the elements of antiviral immunity that are conserved from bacteria to humans, and presents possible evolutionary scenarios to explain the observed conservation.
Collapse
|
29
|
Esposito S, D’Abrosca G, Antolak A, Pedone PV, Isernia C, Malgieri G. Host and Viral Zinc-Finger Proteins in COVID-19. Int J Mol Sci 2022; 23:ijms23073711. [PMID: 35409070 PMCID: PMC8998646 DOI: 10.3390/ijms23073711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.
Collapse
|
30
|
Stott-Marshall RJ, Foster TL. Inhibition of Arenavirus Entry and Replication by the Cell-Intrinsic Restriction Factor ZMPSTE24 Is Enhanced by IFITM Antiviral Activity. Front Microbiol 2022; 13:840885. [PMID: 35283811 PMCID: PMC8915953 DOI: 10.3389/fmicb.2022.840885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In the absence of effective vaccines and treatments, annual outbreaks of severe human haemorrhagic fever caused by arenaviruses, such as Lassa virus, continue to pose a significant human health threat. Understanding the balance of cellular factors that inhibit or promote arenavirus infection may have important implications for the development of effective antiviral strategies. Here, we identified the cell-intrinsic zinc transmembrane metalloprotease, ZMPSTE24, as a restriction factor against arenaviruses. Notably, CRISPR-Cas9-mediated knockout of ZMPSTE24 in human alveolar epithelial A549 cells increased arenavirus glycoprotein-mediated viral entry in pseudoparticle assays and live virus infection models. As a barrier to viral entry and replication, ZMPSTE24 may act as a downstream effector of interferon-induced transmembrane protein (IFITM) antiviral function; though through a yet poorly understood mechanism. Overexpression of IFITM1, IFITM2, and IFITM3 proteins did not restrict the entry of pseudoparticles carrying arenavirus envelope glycoproteins and live virus infection. Furthermore, gain-of-function studies revealed that IFITMs augment the antiviral activity of ZMPSTE24 against arenaviruses, suggesting a cooperative effect of viral restriction. We show that ZMPSTE24 and IFITMs affect the kinetics of cellular endocytosis, suggesting that perturbation of membrane structure and stability is likely the mechanism of ZMPSTE24-mediated restriction and cooperative ZMPSTE24-IFITM antiviral activity. Collectively, our findings define the role of ZMPSTE24 host restriction activity in the early stages of arenavirus infection. Moreover, we provide insight into the importance of cellular membrane integrity for productive fusion of arenaviruses and highlight a novel avenue for therapeutic development.
Collapse
Affiliation(s)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Wolfson Centre for Global Virus Research, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
31
|
Riederer I, Mendes-da-Cruz DA, da Fonseca GC, González MN, Brustolini O, Rocha C, Loss G, de Carvalho JB, Menezes MT, Raphael LMS, Gerber A, Bonaldo MC, Butler-Browne G, Mouly V, Cotta-de-Almeida V, Savino W, Ribeiro de Vasconcelos AT. Zika virus disrupts gene expression in human myoblasts and myotubes: Relationship with susceptibility to infection. PLoS Negl Trop Dis 2022; 16:e0010166. [PMID: 35171909 PMCID: PMC8923442 DOI: 10.1371/journal.pntd.0010166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/15/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection.
Collapse
Affiliation(s)
- Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, England, United Kingdom
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, England, United Kingdom
| | | | - Mariela Natacha González
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Otavio Brustolini
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Cássia Rocha
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Guilherme Loss
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Joseane Biso de Carvalho
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Mariane Talon Menezes
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lidiane Menezes Souza Raphael
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alexandra Gerber
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Myrna Cristina Bonaldo
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
32
|
Abstract
Virus entry, consisting of attachment to and penetration into the host target cell, is the first step of the virus life cycle and is a critical 'do or die' event that governs virus emergence in host populations. Most antiviral vaccines induce neutralizing antibodies that prevent virus entry into cells. However, while the prevention of virus invasion by humoral immunity is well appreciated, considerably less is known about the immune defences present within cells (known as intrinsic immunity) that interfere with virus entry. The interferon-induced transmembrane (IFITM) proteins, known for inhibiting fusion between viral and cellular membranes, were once the only factors known to restrict virus entry. However, the progressive development of genetic and pharmacological screening platforms and the onset of the COVID-19 pandemic have galvanized interest in how viruses infiltrate cells and how cells defend against it. Several host factors with antiviral potential are now implicated in the regulation of virus entry, including cholesterol 25-hydroxylase (CH25H), lymphocyte antigen 6E (LY6E), nuclear receptor co-activator protein 7 (NCOA7), interferon-γ-inducible lysosomal thiol reductase (GILT), CD74 and ARFGAP with dual pleckstrin homology domain-containing protein 2 (ADAP2). This Review summarizes what is known and what remains to be understood about the intrinsic factors that form the first line of defence against virus infection.
Collapse
|
33
|
Sertkaya H, Hidalgo L, Ficarelli M, Kmiec D, Signell AW, Ali S, Parker H, Wilson H, Neil SJ, Malim MH, Vink CA, Swanson CM. Minimal impact of ZAP on lentiviral vector production and transduction efficiency. Mol Ther Methods Clin Dev 2021; 23:147-157. [PMID: 34703838 PMCID: PMC8517000 DOI: 10.1016/j.omtm.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The antiviral protein ZAP binds CpG dinucleotides in viral RNA to inhibit replication. This has likely led to the CpG suppression observed in many RNA viruses, including retroviruses. Sequences added to retroviral vector genomes, such as internal promoters, transgenes, or regulatory elements, substantially increase CpG abundance. Because these CpGs could allow retroviral vector RNA to be targeted by ZAP, we analyzed whether it restricts vector production, transduction efficiency, and transgene expression. Surprisingly, even though CpG-high HIV-1 was efficiently inhibited by ZAP in HEK293T cells, depleting ZAP did not substantially increase lentiviral vector titer using several packaging and genome plasmids. ZAP overexpression also did not inhibit lentiviral vector titer. In addition, decreasing CpG abundance in a lentiviral vector genome did not increase its titer, and a gammaretroviral vector derived from murine leukemia virus was not substantially restricted by ZAP. Overall, we show that the increased CpG abundance in retroviral vectors relative to the wild-type retroviruses they are derived from does not intrinsically sensitize them to ZAP. Further understanding of how ZAP specifically targets transcripts to inhibit their expression may allow the development of CpG sequence contexts that efficiently recruit or evade this antiviral system.
Collapse
Affiliation(s)
- Helin Sertkaya
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Laura Hidalgo
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Mattia Ficarelli
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Dorota Kmiec
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Adrian W. Signell
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Sadfer Ali
- Cell & Gene Therapy Platform, Medicinal Science and Technology, GSK, Stevenage SG1 2NY, UK
| | - Hannah Parker
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Harry Wilson
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Stuart J.D. Neil
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Michael H. Malim
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Conrad A. Vink
- Cell & Gene Therapy Platform, Medicinal Science and Technology, GSK, Stevenage SG1 2NY, UK
| | - Chad M. Swanson
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| |
Collapse
|
34
|
Que L, Li Y, Dainichi T, Kukimoto I, Nishiyama T, Nakano Y, Shima K, Suzuki T, Sato Y, Horike S, Aizaki H, Watashi K, Kato T, Aly HH, Watanabe N, Kabashima K, Wakae K, Muramatsu M. Interferon-gamma induced APOBEC3B contributes to Merkel cell polyomavirus genome mutagenesis in Merkel cell carcinoma. J Invest Dermatol 2021; 142:1793-1803.e11. [DOI: 10.1016/j.jid.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
|
35
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
36
|
Nath P, Chauhan NR, Jena KK, Datey A, Kumar ND, Mehto S, De S, Nayak TK, Priyadarsini S, Rout K, Bal R, Murmu KC, Kalia M, Patnaik S, Prasad P, Reggiori F, Chattopadhyay S, Chauhan S. Inhibition of IRGM establishes a robust antiviral immune state to restrict pathogenic viruses. EMBO Rep 2021; 22:e52948. [PMID: 34467632 PMCID: PMC8567234 DOI: 10.15252/embr.202152948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The type I interferon (IFN) response is the major host arsenal against invading viruses. IRGM is a negative regulator of IFN responses under basal conditions. However, the role of human IRGM during viral infection has remained unclear. In this study, we show that IRGM expression is increased upon viral infection. IFN responses induced by viral PAMPs are negatively regulated by IRGM. Conversely, IRGM depletion results in a robust induction of key viral restriction factors including IFITMs, APOBECs, SAMHD1, tetherin, viperin, and HERC5/6. Additionally, antiviral processes such as MHC‐I antigen presentation and stress granule signaling are enhanced in IRGM‐deficient cells, indicating a robust cell‐intrinsic antiviral immune state. Consistently, IRGM‐depleted cells are resistant to the infection with seven viruses from five different families, including Togaviridae, Herpesviridae, Flaviviverdae, Rhabdoviridae, and Coronaviridae. Moreover, we show that Irgm1 knockout mice are highly resistant to chikungunya virus (CHIKV) infection. Altogether, our work highlights IRGM as a broad therapeutic target to promote defense against a large number of human viruses, including SARS‐CoV‐2, CHIKV, and Zika virus.
Collapse
Affiliation(s)
- Parej Nath
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Ankita Datey
- Molecular Virology Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Saikat De
- Molecular Virology Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Tapas Kumar Nayak
- Molecular Virology Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Swatismita Priyadarsini
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Kshitish Rout
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Ramyasingh Bal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Krushna C Murmu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Manjula Kalia
- Virology Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | | | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Soma Chattopadhyay
- Molecular Virology Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
37
|
A longitudinal sampling study of transcriptomic and epigenetic profiles in patients with thrombocytopenia syndrome. Nat Commun 2021; 12:5629. [PMID: 34561445 PMCID: PMC8463551 DOI: 10.1038/s41467-021-25804-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a novel tick-borne infectious disease caused by a new type of SFTS virus (SFTSV). Here, a longitudinal sampling study is conducted to explore the differences in transcript levels after SFTSV infection, and to characterize the transcriptomic and epigenetic profiles of hospitalized patients. The results reveal significant changes in the mRNA expression of certain genes from onset to recovery. Moreover, m6A-seq reveals that certain genes related with immune regulation may be regulated by m6A. Besides the routine tests such as platelet counts, serum ALT and AST levels testing, distinct changes in myocardial enzymes, coagulation function, and inflammation are well correlated with the clinical data and sequencing data, suggesting that clinical practitioners should monitor the above indicators to track disease progression and guide personalized treatment. In this study, the transcript changes and RNA modification may lend a fresh perspective to our understanding of the SFTSV and play a significant role in the discovery of drugs for effective treatment of this disease.
Collapse
|
38
|
Tan A, Doig CL. NAD + Degrading Enzymes, Evidence for Roles During Infection. Front Mol Biosci 2021; 8:697359. [PMID: 34485381 PMCID: PMC8415550 DOI: 10.3389/fmolb.2021.697359] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Declines in cellular nicotinamide adenine dinucleotide (NAD) contribute to metabolic dysfunction, increase susceptibility to disease, and occur as a result of pathogenic infection. The enzymatic cleavage of NAD+ transfers ADP-ribose (ADPr) to substrate proteins generating mono-ADP-ribose (MAR), poly-ADP-ribose (PAR) or O-acetyl-ADP-ribose (OAADPr). These important post-translational modifications have roles in both immune response activation and the advancement of infection. In particular, emergent data show viral infection stimulates activation of poly (ADP-ribose) polymerase (PARP) mediated NAD+ depletion and stimulates hydrolysis of existing ADP-ribosylation modifications. These studies are important for us to better understand the value of NAD+ maintenance upon the biology of infection. This review focuses specifically upon the NAD+ utilising enzymes, discusses existing knowledge surrounding their roles in infection, their NAD+ depletion capability and their influence within pathogenic infection.
Collapse
Affiliation(s)
- Arnold Tan
- Interdisciplinary Science and Technology Centre, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig L Doig
- Interdisciplinary Science and Technology Centre, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
39
|
Yamagishi MEB. Is our immune system a powerful vaccine factory? Genet Mol Biol 2021; 44:e20200468. [PMID: 34410292 PMCID: PMC8358740 DOI: 10.1590/1678-4685-gmb-2020-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
|
40
|
Schweininger J, Scherer M, Rothemund F, Schilling EM, Wörz S, Stamminger T, Muller YA. Cytomegalovirus immediate-early 1 proteins form a structurally distinct protein class with adaptations determining cross-species barriers. PLoS Pathog 2021; 17:e1009863. [PMID: 34370791 PMCID: PMC8376021 DOI: 10.1371/journal.ppat.1009863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/19/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Restriction factors are potent antiviral proteins that constitute a first line of intracellular defense by blocking viral replication and spread. During co-evolution, however, viruses have developed antagonistic proteins to modulate or degrade the restriction factors of their host. To ensure the success of lytic replication, the herpesvirus human cytomegalovirus (HCMV) expresses the immediate-early protein IE1, which acts as an antagonist of antiviral, subnuclear structures termed PML nuclear bodies (PML-NBs). IE1 interacts directly with PML, the key protein of PML-NBs, through its core domain and disrupts the dot-like multiprotein complexes thereby abrogating the antiviral effects. Here we present the crystal structures of the human and rat cytomegalovirus core domain (IE1CORE). We found that IE1CORE domains, also including the previously characterized IE1CORE of rhesus CMV, form a distinct class of proteins that are characterized by a highly similar and unique tertiary fold and quaternary assembly. This contrasts to a marked amino acid sequence diversity suggesting that strong positive selection evolved a conserved fold, while immune selection pressure may have fostered sequence divergence of IE1. At the same time, we detected specific differences in the helix arrangements of primate versus rodent IE1CORE structures. Functional characterization revealed a conserved mechanism of PML-NB disruption, however, primate and rodent IE1 proteins were only effective in cells of the natural host species but not during cross-species infection. Remarkably, we observed that expression of HCMV IE1 allows rat cytomegalovirus replication in human cells. We conclude that cytomegaloviruses have evolved a distinct protein tertiary structure of IE1 to effectively bind and inactivate an important cellular restriction factor. Furthermore, our data show that the IE1 fold has been adapted to maximize the efficacy of PML targeting in a species-specific manner and support the concept that the PML-NBs-based intrinsic defense constitutes a barrier to cross-species transmission of HCMV. Cytomegaloviruses have evolved in very close association with their hosts resulting in a highly species-specific replication. Cell-intrinsic proteins, known as restriction factors, constitute important barriers for cross-species infection of viruses. All cytomegaloviruses characterized so far express an abundant immediate-early protein, termed IE1, that binds to the cellular restriction factor promyelocytic leukemia protein (PML) and antagonizes its repressive activity on viral gene expression. Here, we present the crystal structures of the PML-binding domains of rat and human cytomegalovirus IE1. Despite low amino-acid sequence identity both proteins share a highly similar and unique fold forming a distinct protein class. Functional characterization revealed a common mechanism of PML antagonization. However, we also detected that the respective IE1 proteins only interact with PML proteins of the natural host species. Interestingly, expression of HCMV IE1 allows rat cytomegalovirus infection in human cells. This indicates that the cellular restriction factor PML forms an important barrier for cross-species infection of cytomegaloviruses that might be overcome by adaptation of IE1 protein function. Our data suggest that the cytomegalovirus IE1 structure represents an evolutionary optimized protein fold targeting PML proteins via coiled-coil interactions.
Collapse
Affiliation(s)
- Johannes Schweininger
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Sonja Wörz
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- * E-mail: (TS); (YAM)
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail: (TS); (YAM)
| |
Collapse
|
41
|
MafF Is an Antiviral Host Factor That Suppresses Transcription from Hepatitis B Virus Core Promoter. J Virol 2021; 95:e0076721. [PMID: 33980595 DOI: 10.1128/jvi.00767-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) is a stealth virus that exhibits only minimal induction of the interferon system, which is required for both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of additional mechanisms that facilitate viral clearance. Here, we report that Maf bZIP transcription factor F (MafF) promotes host defense against infection with HBV. Using a small interfering RNA (siRNA) library and an HBV/NanoLuc (NL) reporter virus, we screened to identify anti-HBV host factors. Our data showed that silencing of MafF led to a 6-fold increase in luciferase activity after HBV/NL infection. Overexpression of MafF reduced HBV core promoter transcriptional activity, which was relieved upon mutation of the putative MafF binding region. Loss of MafF expression through CRISPR/Cas9 editing (in HepG2-hNTCP-C4 cells) or siRNA silencing (in primary hepatocytes [PXB cells]) induced HBV core RNA and HBV pregenomic RNA (pgRNA) levels, respectively, after HBV infection. MafF physically binds to the HBV core promoter and competitively inhibits HNF-4α binding to an overlapping sequence in the HBV enhancer II sequence (EnhII), as seen by chromatin immunoprecipitation (ChIP) analysis. MafF expression was induced by interleukin-1β (IL-1β) or tumor necrosis factor alpha (TNF-α) treatment in both HepG2 and PXB cells, in an NF-κB-dependent manner. Consistently, MafF expression levels were significantly enhanced and positively correlated with the levels of these cytokines in patients with chronic HBV infection, especially in the immune clearance phase. IMPORTANCE HBV is a leading cause of chronic liver diseases, infecting about 250 million people worldwide. HBV has developed strategies to escape interferon-dependent innate immune responses. Therefore, the identification of other anti-HBV mechanisms is important for understanding HBV pathogenesis and developing anti-HBV strategies. MafF was shown to suppress transcription from the HBV core promoter, leading to significant suppression of the HBV life cycle. Furthermore, MafF expression was induced in chronic HBV patients and in primary human hepatocytes (PXB cells). This induction correlated with the levels of inflammatory cytokines (IL-1β and TNF-α). These data suggest that the induction of MafF contributes to the host's antiviral defense by suppressing transcription from selected viral promoters. Our data shed light on a novel role for MafF as an anti-HBV host restriction factor.
Collapse
|
42
|
Zinc finger antiviral protein (ZAP) inhibits small ruminant morbillivirus replication in vitro. Vet Microbiol 2021; 260:109163. [PMID: 34311269 DOI: 10.1016/j.vetmic.2021.109163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Small ruminant morbillivirus (SRMV) is a highly contagious and economically important viral disease of small domestic and wild ruminants. Difficulty with its stable proliferation in ovis aries-derived cells has led to a relative lag in the study of its natural immunity and pathogenesis. Here we report the antiviral properties of ZAP against SRMV, a single-stranded negative-stranded RNA virus of the genus Morbillivirus. ZAP expression was significantly induced in sheep endometrial epithelial cells following SRMV infection. ZAP inhibited SRMV replication in cells after infection, while its overexpression in Vero-SLAM cells significantly increased their resistance to SRMV replication. The ZAP protein co-localized with SRMV RNA in the cytoplasm and ZAP-responsive elements were mapped to the 5' untranslated region of SRMV nucleocapsid, phosphoprotein, matrix, and fusion. In summary, ZAP confers resistance to SRMV infection by directly targeting viral RNA and inhibiting viral replication. Our findings further extend the ranges of viral targets of ZAP and help elucidate the mechanism of SRMV replication.
Collapse
|
43
|
Cotroneo CE, Mangano N, Dragani TA, Colombo F. Lung expression of genes putatively involved in SARS-CoV-2 infection is modulated in cis by germline variants. Eur J Hum Genet 2021; 29:1019-1026. [PMID: 33649539 PMCID: PMC7917374 DOI: 10.1038/s41431-021-00831-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/09/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Germline variants in genes involved in SARS-CoV-2 cell entry and in host innate immune responses to viruses may influence the susceptibility to infection. This study used whole-genome analyses of lung tissue to identify polymorphisms acting as expression quantitative trait loci (eQTLs) for 60 genes of relevance to SARS-CoV-2 infection susceptibility. The expression of genes with confirmed or possible roles in viral entry-replication and in host antiviral responses was studied in the non-diseased lung tissue of 408 lung adenocarcinoma patients. No gene was differently expressed by sex, but APOBEC3H levels were higher and PARP12 levels lower in older individuals. A total of 125 cis-eQTLs (false discovery rate < 0.05) was found to modulate mRNA expression of 15 genes (ABO, ANPEP, AP2A2, APOBEC3D, APOBEC3G, BSG, CLEC4G, DDX58, DPP4, FURIN, FYCO1, RAB14, SERINC3, TRIM5, ZCRB1). eQTLs regulating ABO and FYCO1 were found in COVID-19 susceptibility loci. No trans-eQTLs were identified. Genetic control of the expression of these 15 genes, which encode putative virus receptors, proteins required for vesicle trafficking, enzymes that interfere with viral replication, and other restriction factors, may underlie interindividual differences in risk or severity of infection with SARS-CoV-2 or other viruses.
Collapse
Affiliation(s)
- Chiara E Cotroneo
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nunzia Mangano
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso A Dragani
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, MI, Italy
| |
Collapse
|
44
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
45
|
Cheng AZ, Moraes SN, Shaban NM, Fanunza E, Bierle CJ, Southern PJ, Bresnahan WA, Rice SA, Harris RS. APOBECs and Herpesviruses. Viruses 2021; 13:v13030390. [PMID: 33671095 PMCID: PMC7998176 DOI: 10.3390/v13030390] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
The apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of DNA cytosine deaminases provides a broad and overlapping defense against viral infections. Successful viral pathogens, by definition, have evolved strategies to escape restriction by the APOBEC enzymes of their hosts. HIV-1 and related retroviruses are thought to be the predominant natural substrates of APOBEC enzymes due to obligate single-stranded (ss)DNA replication intermediates, abundant evidence for cDNA strand C-to-U editing (genomic strand G-to-A hypermutation), and a potent APOBEC degradation mechanism. In contrast, much lower mutation rates are observed in double-stranded DNA herpesviruses and the evidence for APOBEC mutation has been less compelling. However, recent work has revealed that Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and herpes simplex virus-1 (HSV-1) are potential substrates for cellular APOBEC enzymes. To prevent APOBEC-mediated restriction these viruses have repurposed their ribonucleotide reductase (RNR) large subunits to directly bind, inhibit, and relocalize at least two distinct APOBEC enzymes—APOBEC3B and APOBEC3A. The importance of this interaction is evidenced by genetic inactivation of the EBV RNR (BORF2), which results in lower viral infectivity and higher levels of C/G-to-T/A hypermutation. This RNR-mediated mechanism therefore likely functions to protect lytic phase viral DNA replication intermediates from APOBEC-catalyzed DNA C-to-U deamination. The RNR-APOBEC interaction defines a new pathogen-host conflict that the virus must win in real-time for transmission and pathogenesis. However, partial losses over evolutionary time may also benefit the virus by providing mutational fuel for adaptation.
Collapse
Affiliation(s)
- Adam Z. Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.Z.C.); (R.S.H.)
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nadine M. Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elisa Fanunza
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Craig J. Bierle
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter J. Southern
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wade A. Bresnahan
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen A. Rice
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (S.N.M.); (N.M.S.); (E.F.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; (C.J.B.); (P.J.S.); (W.A.B.); (S.A.R.)
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (A.Z.C.); (R.S.H.)
| |
Collapse
|
46
|
Shi G, Kenney AD, Kudryashova E, Zani A, Zhang L, Lai KK, Hall‐Stoodley L, Robinson RT, Kudryashov DS, Compton AA, Yount JS. Opposing activities of IFITM proteins in SARS-CoV-2 infection. EMBO J 2021; 40:e106501. [PMID: 33270927 PMCID: PMC7744865 DOI: 10.15252/embj.2020106501] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, using gain- and loss-of-function approaches. Mechanistically, SARS-CoV-2 restriction occurred independently of IFITM3 S-palmitoylation, indicating a restrictive capacity distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the IFITM3 endocytosis-promoting YxxФ motif converted human IFITM3 into an enhancer of SARS-CoV-2 infection, and cell-to-cell fusion assays confirmed the ability of endocytic mutants to enhance Spike-mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which increases plasma membrane fusion versus endosome fusion of SARS-CoV-2, attenuated IFITM3 restriction and converted amphipathic helix mutants into infection enhancers. In sum, we uncover new pro- and anti-viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity-based mechanisms used for endosomal SARS-CoV-2 restriction.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication ProgramCenter for Cancer ResearchNational Cancer InstituteFrederickMDUSA
| | - Adam D Kenney
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOHUSA
- Viruses and Emerging Pathogens ProgramInfectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Elena Kudryashova
- Viruses and Emerging Pathogens ProgramInfectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOHUSA
| | - Ashley Zani
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOHUSA
- Viruses and Emerging Pathogens ProgramInfectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Lizhi Zhang
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOHUSA
- Viruses and Emerging Pathogens ProgramInfectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Kin Kui Lai
- HIV Dynamics and Replication ProgramCenter for Cancer ResearchNational Cancer InstituteFrederickMDUSA
| | - Luanne Hall‐Stoodley
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOHUSA
| | - Richard T Robinson
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOHUSA
| | - Dmitri S Kudryashov
- Viruses and Emerging Pathogens ProgramInfectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Chemistry and BiochemistryThe Ohio State UniversityColumbusOHUSA
| | - Alex A Compton
- HIV Dynamics and Replication ProgramCenter for Cancer ResearchNational Cancer InstituteFrederickMDUSA
| | - Jacob S Yount
- Department of Microbial Infection and ImmunityThe Ohio State University College of MedicineColumbusOHUSA
- Viruses and Emerging Pathogens ProgramInfectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
47
|
Mourier T, Sadykov M, Carr MJ, Gonzalez G, Hall WW, Pain A. Host-directed editing of the SARS-CoV-2 genome. Biochem Biophys Res Commun 2021; 538:35-39. [PMID: 33234239 PMCID: PMC7643664 DOI: 10.1016/j.bbrc.2020.10.092] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
The extensive sequence data generated from SARS-CoV-2 during the 2020 pandemic has facilitated the study of viral genome evolution over a brief period of time. This has highlighted instances of directional mutation pressures exerted on the SARS-CoV-2 genome from host antiviral defense systems. In this brief review we describe three such human defense mechanisms, the apolipoprotein B mRNA editing catalytic polypeptide-like proteins (APOBEC), adenosine deaminase acting on RNA proteins (ADAR), and reactive oxygen species (ROS), and discuss their potential implications on SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Tobias Mourier
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia.
| | - Mukhtar Sadykov
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia
| | - Michael J Carr
- National Virus Reference Laboratory (NVRL), School of Medicine, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland; Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020, Japan
| | - Gabriel Gonzalez
- National Virus Reference Laboratory (NVRL), School of Medicine, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland; Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020, Japan
| | - William W Hall
- National Virus Reference Laboratory (NVRL), School of Medicine, University College Dublin, Belfield, D04 V1W8, Dublin, Ireland; Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020, Japan; Global Virus Network (GVN), 801 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah, 23955-6900, Saudi Arabia; Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
48
|
Luo X, Wang X, Gao Y, Zhu J, Liu S, Gao G, Gao P. Molecular Mechanism of RNA Recognition by Zinc-Finger Antiviral Protein. Cell Rep 2021; 30:46-52.e4. [PMID: 31914396 DOI: 10.1016/j.celrep.2019.11.116] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
Zinc-finger antiviral protein (ZAP) is a host antiviral factor that specifically restricts a wide range of viruses. ZAP selectively binds to CG-dinucleotide-enriched RNA sequences and recruits multiple RNA degradation machines to degrade target viral RNA. However, the molecular mechanism and structural basis for ZAP recognition of specific RNA are not clear. Here, we report the crystal structure of the ZAP N-terminal domain bound to a CG-rich single-stranded RNA, providing the molecular basis for its specific recognition of a CG dinucleotide and additional guanine and cytosine. The four zinc fingers of ZAP adopt a unique architecture and form extensive interactions with RNA. Mutations of both protein and RNA at the RNA-ZAP interacting surface reduce the in vitro binding affinity and cellular antiviral activity. This work reveals the molecular mechanism of ZAP recognition of specific target RNA and also provides insights into the mechanism by which ZAP coordinates downstream RNA degradation processes.
Collapse
Affiliation(s)
- Xiu Luo
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinlu Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yina Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingpeng Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songqing Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guangxia Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
49
|
Yang E, Li MMH. All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Front Immunol 2020; 11:605024. [PMID: 33362792 PMCID: PMC7756014 DOI: 10.3389/fimmu.2020.605024] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Interferon (IFN) signaling induces the expression of a wide array of genes, collectively referred to as IFN-stimulated genes (ISGs) that generally function to inhibit viral replication. RNA viruses are frequently targeted by ISGs through recognition of viral replicative intermediates and molecular features associated with viral genomes, or the lack of molecular features associated with host mRNAs. The ISGs reviewed here primarily inhibit viral replication in an RNA-centric manner, working to sense, degrade, or repress expression of viral RNA. This review focuses on dissecting how these ISGs exhibit multiple antiviral mechanisms, often through use of varied co-factors, highlighting the complexity of the type I IFN response. Specifically, these ISGs can mediate antiviral effects through viral RNA degradation, viral translation inhibition, or both. While the OAS/RNase L pathway globally degrades RNA and arrests translation, ISG20 and ZAP employ targeted RNA degradation and translation inhibition to block viral replication. Meanwhile, SHFL targets translation by inhibiting -1 ribosomal frameshifting, which is required by many RNA viruses. Finally, a number of E3 ligases inhibit viral transcription, an attractive antiviral target during the lifecycle of negative-sense RNA viruses which must transcribe their genome prior to translation. Through this review, we aim to provide an updated perspective on how these ISGs work together to form a complex network of antiviral arsenals targeting viral RNA processes.
Collapse
Affiliation(s)
- Emily Yang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melody M. H. Li
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
50
|
Host Cell Restriction Factors of Paramyxoviruses and Pneumoviruses. Viruses 2020; 12:v12121381. [PMID: 33276587 PMCID: PMC7761617 DOI: 10.3390/v12121381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
The paramyxo- and pneumovirus family includes a wide range of viruses that can cause respiratory and/or systemic infections in humans and animals. The significant disease burden of these viruses is further exacerbated by the limited therapeutics that are currently available. Host cellular proteins that can antagonize or limit virus replication are therefore a promising area of research to identify candidate molecules with the potential for host-targeted therapies. Host proteins known as host cell restriction factors are constitutively expressed and/or induced in response to virus infection and include proteins from interferon-stimulated genes (ISGs). Many ISG proteins have been identified but relatively few have been characterized in detail and most studies have focused on studying their antiviral activities against particular viruses, such as influenza A viruses and human immunodeficiency virus (HIV)-1. This review summarizes current literature regarding host cell restriction factors against paramyxo- and pneumoviruses, on which there is more limited data. Alongside discussion of known restriction factors, this review also considers viral countermeasures in overcoming host restriction, the strengths and limitations in different experimental approaches in studies reported to date, and the challenges in reconciling differences between in vitro and in vivo data. Furthermore, this review provides an outlook regarding the landscape of emerging technologies and tools available to study host cell restriction factors, as well as the suitability of these proteins as targets for broad-spectrum antiviral therapeutics.
Collapse
|