1
|
Bu Y, Burks J, Yang K, Prince J, Borna A, Coe CL, Simmons A, Tu XM, Baker D, Kimball D, Rao R, Shah V, Huang M, Schwindt P, Coleman TP, Lerman I. Non-invasive ventral cervical magnetoneurography as a proxy of in vivo lipopolysaccharide-induced inflammation. Commun Biol 2024; 7:893. [PMID: 39075164 PMCID: PMC11286963 DOI: 10.1038/s42003-024-06435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Maintenance of autonomic homeostasis is continuously calibrated by sensory fibers of the vagus nerve and sympathetic chain that convey compound action potentials (CAPs) to the central nervous system. Lipopolysaccharide (LPS) intravenous challenge reliably elicits a robust inflammatory response that can resemble systemic inflammation and acute endotoxemia. Here, we administered LPS intravenously in nine healthy subjects while recording ventral cervical magnetoneurography (vcMNG)-derived CAPs at the rostral Right Nodose Ganglion (RNG) and the caudal Right Carotid Artery (RCA) with optically pumped magnetometers (OPM). We observed vcMNG RNG and RCA neural firing rates that tracked changes in TNF-α levels in the systemic circulation. Further, endotype subgroups based on high and low IL-6 responders segregate RNG CAP frequency (at 30-120 min) and based on high and low IL-10 response discriminate RCA CAP frequency (at 0-30 min). These vcMNG tools may enhance understanding and management of the neuroimmune axis that can guide personalized treatment based on an individual's distinct endophenotype.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jamison Burks
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Yang
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Prince
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amir Borna
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan Simmons
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dewleen Baker
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vishal Shah
- Quspin Laboratory Head Quarters, Boulder, CO, 80305, USA
| | - Mingxiong Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peter Schwindt
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Todd P Coleman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Chmielarz M, Sobieszczańska B, Środa-Pomianek K. Metabolic Endotoxemia: From the Gut to Neurodegeneration. Int J Mol Sci 2024; 25:7006. [PMID: 39000116 PMCID: PMC11241432 DOI: 10.3390/ijms25137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Metabolic endotoxemia is a severe health problem for residents in developed countries who follow a Western diet, disrupting intestinal microbiota and the whole organism's homeostasis. Although the effect of endotoxin on the human immune system is well known, its long-term impact on the human body, lasting many months or even years, is unknown. This is due to the difficulty of conducting in vitro and in vivo studies on the prolonged effect of endotoxin on the central nervous system. In this article, based on the available literature, we traced the path of endotoxin from the intestines to the blood through the intestinal epithelium and factors promoting the development of metabolic endotoxemia. The presence of endotoxin in the bloodstream and the inflammation it induces may contribute to lowering the blood-brain barrier, potentially allowing its penetration into the central nervous system; although, the theory is still controversial. Microglia, guarding the central nervous system, are the first line of defense and respond to endotoxin with activation, which may contribute to the development of neurodegenerative diseases. We traced the pro-inflammatory role of endotoxin in neurodegenerative diseases and its impact on the epigenetic regulation of microglial phenotypes.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw University of Medicine, Chalubinskiego 3a, 50-368 Wroclaw, Poland
| |
Collapse
|
3
|
Sarmin N, Roknuzzaman ASM, Sarker R, -Or-Rashid M, Qusar MS, Bachar SC, Kabir ER, Islam MR, Al Mahmud Z. Association of interleukin-2 and interleukin-10 with the pathophysiology and development of generalized anxiety disorder: a case-control study. BMC Psychiatry 2024; 24:462. [PMID: 38902708 PMCID: PMC11188505 DOI: 10.1186/s12888-024-05911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is a devastating mental health condition characterized by constant, uncontrolled worrying. Recent hypotheses indicate that pro-inflammatory cytokines and chemokines are potential contributors to the pathogenesis of GAD. Here, we aimed to assess the role of interleukin-2 (IL-2) and interleukin-10 (IL-10) in the pathophysiology and development of GAD. METHODS This study recruited 50 GAD patients diagnosed according to the DSM-5 criteria and 38 age-sex-matched healthy controls (HCs). A qualified psychiatrist evaluated all study subjects. The socio-demographic and clinical characteristics of the study population were determined using pre-structured questionnaires or interviews, and cytokine serum levels were estimated using commercially available ELISA kits. RESULTS We observed reduced serum IL-10 levels in GAD patients compared to HCs (33.69 ± 1.37 pg/ml vs. 44.12 ± 3.16 pg/ml). Also, we observed a significant negative correlation between altered IL-10 levels and GAD-7 scores (r=-0.315, p = 0.039). Moreover, IL-10 serum measurement exhibited good predictive value in receiver operating characteristics (ROC) analysis with an area under the curve (AUC) value of 0.793 (p < 0.001) with 80.65% sensitivity and 62.79% specificity at a cutoff value of 33.93 pg/ml. Conversely, we noticed elevated serum IL-2 levels in GAD patients than in HCs (14.81 ± 2.88 pg/ml vs. 8.08 ± 1.1 pg/ml); however, it failed to maintain any significant association with GAD-7 scores, implying that IL-2 might not be involved in GAD pathogenesis. The lower AUC value (0.640; p > 0.05) exhibited by IL-2 serum measurement in ROC analysis further supported that IL-2 might not be associated with GAD. CONCLUSION This study provides new insights into the complex interplay between anti-inflammatory cytokines and GAD pathogenesis. Based on the present findings, we can assume that IL-10 but not IL-2 may be associated with the pathophysiology and development of GAD. However, further research with a larger population size and longitudinal design is required to confirm the potential diagnostic efficacy of IL-10.
Collapse
Affiliation(s)
- Nisat Sarmin
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A S M Roknuzzaman
- Department of Pharmacy, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Rapty Sarker
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mamun -Or-Rashid
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mma Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahabagh, Dhaka, 1000, Bangladesh
| | - Sitesh Chandra Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Eva Rahman Kabir
- School of Pharmacy, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka, 1212, Bangladesh
| | - Md Rabiul Islam
- School of Pharmacy, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka, 1212, Bangladesh.
| | - Zobaer Al Mahmud
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
4
|
Antici EE, Kuhlman KR, Treanor M, Craske MG. Salivary CRP predicts treatment response to virtual reality exposure therapy for social anxiety disorder. Brain Behav Immun 2024; 118:300-309. [PMID: 38467380 DOI: 10.1016/j.bbi.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/17/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) places a profound burden on public health and individual wellbeing. Systemic inflammation may be important to the onset and maintenance of SAD, and anti-inflammatory treatments have shown promise in relieving symptoms of SAD. In the present study, we conducted secondary analyses on data from a randomized clinical trial to determine whether C-reactive protein (CRP) concentrations and social anxiety symptoms decreased over the course of virtual reality exposure therapy, and whether changes in social anxiety symptoms as a function of treatment varied as a function of CRP. METHOD Adult participants (N = 78) with a diagnosis of SAD (59 % female) were randomized to receive exposure therapy alone, or exposure therapy supplemented with scopolamine. Social anxiety symptoms, salivary CRP, and subjective units of distress were measured across three exposure therapy sessions, at a post-treatment extinction retest, and at a 1-month follow-up. RESULTS CRP decreased over the course of treatment, b = -0.03 (SE = 0.01), p =.02 95 %CI [-0.06, -0.004], as did all social anxiety symptom domains and subjective distress. Higher CRP was associated with greater decreases from pre-treatment to 1-month follow-up in fear, b = -0.45 (SE = 0.15), p =.004 95 %CI [-0.74, -0.15], and avoidance, b = -0.62 (SE = 0.19), p =.002 95 %CI [-1.01, -0.23], and in-session subjective distress from pre-treatment to post-treatment, b = -0.42 (SE = 0.21), p =.05 95 %CI [-0.83, -0.001]. However, declines in CRP were not correlated with declines in fear, r = -0.07, p =.61, or avoidance, r = -0.10, p =.49, within-persons. CONCLUSIONS Virtual reality exposure therapy may be associated with an improvement in systemic inflammation in patients with severe SAD. Pre-treatment CRP may also be of value in predicting which patients stand to benefit the most from this treatment.
Collapse
Affiliation(s)
- Elizabeth E Antici
- Department of Psychological Science, School of Social Ecology, University of California, Irvine, Irvine, CA, USA.
| | - Kate R Kuhlman
- Department of Psychological Science, School of Social Ecology, University of California, Irvine, Irvine, CA, USA; Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Treanor
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Spangler DP, Li EY, Revi GS, Kubota JT, Cloutier J, Lauharatanahirun N. The psychological costs of behavioral immunity following COVID-19 diagnosis. Sci Rep 2024; 14:9899. [PMID: 38688942 PMCID: PMC11061184 DOI: 10.1038/s41598-024-59408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Prior COVID-19 infection may elevate activity of the behavioral immune system-the psychological mechanisms that foster avoidance of infection cues-to protect the individual from contracting the infection in the future. Such "adaptive behavioral immunity" may come with psychological costs, such as exacerbating the global pandemic's disruption of social and emotional processes (i.e., pandemic disruption). To investigate that idea, we tested a mediational pathway linking prior COVID infection and pandemic disruption through behavioral immunity markers, assessed with subjective emotional ratings. This was tested in a sample of 734 Mechanical Turk workers who completed study procedures online during the global pandemic (September 2021-January 2022). Behavioral immunity markers were estimated with an affective image rating paradigm. Here, participants reported experienced disgust/fear and appraisals of sickness/harm risk to images varying in emotional content. Participants self-reported on their previous COVID-19 diagnosis history and level of pandemic disruption. The findings support the proposed mediational pathway and suggest that a prior COVID-19 infection is associated with broadly elevated threat emotionality, even to neutral stimuli that do not typically elicit threat emotions. This elevated threat emotionality was in turn related to disrupted socioemotional functioning within the pandemic context. These findings inform the psychological mechanisms that might predispose COVID survivors to mental health difficulties.
Collapse
Affiliation(s)
- Derek P Spangler
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA.
| | - Evaline Y Li
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Gabriela S Revi
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Jennifer T Kubota
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
- Department of Political Science and International Relations, University of Delaware, Newark, Delaware, USA
| | - Jasmin Cloutier
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Nina Lauharatanahirun
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Danka MN, Steptoe A, Iob E. Physical activity, low-grade inflammation, and psychological responses to the COVID-19 pandemic among older adults in England. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.14.24305797. [PMID: 38699297 PMCID: PMC11065037 DOI: 10.1101/2024.04.14.24305797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mental health responses to the COVID-19 pandemic have been widely studied, but less is known about the potentially protective role of physical activity (PA) and the impact of low-grade inflammation. Using a sample of older adults from England, this study tested (1) if pre-pandemic PA and its changes during the pandemic were associated with mental health responses; (2) if older adults with low-grade inflammation experienced greater increases in depression and anxiety, compared to pre-pandemic levels; (3) if PA attenuated the association between inflammation and depression/anxiety. The study used data from the English Longitudinal Study of Ageing, a cohort study following a national sample aged 50+. Information on mental health and PA were collected before the pandemic (2016/17 and 2018/19) and during November and December 2020. Inflammation was ascertained using pre-pandemic C-reactive protein (CRP). Analyses were adjusted for sociodemographic and health-related factors and pre-pandemic mental health. Increasing PA from before to during the pandemic was linked to reduced odds of depression (OR = 0.955, 95%CI [0.937, 0.974]) and anxiety (OR = 0.954, 95%CI [0.927; 0.982]). Higher pre-pandemic PA was associated with reduced odds of depression (OR = 0.964, 95%CI [0.948, 0.981]) and anxiety (OR = 0.976, 95%CI [0.953, 1.000]), whereas elevated CRP was associated with 1.343 times higher odds of depression (95%CI [1.100, 1.641]). PA did not attenuate the inflammation-depression association. The findings suggest that PA may contribute to psychological resilience among older adults, independently of inflammation. Further research is needed to explore the psychobiological pathways underlying this protective mechanism.
Collapse
Affiliation(s)
- Martin N. Danka
- Centre for Longitudinal Studies, University College London, UK
- Department of Behavioural Science and Health, University College London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, University College London, UK
| | - Eleonora Iob
- Department of Behavioural Science and Health, University College London, UK
| |
Collapse
|
7
|
Iyer CS, Schrock JM, Johnson A, Gorbach PM, Siminski S, Newcomb ME, McDade TW, Mustanski B. Infectious Illness Symptoms Are Associated with Elevated Anxiety in a Sample of Sexual and Gender Minority Young Adults During the COVID-19 Pandemic. Int J Behav Med 2024:10.1007/s12529-023-10251-5. [PMID: 38241000 PMCID: PMC11258203 DOI: 10.1007/s12529-023-10251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 07/20/2024]
Abstract
BACKGROUND To evaluate whether infectious illness symptoms (IIS) are associated with generalized anxiety symptoms during the COVID-19 pandemic in sexual/gender (SGM) minority young adults assigned male at birth (AMAB). METHOD Four hundred eighteen participants (median age = 25; range, 20-40) were recruited through RADAR, an ongoing Chicago-based cohort study of SGM-AMAB between September 2020 and February 2021. Participants completed online surveys. A subset (n = 145) provided dried blood spot samples to assess SARS-CoV-2 serostatus. RESULTS One hundred twenty participants (28.7%) had GAD-7 scores of 10 or greater, which indicates generalized anxiety symptoms that may be clinically significant. In a binomial logistic regression model adjusting age, gender identity, race/ethnicity, substance use, and HIV status, the authors found that having a higher IIS count since March 1, 2020, was associated with greater odds of having a GAD-7 score of 10 or greater (OR = 1.14; 95% CI, 1.04, 1.25; P = 0.007). This effect was more pronounced in a binomial logistic regression model adjusting for the same covariates but using current IIS count as the independent variable (OR = 1.39; 95% CI, 1.13, 1.74; P = 0.002). CONCLUSION Among SGM-AMAB young adults, those who experienced ISS reported higher scores on the GAD-7, a widely used and validated screening measure for generalized anxiety symptoms. These findings highlight the importance of screening for anxiety disorders when patients present with IIS in clinical settings and psychobehavioral health follow-ups when indicated.
Collapse
Affiliation(s)
- Chitra S Iyer
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, 625 N Michigan Ave, Suite 14, Chicago, IL, 60611, USA
| | - Joshua M Schrock
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, 625 N Michigan Ave, Suite 14, Chicago, IL, 60611, USA
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
| | - Anthony Johnson
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, 625 N Michigan Ave, Suite 14, Chicago, IL, 60611, USA
| | - Pamina M Gorbach
- Department of Epidemiology, University of California, Los Angeles, 650 Charles E Young Dr S, Room 41-295, Los Angeles, CA, 90095, USA
| | - Sue Siminski
- Frontier Science, 4033 Maple Road, Amherst, NY, 14226, USA
| | - Michael E Newcomb
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, 625 N Michigan Ave, Suite 14, Chicago, IL, 60611, USA
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, 633 N. St Clair Street, 19th Floor, Chicago, IL, 60611, USA
| | - Thomas W McDade
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL, 60208, USA
- Institute for Policy Research, Northwestern University, 2040 Sheridan Road, Evanston, IL, 60208, USA
| | - Brian Mustanski
- Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, 625 N Michigan Ave, Suite 14, Chicago, IL, 60611, USA.
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, 633 N. St Clair Street, 19th Floor, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
9
|
Mazeraud A, Turc G, Sivanandamoorthy S, Porcher R, Stoclin A, Antona M, Polito A, Righy C, Bozza FAB, Siami S, Sharshar T. Association of Lack of Fear of Dying With New Organ Failure: Results of a Multicenter Prospective Cohort Study. Am J Crit Care 2024; 33:36-44. [PMID: 38161174 DOI: 10.4037/ajcc2024517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Patients' anxiety on intensive care unit (ICU) admission is associated with subsequent deterioration. OBJECTIVE To assess whether patients' fears/anxiety are predictive of new organ failure within 7 days of ICU admission. METHODS In a prospective 3-center cohort study of non-comatose patients without delirium or invasive mechanical ventilation, 9 specific fears were evaluated through yes/no questions. Illness severity was assessed using the Simplified Acute Physiology Score II (SAPS II) and the Sequential Organ Failure Assessment (SOFA). Intensity of acute and chronic anxiety was assessed with the state and trait components of the State-Trait Anxiety Inventory (STAI). Patients were followed up for 7 days. RESULTS From April 2014 to December 2017, 373 patients (median [IQR] age, 63 [48-74] years; 152 [40.8%] women; median (IQR) SAPS II, 27 [19-37]) were included. Feelings of vulnerability and fear of dying were reported by 203 (54.4%) and 172 (46.1%) patients, respectively. The STAI-State score was 40 or greater in 192 patients (51.5%). Ninety-four patients (25.2%) had new organ failure. Feelings of vulnerability (odds ratio, 1.96 [95% CI, 1.12-3.43]; P=.02) and absence of fear of dying (odds ratio, 2.38 [95% CI, 1.37-4.17]; P=.002) were associated with new organ failure after adjustment for STAI-State score (≥40), SAPS II, and SOFA score. CONCLUSION Absence of fear of dying is associated with new organ failure within the first 7 days after ICU admission. Fear of dying may protect against subsequent deterioration by mobilizing patients' homeostatic resources. ClinicalTrials.gov Identifier: NCT02355626.
Collapse
Affiliation(s)
- Aurélien Mazeraud
- Aurélien Mazeraud is an intensivist/anesthesiologist, GHU Paris Psychiatrie et Neurosciences Pole Neuro-Anesthesiology and Intensive Care and Université de Paris, Paris, France
| | - Guillaume Turc
- Guillaume Turc is a professor, Department of Neurology, GHU Paris Psychiatrie et Neurosciences, Université de Paris, Paris, France; research director, INSERM U1266; and member of the FHU NeuroVasc
| | - Sivanthiny Sivanandamoorthy
- Sivanthiny Sivanandamoorthy is an intensivist, General Intensive Care Unit, Sud-Essonne Hospital, Etampes, France
| | - Raphaël Porcher
- Raphaël Porcher is a professor of biostatistics, Center for Clinical Epidemiology, Assistance Publique Hôpitaux de Paris, Hôtel Dieu Hospital, Université de Paris, Paris, France
| | - Annabelle Stoclin
- Annabelle Stoclin is an intensivist, General Intensive Care Unit, Institut Gustave Roussy Hospital, Villejuif, France
| | - Marion Antona
- Marion Antona is an intensivist/anesthesiologist, General Intensive Care Unit, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Université de Paris Saclay, Garches, France
| | - Andrea Polito
- Andrea Polito is an intensivist/anesthesiologist, General Intensive Care Unit, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, Université de Paris Saclay, Garches, France
| | - Cassia Righy
- Cassia Righy is an intensivist and internal medicine practitioner, D'Or Institute of Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Fernando A B Bozza
- Fernando A. B. Bozza is an internist and research director, D'Or Institute of Research and Education (IDOR) and Laboratory of Critical Care, National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro, Brazil
| | - Shidasp Siami
- Shidasp Siami is an intensivist, General Intensive Care Unit, Sud-Essonne Hospital, Etampes, France
| | - Tarek Sharshar
- Tarek Sharshar is a professor of intensive care medicine, GHU Paris Psychiatrie et Neurosciences, Pole Neuro-Anesthesiology and Intensive Care and Université de Paris, Paris, France
| |
Collapse
|
10
|
Oates M, Sharma AA, Nenert R, Mueller C, Szaflarski JP. An exploratory study of brain temperature and choline abnormalities in temporal lobe epilepsy patients with depressive symptoms. Epilepsia Open 2023; 8:1541-1555. [PMID: 37813409 PMCID: PMC10690665 DOI: 10.1002/epi4.12838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE Epilepsy and depression share neurobiological origins, and evidence suggests a possible bidirectional relationship that remains poorly understood. This exploratory, cross-sectional study aimed to investigate this relationship by employing magnetic resonance spectroscopic imaging (MRSI) and thermometry (MRSI-t) in patients with temporal lobe epilepsy (TLE) with comorbid depressive symptoms and control participants. This is the first study to combine MRSI and MRSI-t to examine brain temperature and choline abnormalities in regions implicated in seizure onset and depression. METHODS Twenty-six patients with TLE and 26 controls completed questionnaires and underwent imaging at 3T. Volumetric echo-planar MRSI/MRSI-t data were processed within the Metabolite Imaging and Data Analysis System (MIDAS). Choline (CHO) was quantified as a ratio over creatine (CRE; CHO/CRE). Brain temperature (TCRE ) was calculated based on the chemical shift difference of H2 O relative to CRE's stable location on the ppm spectrum. The Hospital Anxiety and Depression Scale measured anxiety and depressive symptoms. The Chalfont Seizure Severity Scale measured seizure severity in patients with TLE. Two sets of voxelwise independent sample t tests examined group differences in CHO/CRE and TCRE maps. Voxel-based multimodal canonical correlation analysis (mCCA) linked both datasets to investigate if, how, and where CHO/CRE and TCRE abnormalities were correlated in TLE participants and controls. RESULTS Compared to controls, patients with TLE reported more depressive symptoms (P = 0.04) and showed CHO/CRE and TCRE elevations in left temporal and bilateral frontal regions implicated in seizure onset and depressive disorders (pFWE < 0.05). For the TLE group, CHO/CRE levels in temporal and frontal cortices were associated with elevated TCRE in bilateral frontal and temporal gyri (r = 0.96), and decreased TCRE in bilateral fronto-parietal regions (r = -0.95). SIGNIFICANCE Abnormalities in TCRE and CHO/CRE were observed in seizure-producing areas and in regions implicated in depression. These preliminary findings suggest that common metabolic changes may underlie TLE and depression. Our results suggest further investigations into the proposed bidirectional mechanisms underlying this relationship are warranted.
Collapse
Affiliation(s)
- Mina Oates
- Department of NeurologyUniversity of Alabama at Birmingham (UAB)BirminghamAlabamaUSA
- Present address:
Haverford CollegeHaverfordPennsylvaniaUSA
| | - Ayushe A. Sharma
- Department of NeurologyUniversity of Alabama at Birmingham (UAB)BirminghamAlabamaUSA
| | - Rodolphe Nenert
- Department of NeurologyUniversity of Alabama at Birmingham (UAB)BirminghamAlabamaUSA
| | - Christina Mueller
- Department of NeurologyUniversity of Alabama at Birmingham (UAB)BirminghamAlabamaUSA
| | - Jerzy P. Szaflarski
- Department of NeurologyUniversity of Alabama at Birmingham (UAB)BirminghamAlabamaUSA
- Department of NeurobiologyUniversity of Alabama at Birmingham (UAB)BirminghamAlabamaUSA
- Department of NeurosurgeryUniversity of Alabama at Birmingham (UAB)BirminghamAlabamaUSA
- UAB Epilepsy Center, University of Alabama at Birmingham (UAB)BirminghamAlabamaUSA
| |
Collapse
|
11
|
Oppegaard K, Kober KM, Harris C, Shin J, Morse L, Calvo-Schimmel A, Paul SM, Cooper BA, Conley YP, Hammer M, Dokiparthi V, Levine JD, Miaskowski C. Anxiety in oncology outpatients is associated with perturbations in pathways identified in anxiety focused network pharmacology research. Support Care Cancer 2023; 31:727. [PMID: 38012456 PMCID: PMC10682221 DOI: 10.1007/s00520-023-08196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Evaluate for perturbed signaling pathways associated with subgroups of patients with low versus high levels of state anxiety. These pathways were compared to the pathways identified across eight network pharmacology studies of the anxiolytic effect(s) of a variety of compounds. METHODS Adult outpatients had a diagnosis of breast, gastrointestinal, gynecological, or lung cancer; had received chemotherapy within the preceding four weeks; and were scheduled to receive at least two additional cycles of chemotherapy. Latent profile analysis was used to identify subgroups of patients with distinct anxiety profiles based on Spielberger State Anxiety Inventory scores that were obtained six times over two cycles of chemotherapy. Blood samples were processed using RNA sequencing (i.e., RNA-seq sample, n = 244) and microarray (i.e., microarray sample; n = 256) technologies. Pathway perturbations were assessed using pathway impact analysis. Fisher's combined probability method was used to combine test results using a false discovery rate of 0.01. RESULTS In the RNA-seq sample, 62.3% and 37.7% of the patients were in the low- and high-anxiety classes, respectively. In the microarray sample, 61.3% and 38.7% were in the low and high-anxiety classes, respectively. Forty-one perturbed signaling pathways were identified. Eight of these pathways were common to those identified in the network pharmacology studies. CONCLUSIONS Findings increase our knowledge of the molecular mechanisms that underlie anxiety in patients receiving chemotherapy. This study provides initial insights into how anxiety in patients with cancer may share common mechanisms with anxiety in patients with other clinical conditions.
Collapse
Affiliation(s)
- Kate Oppegaard
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA
| | - Carolyn Harris
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joosun Shin
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA
| | - Lisa Morse
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA
| | - Alejandra Calvo-Schimmel
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA
| | - Steven M Paul
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA
| | - Bruce A Cooper
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Vasuda Dokiparthi
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, 2 Koret Way - N631Y, San Francisco, CA, USA.
- School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
12
|
Martucci KT, Karshikoff B, Mackey SC. Links between brain neuroimaging and blood inflammatory markers in urological chronic pelvic pain syndrome. Physiol Behav 2023; 271:114358. [PMID: 37769862 PMCID: PMC10599305 DOI: 10.1016/j.physbeh.2023.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Urological chronic pelvic pain syndrome (UCPPS) is a debilitating painful condition with unclear etiology. Prior researchers have indicated that compared to healthy controls, patients with UCPPS demonstrated altered brain activity. Researchers have also shown that in UCPPS, several blood inflammatory markers relate to clinical variables of pain, fatigue, and pain widespreadness. However, how altered brain function in patients with UCPPS relates to blood inflammation remains unknown. To extend and connect prior findings of altered brain function and inflammatory factors in UCPPS, we conducted a secondary analysis of data from a cohort of UCPPS patients (N = 29) and healthy controls (N = 31) who provided both neuroimaging and blood data (National Institute of Health MAPP Research Network publicly available dataset). In our present study, we aimed to evaluate relationships between a priori-defined brain neuroimaging markers and inflammatory factors of interest and their relationships to pain-psychological variables. We hypothesized that two brain alterations of interest (i.e., PCC - left hippocampus functional connectivity and PCC - bilateral amygdala functional connectivity) would be correlated with four cytokine markers of interest: interleukin (IL) - 6, tumor necrosis factor-alpha (TNF-a), IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF). In the UCPPS cohort, we identified a significant PCC - left hippocampus functional connectivity relationship with IL-6 (p = 0.0044). Additionally, in the UCPPS cohort, we identified a PCC - amygdala functional connectivity relationship with GM-CSF which did not meet our model's threshold for statistical significance (p = 0.0665). While these data are preliminary and cross-sectional, our findings suggest connections between brain function and levels of low-grade systemic inflammation in UCPPS. Thus, while further study is needed, our data indicate the potential for advancing the understanding of how brain functional circuits may relate to clinical symptoms and systemic inflammation.
Collapse
Affiliation(s)
- Katherine T Martucci
- Human Affect and Pain Neuroscience Laboratory, Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Bianka Karshikoff
- UiS Biopsychology Research Group, Department of Social Studies, Stavanger University, Stavanger, Norway; Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| | - Sean C Mackey
- Stanford Neuroscience and Pain Laboratory, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
13
|
Benson S, Karshikoff B. How Can Experimental Endotoxemia Contribute to Our Understanding of Pain? A Narrative Review. Neuroimmunomodulation 2023; 30:250-267. [PMID: 37797598 PMCID: PMC10619593 DOI: 10.1159/000534467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
The immune system and the central nervous system exchange information continuously. This communication is a prerequisite for adaptive responses to physiological and psychological stressors. While the implicate relationship between inflammation and pain is increasingly recognized in clinical cohorts, the underlying mechanisms and the possibilities for pharmacological and psychological approaches aimed at neuro-immune communication in pain are not fully understood yet. This calls for preclinical models which build a bridge from clinical research to laboratory research. Experimental models of systemic inflammation (experimental endotoxemia) in humans have been increasingly recognized as an approach to study the direct and causal effects of inflammation on pain perception. This narrative review provides an overview of what experimental endotoxemia studies on pain have been able to clarify so far. We report that experimental endotoxemia results in a reproducible increase in pain sensitivity, particularly for pressure and visceral pain (deep pain), which is reflected in responses of brain areas involved in pain processing. Increased levels of blood inflammatory cytokines are required for this effect, but cytokine levels do not always predict pain intensity. We address sex-dependent differences in immunological responses to endotoxin and discuss why these differences do not necessarily translate to differences in behavioral measures. We summarize psychological and cognitive factors that may moderate pain sensitization driven by immune activation. Together, studying the immune-driven changes in pain during endotoxemia offers a deeper mechanistic understanding of the role of inflammation in chronic pain. Experimental endotoxemia models can specifically help to tease out inflammatory mechanisms underlying individual differences, vulnerabilities, and comorbid psychological problems in pain syndromes. The model offers the opportunity to test the efficacy of interventions, increasing their translational applicability for personalized medical approaches.
Collapse
Affiliation(s)
- Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bianka Karshikoff
- Department of Social Studies, University of Stavanger, Stavanger, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
15
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
16
|
Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA. Liposaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berl) 2023; 240:647-671. [PMID: 36645464 DOI: 10.1007/s00213-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 μg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 μg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Maxine K Loh
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sean Schrank
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Madison Hanshaw
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandra C Ritger
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Naijila Dilosa
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joshua Finlay
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nicole C Ferrara
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA. .,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
17
|
Goldsmith DR, Bekhbat M, Mehta ND, Felger JC. Inflammation-Related Functional and Structural Dysconnectivity as a Pathway to Psychopathology. Biol Psychiatry 2023; 93:405-418. [PMID: 36725140 PMCID: PMC9895884 DOI: 10.1016/j.biopsych.2022.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Findings from numerous laboratories and across neuroimaging modalities have consistently shown that exogenous administration of cytokines or inflammatory stimuli that induce cytokines disrupts circuits and networks involved in motivation and motor activity, threat detection, anxiety, and interoceptive and emotional processing. While inflammatory effects on neural circuits and relevant behaviors may represent adaptive responses promoting conservation of energy and heightened vigilance during immune activation, chronically elevated inflammation may contribute to symptoms of psychiatric illnesses. Indeed, biomarkers of inflammation such as cytokines and acute phase reactants are reliably elevated in a subset of patients with unipolar or bipolar depression, anxiety-related disorders, and schizophrenia and have been associated with differential treatment responses and poor clinical outcomes. A growing body of literature also describes higher levels of endogenous inflammatory markers and altered, typically lower functional or structural connectivity within these circuits in association with transdiagnostic symptoms such as anhedonia and anxiety in psychiatric and at-risk populations. This review presents recent evidence that inflammation and its effects on the brain may serve as one molecular and cellular mechanism of dysconnectivity within anatomically and/or functionally connected cortical and subcortical regions in association with transdiagnostic symptoms. We also discuss the need to establish reproducible methods to assess inflammation-associated dysconnectivity in relation to behavior for use in translational studies or biomarker-driven clinical trials for novel pharmacological or behavioral interventions targeting inflammation or its effects on the brain.
Collapse
Affiliation(s)
- David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Neeti D Mehta
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
18
|
Rondepierre F, Tauveron-Jalenques U, Valette S, Mulliez A, D’Incan M, Lauron S, Jalenques I. Psychiatric symptomatology in skin-restricted lupus patients without axis I psychiatric disorders: A post-hoc analysis. PLoS One 2023; 18:e0282079. [PMID: 36857334 PMCID: PMC9977055 DOI: 10.1371/journal.pone.0282079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Skin-restricted lupus is a chronic inflammatory disease associated with high rates of depression and anxiety disorders. Patients without psychiatric disorders can experience anxiety and depressive symptoms at a subclinical level, which could be risk factors for progression towards psychiatric disorders. It was decided, therefore, to investigate the presence of specific symptoms in skin-restricted lupus patients without axis I psychiatric disorders and their impact on the occurrence of axis I psychiatric disorders during the study follow-up. METHODS Longitudinal data of 38 patients and 76 matched controls without active axis I psychiatric disorders from the LuPsy cohort were used. Depressive, neurovegetative, psychic and somatic anxiety symptom scores were established from the Montgomery-Asberg Depression Rating Scale (MADRS) and the Hamilton Anxiety Rating scale (HAMA). RESULTS None of the participants had any current active axis I psychiatric disorders but the patients had personality disorders more frequently and had received more past psychotropic treatments than the controls. They also had higher MADRS and HAMA scores than the controls, in particular neurovegetative, psychic anxiety and somatic symptoms scores. No dermatological factor tested was associated with these scores, whereas being a lupus patient was associated with higher neurovegetative and somatic symptoms scores, having a current personality disorder with higher depressive and neurovegetative scores and receiving more past psychotropic treatments with psychic anxiety and somatic symptoms scores. The occurrence of psychiatric disorders during the study follow-up was associated with an elevated psychic anxiety score at baseline and past psychotropic treatment but not with history of psychiatric disorder. LIMITATIONS The LuPsy cohort included a large number of patients with axis I psychiatric disorders, the sample without axis I psychiatric disorders is therefore limited. CONCLUSIONS We observed numerous psychiatric symptoms among the skin-restricted lupus patients. They should therefore receive special attention in the management of their subclinical symptoms before they progress towards full psychiatric disorders.
Collapse
Affiliation(s)
- Fabien Rondepierre
- CHU Clermont-Ferrand, Service de Psychiatrie de l’Adulte A et Psychologie Médicale, Clermont-Ferrand, France
| | - Urbain Tauveron-Jalenques
- Clermont Auvergne Université, CNRS, CHU Clermont-Ferrand, Service de Psychiatrie de l’Adulte A et Psychologie Médicale, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| | - Solène Valette
- Clermont Auvergne Université, CNRS, CHU Clermont-Ferrand, Service de Psychiatrie de l’Adulte A et Psychologie Médicale, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| | - Aurélien Mulliez
- CHU Clermont-Ferrand, Direction de la Recherche Clinique et de l’Innovation, Clermont-Ferrand, France
| | - Michel D’Incan
- Clermont Auvergne Université, INSERM, CHU Clermont-Ferrand, Service de Dermatologie, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| | - Sophie Lauron
- Clermont Auvergne Université, CNRS, CHU Clermont-Ferrand, Service de Psychiatrie de l’Adulte A et Psychologie Médicale, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| | - Isabelle Jalenques
- Clermont Auvergne Université, CNRS, CHU Clermont-Ferrand, Service de Psychiatrie de l’Adulte A et Psychologie Médicale, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand, France
| |
Collapse
|
19
|
Inflammatory Blood Signature Related to Common Psychological Comorbidity in Chronic Pain. Biomedicines 2023; 11:biomedicines11030713. [PMID: 36979692 PMCID: PMC10045222 DOI: 10.3390/biomedicines11030713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chronic pain is characterized by high psychological comorbidity, and diagnoses are symptom-based due to a lack of clear pathophysiological factors and valid biomarkers. We investigate if inflammatory blood biomarker signatures are associated with pain intensity and psychological comorbidity in a mixed chronic pain population. Eighty-one patients (72% women) with chronic pain (>6 months) were included. Patient reported outcomes were collected, and blood was analyzed with the Proseek Multiplex Olink Inflammation Panel (Bioscience Uppsala, Uppsala, Sweden), resulting in 77 inflammatory markers included for multivariate data analysis. Three subgroups of chronic pain patients were identified using an unsupervised principal component analysis. No difference between the subgroups was seen in pain intensity, but differences were seen in mental health and inflammatory profiles. Ten inflammatory proteins were significantly associated with anxiety and depression (using the Generalized Anxiety Disorder 7-item scale (GAD-7) and the Patient Health Questionnaire (PHQ-9): STAMBP, SIRT2, AXIN1, CASP-8, ADA, IL-7, CD40, CXCL1, CXCL5, and CD244. No markers were related to pain intensity. Fifteen proteins could differentiate between patients with moderate/high (GAD-7/PHQ-9 > 10) or mild/no (GAD-7/PHQ-9 < 10) psychological comorbidity. This study further contributes to the increasing knowledge of the importance of inflammation in chronic pain conditions and indicates that specific inflammatory proteins may be related to psychological comorbidity.
Collapse
|
20
|
Myers S, McCracken K, Buck DJ, Curtis JT, Davis RL. Anti-inflammatory actions of β-funaltrexamine in a mouse model of lipopolysaccharide-induced inflammation. Inflammopharmacology 2023; 31:349-358. [PMID: 36527567 DOI: 10.1007/s10787-022-01113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is involved in a wide range of brain disorders, thus there is great interest in identifying novel anti-inflammatory agents to include in therapeutic strategies. Our previous in vitro studies revealed that beta-funaltrexamine (β-FNA), a well-characterized selective mu-opioid receptor (MOR) antagonist, inhibits inflammatory signaling in human astroglial cells, albeit through an apparent MOR-independent mechanism. We also previously determined that lipopolysaccharide (LPS)-induced sickness behavior and neuroinflammation in mice are prevented by pretreatment with β-FNA. Herein we investigated the temporal importance of β-FNA treatment in this pre-clinical model of LPS-induced neuroinflammation. Adult, male C57BL/6J mice were administered an i.p. injection of LPS followed by treatment (i.p. injection) with β-FNA immediately or 4 h post-LPS. Sickness behavior was assessed using an open-field test, followed by assessment of inflammatory signaling in the brain, spleen, and plasma. Levels of inflammatory chemokines/cytokines (interferon γ-induced protein, CXCL10; monocyte chemotactic protein 1, CCL2; and interleukin-6, IL-6) in tissues were measured using an enzyme-linked immunosorbent assay and nuclear factor-kappa B (NFκB), p38 mitogen activated kinase (p38 MAPK), and glial fibrillary acidic protein (GFAP) expression were measured by western blot. LPS-induced sickness behavior and chemokine expression were inhibited more effectively when β-FNA treatment occurred immediately after LPS administration, as opposed to 4 h post-LPS; and β-FNA-mediated effects were time-dependent as evidenced by inhibition at 24 h, but not at 8 h. The inhibitory effects of β-FNA on chemokine expression were more evident in the brain versus the spleen or plasma. LPS-induced NFκB-p65 and p38 MAPK expression in the brain and spleen were inhibited at 8 and 24 h post-LPS. These findings extend our understanding of the anti-inflammatory effects of β-FNA and warrant further investigation into its therapeutic potential.
Collapse
Affiliation(s)
- Stephanie Myers
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Kelly McCracken
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Daniel J Buck
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - J Thomas Curtis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Randall L Davis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, 74107, USA.
| |
Collapse
|
21
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
22
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
23
|
Ma Q, Zhang FB, Yao ES, Pan S. Neutrophilic granulocyte percentage is associated with anxiety in Chinese hospitalized heart failure patients. BMC Cardiovasc Disord 2022; 22:494. [PMID: 36404328 PMCID: PMC9677905 DOI: 10.1186/s12872-022-02940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In patients with heart failure, anxiety disorder is common and associated with adverse prognosis. This study intended to find more confounding factors of Chinese heart failure patients. METHODS We enrolled 284 hospitalized heart failure patients, whose New York Heart Association (NYHA) classed as II-IV and left ventricular ejection fraction (LVEF) ≤ 45%. All the patients were scaled in Hamilton Rating Scale for Anxiety (14-items) (HAM-A14). Ordinal logistic regression analysis was performed to examine the association of correlated factors with anxiety disorder. RESULTS There were 184 patients had anxiety accounting for 64.8% of all 284 hospitalized heart failure patients. The neutrophilic granulocyte percentage, urea nitrogen, total bilirubin and brain natriuretic peptide were positively associated with HAM-A14 score, meanwhile, the hemoglobin, red blood cells counts, albumin and LVEF were negatively associated with HAM-A14 score (All P < 0.05). After the adjustments of sex, hemoglobin, urea nitrogen, total bilirubin, albumin and brain natriuretic peptide, the neutrophilic granulocyte percentage was significantly associated with anxiety (OR = 43.265, P = 0.012). The neutrophilic granulocyte percentage was 0.616 ± 0.111, 0.640 ± 0.102, 0.681 ± 0.106 and 0.683 ± 0.113 in heart failure patients with no anxiety, possible anxiety, confirmed anxiety and obvious anxiety, respectively. CONCLUSIONS Neutrophilic granulocyte percentage as well as the traditional risk factors such as sex, urea nitrogen and brain natriuretic peptide is associated with anxiety in hospitalized heart failure patients.
Collapse
Affiliation(s)
- Qian Ma
- grid.411680.a0000 0001 0514 4044First Department of Cardiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang People’s Republic of China
| | - Feng-bo Zhang
- grid.412631.3The Clinical Laboratory Medical Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang People’s Republic of China
| | - En-sheng Yao
- grid.411680.a0000 0001 0514 4044Department of Neurology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang People’s Republic of China
| | - Shuo Pan
- Cardiovascular Department, People’s Hospital of Shaanxi Province, Xi’an, Shaanxi People’s Republic of China
| |
Collapse
|
24
|
Jackson NA, Jabbi MM. Integrating biobehavioral information to predict mood disorder suicide risk. Brain Behav Immun Health 2022; 24:100495. [PMID: 35990401 PMCID: PMC9388879 DOI: 10.1016/j.bbih.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The will to live and the ability to maintain one's well-being are crucial for survival. Yet, almost a million people die by suicide globally each year (Aleman and Denys, 2014), making premature deaths due to suicide a significant public health problem (Saxena et al., 2013). The expression of suicidal behaviors is a complex phenotype with documented biological, psychological, clinical, and sociocultural risk factors (Turecki et al., 2019). From a brain disease perspective, suicide is associated with neuroanatomical, neurophysiological, and neurochemical dysregulations of brain networks involved in integrating and contextualizing cognitive and emotional regulatory behaviors. From a symptom perspective, diagnostic measures of dysregulated mood states like major depressive symptoms are associated with over sixty percent of suicide deaths worldwide (Saxena et al., 2013). This paper reviews the neurobiological and clinical phenotypic correlates for mood dysregulations and suicidal phenotypes. We further propose machine learning approaches to integrate neurobiological measures with dysregulated mood symptoms to elucidate the role of inflammatory processes as neurobiological risk factors for suicide.
Collapse
Affiliation(s)
- Nicholas A. Jackson
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Institute for Neuroscience, The University of Texas at Austin, USA
| | - Mbemba M. Jabbi
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, USA
- Mulva Clinics for the Neurosciences
- Institute for Neuroscience, The University of Texas at Austin, USA
- Department of Psychology, The University of Texas at Austin, USA
- Center for Learning and Memory, The University of Texas at Austin, USA
| |
Collapse
|
25
|
Mehta ND, Stevens JS, Li Z, Fani N, Gillespie CF, Ravi M, Michopoulos V, Felger JC. Inflammation, amygdala-ventromedial prefrontal functional connectivity and symptoms of anxiety and PTSD in African American women recruited from an inner-city hospital: Preliminary results. Brain Behav Immun 2022; 105:122-130. [PMID: 35772683 PMCID: PMC11041384 DOI: 10.1016/j.bbi.2022.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023] Open
Abstract
Inflammatory stimuli have been shown to impact brain regions involved in threat detection and emotional processing including amygdala and ventromedial prefrontal cortex (vmPFC), and to increase anxiety. Biomarkers of endogenous inflammation, including inflammatory cytokines and C-reactive protein (CRP), are reliably elevated in a subset of patients with depression and anxiety-related disorders such as post-traumatic stress disorder (PTSD), and have been associated with high anxiety in population studies. We previously reported that plasma CRP and cytokines in patients with depression were negatively correlated with resting-state functional connectivity (FC) between right amygdala and vmPFC, as assessed using both ROI to voxel-wise and targeted FC approaches, in association with symptoms of anxiety, particularly in patients with comorbid anxiety disorders or PTSD. To determine whether relationships between inflammation, right amygdala-vmPFC FC, and anxiety are reproducible across patient samples and research settings, we employed an a priori, hypothesis-driven approach to examine relationships between inflammation, targeted right amygdala-vmPFC FC and anxiety in a cohort of African American (AA) women (n = 54) recruited from an inner-city hospital population reliably found to have higher levels of inflammation (median CRP ∼ 4 mg/L) as well as symptoms of anxiety, depression and PTSD. Higher concentrations of plasma CRP were associated with lower right amygdala-vmPFC FC (r = -0.32, p = 0.017), and this relationship remained significant when controlling for age, body mass index and number of lifetime trauma events experienced, as well as severity of PTSD and depression symptoms (all p < 0.05). This amygdala-vmPFC FC was similarly associated with a composite score of three inflammatory cytokines in a subset of women where plasma was available for analysis (n = 33, r = -0.33, p = 0.058; adjusted r = -0.43, p = 0.026 when controlling for covariates including PTSD and depression symptom severity). Lower right amygdala-vmPFC FC was in turn associated with higher levels of anxiety reported to be generally experienced on the State-Trait Anxiety Inventory, trait component (adjusted r = -0.32, p = 0.039 when controlling for covariates). Exploratory analyses also revealed a negative correlation between severity of childhood maltreatment and right amygdala-vmPFC FC (r = -0.32, p = 0.018) that was independent of CRP and its association with FC, as well as an association between low amygdala-vmPFC FC and severity of PTSD symptoms, specifically the re-experiencing/intrusive symptom subscale (adjusted r = -0.32, p = 0.028 when controlling for covariates). While CRP was not linearly associated with either anxiety or PTSD symptoms, CRP concentrations were higher in women reporting clinically significant anxiety or PTSD symptom severity when these symptoms were considered together (both p < 0.05), but with no interaction. These results support our primary hypothesis that higher inflammation was associated with lower amygdala-vmPFC FC, a relationship that was detected using a hypothesis-driven, targeted approach. Findings also support that this phenotype of high CRP and low vmPFC FC was observed in association with anxiety in primary analyses, as well as symptoms of PTSD in exploratory analyses, in a cohort recruited from an inner-city population of AA women enriched for high inflammation, history of trauma exposure, and symptom severity. Larger, longitudinal samples are required to fully tease apart causal relationships between inflammatory biomarkers, FC and PTSD-related symptoms in future studies.
Collapse
Affiliation(s)
- Neeti D Mehta
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zhihao Li
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States; School of Psychology and Sociology, Shenzhen University, Shenzhen, Guangdong Sheng, 518060, China; Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, Guangdong Sheng, 518060, China
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Meghna Ravi
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States; Yerkes National Primate Research Center, Atlanta, GA 30322, United States.
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
26
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
27
|
Tian Y, Chen X, Wang Y, He Y, Chen C, Yu H, Chen Z, Ren Y, Cheng K, Xie P. Neuroinflammatory transcriptional signatures in the entorhinal cortex based on lipopolysaccharide-induced depression model in mice. Biochem Biophys Res Commun 2022; 590:109-116. [PMID: 34974298 DOI: 10.1016/j.bbrc.2021.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022]
Abstract
The inflammation and immune hypothesis of major depressive disorder (MDD) explains the mechanism of neuroinflammatory response to promote depression-like behaviors and provides targets for immunotherapy. Previous studies revealed that the neuronal function of the entorhinal cortex (EC) was relative to the depression symptoms in MDD. However, it remains largely unknown what role of neuroinflammation plays in the EC. Hence, we used immunofluorescence to determine c-Fos expression in the EC of lipopolysaccharide (LPS)-treated mice. Mice model was constructed of 10-day LPS treatment, and depression-related behaviors were assessed. We used gene expression microarray to determine differentially expressed genes (DEGs) in the EC of LPS group comparing to control group, and molecular verification was performed by quantitative real-time PCR and Western blot. We found that c-Fos expression was significant reduced in the two layers (Lateral 3.25 mm and 3.00 mm) of the EC in LPS-treated mice compared to saline-treated mice. Mice in LPS group exhibited depression- and anxiety-like behaviors in chronic model. Gene expression analyses identified 339 DEGs in the EC between LPS and control group. The molecular verification showed activation of IL-1R1/NF-κB/CCL5 signaling and upregulation of markers of astrocyte (GFAP) and microglia (AIF1 and CD86) in the EC. Our results suggested that LPS-induced neuroinflammation inhibited neuronal activity in the EC of mice, and that activation of IL-1R1/NF-κB/CCL5 signaling could be involved in the neuroinflammation in the EC of LPS-treated depression model.
Collapse
Affiliation(s)
- Yu Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yong He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Chong Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
28
|
Wei Y, Hu Y, Qi K, Li Y, Chen J, Wang R. Dihydromyricetin improves LPS-induced sickness and depressive-like behaviors in mice by inhibiting the TLR4/Akt/HIF1a/NLRP3 pathway. Behav Brain Res 2022; 423:113775. [DOI: 10.1016/j.bbr.2022.113775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
|
29
|
Månsson KNT, Lasselin J, Karshikoff B, Axelsson J, Engler H, Schedlowski M, Benson S, Petrovic P, Lekander M. Anterior insula morphology and vulnerability to psychopathology-related symptoms in response to acute inflammation. Brain Behav Immun 2022; 99:9-16. [PMID: 34547400 DOI: 10.1016/j.bbi.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION The role of inflammation in common psychiatric diseases is now well acknowledged. However, the factors and mechanisms underlying inter-individual variability in the vulnerability to develop psychopathology-related symptoms in response to inflammation are not well characterized. Herein, we aimed at investigating morphological brain regions central for interoception and emotion regulation, and if these are associated with acute inflammation-induced sickness and anxiety responses. METHODS Systemic inflammation was induced using an intravenous injection of lipopolysaccharide (LPS) at a dose of 0.6 ng/kg body weight in 28 healthy individuals, while 21 individuals received an injection of saline (placebo). Individuals' gray matter volume was investigated by automated voxel-based morphometry technique on T1-weighted anatomical images derived from magnetic resonance imaging (MRI). Plasma concentrations of TNF-α and IL-6, sickness symptoms (SicknessQ), and state anxiety (STAI-S) were measured before and after the injection. RESULTS A stronger sickness response to LPS was significantly associated with a larger anterior insula gray matter volume, independently from increases in cytokine concentrations, age, sex and body mass index (R2 = 65.6%). Similarly, a greater LPS-induced state anxiety response was related to a larger anterior insula gray matter volume, and also by a stronger increase in plasma TNF-α concentrations (R2 = 40.4%). DISCUSSION Anterior insula morphology appears central in the sensitivity to develop symptoms of sickness and anxiety in response to inflammation, and could thus be one risk factor in inflammation-related psychopathologies. Because of the limited sample size, the current results need to be replicated.
Collapse
Affiliation(s)
- Kristoffer N T Månsson
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany/United Kingdom; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden.
| | - Julie Lasselin
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Bianka Karshikoff
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Predrag Petrovic
- Center for Cognitive and Computational Neuropsychiatry, Karolinska Institutet, Stockholm, Sweden; Neuro Division, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Stress Research Institute, Department of Psychology, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| |
Collapse
|
30
|
Lasselin J. Back to the future of psychoneuroimmunology: Studying inflammation-induced sickness behavior. Brain Behav Immun Health 2021; 18:100379. [PMID: 34761246 PMCID: PMC8566772 DOI: 10.1016/j.bbih.2021.100379] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
What do we know about sickness behavior? In this article, I guide you through some of the complexity of sickness behavior occurring after an immune challenge. I highlight the many features of behavioral and affective changes induced during experimental endotoxemia in humans, and describe how little we know about many of these features. I argue that we need to dismantle the components of inflammation-induced sickness behavior, and study each component in detail. I also point out the large inter-individual differences in inflammation-induced behavioral and affective changes, and the fact that psychosocial factors likely interact with inflammation to shape inflammation-induced sickness behavior. PNI clearly lacks investigations of the vulnerability and resilient factors underlying the inter-individual variability in sickness behavior. Throughout the article, I base my argument on my published articles, and provide concrete examples from my experience and the data that I have collected over the past 10 years. Given the relevance of inflammation-induced sickness behavior for inflammation-associated depression and for how people react to infections, I encourage current and future psychoneuroimmunologists to return towards basic science of sickness behavior. Inflammation-related sickness behavior is relevant for inflammation-associated depression The many features of sickness behavior should be investigated in detail There are large inter-individual variability in sickness behavior Vulnerability and resilient factors predicting sickness responses are little known I call for a return towards basic science of sickness behavior.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Department of Psychology, Stockholm University, SE-106 91, Stockholm, Sweden.,Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| |
Collapse
|
31
|
Scassellati C, Galoforo AC, Esposito C, Ciani M, Ricevuti G, Bonvicini C. Promising Intervention Approaches to Potentially Resolve Neuroinflammation And Steroid Hormones Alterations in Alzheimer's Disease and Its Neuropsychiatric Symptoms. Aging Dis 2021; 12:1337-1357. [PMID: 34341712 PMCID: PMC8279527 DOI: 10.14336/ad.2021.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a biological process by which the central nervous system responds to stimuli/injuries affecting its homeostasis. So far as this reactive response becomes exacerbated and uncontrolled, it can lead to neurodegeneration, compromising the cognitive and neuropsychiatric domains. Parallelly, modifications in the hypothalamic signaling of neuroprotective hormones linked also to the inflammatory responses of microglia and astrocytes can exacerbate these processes. To complicate the picture, modulations in the gut microbiota (GM) can induce changes in neuroinflammation, altering cognitive and neuropsychiatric functioning. We conducted a web-based search on PubMed. We described studies regarding the cross-talk among microglia and astrocytes in the neuroinflammation processes, along with the role played by the steroid hormones, and how this can reflect on cognitive decline/neurodegeneration, in particular on Alzheimer's Disease (AD) and its neuropsychiatric manifestations. We propose and support the huge literature showing the potentiality of complementary/alternative therapeutic approaches (nutraceuticals) targeting the sustained inflammatory response, the dysregulation of hypothalamic system and the GM composition. NF-κB and Keap1/Nrf2 are the main molecular targets on which a list of nutraceuticals can modulate the altered processes. Since there are some limitations, we propose a new intervention natural treatment in terms of Oxygen-ozone (O2-O3) therapy that could be potentially used for AD pathology. Through a meta-analytic approach, we found a significant modulation of O3 on inflammation-NF-κB/NLRP3 inflammasome/Toll-Like Receptor 4 (TLR4)/Interleukin IL-17α signalling, reducing mRNA (p<0.00001 Odd Ratio (OR)=-5.25 95% CI:-7.04/-3.46) and protein (p<0.00001 OR=-4.85 95%CI:-6.89/-2.81) levels, as well as on Keap1/Nrf2 pathway. Through anti-inflammatory, immune, and steroid hormones modulation and anti-microbial activities, O3 at mild therapeutic concentrations potentiated with nutraceuticals and GM regulators could determine combinatorial effects impacting on cognitive and neurodegenerative domains, neuroinflammation and neuroendocrine signalling, directly or indirectly through the mediation of GM.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy.
- University of Pavia, Pavia, Italy.
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy.
- Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy.
- P.D. High School in Geriatrics, University of Pavia, Italy.
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Giovanni Ricevuti
- P.D. High School in Geriatrics, University of Pavia, Italy.
- Department of Drug Sciences, University of Pavia, Italy.
- St. Camillus Medical University, Rome, Italy.
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
32
|
Rasmusson AJ, Gallwitz M, Soltanabadi B, Ciuculete DM, Mengel-From J, Christensen K, Nygaard M, Soerensen M, Boström AE, Fredriksson R, Freyhult E, Mwinyi J, Czamara D, Binder EB, Schiöth HB, Cunningham JL. Toll-like receptor 4 methylation grade is linked to depressive symptom severity. Transl Psychiatry 2021; 11:371. [PMID: 34226490 PMCID: PMC8257733 DOI: 10.1038/s41398-021-01481-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study explores potential associations between the methylation of promoter-associated CpG sites of the toll-like receptor (TLR)-family, plasma levels of pro-inflammatory proteins and depressive symptoms in young female psychiatric patients. Ratings of depressive symptoms and blood samples were obtained from 92 young women seeking psychiatric care. Methylation of 32 promoter-associated CpG sites in TLR1 to TLR10 was analysed using the Illumina Infinium Methylation EPIC BeadChip. Expression levels of 91 inflammatory proteins were determined by proximity extension assay. Statistical correlations between depressive state, TLR1-10 methylation and inflammatory proteins were investigated. Four additional cohorts were studied to evaluate the generalizability of the findings. In the discovery cohort, methylation grade of cg05429895 (TLR4) in blood was inversely correlated with depressive symptoms score in young adults. After correction for multiple testing, plasma levels of macrophage inflammatory protein 1β (MIP-1β/CCL4) were associated with both TLR4 methylation and depressive symptom severity. A similar inverse association between TLR4 methylation in blood and affective symptoms score was also found in a cohort of 148 both males and females (<40 years of age) from the Danish Twin Registry. These findings were not, however, replicated in three other external cohorts; which differed from the first two cohorts by a higher age and mixed ethnicities, thus limiting the generalizability of our findings. However, TLR4 methylation inversely correlated with TLR4 mRNA expression in the Danish Twin Study indicating a functional significance of methylation at this particular CpG. Higher depression scores in young Scandinavian adults was associated with decreased methylation of TLR4 in blood.
Collapse
Affiliation(s)
- Annica J Rasmusson
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Maike Gallwitz
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Bardia Soltanabadi
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden
| | - Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Jonas Mengel-From
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kaare Christensen
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Marianne Nygaard
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry, Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Eva Freyhult
- Department of Medical Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Darina Czamara
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Entrance 10, Floor 3B, 751 85, Uppsala, Sweden.
| |
Collapse
|
33
|
Chen Y, Dang M, Zhang Z. Brain mechanisms underlying neuropsychiatric symptoms in Alzheimer's disease: a systematic review of symptom-general and -specific lesion patterns. Mol Neurodegener 2021; 16:38. [PMID: 34099005 PMCID: PMC8186099 DOI: 10.1186/s13024-021-00456-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropsychiatric symptoms (NPSs) are common in patients with Alzheimer's disease (AD) and are associated with accelerated cognitive impairment and earlier deaths. This review aims to explore the neural pathogenesis of NPSs in AD and its association with the progression of AD. We first provide a literature overview on the onset times of NPSs. Different NPSs occur in different disease stages of AD, but most symptoms appear in the preclinical AD or mild cognitive impairment stage and develop progressively. Next, we describe symptom-general and -specific patterns of brain lesions. Generally, the anterior cingulate cortex is a commonly damaged region across all symptoms, and the prefrontal cortex, especially the orbitofrontal cortex, is also a critical region associated with most NPSs. In contrast, the anterior cingulate-subcortical circuit is specifically related to apathy in AD, the frontal-limbic circuit is related to depression, and the amygdala circuit is related to anxiety. Finally, we elucidate the associations between the NPSs and AD by combining the onset time with the neural basis of NPSs.
Collapse
Affiliation(s)
- Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
- BABRI Centre, Beijing Normal University, Beijing, 100875 China
| | - Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
- BABRI Centre, Beijing Normal University, Beijing, 100875 China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
- BABRI Centre, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
34
|
Bear T, Dalziel J, Coad J, Roy N, Butts C, Gopal P. The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms 2021; 9:723. [PMID: 33807290 PMCID: PMC8065970 DOI: 10.3390/microorganisms9040723] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Episodes of depression and anxiety commonly follow the experience of stress, however not everyone who experiences stress develops a mood disorder. Individuals who are able to experience stress without a negative emotional effect are considered stress resilient. Stress-resilience (and its counterpart stress-susceptibility) are influenced by several psychological and biological factors, including the microbiome-gut-brain axis. Emerging research shows that the gut microbiota can influence mood, and that stress is an important variable in this relationship. Stress alters the gut microbiota and plausibly this could contribute to stress-related changes in mood. Most of the reported research has been conducted using animal models and demonstrates a relationship between gut microbiome and mood. The translational evidence from human clinical studies however is rather limited. In this review we examine the microbiome-gut-brain axis research in relation to stress resilience.
Collapse
Affiliation(s)
- Tracey Bear
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
| | - Julie Dalziel
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North 4442, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
| | - Nicole Roy
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
- Department of Human Nutrition, Otago University, Dunedin 9016, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand
| | - Christine Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
| | - Pramod Gopal
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
| |
Collapse
|
35
|
Konsman JP. So Many Faces, Phases, and Facets, Sickness Behavior Beyond Disciplines. Front Psychiatry 2021; 12:630331. [PMID: 33716828 PMCID: PMC7947683 DOI: 10.3389/fpsyt.2021.630331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
Animals, including human beings, modify their behavior when they fall sick. Interestingly, sociology, biology, and psychology have at different times in their history developed constructs of illness or sickness behavior. The aims of the present paper are to consider sickness behavior in animals and humans and to evaluate to what extent the notions of sickness behavior would allow for interdisciplinary research. After distinguishing disease, illness, and sickness, the case will be made that illness behavior and sickness behavior can be considered heuristically as synonyms given the existence of some fluidity between the notion of illness and sickness. Based on this, different faces, phases, and facets of sickness behavior will be presented before addressing the question of how integration of constructs of sickness behaviors would be possible across biology, medicine, psychology, and sociology. It is concluded that interdisciplinary research on sickness behavior between biology, psychology, and sociology is possible and called for with regard to constructs, methods, and explanations, while keeping in mind differences in perspectives, for example between acute and chronic sickness behavior.
Collapse
Affiliation(s)
- Jan Pieter Konsman
- Aquitaine Institute for Integrative and Cognitive Neuroscience (INCIA) UMR CNRS 5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
36
|
Karshikoff B, Martucci KT, Mackey S. Relationship Between Blood Cytokine Levels, Psychological Comorbidity, and Widespreadness of Pain in Chronic Pelvic Pain. Front Psychiatry 2021; 12:651083. [PMID: 34248700 PMCID: PMC8267576 DOI: 10.3389/fpsyt.2021.651083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Low-grade inflammation has been implicated in the etiology of depression, long-term fatigue and chronic pain. TNFα and IL-6 are perhaps the most studied pro-inflammatory cytokines in the field of psychoneuroimmunology. The purpose of our study was to further investigate these relationships in patients with chronic pelvic pain specifically. Using plasma samples from a large, well-described cohort of patients with pelvic pain and healthy controls via the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network, we examined the relationship between TNFα and IL-6 and comorbid psychological symptoms. We also investigated the relationship between IL-8 and GM-CSF, and widespreadness of pain. Methods: We included baseline blood samples in the analyses, 261 patients (148 women) and 110 healthy controls (74 women). Fourteen pro- and anti-inflammatory or regulatory cytokines were analyzed in a Luminex® xMAP® high-sensitivity assay. We used regression models that accounted for known factors associated with the outcome variables to determine the relationship between cytokine levels and clinical measures. Results: There were no statistical differences in cytokine levels between patients and healthy controls when controlling for age. In patients, TNFα was significantly associated with levels of fatigue (p = 0.026), but not with pain intensity or depression. IL-6 was not significantly related to any of the outcome variables. Women with pelvic pain showed a negative relationship between IL-8 and widespreadness of pain, while men did not (p = 0.003). For both sexes, GM-CSF was positively related to widespreadness of pain (p = 0.039). Conclusion: Our results do not suggest low-grade systemic inflammation in chronic pelvic pain. Higher TNFα blood levels were related to higher fatigue ratings, while higher systemic GM-CSF levels predicted more widespread pain. Our study further suggests a potentially protective role of IL-8 with regard to with regard to the widepreadness of pain in the body, at least for women.
Collapse
Affiliation(s)
- Bianka Karshikoff
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| | - Katherine T Martucci
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
37
|
Lasselin J, Lekander M, Benson S, Schedlowski M, Engler H. Sick for science: experimental endotoxemia as a translational tool to develop and test new therapies for inflammation-associated depression. Mol Psychiatry 2021; 26:3672-3683. [PMID: 32873895 PMCID: PMC8550942 DOI: 10.1038/s41380-020-00869-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
Depression is one of the global leading causes of disability, but treatments remain limited and classical antidepressants were found to be ineffective in a substantial proportion of patients. Thus, novel effective therapies for the treatment of depression are urgently needed. Given the emerging role of inflammation in the etiology and pathophysiology of affective disorders, we herein illustrate how experimental endotoxemia, a translational model of systemic inflammation, could be used as a tool to develop and test new therapeutic options against depression. Our concept is based on the striking overlap of inflammatory, neural, and affective characteristics in patients with inflammation-associated depression and in endotoxin-challenged healthy subjects. Experimental administration of endotoxin in healthy volunteers is safe, well-tolerated, and without known long-term health risks. It offers a highly standardized translational approach to characterize potential targets of therapies against inflammation-associated depression, as well as to identify characteristics of patients that would benefit from these interventions, and, therefore, could contribute to improve personalization of treatment and to increase the overall rate of responders.
Collapse
Affiliation(s)
- Julie Lasselin
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany. .,Stress Research Institute, Stockholm University, 10691, Stockholm, Sweden. .,Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177, Stockholm, Sweden. .,Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden.
| | - Mats Lekander
- grid.10548.380000 0004 1936 9377Stress Research Institute, Stockholm University, 10691 Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177 Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Osher Center for Integrative Medicine, ME Neuroradiologi, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Sven Benson
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Manfred Schedlowski
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Division for Psychology, Karolinska Institutet, Nobels väg 9, 17177 Stockholm, Sweden
| | - Harald Engler
- grid.5718.b0000 0001 2187 5445Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
38
|
Weaver JL. The brain-gut axis: A prime therapeutic target in traumatic brain injury. Brain Res 2020; 1753:147225. [PMID: 33359374 DOI: 10.1016/j.brainres.2020.147225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023]
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in trauma patients. The primary focus of treating TBI is to prevent additional injury to the damaged brain tissue, known as secondary brain injury. This treatment can include treating the body's inflammatory response. Despite promise in animal models, anti-inflammatory therapy has failed to improve outcomes in human patients, suggesting a more targeted and precise approach may be needed. There is a bidirectional axis between the intestine and the brain that contributes to this inflammation in acute and chronic injury. The mechanisms for this interaction are not completely understood, but there is evidence that neural, inflammatory, endocrine, and microbiome signals all participate in this process. Therapies that target the intestine as a source of inflammation have potential to lessen secondary brain injury and improve outcomes in TBI patients, but to develop these treatments we need to better understand the mechanisms behind this intestinal inflammatory response.
Collapse
Affiliation(s)
- Jessica L Weaver
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, Department of Surgery, University of California, San Diego School of Medicine, 200 W Arbor Drive #8896, San Diego, CA 92103-8896, United States.
| |
Collapse
|
39
|
Role of PPARs in Progression of Anxiety: Literature Analysis and Signaling Pathways Reconstruction. PPAR Res 2020; 2020:8859017. [PMID: 33312191 PMCID: PMC7721491 DOI: 10.1155/2020/8859017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) group includes three isoforms encoded by PPARG, PPARA, and PPARD genes. High concentrations of PPARs are found in parts of the brain linked to anxiety development, including hippocampus and amygdala. Among three PPAR isoforms, PPARG demonstrates the highest expression in CNS, where it can be found in neurons, astrocytes, and glial cells. Herein, the highest PPARG expression occurs in amygdala. However, little is known considering possible connections between PPARs and anxiety behavior. We reviewed possible connections between PPARs and anxiety. We used the Pathway Studio software (Elsevier). Signal pathways were created according to previously developed algorithms. SNEA was performed in Pathway Studio. Current study revealed 14 PPAR-regulated proteins linked to anxiety. Possible mechanism of PPAR involvement in neuroinflammation protection is proposed. Signal pathway reconstruction and reviewing aimed to reveal possible connection between PPARG and CCK-ergic system was conducted. Said analysis revealed that PPARG-dependent regulation of MME and ACE peptidase expression may affect levels of nonhydrolysed, i.e., active CCK-4. Impairments in PPARG regulation and following MME and ACE peptidase expression impairments in amygdala may be the possible mechanism leading to pathological anxiety development, with brain CCK-4 accumulation being a key link. Literature data analysis and signal pathway reconstruction and reviewing revealed two possible mechanisms of peroxisome proliferator-activated receptors involvement in pathological anxiety: (1) cytokine expression and neuroinflammation mechanism and (2) regulation of peptidases targeted to anxiety-associated neuropeptides, primarily CCK-4, mechanism.
Collapse
|
40
|
Calsavara AJ, Costa PA, Nobre V, Teixeira AL. Prevalence and risk factors for post-traumatic stress, anxiety, and depression in sepsis survivors after ICU discharge. BRAZILIAN JOURNAL OF PSYCHIATRY 2020; 43:269-276. [PMID: 33053073 PMCID: PMC8136386 DOI: 10.1590/1516-4446-2020-0986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Sepsis survivors present a wide range of sequelae; few studies have evaluated psychiatric disorders after sepsis. The objective of this study was to define the prevalence of and risk factors for anxiety, depression and post-traumatic stress disorder (PTSD) symptoms in sepsis survivors. METHOD Anxiety, depression and post-traumatic stress symptoms in severe sepsis and septic shock survivors 24 h and 1 year after intensive care unit (ICU) discharge were assessed using the Beck Anxiety/Depression Inventories and the PTSD Checklist-Civilian Version. Differences in psychiatric symptoms over time and the influence of variables on these symptoms were calculated with marginal models. RESULTS A total of 33 patients were enrolled in the study. The frequencies of anxiety, depression and PTSD 24 h after ICU discharge were 67%, 49%, and 46%, respectively and, among patients re-evaluated 1 year after ICU discharge, the frequencies were 38%, 50%, and 31%, respectively. Factors associated with PTSD included serum S100B level, age, and Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) score. Factors associated with depression included patient age and cumulative dose of dobutamine. IQCODE score and cumulative dose of haloperidol in the ICU were associated with anxiety after ICU discharge. CONCLUSION Patients who survive sepsis have high levels of psychiatric symptoms. Sepsis and associated treatment-related exposures may have a role in increasing the risk of subsequent depression, anxiety, and PTSD.
Collapse
Affiliation(s)
- Allan J Calsavara
- Escola de Medicina, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical (PPG-IMT), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Vandack Nobre
- Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical (PPG-IMT), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical (PPG-IMT), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
41
|
Handke A, Axelsson J, Benson S, Boy K, Weskamp V, Hasenberg T, Remy M, Hebebrand J, Föcker M, Brinkhoff A, Unteroberdörster M, Engler H, Schedlowski M, Lasselin J. Acute inflammation and psychomotor slowing: Experimental assessment using lipopolysaccharide administration in healthy humans. Brain Behav Immun Health 2020; 8:100130. [PMID: 34589881 PMCID: PMC8474655 DOI: 10.1016/j.bbih.2020.100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Data from clinical and cross-sectional studies suggest that inflammation contributes to psychomotor slowing and attentional deficits found in depressive disorder. However, experimental evidence is still lacking. The aim of this study was to clarify the effect of inflammation on psychomotor slowing using an experimental and acute model of inflammation, in which twenty-two healthy volunteers received an intravenous injection of lipopolysaccharide (LPS, dose: 0.8 ng/kg body weight) and of placebo, in a randomized order following a double-blind within-subject crossover design. A reaction time test and a go/no-go test were conducted 3 h after the LPS/placebo injection and interleukin (IL)-6 and tumor necrosis factor (TNF)-α concentrations were assessed. No effect of experimental inflammation on reaction times or errors for either test was found. However, inflammation was related to worse self-rated performance and lower effort put in the tasks. Exploratory analyses indicated that reaction time fluctuated more over time during acute inflammation. These data indicate that acute inflammation has only modest effects on psychomotor speed and attention in healthy subjects objectively, but alters the subjective evaluation of test performance. Increased variability in reaction time might be the first objective sign of altered psychomotor ability and would merit further investigation.
Collapse
Affiliation(s)
- Analena Handke
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - John Axelsson
- Stress Research Institute, Stockholm University, Stockholm, Sweden.,Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Karoline Boy
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Vera Weskamp
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Till Hasenberg
- Helios Adipositas Zentrum West, Helios St. Elisabeth Klinik Oberhausen, Witten/Herdecke University, Oberhausen, Germany
| | - Miriam Remy
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Muenster, Muenster, Germany
| | - Alexandra Brinkhoff
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany.,Department of Nephrology, University Hospital Essen, Essen, Germany
| | - Meike Unteroberdörster
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany.,Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Julie Lasselin
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany.,Stress Research Institute, Stockholm University, Stockholm, Sweden.,Division for Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Elucidating vulnerability to inflammation-induced hyperalgesia: Predictors of increased musculoskeletal pain sensitivity during experimental endotoxemia. Brain Behav Immun 2020; 88:302-307. [PMID: 32592864 DOI: 10.1016/j.bbi.2020.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Despite broad clinical implications, the mechanisms linking inflammation and pain remain incompletely understood. Using human experimental endotoxemia as a translational model of systemic inflammation, we aimed to elucidate putative vulnerability factors of inflammation-induced musculoskeletal hyperalgesia. We pooled data from three published randomized controlled trials, resulting in a sample of N = 98 healthy volunteers who received either low-dose endotoxin (lipopolysaccharide) or vehicle (saline) intravenously. As measure of musculoskeletal pain sensitivity, pressure pain thresholds (PPTs) were assessed at baseline and 3 h post injection with a handheld algometer for the low back (erector spinae muscle), calf (gastrocnemius muscle), and shoulder region (deltoid muscle). Implementing multiple regression models, we tested the contribution of putative vulnerability factors on musculoskeletal hyperalgesia during systemic inflammation, including acute changes in pro-inflammatory cytokines, state anxiety and mood, as well as pre-existing symptoms of anxiety and depression. Endotoxin application led to significant increases in plasma cytokines, state anxiety, and negative mood, and significantly decreased PPTs for all muscle groups. Regression models revealed that greater M. erector spinae PPT changes were predicted by higher HADS-anxiety scores. Higher TNF-α concentration emerged as predictor for M. gastrocnemius PPT changes, and more pronounced TNF-α increase and higher HADS-anxiety were predictive for M. deltoideus PPTs. HADS scores emerged as predictor for a mean PPT score (computed across all body sites). Together, our results indicate that musculoskeletal hyperalgesia during systemic inflammation is related to pro-inflammatory cytokines, specifically TNF-α. Importantly, subclinical anxiety symptoms (even though in a low and normal range in this cohort of healthy volunteers) may contribute to inflammation-induced hyperalgesia, making individuals more vulnerable to the detrimental effects of systemic inflammation.
Collapse
|
43
|
Lasselin J, Schedlowski M, Karshikoff B, Engler H, Lekander M, Konsman JP. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci Biobehav Rev 2020; 115:15-24. [PMID: 32433924 DOI: 10.1016/j.neubiorev.2020.05.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 12/26/2022]
Abstract
Increasing evidence from animal and human studies suggests that inflammation may be involved in mood disorders. Sickness behavior and emotional changes induced by experimental inflammatory stimuli have been extensively studied in humans and rodents to better understand the mechanisms underlying inflammation-driven mood alterations. However, research in animals and humans have remained compartmentalized and a comprehensive comparison of inflammation-induced sickness and depressive-like behavior between rodents and humans is lacking. Thus, here, we highlight similarities and differences in the effects of bacterial lipopolysaccharide administration on the physiological (fever and cytokines), behavioral and emotional components of the sickness response in rodents and humans, and discuss the translational challenges involved. We also emphasize the differences between observable sickness behavior and subjective sickness reports, and advocate for the need to obtain both subjective reports and objective measurements of sickness behavior in humans. We aim to provide complementary insights for translational clinical and experimental research on inflammation-induced behavioral and emotional changes, and their relevance for mood disorders such as depression.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Manfred Schedlowski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Bianka Karshikoff
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Pieter Konsman
- Institute for Cognitive and Integrative Neuroscience, CNRS UMR 5287, University of Bordeaux, France
| |
Collapse
|
44
|
Peters T, Nüllig L, Antel J, Naaresh R, Laabs BH, Tegeler L, Amhaouach C, Libuda L, Hinney A, Hebebrand J. The Role of Genetic Variation of BMI, Body Composition, and Fat Distribution for Mental Traits and Disorders: A Look-Up and Mendelian Randomization Study. Front Genet 2020; 11:373. [PMID: 32373164 PMCID: PMC7186862 DOI: 10.3389/fgene.2020.00373] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022] Open
Abstract
Anthropometric traits and mental disorders or traits are known to be associated clinically and to show genetic overlap. We aimed to identify genetic variants with relevance for mental disorders/traits and either (i) body mass index (or obesity), (ii) body composition, (and/or) (iii) body fat distribution. We performed a look-up analysis of 1,005 genome-wide significant SNPs for BMI, body composition, and body fat distribution in 15 mental disorders/traits. We identified 40 independent loci with one or more SNPs fulfilling our threshold significance criterion (P < 4.98 × 10-5) for the mental phenotypes. The majority of loci was associated with schizophrenia, educational attainment, and/or intelligence. Fewer associations were found for bipolar disorder, neuroticism, attention deficit/hyperactivity disorder, major depressive disorder, depressive symptoms, and well-being. Unique associations with measures of body fat distribution adjusted for BMI were identified at five loci only. To investigate the potential causality between body fat distribution and schizophrenia, we performed two-sample Mendelian randomization analyses. We found no causal effect of body fat distribution on schizophrenia and vice versa. In conclusion, we identified 40 loci which may contribute to genetic overlaps between mental disorders/traits and BMI and/or shape related phenotypes. The majority of loci identified for body composition overlapped with BMI loci, thus suggesting pleiotropic effects.
Collapse
Affiliation(s)
- Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lena Nüllig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Roaa Naaresh
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Björn-Hergen Laabs
- Institute of Medical Biometry and Statistics, University of Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Lisa Tegeler
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Chaima Amhaouach
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Libuda
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
45
|
Luo L, Sun T, Yang L, Liu A, Liu QQ, Tian QQ, Wang Y, Zhao MG, Yang Q. Scopoletin ameliorates anxiety-like behaviors in complete Freund's adjuvant-induced mouse model. Mol Brain 2020; 13:15. [PMID: 32019580 PMCID: PMC7001522 DOI: 10.1186/s13041-020-0560-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Anxiety disorder is highly prevalent worldwide and represents a chronic and functionally disabling condition, with high levels of psychological stress characterized by cognitive and physiological symptoms. Scopoletin (SP), a main active compound in Angelica dahurica, is traditionally used for the treatment of headache, rhinitis, pain, and other conditions. Here, we evaluated the effects of SP in a mouse model of complete Freund’s adjuvant (CFA)-induced chronic inflammation anxiety. SP (2.0, 10.0, 50.0 mg/kg) administration for 2 weeks dose-dependently ameliorated CFA-induced anxiety-like behaviors in the open field test and elevated plus maze test. Moreover, we found that SP treatment inhibited microglia activation and decreased both peripheral and central IL-1β, IL-6, and TNF-α levels in a dose-dependent manner. Additionally, the imbalance in excitatory/inhibitory receptors and neurotransmitters in the basolateral nucleus after CFA injection was also modulated by SP administration. Our findings indicate that the inhibition of the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways involving anti-inflammatory activities and regulation of the excitatory/inhibitory balance can be attributed to the anxiolytic effects of SP. Moreover, our molecular docking analyses show that SP also has good affinity for gamma-aminobutyric acid (GABA) transaminase and GABAA receptors. Therefore, these results suggest that SP could be a candidate compound for anxiolytic therapy and for use as a structural base for developing new drugs.
Collapse
Affiliation(s)
- Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Ting Sun
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qing-Qing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Wang
- Department of Gastroenterology and Endoscopy Center, No. 986 Hospital, Fourth Military Medical University, Xi'an, 710054, China
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
46
|
Jonsjö MA, Åström J, Jones MP, Karshikoff B, Lodin K, Holmström L, Agréus L, Wicksell RK, Axelsson J, Lekander M, Olsson GL, Kemani M, Andreasson A. Patients with ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) and chronic pain report similar level of sickness behavior as individuals injected with bacterial endotoxin at peak inflammation. Brain Behav Immun Health 2020; 2:100028. [PMID: 38377418 PMCID: PMC8474484 DOI: 10.1016/j.bbih.2019.100028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022] Open
Abstract
Background Chronic sickness behavior is implicated in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) and chronic pain but the level of subjective sickness behavior in these conditions has not been investigated or compared to other clinical and non-clinical samples, or to the level in experimental inflammation. Furthermore, the relationship between sickness behavior and self-rated health and functioning is not known in patients with ME/CFS and chronic pain. The aim of the present study was to investigate how sickness behavior in patients with chronic conditions differs from that in individuals with experimental acute sickness, primary care patients, the general population and healthy subjects. In addition, we wanted to explore how sickness behavior is related to self-rated health and health-related functioning. Methods Sickness behavior was quantified using the sickness questionnaire (SicknessQ). Self-ratings were collected at one time-point in 6 different samples. Levels of sickness behavior in patients with ME/CFS (n = 38) and patients with chronic pain (n = 190) were compared to healthy subjects with lipopolysaccharide(LPS)-induced inflammation (n = 29), primary care patients (n = 163), individuals from the general population (n = 155) and healthy subjects (n = 48), using linear regression. Correlations and moderated regression analyses were used to investigate associations between sickness behavior and self-rated health and health-related functioning in ME/CFS, chronic pain and the general population. Results LPS-injected individuals (M = 16.3), patients with ME/CFS (M = 16.1), chronic pain (M = 16.1) and primary care patients (M = 10.7) reported significantly higher SicknessQ scores than individuals from the general population (M = 5.4) and healthy subjects (M = 3.6) all p's < 0.001). In turn, LPS-injected individuals, patients with ME/CFS and chronic pain reported significantly higher SicknessQ scores than primary care patients (p's < 0.01). Higher levels of sickness behavior were associated with poorer self-rated health and health-related functioning (p's < 0.01), but less so in patients with ME/CFS and chronic pain than in individuals from the general population. Conclusions Patients with ME/CFS and chronic pain report similar high levels of sickness behavior; higher than primary care patients, and comparable to levels in experimental inflammation. Further study of sickness behavior in ME/CFS and chronic pain populations is warranted as immune-to-brain interactions and sickness behavior may be of importance for functioning as well as in core pathophysiological processes in subsets of patients.
Collapse
Affiliation(s)
- Martin A. Jonsjö
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Behavior Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jenny Åström
- Behavior Medicine, Karolinska University Hospital, Stockholm, Sweden
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Bianka Karshikoff
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karin Lodin
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Dept. of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Linda Holmström
- Behavior Medicine, Karolinska University Hospital, Stockholm, Sweden
- Dept. of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars Agréus
- Dept. of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rikard K. Wicksell
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar L. Olsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mike Kemani
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Behavior Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Andreasson
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Dept. of Psychology, Macquarie University, NSW, Australia
- Dept. of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Lasselin J, Karshikoff B, Axelsson J, Åkerstedt T, Benson S, Engler H, Schedlowski M, Jones M, Lekander M, Andreasson A. Fatigue and sleepiness responses to experimental inflammation and exploratory analysis of the effect of baseline inflammation in healthy humans. Brain Behav Immun 2020; 83:309-314. [PMID: 31682972 DOI: 10.1016/j.bbi.2019.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Inflammation is believed to be a central mechanism in the pathophysiology of fatigue. While it is likely that dynamic of the fatigue response after an immune challenge relates to the corresponding cytokine release, this lacks evidence. Although both fatigue and sleepiness are strong signals to rest, they constitute distinct symptoms which are not necessarily associated, and sleepiness in relation to inflammation has been rarely investigated. Here, we have assessed the effect of an experimental immune challenge (administration of lipopolysaccharide, LPS) on the development of both fatigue and sleepiness, and the associations between increases in cytokine concentrations, fatigue and sleepiness, in healthy volunteers. In addition, because chronic-low grade inflammation may represent a risk factor for fatigue, we tested whether higher baseline levels of inflammation result in a more pronounced development of cytokine-induced fatigue and sleepiness. Data from four experimental studies was combined, giving a total of 120 subjects (LPS N = 79, 18 (23%) women; Placebo N = 69, 12 (17%) women). Administration of LPS resulted in a stronger increase in fatigue and sleepiness compared to the placebo condition, and the development of both fatigue and sleepiness closely paralleled the cytokine responses. Individuals with stronger increases in cytokine concentrations after LPS administration also suffered more from fatigue and sleepiness (N = 75), independent of gender. However, there was no support for the hypothesis that higher baseline inflammatory markers moderated the responses in fatigue or sleepiness after an inflammatory challenge. The results demonstrate a tight connection between the acute inflammatory response and development of both fatigue and sleepiness, and motivates further investigation of the involvement of inflammation in the pathophysiology of central fatigue.
Collapse
Affiliation(s)
- Julie Lasselin
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45 122 Essen, Germany; Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden.
| | - Bianka Karshikoff
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden
| | - Torbjörn Åkerstedt
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45 122 Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45 122 Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45 122 Essen, Germany
| | - Mike Jones
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden; Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet, Nobels väg 9, 171 65 Solna, Stockholm, Sweden
| | - Anna Andreasson
- Stress Research Institute, Stockholm University, Frescati Hagväg 16A, 106 91 Stockholm, Sweden; Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
48
|
Emotional expressions of the sick face. Brain Behav Immun 2019; 80:286-291. [PMID: 30953768 DOI: 10.1016/j.bbi.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 11/23/2022] Open
Abstract
To handle the substantial threat posed by infectious diseases, behaviors that promote avoidance of contagion are crucial. Based on the fact that sickness depresses mood and that emotional expressions reveal inner states of individuals to others, which in turn affect approach/avoidance behaviors, we hypothesized that facial expressions of emotion may play a role in sickness detection. Using an experimental model of sickness, 22 volunteers were intravenously injected with either endotoxin (lipopolysaccharide; 2 ng/kg body weight) and placebo using a randomized cross-over design. The volunteers were two hours later asked to keep a relaxed expression on their face while their facial photograph was taken. To assess the emotional expression of the sick face, 49 participants were recruited and were asked to rate the emotional expression of the facial photographs of the volunteers when sick and when healthy. Our results indicate that the emotional expression of faces changed two hours after being made temporarily sick by an endotoxin injection. Sick faces were perceived as more sick/less healthy, but also as expressing more negative emotions, such as sadness and disgust, and less happiness and surprise. The emotional expressions mediated 59.1% of the treatment-dependent change in rated health. The inclusion of physical features associated with emotional expressions to the mediation analysis supported these results. We conclude that emotional expressions may contribute to detection and avoidance of infectious individuals and thereby be part of a behavioral defense against disease.
Collapse
|
49
|
Woelfer M, Kasties V, Kahlfuss S, Walter M. The Role of Depressive Subtypes within the Neuroinflammation Hypothesis of Major Depressive Disorder. Neuroscience 2019; 403:93-110. [DOI: 10.1016/j.neuroscience.2018.03.034] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/25/2018] [Accepted: 03/20/2018] [Indexed: 12/21/2022]
|
50
|
Karshikoff B, Tadros MA, Mackey S, Zouikr I. Neuroimmune modulation of pain across the developmental spectrum. Curr Opin Behav Sci 2019; 28:85-92. [PMID: 32190717 DOI: 10.1016/j.cobeha.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Today's treatment for chronic pain is inadequate, and novel targets need to be identified. This requires a better understanding of the mechanisms involved in pain sensitization and chronification. In this review, we discuss how peripheral inflammation, as occurs during an infection, modulates the central pain system. In rodents, neonatal inflammation leads to increased pain sensitivity in adulthood by priming immune components both peripherally and centrally. The excitability of neurons in the spinal cord is also altered by neonatal inflammation and may add to pain sensitization later in life. In adult humans, inflammation modulates pain sensitivity as well, partly by affecting the activity in brain areas that process and regulate pain signals. Low-grade inflammation is common in clinical populations both peripherally and centrally, and priming of the immune system has also been suggested in some pain populations. The nociceptive and immune systems are primed by infections and inflammation. The early life programming of nociceptive responses following exposure to infections or inflammation will define individual differences in adult pain perception. Immune-to-brain mechanisms and neuroimmune pathway need further investigation as they may serve both as predictors and therapeutic targets in chronic pain.
Collapse
Affiliation(s)
- Bianka Karshikoff
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, USA.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Anne Tadros
- Faculty of Health and Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Sean Mackey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, USA
| | - Ihssane Zouikr
- School of Psychology, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|