1
|
Goyani P, Christodoulou R, Vassiliou E. Immunosenescence: Aging and Immune System Decline. Vaccines (Basel) 2024; 12:1314. [PMID: 39771976 PMCID: PMC11680340 DOI: 10.3390/vaccines12121314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Immunosenescence, a systematic reduction in the immune system connected with age, profoundly affects the health and well-being of elderly individuals. This review outlines the hallmark features of immunosenescence, including thymic involution, inflammaging, cellular metabolic adaptations, and hematopoietic changes, and their impact on immune cells such as macrophages, neutrophils, T cells, dendritic cells, B cells, and natural killer (NK) cells. Thymic involution impairs the immune system's capacity to react to novel antigens by reducing thymopoiesis and shifting toward memory T cells. Inflammaging, characterized by chronic systemic inflammation, further impairs immune function. Cellular metabolic adaptations and hematopoietic changes alter immune cell function, contributing to a diminished immune response. Developing ways to reduce immunosenescence and enhance immunological function in the elderly population requires an understanding of these mechanisms.
Collapse
Affiliation(s)
- Priyanka Goyani
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA;
| | - Rafail Christodoulou
- Department of Radiology, School of Medicine, University of Patras, 265 04 Rio, Greece;
| | - Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA;
| |
Collapse
|
2
|
Cunha A, Perazzio S. Effects of immune exhaustion and senescence of innate immunity in autoimmune disorders. Braz J Med Biol Res 2024; 57:e13225. [PMID: 38896644 PMCID: PMC11186593 DOI: 10.1590/1414-431x2024e13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
Innate immune system activation is crucial in the inflammatory response, but uncontrolled activation can lead to autoimmune diseases. Cellular exhaustion and senescence are two processes that contribute to innate immune tolerance breakdown. Exhausted immune cells are unable to respond adequately to specific antigens or stimuli, while senescent cells have impaired DNA replication and metabolic changes. These processes can impair immune system function and disrupt homeostasis, leading to the emergence of autoimmunity. However, the influence of innate immune exhaustion and senescence on autoimmune disorders is not well understood. This review aims to describe the current findings on the role of innate immune exhaustion and senescence in autoimmunity, focusing on the cellular and molecular changes involved in each process. Specifically, the article explores the markers and pathways associated with immune exhaustion, such as PD-1 and TIM-3, and senescence, including Β-galactosidase (β-GAL), lamin B1, and p16ink4a, and their impact on autoimmune diseases, namely type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and immune-mediated myopathies. Understanding the mechanisms underlying innate immune exhaustion and senescence in autoimmunity may provide insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- A.L.S. Cunha
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - S.F. Perazzio
- Divisão de Reumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Divisão de Imunologia, Laboratório Fleury, São Paulo, SP, Brasil
- Laboratório Central, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
3
|
Jallah BP, Kuypers DRJ. Impact of Immunosenescence in Older Kidney Transplant Recipients: Associated Clinical Outcomes and Possible Risk Stratification for Immunosuppression Reduction. Drugs Aging 2024; 41:219-238. [PMID: 38386164 DOI: 10.1007/s40266-024-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2024] [Indexed: 02/23/2024]
Abstract
The number of older individuals receiving a kidney transplant as replacement therapy has significantly increased in the past decades and this increase is expected to continue. Older patients have a lower rate of acute rejection but an increased incidence of death with a functioning graft. Several factors, including an increased incidence of infections, post-transplant malignancy and cardiovascular comorbidity and mortality, contribute to this increased risk. Notwithstanding, kidney transplantation is still the best form of kidney replacement therapy in all patients with chronic kidney disease, including in older individuals. The best form of immunosuppression and the optimal dose of these medications in older recipients remains a topic of discussion. Pharmacological studies have usually excluded older patients and when included, patients were highly selected and their numbers insignificant to draw a reasonable conclusion. The reduced incidence of acute rejection in older recipients has largely been attributed to immunosenescence. Immunosenescence refers to the aging of the innate and adaptive immunity, accumulating in phenotypic and functional changes. These changes influences the response of the immune system to new challenges. In older individuals, immunosenescence is associated with increased susceptibility to infectious pathogens, a decreased response after vaccinations, increased risk of malignancies and cardiovascular morbidity and mortality. Chronic kidney disease is associated with premature immunosenescent changes, and these are independent of aging. The immunosenescent state is associated with low-grade sterile inflammation termed inflammaging. This chronic low-grade inflammation triggers a compensatory immunosuppressive state to avoid further tissue damage, leaving older individuals with chronic kidney disease in an immune-impaired state before kidney transplantation. Immunosuppression after transplantation may further enhance progression of this immunosenescent state. This review covers the role of immunosenescence in older kidney transplant recipients and it details present knowledge of the changes in chronic kidney disease and after transplantation. The impact of immunosuppression on the progression and complications of an immunosenescent state are discussed, and the future direction of a possible clinical implementation of immunosenescence to individualize/reduce immunosuppression in older recipients is laid out.
Collapse
Affiliation(s)
- Borefore P Jallah
- Department of Nephrology and Renal Transplantation, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Lyu DW. Immunomodulatory effects of exercise in cancer prevention and adjuvant therapy: a narrative review. Front Physiol 2024; 14:1292580. [PMID: 38239881 PMCID: PMC10794543 DOI: 10.3389/fphys.2023.1292580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Successful application of cancer immunotherapy has rekindled hope in cancer patients. However, a number of patients are unresponsive to immunotherapy and related treatments. This unresponsiveness in cancer patients toward different treatment regimens can be mainly attributed to severe immune dysfunction in such patients. Several reports indicate that physical exercise can significantly lead to improved cancer patient outcomes. Since exercise gets immense response from the immune system, it can be utilized to improve immune function. Leukocytes with enhanced functions are substantially mobilized into the circulation by a single bout of intense physical exercise. Chronic physical exercise results in greater muscle endurance and strength and improved cardiorespiratory function. This exercise regime is also useful in improving T-cell abundance and reducing dysfunctional T cells. The current available data strongly justify for future clinical trials to investigate physical exercise use as an adjuvant in cancer therapy; however, optimal parameters using exercise for a defined outcome are yet to be established. The components of the immune system associate with almost every tumorigenesis step. The inter-relationship between inflammation, cancer, and innate immunity has recently gained acceptance; however, the underlying cellular and molecular mechanisms behind this relationship are yet to be solved. Several studies suggest physical exercise-mediated induction of immune cells to elicit anti-tumorigenic effects. This indicates the potential of exercising in modulating the behavior of immune cells to inhibit tumor progression. However, further mechanistic details behind physical exercise-driven immunomodulation and anticancer effects have to be determined. This review aims to summarize and discuss the association between physical exercise and immune function modulation and the potential of exercise as an adjuvant therapy in cancer prevention and treatment.
Collapse
Affiliation(s)
- Da-wei Lyu
- Physical Education and Health School, East China Jiaotong University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
6
|
Mengelkoch S, Miryam Schüssler-Fiorenza Rose S, Lautman Z, Alley JC, Roos LG, Ehlert B, Moriarity DP, Lancaster S, Snyder MP, Slavich GM. Multi-omics approaches in psychoneuroimmunology and health research: Conceptual considerations and methodological recommendations. Brain Behav Immun 2023; 114:475-487. [PMID: 37543247 PMCID: PMC11195542 DOI: 10.1016/j.bbi.2023.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
The field of psychoneuroimmunology (PNI) has grown substantially in both relevance and prominence over the past 40 years. Notwithstanding its impressive trajectory, a majority of PNI studies are still based on a relatively small number of analytes. To advance this work, we suggest that PNI, and health research in general, can benefit greatly from adopting a multi-omics approach, which involves integrating data across multiple biological levels (e.g., the genome, proteome, transcriptome, metabolome, lipidome, and microbiome/metagenome) to more comprehensively profile biological functions and relate these profiles to clinical and behavioral outcomes. To assist investigators in this endeavor, we provide an overview of multi-omics research, highlight recent landmark multi-omics studies investigating human health and disease risk, and discuss how multi-omics can be applied to better elucidate links between psychological, nervous system, and immune system activity. In doing so, we describe how to design high-quality multi-omics studies, decide which biological samples (e.g., blood, stool, urine, saliva, solid tissue) are most relevant, incorporate behavioral and wearable sensing data into multi-omics research, and understand key data quality, integration, analysis, and interpretation issues. PNI researchers are addressing some of the most interesting and important questions at the intersection of psychology, neuroscience, and immunology. Applying a multi-omics approach to this work will greatly expand the horizon of what is possible in PNI and has the potential to revolutionize our understanding of mind-body medicine.
Collapse
Affiliation(s)
- Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| | | | - Ziv Lautman
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jenna C Alley
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Lydia G Roos
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Benjamin Ehlert
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Daniel P Moriarity
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | | | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
de Almeida-Neto PF, Gonçalves CAM, Wilde P, Jaggers JR, Júnior GBC, de Farias Sales VS, Medeiros R, Dantas PMS, Cabral BGDAT. Influence of age and fitness level on immune responses of T and NK cells in healthy physically active subjects after strenuous aerobic exercise: a cross-sectional study. Front Immunol 2023; 14:1252506. [PMID: 37860003 PMCID: PMC10582930 DOI: 10.3389/fimmu.2023.1252506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Aim The aim of this study is to analyze whether immune responses after strenuous exercise are influenced by chronological age and fitness level in physically active healthy men. Methods Cross-sectional study with a sample of 32 physically active men. Participants were divided into two groups based on chronological age (younger: age 21.8 ± 1.8 vs. older: age 34.6 ± 8.3) and subsequently regrouped and divided based on fitness level (More conditioned: excellent and superior VO2max vs. Less conditioned: VO2max: weak, regular and good). Fitness was classified according to VO2max levels obtained by a treadmill test using a gas analyzer. Before and immediately after the ergospirometry test, blood samples were collected for evaluation of immunological markers: leukocytes, neutrophils, lymphocytes and subpopulations. Results Chronological age had a moderate effect on CD3+CD4+ lymphocyte count (effect size: 0.204) and CD4/CD8 ratio (effect size: 0.278), favoring older subjects. The level of physical fitness had no significant effect on the analyzed immunological markers. Conclusions Immune responses observed immediately after strenuous exercise may be more dependent on chronological age than on fitness level in healthy, physically active men.
Collapse
Affiliation(s)
- Paulo Francisco de Almeida-Neto
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Phelipe Wilde
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Jason R. Jaggers
- Department of Health and Sport Sciences, University of Louisville, Louisville, KY, United States
| | - Geraldo Barroso Cavalcanti Júnior
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Hemocentro Dalton Cunha - Hemonorte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Paulo Moreira Silva Dantas
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Breno Guilherme de Araújo Tinôco Cabral
- Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
8
|
Zong B, Yu F, Zhang X, Zhao W, Li S, Li L. Mechanisms underlying the beneficial effects of physical exercise on multiple sclerosis: focus on immune cells. Front Immunol 2023; 14:1260663. [PMID: 37841264 PMCID: PMC10570846 DOI: 10.3389/fimmu.2023.1260663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neuroimmunological illness that leads to neurological disability in young adults. Although the etiology of MS is heterogeneous, it is well established that aberrant activity of adaptive and innate immune cells plays a crucial role in its pathogenesis. Several immune cell abnormalities have been described in MS and its animal models, including T lymphocytes, B lymphocytes, dendritic cells, neutrophils, microglia/macrophages, and astrocytes, among others. Physical exercise offers a valuable alternative or adjunctive disease-modifying therapy for MS. A growing body of evidence indicates that exercise may reduce the autoimmune responses triggered by immune cells in MS. This is partially accomplished by restricting the infiltration of peripheral immune cells into the central nervous system (CNS) parenchyma, curbing hyperactivation of immune cells, and facilitating a transition in the balance of immune cells from a pro-inflammatory to an anti-inflammatory state. This review provides a succinct overview of the correlation between physical exercise, immune cells, and MS pathology, and highlights the potential benefits of exercise as a strategy for the prevention and treatment of MS.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaoyou Zhang
- School of Physical Education, Hubei University, Wuhan, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Shichang Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Morawin B, Tylutka A, Bielewicz F, Zembron-Lacny A. Diagnostics of inflammaging in relation to sarcopenia. Front Public Health 2023; 11:1162385. [PMID: 37465171 PMCID: PMC10351926 DOI: 10.3389/fpubh.2023.1162385] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/20/2023] Open
Abstract
One of the theories about aging focuses on the immune response and relates to the activation of subclinical and chronic inflammation. This study was designed to investigate the relationship between inflammation and sarcopenia and to evaluate the influence of lifestyle on the inflammatory profile. Finally, therapeutic strategies to counteract the pathophysiological effect of skeletal muscle aging were also indicated. One hundred seventy-three individuals aged 71.5 ± 6.8 years were divided into two groups: sarcopenia and probable sarcopenia (n = 39) and no sarcopenia (n = 134). Sarcopenia was assessed according to the algorithm of the European Working Group on Sarcopenia in the older adults 2. C-reactive protein (CRP) (p = 0.011) and CRP/albumin ratio (p = 0.030) as well as IL-1β (p = 0.002), cfDNA (p < 0.001) and bilirubin levels (p = 0.002) were significantly higher in the sarcopenia group as opposed to the no sarcopenia group. No significant differences were observed between groups in the concentration of TNFα (p = 0.429) and IL-6 (p = 0.300). An inverse correlation was found between gait speed and cfDNA (rs = -0.234, p < 0.01) and IL-1β (rs = -0.263, p < 0.01). The ROC analysis of cfDNA, CRP, IL-1β and bilirubin ranged from 0.6 to 0.7, which confirms the association between sarcopenia and inflammatory mediators and indicates high clinical usefulness of cfDNA and bilirubin in sarcopenia prediction. We also indicated a link between inflammation and fitness level in the older adult thereby providing evidence that lifestyle exercise should be a key therapeutic strategy in sarcopenia prevention.
Collapse
Affiliation(s)
- Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| | - Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| | - Filip Bielewicz
- Student Research Group, University of Zielona Gora, Collegium Medicum University of Zielona Gora, Zielona Gora, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Góra, Poland
| |
Collapse
|
10
|
Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. J Neuroinflammation 2023; 20:76. [PMID: 36935511 PMCID: PMC10026496 DOI: 10.1186/s12974-023-02753-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
11
|
Meyer-Lindemann U, Moggio A, Dutsch A, Kessler T, Sager HB. The Impact of Exercise on Immunity, Metabolism, and Atherosclerosis. Int J Mol Sci 2023; 24:3394. [PMID: 36834808 PMCID: PMC9967592 DOI: 10.3390/ijms24043394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Physical exercise represents an effective preventive and therapeutic strategy beneficially modifying the course of multiple diseases. The protective mechanisms of exercise are manifold; primarily, they are elicited by alterations in metabolic and inflammatory pathways. Exercise intensity and duration strongly influence the provoked response. This narrative review aims to provide comprehensive up-to-date insights into the beneficial effects of physical exercise by illustrating the impact of moderate and vigorous exercise on innate and adaptive immunity. Specifically, we describe qualitative and quantitative changes in different leukocyte subsets while distinguishing between acute and chronic exercise effects. Further, we elaborate on how exercise modifies the progression of atherosclerosis, the leading cause of death worldwide, representing a prime example of a disease triggered by metabolic and inflammatory pathways. Here, we describe how exercise counteracts causal contributors and thereby improves outcomes. In addition, we identify gaps that still need to be addressed in the future.
Collapse
Affiliation(s)
- Ulrike Meyer-Lindemann
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Alexander Dutsch
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
12
|
Qiu Y, Fernández-García B, Lehmann HI, Li G, Kroemer G, López-Otín C, Xiao J. Exercise sustains the hallmarks of health. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:8-35. [PMID: 36374766 PMCID: PMC9923435 DOI: 10.1016/j.jshs.2022.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 05/23/2023]
Abstract
Exercise has long been known for its active role in improving physical fitness and sustaining health. Regular moderate-intensity exercise improves all aspects of human health and is widely accepted as a preventative and therapeutic strategy for various diseases. It is well-documented that exercise maintains and restores homeostasis at the organismal, tissue, cellular, and molecular levels to stimulate positive physiological adaptations that consequently protect against various pathological conditions. Here we mainly summarize how moderate-intensity exercise affects the major hallmarks of health, including the integrity of barriers, containment of local perturbations, recycling and turnover, integration of circuitries, rhythmic oscillations, homeostatic resilience, hormetic regulation, as well as repair and regeneration. Furthermore, we summarize the current understanding of the mechanisms responsible for beneficial adaptations in response to exercise. This review aimed at providing a comprehensive summary of the vital biological mechanisms through which moderate-intensity exercise maintains health and opens a window for its application in other health interventions. We hope that continuing investigation in this field will further increase our understanding of the processes involved in the positive role of moderate-intensity exercise and thus get us closer to the identification of new therapeutics that improve quality of life.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo 33011, Spain; Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo 33006, Spain
| | - H Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris 75231, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif 94805, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris 75015, France.
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo 33006, Spain; Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC), Oviedo 33006, Spain.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
13
|
Lázničková P, Bendíčková K, Kepák T, Frič J. Immunosenescence in Childhood Cancer Survivors and in Elderly: A Comparison and Implication for Risk Stratification. FRONTIERS IN AGING 2022; 2:708788. [PMID: 35822014 PMCID: PMC9261368 DOI: 10.3389/fragi.2021.708788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The population of childhood cancer survivors (CCS) has grown rapidly in recent decades. Although cured of their original malignancy, these individuals are at increased risk of serious late effects, including age-associated complications. An impaired immune system has been linked to the emergence of these conditions in the elderly and CCS, likely due to senescent immune cell phenotypes accompanied by low-grade inflammation, which in the elderly is known as "inflammaging." Whether these observations in the elderly and CCS are underpinned by similar mechanisms is unclear. If so, existing knowledge on immunosenescent phenotypes and inflammaging might potentially serve to benefit CCS. We summarize recent findings on the immune changes in CCS and the elderly, and highlight the similarities and identify areas for future research. Improving our understanding of the underlying mechanisms and immunosenescent markers of accelerated immune aging might help us to identify individuals at increased risk of serious health complications.
Collapse
Affiliation(s)
- Petra Lázničková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomáš Kepák
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Pediatric Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
14
|
Niemiro GM, Coletta AM, Agha NH, Mylabathula PL, Baker FL, Brewster AM, Bevers TB, Fuentes-Mattei E, Basen-Engquist K, Katsanis E, Gilchrist SC, Simpson RJ. Salutary effects of moderate but not high intensity aerobic exercise training on the frequency of peripheral T-cells associated with immunosenescence in older women at high risk of breast cancer: a randomized controlled trial. Immun Ageing 2022; 19:17. [PMID: 35321743 PMCID: PMC8941789 DOI: 10.1186/s12979-022-00266-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
Abstract
Background Immunosenescence is described as age-associated changes within the immune system that are responsible for decreased immunity and increased cancer risk. Physically active individuals have fewer ‘senescent’ and more naïve T-cells compared to their sedentary counterparts, but it is not known if exercise training can rejuvenate ‘older looking’ T-cell profiles. We determined the effects of 12-weeks supervised exercise training on the frequency of T-cell subtypes in peripheral blood and their relationships with circulating levels of the muscle-derived cytokines (i.e. ‘myokines’) IL-6, IL-7, IL-15 and osteonectin in older women at high risk of breast cancer. The intervention involved 3 sessions/week of either high intensity interval exercise (HIIT) or moderate intensity continuous exercise (MICT) and were compared to an untrained control (UC) group. Results HIIT decreased total granulocytes, CD4+ T-cells, CD4+ naïve T-cells, CD4+ recent thymic emigrants (RTE) and the CD4:CD8 ratio after training, whereas MICT increased total lymphocytes and CD8 effector memory (EM) T-cells. The change in total T-cells, CD4+ naïve T-cells, CD4+ central memory (CM) T-cells and CD4+ RTE was elevated after MICT compared to HIIT. Changes in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \dot{\mathrm{V}}{\mathrm{O}}_{2\max } $$\end{document}V˙O2max after training, regardless of exercise prescription, was inversely related to the change in highly differentiated CD8+ EMRA T-cells and positively related to changes in β2-adrenergic receptor (β2-AR) expression on CM CD4+ and CM CD8+ T-cells. Plasma myokine levels did not change significantly among the groups after training, but individual changes in IL-7 were positively related to changes in the number of β2-AR expressing CD4 naïve T cells in both exercise groups but not controls. Further, CD4 T-cells and CD4 naive T-cells were negatively related to changes in IL-6 and osteonectin after HIIT but not MICT, whereas CD8 EMRA T-cells were inversely related to changes in IL-15 after MICT but not HIIT. Conclusions Aerobic exercise training alters the frequency of peripheral T-cells associated with immunosenescence in middle aged/older women at high risk of breast cancer, with HIIT (pro-senescent) and MICT (anti-senescent) evoking divergent effects. Identifying the underlying mechanisms and establishing whether exercise-induced changes in peripheral T-cell numbers can alter the risk of developing breast cancer warrants investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00266-z.
Collapse
Affiliation(s)
- Grace M Niemiro
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Adriana M Coletta
- Department of Health and Kinesiology, The University of Utah, Salt Lake City, Utah, USA.,Cancer Control and Population Sciences Program, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Nadia H Agha
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Preteesh Leo Mylabathula
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,Department of Health and Human Performance, University of Houston, Houston, Texas, USA.,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Forrest L Baker
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,Department of Health and Human Performance, University of Houston, Houston, Texas, USA.,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Abenaa M Brewster
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Therese B Bevers
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Enrique Fuentes-Mattei
- Department of Radiation Oncology Clinical Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Basen-Engquist
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA.,The University of Arizona Cancer Center, Tucson, Arizona, USA.,Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA
| | - Susan C Gilchrist
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard J Simpson
- Department of Pediatrics, The University of Arizona, Tucson, Arizona, USA. .,The University of Arizona Cancer Center, Tucson, Arizona, USA. .,Department of Health and Human Performance, University of Houston, Houston, Texas, USA. .,School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA. .,Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. .,Department of Immunobiology, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
15
|
Domaszewska K, Boraczyński M, Tang YY, Gronek J, Wochna K, Boraczyński T, Wieliński D, Gronek P. Protective Effects of Exercise Become Especially Important for the Aging Immune System in The Covid-19 Era. Aging Dis 2022; 13:129-143. [PMID: 35111366 PMCID: PMC8782560 DOI: 10.14336/ad.2021.1219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex, multietiological process and a major risk factor for most non-genetic, chronic diseases including geriatric syndromes that negatively affect healthspan and longevity. In the scenario of "healthy or good aging", especially during the COVID-19 era, the proper implementation of exercise as "adjuvant" or "polypill" to improve disease-related symptoms and comorbidities in the general population is a top priority. However, there is still a gap concerning studies analyzing influence of exercise training to immune system in older people. Therefore, the aim of this review is to provide a brief summary of well-established findings in exercise immunology and immunogerontology, but with a focus on the main exercise-induced mechanisms associated with aging of the immune system (immunosenescence). The scientific data strongly supports the notion that regular exercise as a low-cost and non-pharmacological treatment approach, when adjusted on an individual basis in elderly, induce multiple rejuvenating mechanisms: (1) affects the telomere-length dynamics (a "telo-protective" effect), (2) promote short- and long-term anti-inflammatory effects (via e.g., triggering the anti-inflammatory phenotype), 3) stimulates the adaptive immune system (e.g., helps to offset diminished adaptive responses) and in parallel inhibits the accelerated immunosenescence process, (4) increases post-vaccination immune responses, and (5) possibly extends both healthspan and lifespan.
Collapse
Affiliation(s)
- Katarzyna Domaszewska
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poland.
| | - Michał Boraczyński
- Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland.
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, USA.
| | - Joanna Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznan University of Physical Education, Poland.
| | - Krystian Wochna
- Laboratory of Swimming and Water Lifesaving, Faculty of Sport Sciences, Poznan University of Physical Education, Poland.
| | | | - Dariusz Wieliński
- Department of Anthropology and Biometry, Poznan University of Physical Education, Poland.
| | - Piotr Gronek
- Laboratory of Genetics, Department of Dance and Gymnastics, Poznan University of Physical Education, Poland.
| |
Collapse
|
16
|
Bartlett DB, Hanson ED, Lee JT, Wagoner CW, Harrell EP, Sullivan SA, Bates LC, Alzer MS, Amatuli DJ, Deal AM, Jensen BC, MacDonald G, Deal MA, Muss HB, Nyrop KA, Battaglini CL. The Effects of 16 Weeks of Exercise Training on Neutrophil Functions in Breast Cancer Survivors. Front Immunol 2021; 12:733101. [PMID: 34777343 PMCID: PMC8578958 DOI: 10.3389/fimmu.2021.733101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Following therapy, breast cancer survivors (BCS) have an increased risk of infections because of age and cancer dysregulation of inflammation and neutrophil functions. Neutrophil functions may be improved by exercise training, although limited data exist on exercise and neutrophil functions in BCS.Sixteen BCS [mean age: 56 (SD 11) years old] completed 16 weeks of community-based exercise training and a 45-minute acute bout of cycling before (Base) and after (Final) the exercise training program. Exercise training consisted of 3 x 40 – 60 minute mixed mode aerobic exercises, comprising 10 – 30 minutes aerobic and 30 minutes resistance training. At Base and Final, we took BCS blood samples before (PRE), immediately after (POST), and 1 hour after (1Hr) acute exercise to determine neutrophil counts, phenotype, bacterial killing, IL-6, and IL-8 levels. Eleven healthy, age- and physical activity levels-matched women (Control) completed the acute bout of exercise once as a healthy response reference. Resting Responses. BCS and Controls had similar Base PRE absolute neutrophil counts [mean (SD): 3.3 (1.9) v 3.1 (1.2) x 109/L, p=0.801], but BCS had lower bacterial phagocytosis [3991 (1233) v 4881 (417) MFI, p=0.035] and higher oxidative killing [6254 (1434) v 4709 (1220) MFI, p=0.005], lower CD16 [4159 (1785) v 7018 (1240) MFI, p<0.001], lower CXCR2 [4878 (1796) v 6330 (1299) MFI, p=0.032] and higher TLR2 [98 (32) v 72 (17) MFI, p=0.022] expression, while IL-6 [7.4 (5.4) v 4.0 (2.7) pg/mL, p=0.079] levels were marginally higher and IL-8 [6.0 (4.7) v 7.9 (5.0) pg/mL, p=0.316] levels similar. After 16 weeks of training, compared to Controls, BCS Final PRE phagocytosis [4510 (738) v 4881 (417) MFI, p=0.146] and TLR2 expression [114 (92) v 72 (17) MFI, p=0.148] were no longer different. Acute Exercise Responses. As compared to Controls, at Base, BCS phagocytic Pre-Post response was lower [mean difference, % (SD): 12% (26%), p=0.042], CD16 Pre-Post response was lower [12% (21%), p=0.016] while CD16 Pre-1Hr response was higher [13% (25%), p=0.022], TLR2 Pre-Post response was higher [15% (4%) p=0.002], while IL-8 Pre-Post response was higher [99% (48%), p=0.049]. As compared to Controls, following 16 weeks of training BCS phagocytic Pre-Post response [5% (5%), p=0.418], CD16 Pre-1Hr response [7% (7%), p=0.294], TLR2 Pre-Post response [6% (4%), p=0.092], and IL-8 Pre-Post response [1% (9%), p=0.087] were no longer different. Following cancer therapy, BCS may have impaired neutrophil functions in response to an acute bout of exercise that are partially restored by 16 weeks of exercise training. The improved phagocytosis of bacteria in BCS may represent an exercise-induced intrinsic improvement in neutrophil functions consistent with a reduced risk of infectious disease.
Collapse
Affiliation(s)
- David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University, Durham, NC, United States.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jordan T Lee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chad W Wagoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Elizabeth P Harrell
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie A Sullivan
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mohamdod S Alzer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dean J Amatuli
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brian C Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Grace MacDonald
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Michael A Deal
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Claudio L Battaglini
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
The Association of Anti-Inflammatory Diet Ingredients and Lifestyle Exercise with Inflammaging. Nutrients 2021; 13:nu13113696. [PMID: 34835952 PMCID: PMC8621229 DOI: 10.3390/nu13113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
One of the latest theories on ageing focuses on immune response, and considers the activation of subclinical and chronic inflammation. The study was designed to explain whether anti-inflammatory diet and lifestyle exercise affect an inflammatory profile in the Polish elderly population. Sixty individuals (80.2 ± 7.9 years) were allocated to a low-grade inflammation (LGI n = 33) or high-grade inflammation (HGI n = 27) group, based on C-reactive protein concentration (<3 or ≥3 mg/L) as a conventional marker of systemic inflammation. Diet analysis focused on vitamins D, C, E, A, β-carotene, n-3 and n-6 PUFA using single 24-h dietary recall. LGI demonstrated a lower n-6/n-3 PUFA but higher vitamin D intake than HGI. Physical performance based on 6-min walk test (6MWT) classified the elderly as physically inactive, whereby LGI demonstrated a significantly higher gait speed (1.09 ± 0.26 m/s) than HGI (0.72 ± 0.28 m/s). Circulating interleukins IL-1β, IL-6, IL-13, TNFα and cfDNA demonstrated high concentrations in the elderly with low 6MWT, confirming an impairment of physical performance by persistent systemic inflammation. These findings reveal that increased intake of anti-inflammatory diet ingredients and physical activity sustained throughout life attenuate progression of inflammaging in the elderly and indicate potential therapeutic strategies to counteract pathophysiological effects of ageing.
Collapse
|
18
|
Abstract
Innate and adaptive immune responses decline with age, leading to greater susceptibility to infectious diseases and reduced responses to vaccines. Diseases are more severe in old than in young individuals and have a greater impact on health outcomes such as morbidity, disability, and mortality. Aging is characterized by increased low-grade chronic inflammation, so-called inflammaging, that represents a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we summarize current knowledge on age-associated changes in immune cells with special emphasis on B cells, which are more inflammatory and less responsive to infections and vaccines in the elderly. We highlight recent findings on factors and pathways contributing to inflammaging and how these lead to dysfunctional immune responses. We summarize recent published studies showing that adipose tissue, which increases in size with aging, contributes to inflammaging and dysregulated B cell function.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.,Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
19
|
Strasser B, Wolters M, Weyh C, Krüger K, Ticinesi A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients 2021; 13:nu13062045. [PMID: 34203776 PMCID: PMC8232643 DOI: 10.3390/nu13062045] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Living longer is associated with an increased risk of chronic diseases, including impairments of the musculoskeletal and immune system as well as metabolic disorders and certain cancers, each of which can negatively affect the relationship between host and microbiota up to the occurrence of dysbiosis. On the other hand, lifestyle factors, including regular physical exercise and a healthy diet, can affect skeletal muscle and immune aging positively at all ages. Accordingly, health benefits could partly depend on the effect of such interventions that influence the biodiversity and functionality of intestinal microbiota. In the present review, we first discuss the physiological effects of aging on the gut microbiota, immune system, and skeletal muscle. Secondly, we describe human epidemiological evidence about the associations between physical activity and fitness and the gut microbiota composition in older adults. The third part highlights the relevance and restorative mechanisms of immune protection through physical activity and specific exercise interventions during aging. Fourth, we present important research findings on the effects of exercise and protein as well as other nutrients on skeletal muscle performance in older adults. Finally, we provide nutritional recommendations to prevent malnutrition and support healthy active aging with a focus on gut microbiota. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low muscle mass and a higher demand for specific nutrients (e.g., dietary fiber, polyphenols and polyunsaturated fatty acids) that can modify the composition, diversity, and metabolic capacity of the gut microbiota, and may thus provide a practical means of enhancing gut and systemic immune function.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, 1020 Vienna, Austria
- Correspondence:
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology–BIPS, 28359 Bremen, Germany;
| | - Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, 35394 Giessen, Germany; (C.W.); (K.K.)
| | - Andrea Ticinesi
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
20
|
Impact of exercise on the immune system and outcomes in hematologic malignancies. Blood Adv 2021; 4:1801-1811. [PMID: 32343800 DOI: 10.1182/bloodadvances.2019001317] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Exercise is increasingly recognized as important to cancer care. The biology of how exercise improves outcomes is not well understood, however. Studies show that exercise favorably influences the immune system in healthy individuals (neutrophils, monocytes, natural killer cells, T cells, and a number of cytokines). Thus, exercise in patients with hematologic cancer could significantly improve immune function and tumor microenvironment. We performed a literature search and identified 7 studies examining exercise and the immune environment in hematologic malignancies. This review focuses on the role of exercise and physical activity on the immune system in hematologic malignancies and healthy adults.
Collapse
|
21
|
Alsahab M, Beishon L, Brown B, Burn E, Burton JK, Cox N, Dani M, Elhadi M, Freshwater S, Gaunt V, Gordon A, Goujon M, Hale M, Hughes T, Jackson TA, Jelley B, Khan A, Khiroya H, Lal R, Madden K, Magill L, Masoli J, Masud T, McCluskey L, McNeela N, Mohammedseid-Nurhussien A, Moorey H, Lochlainn MN, Nirantharakumar K, Okoth K, Osuafor CN, Patterson K, Pearson GME, Perry R, Pettitt M, Pigott J, Pinkney T, Quinn T, Reynolds A, Richardson S, Sanyal N, Seed A, Sleeman I, Soo C, Steves C, Strain WD, Taylor J, Torsney K, Welch C, Wilson D, Witham M, Elazeem HASA, Abdelhafez MH, Abdelmalak A, Abdelwahab OA, Abdulhadi OMAS, Adewole O, Ahmad M, Ahmed EA, Ahmed H, Ahmed IA, Akcay M, Akdeniz Y, Akın E, Akladious C, Alessandri F, Ali A, Aljafari A, Aljafari A, Al-Sadawi M, Al-Sodani L, Altintoprak F, Amaratungaz G, Amer J, Amini S, Amir T, Anandarajah C, Anders R, Ansari MH, Appiah K, Atia J, Atkin C, Aujayeb A, Awad EM, Azab MA, Azam MT, Aziz S, Azzam AY, Babar L, Babb L, Badh M, Baguneid C, Bailey E, Baili E, Baldwin S, Baloyiannis I, Bannerjee M, Barnard A, Barra F, Bashir H, Bawor M, Bayhan Z, Beishon L, Belcher J, Belgamwar R, Bentley C, Birchenough A, Bo YNJ, Boden HR, Bouhuwaish A, Brachini G, Bremner L, Bridgwater H, Bryant C, Budd G, Budd S, Budzikoski A, Bulla R, Buondonno A, Buondonno A, Burden N, Burn E, Butt H, Capoglu R, Caracostea A, Cardoso R, Carr A, Carrasco-Prats M, Cattel C, Ceccarelli G, Cecere G, Charalabopoulos A, Charsley E, Cheney-Lowe H, Chevallier T, Choudhry AJ, Ciccarone F, Cicerchia PM, Cirillo B, Collins FD, Comerford V, Cordie A, Coulter S, Coulthard N, Cox C, Cox V, Crowe A, Cullen J, Cummings J, Cunningham N, Curley D, Currie H, Daly M, Darley J, Dattani N, Davakis S, Davies R, De Paola G, De Toma G, Del Valle-Ruiz S, Deldar B, Demir H, Desai A, Desai N, Devaney A, Dew L, Dhesi J, Dias M, Dick G, Doddamani P, Dogra G, Doll T, Dooley HC, Dost S, Dotchin C, Dowell H, Draghita IM, Dundas JM, Duranti G, Dusara H, Dwivedi R, Dyer AH, Eastaugh A, Edwards E, Elghazaly SM, Elmehrath AO, Elrick H, El-Shazly M, Emery A, Etchill EW, Evans S, Evison F, Fairhead C, Faulkner M, Felska A, Fernandez A, Fernández-Fernández PV, Ferraiolo A, Ferrero S, Fiori E, Firat N, Fisk G, Fleck A, Fonsi GB, Gabre-Kidan A, Gallo G, Gandhi R, Garner M, Georgiou N, Gerretsen H, Ghannam NAA, Ghobrial A, Ghobrial H, Ghufoor Z, Gibbon J, Gilbert GF, Giles M, Giménez-Francés C, Gonullu E, Gray A, Gray JH, Green D, Greene C, Griffin E, Griffith K, Grubb A, Guan Y, Guerero DN, Gupta A, Gustavino C, Guzman L, Hadreiez AKM, Hajiioannou J, Hanji D, Madhavan DH, Harmantepe T, Harrison P, Hart B, Haslam A, Haunton V, Haut ER, Heinsohn T, Hennah L, Hetta HF, Hickman A, Hobill A, Hogan PCP, Hogan V, Holmes E, Honney K, Hood K, Hopkinson K, Howells L, Hrouda N, Hunsley D, Hurst W, Hussein RA, Ibrahim MEAA, Ibtida I, Ibukunoluwakitan A, Ishlek I, Iyer R, Jackson K, Jackson R, James E, Jarvis H, Jeffs S, Jenko N, Jeyakumar S, Kabir S, Kainth H, Kalloo J, Kanzaria A, Karapanou A, Kardaman N, Karthikeyan S, Karunatilleke A, Kelly M, Kelly NI, Khalid H, Khan H, Khan MS, King M, Kneen T, Kok L, Kratochwila C, Kuzeva A, Lapolla P, Lau R, Law KY, Leadbetter A, Lee G, Lee H, Lee H, Levinson G, Lewis G, Liakakos T, Lim S, Lis D, Livesey E, López-Morales P, Lowes L, Lunt E, Lyon E, Madan S, Majid Z, Malapati H, Man J, Mandane B, Manning SH, Mantoglu B, Martínez-Sanz N, Marx W, Masood AEB, Maughan T, Mawhinney J, Maxfield D, Mayer J, Maynard H, McDonald C, McGovern A, Mclachlan S, Medina-Manuel E, Meneghini S, Metcalf M, Millwood-Hargrave J, Mingoli A, Miu K, Mohamed F, Mohamed SM, Hussein AARM, Mohammad A, Mohammed A, Momen AA, Moomo F, Mora-Guzmán I, Moriarty L, Morrin H, Morris C, Moss N, Moustafa MM, Mpoura M, Mubin M, Muhtaroglu A, Muir G, Mulhern S, Muller D, Murphy DC, Muzammil B, Nadkarni V, Nageh MA, NasrEldin YK, Nawaz W, Nguyen H, Cheallaigh CN, Noar A, North S, Nwolu F, O’Docherty A, Odutola O, O’Dwyer S, Ogochukwu O, O’Mahony C, Orlando L, Osterdahl M, Page C, Panayotidis I, Pancholi S, Parkin J, Passby LC, Pastor-Pérez P, Patel H, Patel S, Penfold R, Perinpanathan R, Perivoliotis K, Perra T, Pinkney M, Pinotti E, Porcu A, Price A, Pugliese F, Puri P, Pytraczyk S, Qaiser Y, Qurashi M, Radenkovic D, Rajeswaran T, Rapaport SF, Razzak T, Reilly L, Reynolds P, Richardson A, Roberts A, Roberts A, Roberts-Rhodes C, Robinson T, Rocca A, Ross-Skinner E, Ruiz-Marín M, Ryall R, Saad AM, Saad MM, Sadiq A, Sammarco G, Sampanis MA, Sanghvi H, Sapienza P, Sayers R, Scott L, Sen M, Shaban MAA, Shakespeare KT, Shaw E, Shaw H, Sheldrake J, Sim SY, Simonelli L, Sipsas NV, Sivam J, Sivarajan S, Smith J, Speranza F, Spice C, Stafford A, Stambollouian K, Stevens KA, Stewart J, Stratton E, Street H, Surtees M, Swinnerton E, Taher ASA, Tait C, Taylor A, Thake M, Thin K, Thould H, Thyn T, To B, Tobiss H, Toppley K, Townsend L, Tullo E, Tzovaras G, Umeadi A, Vaidya H, Valero-Soriano M, Varden R, Vergani V, Vervoort D, Vescio G, Vettasseri M, Virk M, Vyas V, Wagland J, Wallis S, Warner C, Watkins E, Watson H, Webb R, Welsh SH, West R, Whelan E, Whitney J, Whitsey M, Wilcock C, Wilkinson I, Williams D, Williamson M, Willott RH, Wimalasundera M, Win YL, Winter L, Worrall S, Wright R, Yeo N, Yeung E, Yigit M, Yildiz YA, Yusuf H, Zambon M, Zaw H, Elabedeen OZ, Welch C. Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: results of an international multi-centre study. Age Ageing 2021; 50:617-630. [PMID: 33543243 PMCID: PMC7929433 DOI: 10.1093/ageing/afab026] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Increased mortality has been demonstrated in older adults with coronavirus disease 2019 (COVID-19), but the effect of frailty has been unclear. METHODS This multi-centre cohort study involved patients aged 18 years and older hospitalised with COVID-19, using routinely collected data. We used Cox regression analysis to assess the impact of age, frailty and delirium on the risk of inpatient mortality, adjusting for sex, illness severity, inflammation and co-morbidities. We used ordinal logistic regression analysis to assess the impact of age, Clinical Frailty Scale (CFS) and delirium on risk of increased care requirements on discharge, adjusting for the same variables. RESULTS Data from 5,711 patients from 55 hospitals in 12 countries were included (median age 74, interquartile range [IQR] 54-83; 55.2% male). The risk of death increased independently with increasing age (>80 versus 18-49: hazard ratio [HR] 3.57, confidence interval [CI] 2.54-5.02), frailty (CFS 8 versus 1-3: HR 3.03, CI 2.29-4.00) inflammation, renal disease, cardiovascular disease and cancer, but not delirium. Age, frailty (CFS 7 versus 1-3: odds ratio 7.00, CI 5.27-9.32), delirium, dementia and mental health diagnoses were all associated with increased risk of higher care needs on discharge. The likelihood of adverse outcomes increased across all grades of CFS from 4 to 9. CONCLUSION Age and frailty are independently associated with adverse outcomes in COVID-19. Risk of increased care needs was also increased in survivors of COVID-19 with frailty or older age.
Collapse
|
22
|
Tylutka A, Morawin B, Gramacki A, Zembron-Lacny A. Lifestyle exercise attenuates immunosenescence; flow cytometry analysis. BMC Geriatr 2021; 21:200. [PMID: 33752623 PMCID: PMC7986285 DOI: 10.1186/s12877-021-02128-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background Interaction of physical activity and overall immune profile is very complex and depends on the intensity, duration and frequency of undertaken physical activity, the exposure to cytomegalovirus (CMV) infection and the age-related changes in the immune system. Daily physical activity, which particularly influences immunity, declines dramatically with age. Therefore, the aim of the study was to explain whether physical activity sustained throughout life can attenuate or reverse immunosenescence. Methods Ninety-nine older adults (60–90 years) were recruited for the study. According to the 6-min walk test (6WMT), the Åstrand-Ryhming bike test (VO2max) and Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire, the individuals were classified as physically active (n = 34) and inactive (n = 20) groups. The analysis of T lymphocytes between active vs. inactive participants was performed using eight-parameter flow cytometry. Results Analysis of the baseline peripheral naïve and memory T lymphocytes showed a significant relationship of lifestyle exercise with the CD4/CD8 ratio. Above 50% of physically active participants demonstrated the CD4/CD8 ratio ≥ 1 or ≤ 2.5 contrary to the inactive group who showed the ratio < 1. The older adults with the result of 6WMT > 1.3 m/s and VO2max > 35 mL/kg/min had a significantly higher CD4+CD45RA+ T lymphocyte percentage and also a higher ratio of CD4+CD45RA+/CD4+CD45RO+. Interestingly, in active older adults with IgG CMV+ (n = 30) the count of CD4+CD45RA+ T lymphocytes was higher than in the inactive group with IgG CMV+ (n = 20). Conclusion Based on the flow cytometry analysis, we concluded that lifestyle exercise could lead to rejuvenation of the immune system by increasing the percentage of naïve T lymphocytes or by reducing the tendency of the inverse CD4/CD8 ratio.
Collapse
Affiliation(s)
- Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland
| | - Artur Gramacki
- Faculty of Computer, Electrical and Control Engineering, Institute of Control and Computation Engineering University of Zielona Gora, Zielona Gora, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty Str., 65-046, Zielona Gora, Poland.
| |
Collapse
|
23
|
Wilson D, Drew W, Jasper A, Crisford H, Nightingale P, Newby P, Jackson T, Lord JM, Sapey E. Frailty Is Associated With Neutrophil Dysfunction Which Is Correctable With Phosphoinositol-3-Kinase Inhibitors. J Gerontol A Biol Sci Med Sci 2021; 75:2320-2325. [PMID: 32877922 PMCID: PMC7662170 DOI: 10.1093/gerona/glaa216] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Indexed: 12/28/2022] Open
Abstract
Neutrophil dysfunction has been described with age, appears exaggerated in infection, with altered phosphoinositol signaling a potential mechanism. However, functional aging is heterogeneous. Frailty is a negative health status and is more common in older adults. We hypothesized that neutrophil migration may be compromised in frailty, associated with the degree of frailty experienced by the older person. We compared measures of frailty, neutrophil function, and systemic inflammation in 40 young and 77 older community-dwelling adults in the United Kingdom. Systemic neutrophils exhibited an age-associated reduction in the accuracy of migration (chemotaxis) which was further blunted with frailty. The degree of migratory inaccuracy correlated with physical (adjusted hand grip strength) and cognitive (Stroop test) markers of frailty. Regression analysis demonstrated that age, Charlson comorbidity index, and frailty index were able to predict neutrophil chemotaxis. Reduced chemotaxis of neutrophils from frail adults could be reversed using selective PI3K inhibitors. Exposure of neutrophils from young adults to plasma from chronically inflamed frail older adults could not recapitulate the migratory deficit in vitro, and there were no relationships with systemic inflammation and neutrophil dysfunction. Frailty exaggerated the neutrophil deficits seen with advanced age but aspects of the frailty-associated deficit in neutrophil function are rescuable and thus potentially form a therapeutic target to improve outcomes from infection in older adults.
Collapse
Affiliation(s)
- Daisy Wilson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital Birmingham, UK
| | - William Drew
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital Birmingham, UK
| | - Alice Jasper
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital Birmingham, UK
| | - Helena Crisford
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital Birmingham, UK
| | - Peter Nightingale
- NIHR Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, UK
| | - Paul Newby
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital Birmingham, UK
| | - Thomas Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital Birmingham, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital Birmingham, UK.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital Birmingham, UK
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The aim of this article is to describe the benefits of physical activity and exercise on rheumatoid arthritis disease activity, functioning, and symptoms; and offer recommendations for promotion of physical activity and exercise among people with rheumatoid arthritis. RECENT FINDINGS In addition to well-known benefits of exercise such as improving cardiovascular health and metabolic syndrome and reducing obesity, exercise has consistently shown rheumatoid arthritis-specific benefits. Exercise and increases in physical activity improve clinically measured disease activity, reduce symptoms such as fatigue and pain, and improve function and mental health. In spite of these benefits, most people with rheumatoid arthritis are inactive. Patient barriers to engaging in physical activity may include fears of joint damage, rheumatoid arthritis symptoms, and lack of understanding that physical activity improves the symptoms that may be barriers. However, the greatest barrier to healthy levels of physical activity among individuals with rheumatoid arthritis appears to be the lack of direction from healthcare providers. SUMMARY Exercise is safe and highly beneficial for people with rheumatoid arthritis. Because receiving recommendations from healthcare providers may be the factor most strongly associated with engaging in physical activity or exercise, providers are encouraged to give patients positive messages about the benefits of physical activity and the extremely low risks of harm.
Collapse
|
25
|
Sapey E. Neutrophil Modulation in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:247-259. [PMID: 32697897 DOI: 10.15326/jcopdf.7.3.2019.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neutrophils have been implicated in the pathogenesis of alpha-1 antitrypsin deficiency (AATD) since the first descriptions of the disease. Neutrophil proteinases can cause all lung manifestations of AATD, from small airways destruction, to emphysema, to chronic bronchitis and airflow obstruction. Initially, it was proposed that neutrophil functions were normal in AATD, responding in an initially physiological manner to a high burden of pulmonary inflammation. More recent studies have shed new light on this, describing changes in neutrophil responses (a modulation of usual cellular functions) in the presence of inflammation or infection which might enhance tissue damage while impeding bacterial clearance, providing some evidence to support there being an AATD neutrophil phenotype. Many facets of neutrophil function in AATD can be explained by the loss of alpha-1 antitrypsin (AAT) in diverse biological processes. If this were the only reason for altered neutrophil functions, one would predict similar disease presentation across affected people. However, this is not the case. Despite similar (low) levels of AAT, lung disease is extremely variable in AATD, with some patients suffering a significant burden of lung disease and some much less, irrespective of smoking habits and, in some cases, despite augmentation therapy. This review will explore how complex neutrophil responses are and how they are altered with age, inflammation and AATD. Further, it will discuss the need to understand more completely which aspects of AATD-associated disease are driven by neutrophils and how patients more susceptible to neutrophil dysfunction could be identified to potentially stratify treatment approaches.
Collapse
Affiliation(s)
- Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Amatriain-Fernández S, Gronwald T, Murillo-Rodríguez E, Imperatori C, Solano AF, Latini A, Budde H. Physical Exercise Potentials Against Viral Diseases Like COVID-19 in the Elderly. Front Med (Lausanne) 2020; 7:379. [PMID: 32714938 PMCID: PMC7351507 DOI: 10.3389/fmed.2020.00379] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sandra Amatriain-Fernández
- Faculty of Sport Sciences and Physical Education, University of A Coruña, A Coruña, Spain
- Department of Pedagogy, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| | - Thomas Gronwald
- Department of Performance, Neuroscience, Therapy and Health, Faculty of Health Sciences, Medical School Hamburg, Hamburg, Germany
| | | | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo - LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Henning Budde
- Department of Pedagogy, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
27
|
Oliveira CLP, Antunes BDMM, Gomes AC, Lira FS, Pimentel GD, Boulé NG, Mota JF. Creatine supplementation does not promote additional effects on inflammation and insulin resistance in older adults: A pilot randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN 2020; 38:94-98. [PMID: 32690185 DOI: 10.1016/j.clnesp.2020.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/02/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND A chronic, low-grade inflammation is commonly present in older adults and has been associated with the onset of age-related chronic diseases. Resistance training (RT) and creatine (CR) supplementation emerged as promising strategies to reduce circulating pro-inflammatory cytokines. This study aimed to investigate the effects of CR supplementation combined with RT on markers of inflammation and insulin resistance in community-dwelling older adults. METHODS In a pilot randomized, double-blind, placebo-controlled trial, participants were allocated to one of the following groups: 1) Creatine supplementation and resistance training (CR + RT, n = 13); 2) Placebo and resistance training (PL + RT, n = 14). While engaged in a 12-week RT program, participants from CR + RT group received 5 g/day of CR monohydrate and participants from PL + RT group received the same dose of maltodextrin. At baseline and at week 12, blood samples were collected for glucose, insulin, adiponectin, leptin, interleukin 6, interleukin 10, monocyte chemo-attractant protein-1 and C-reactive protein analysis. RESULTS After 12 weeks of intervention, there were no differences between groups in any of the variables analyzed. Monocyte chemoattractant protein-1 was reduced in both groups (CR + RT: -55.66 ± 48.93 pg/mL, p < 0.01, dz = 1.13; PL + RT: -46.52 ± 55.21 pg/mL, p < 0.01, dz = 0.84). CONCLUSION Resistance training, regardless of CR supplementation, decreased MCP-1 concentration in older adults.
Collapse
Affiliation(s)
- Camila L P Oliveira
- Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Barbara de Moura Mello Antunes
- Exercise and Immunometabolism Research Group, Department of Physical Education, Sao Paulo State University, Presidente Prudente, SP, 19060-900, Brazil
| | - Aline Corado Gomes
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, 227 Street, Block 68, Setor Leste Universitario, Goiania, GO, 74.605-080, Brazil
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Sao Paulo State University, Presidente Prudente, SP, 19060-900, Brazil
| | - Gustavo Duarte Pimentel
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, 227 Street, Block 68, Setor Leste Universitario, Goiania, GO, 74.605-080, Brazil
| | - Normand G Boulé
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| | - João Felipe Mota
- Clinical and Sports Nutrition Research Laboratory, Faculty of Nutrition, Goiás Federal University, 227 Street, Block 68, Setor Leste Universitario, Goiania, GO, 74.605-080, Brazil.
| |
Collapse
|
28
|
Bartlett DB, Slentz CA, Willis LH, Hoselton A, Huebner JL, Kraus VB, Moss J, Muehlbauer MJ, Spielmann G, Muoio DM, Koves TR, Wu H, Huffman KM, Lord JM, Kraus WE. Rejuvenation of Neutrophil Functions in Association With Reduced Diabetes Risk Following Ten Weeks of Low-Volume High Intensity Interval Walking in Older Adults With Prediabetes - A Pilot Study. Front Immunol 2020; 11:729. [PMID: 32431698 PMCID: PMC7214668 DOI: 10.3389/fimmu.2020.00729] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Neutrophil dysfunction is a common feature of aging, and is associated with the pathogenesis of many age-related diseases, including type 2 diabetes mellitus (T2DM). Although exercise training improves metabolic health, decreases risk of T2DM, and is associated with improving neutrophil functions, involvement in regular physical activity declines with age. The aim of this study was to determine if neutrophil functions could be improved in association with changes in fitness and metabolic parameters in older adults at risk for T2DM using 10-weeks of low volume high-intensity interval exercise training (HIIT). Ten older (71 ± 5 years) sedentary adults with prediabetes (HbA1c: 6.1 ± 0.3%) completed 10 weeks of a supervised HIIT program. Three 30 min sessions/week consisted of ten 60 s intervals of low intensity [50-60% heart rate reserve (HRR)] separated with similar durations of high intensity intervals (80-90% HRR). Before and after training, glucose and insulin sensitivity, neutrophil chemotaxis, bacterial phagocytosis, reactive oxygen species (ROS) production, and mitochondrial functions were assessed. Exercise-mediated changes in cardiorespiratory fitness (VO2peak) and neutrophil functions were compared to six young (23 ± 1 years) healthy adults. Following training, significant reductions in fasting glucose and insulin were accompanied by improved glucose control and insulin sensitivity (all p < 0.05). Before exercise training, VO2peak in the old participants was significantly less than that of the young controls (p < 0.001), but increased by 16 ± 11% following training (p = 0.002) resulting in a 6% improvement of the deficit. Neutrophil chemotaxis, phagocytosis and stimulated ROS production were significantly less than that of the young controls, while basal ROS were higher before training (all p < 0.05). Following training, chemotaxis, phagocytosis and stimulated ROS increased while basal ROS decreased, similar to levels observed in the young controls (all p < 0.05) and reducing the deficit of the young controls between 2 and 154%. In five of the adults with prediabetes, neutrophil mitochondrial functions were significantly poorer than the six young controls before training. Following training, mitochondrial functions improved toward those observed in young controls (all p < 0.05), reducing the deficit of the young controls between 14.3 and 451%. Ten weeks of HIIT in older adults at risk for T2DM reduced disease risk accompanied by improved primary and bioenergetic neutrophil functions. Our results are consistent with a reduced risk of infections mediated by relationships in exercise induced systemic and cellular metabolic features. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02441205, registered on May 12th, 2015.
Collapse
Affiliation(s)
- David B. Bartlett
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
- Division of Medical Oncology, School of Medicine, Duke University, Durham, NC, United States
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Cris A. Slentz
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Leslie H. Willis
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Andrew Hoselton
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Jennifer Moss
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Guillaume Spielmann
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Timothy R. Koves
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Helena Wu
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Kim M. Huffman
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Janet M. Lord
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Birmingham BRC in Inflammation, University Hospitals Birmingham, Birmingham, United Kingdom
| | - William E. Kraus
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
29
|
Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020; 12:nu12030622. [PMID: 32121049 PMCID: PMC7146449 DOI: 10.3390/nu12030622] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing age, the immune system undergoes a remodeling process, termed immunosenescence, which is accompanied by considerable shifts in leukocyte subpopulations and a decline in various immune cell functions. Clinically, immunosenescence is characterized by increased susceptibility to infections, a more frequent reactivation of latent viruses, decreased vaccine efficacy, and an increased prevalence of autoimmunity and cancer. Physiologically, the immune system has some adaptive strategies to cope with aging, while in some settings, maladaptive responses aggravate the speed of aging and morbidity. While a lack of physical activity, decreased muscle mass, and poor nutritional status facilitate immunosenescence and inflammaging, lifestyle factors such as exercise and dietary habits affect immune aging positively. This review will discuss the relevance and mechanisms of immunoprotection through physical activity and specific exercise interventions. In the second part, we will focus on the effect of dietary interventions through the supplementation of the essential amino acid tryptophan, n-3 polyunsaturated fatty acids, and probiotics (with a special focus on the kynurenine pathway).
Collapse
Affiliation(s)
- Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
- Correspondence:
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria;
| |
Collapse
|
30
|
Abstract
Amplified innate leukocytes (neutrophils and monocytes/macrophages) are associated with advanced ischemic and non-ischemic heart failure (HF). Intensified neutrophilic leukocytosis (neutrophilia) and sustained activation of neutrophils is the predominant factor that determines over activated inflammation in acute HF and the outcome of long-term chronic HF. After heart attack, the first wave of innate responsive and short-lived neutrophils is essential for the initiation of inflammation, resolution of inflammation, and cardiac repair, however uncontrolled and long-term activation of neutrophils leads to collateral damage of myocardium. In the presented review, we highlighted the interactive and integrative role of neutrophil phenotypes in cellular and molecular events of ischemic HF. In addition, we discussed the current, nonimmune, immune, and novel paradigms of neutrophils in HF associated with differential factors with a specific interest in non-resolving inflammation and resolution physiology.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, AL, USA
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
31
|
Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 2019; 19:563-572. [DOI: 10.1038/s41577-019-0177-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Hurst RD, Lyall KA, Roberts JM, Perthaner A, Wells RW, Cooney JM, Jensen DJ, Burr NS, Hurst SM. Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants Prior to Exercise May Assist Recovery From Oxidative Stress and Maintains Circulating Neutrophil Function: A Pilot Study. Front Nutr 2019; 6:73. [PMID: 31192216 PMCID: PMC6548855 DOI: 10.3389/fnut.2019.00073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
Aim: To evaluate blackcurrant anthocyanin-rich extract (BAE) consumption on time- and dose-dependent plasma anthocyanin bioavailability and conduct a pilot study to explore the potential effect of BAE in promoting recovery from exercise-induced oxidative stress, and maintenance of circulating neutrophil function. Methods: Time- and dose-dependent blackcurrant anthocyanin bioavailability was assessed using LC-MS in 12 participants over 6 h after the ingestion of a placebo or BAE containing 0.8, 1.6, or 3.2 mg/kg total anthocyanins. In a separate pilot intervention exercise trial, 32 participants consumed either a placebo or 0.8, 1.6, or 3.2 mg/kg BAE (8 individuals per group), and then 1 h later performed a 30 min row at 70% VO2max. Blood was collected during the trial for oxidative, antioxidant, inflammatory, and circulating neutrophil status. Results: Consumption of BAE caused a time- and dose-dependent increase in plasma anthocyanins, peaking at 2 h after ingestion of 3.2 mg/kg BAE (217 ± 69 nM). BAE consumed 1 h prior to a 30 min row had no effect on plasma antioxidant status but hastened the recovery from exercise-induced oxidative stress: By 2 h recovery, consumption of 1.6 mg/kg BAE prior to exercise caused a significant (P < 0.05) 34 and 32% decrease in post-exercise plasma oxidative capacity and protein carbonyl levels, respectively, compared to placebo. BAE consumption prior to exercise dose-dependently attenuated a small, yet significant (P < 0.01) transient 13 ± 2% decline in circulating neutrophils observed in the placebo group immediately post-exercise. Furthermore, the timed consumption of either 1.6 or 3.2 mg/kg BAE attenuated a 17 ± 2.4% (P < 0.05) decline in neutrophil phagocytic capability of opsonised FITC-Escherichia coli observed 6 h post-exercise in the placebo group. Similarly, a dose-dependent increase in neutrophil surface expression of complement receptor-3 complex (CR3, critical for effective phagocytosis of opsonised microbes), was observed 6 h post-exercise in both 1.6 and 3.2 mg/kg BAE intervention groups. Conclusions: Consumption of BAE (>1.6 mg/kg) 1 h prior to exercise facilitated recovery from exercise-induced oxidative stress and preserved circulating neutrophil function. This study provides data to underpin a larger study designed to evaluate the efficacy of timed BAE consumption on post-exercise recovery and innate immunity.
Collapse
Affiliation(s)
- Roger D Hurst
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| | - Kirsty A Lyall
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Joanna M Roberts
- AgResearch Ltd., The Hopkirk Research Institute, Palmerston North, New Zealand
| | - Anton Perthaner
- AgResearch Ltd., The Hopkirk Research Institute, Palmerston North, New Zealand
| | - Robyn W Wells
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Janine M Cooney
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Dwayne J Jensen
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Natalie S Burr
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| | - Suzanne M Hurst
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| |
Collapse
|
33
|
Lee DE, Bareja A, Bartlett DB, White JP. Autophagy as a Therapeutic Target to Enhance Aged Muscle Regeneration. Cells 2019; 8:cells8020183. [PMID: 30791569 PMCID: PMC6406986 DOI: 10.3390/cells8020183] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle has remarkable regenerative capacity, relying on precise coordination between resident muscle stem cells (satellite cells) and the immune system. The age-related decline in skeletal muscle regenerative capacity contributes to the onset of sarcopenia, prolonged hospitalization, and loss of autonomy. Although several age-sensitive pathways have been identified, further investigation is needed to define targets of cellular dysfunction. Autophagy, a process of cellular catabolism, is emerging as a key regulator of muscle regeneration affecting stem cell, immune cell, and myofiber function. Muscle stem cell senescence is associated with a suppression of autophagy during key phases of the regenerative program. Macrophages, a key immune cell involved in muscle repair, also rely on autophagy to aid in tissue repair. This review will focus on the role of autophagy in various aspects of the regenerative program, including adult skeletal muscle stem cells, monocytes/macrophages, and corresponding age-associated dysfunction. Furthermore, we will highlight rejuvenation strategies that alter autophagy to improve muscle regenerative function.
Collapse
Affiliation(s)
- David E Lee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
| | - David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA.
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC 27701, USA.
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC 27701, USA.
| |
Collapse
|
34
|
Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N. Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging? Front Immunol 2018; 9:2187. [PMID: 30364079 PMCID: PMC6191490 DOI: 10.3389/fimmu.2018.02187] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
Immunosenescence is characterized by deterioration of the immune system caused by aging which induces changes to innate and adaptive immunity. Immunosenescence affects function and phenotype of immune cells, such as expression and function of receptors for immune cells which contributes to loss of immune function (chemotaxis, intracellular killing). Moreover, these alterations decrease the response to pathogens, which leads to several age-related diseases including cardiovascular disease, Alzheimer's disease, and diabetes in older individuals. Furthermore, increased risk of autoimmune disease and chronic infection is increased with an aging immune system, which is characterized by a pro-inflammatory environment, ultimately leading to accelerated biological aging. During the last century, sedentarism rose dramatically, with a concomitant increase in certain type of cancers (such as breast cancer, colon, or prostate cancer), and autoimmune disease. Numerous studies on physical activity and immunity, with focus on special populations (i.e., people with diabetes, HIV patients) demonstrate that chronic exercise enhances immunity. However, the majority of previous work has focused on either a pathological population or healthy young adults whilst research in elderly populations is scarce. Research conducted to date has primarily focused on aerobic and resistance exercise training and its effect on immunity. This review focuses on the potential for exercise training to affect the aging immune system. The concept is that some lifestyle strategies such as high-intensity exercise training may prevent disease through the attenuation of immunosenescence. In this context, we take a top-down approach and review the effect of exercise and training on immunological parameters in elderly at rest and during exercise in humans, and how they respond to different modes of training. We highlight the impact of these different exercise modes on immunological parameters, such as cytokine and lymphocyte concentration in elderly individuals.
Collapse
Affiliation(s)
- Maha Sellami
- Sport Science Program (SSP), College of Arts and Sciences (QU-CAS), University of Qatar, Doha, Qatar
| | - Maha Gasmi
- Higher Institute of Sport and Physical Education of Ksar Said, Mannouba, Tunisia
| | - Joshua Denham
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Lawrence D Hayes
- Active Ageing Research Group, Department of Medical and Sport Sciences, University of Cumbria, Lancaster, United Kingdom
| | - Dan Stratton
- Cellular and Molecular Immunology Research Center, London Metropolitan University, London, United Kingdom
| | | | - Nicola Bragazzi
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| |
Collapse
|
35
|
Duggal NA. Reversing the immune ageing clock: lifestyle modifications and pharmacological interventions. Biogerontology 2018; 19:481-496. [PMID: 30269199 PMCID: PMC6223743 DOI: 10.1007/s10522-018-9771-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
It is widely accepted that ageing is accompanied by remodelling of the immune system, including reduced numbers of naïve T cells, increased senescent or exhausted T cells, compromise to monocyte, neutrophil and natural killer cell function and an increase in systemic inflammation. In combination these changes result in increased risk of infection, reduced immune memory, reduced immune tolerance and immune surveillance, with significant impacts upon health in old age. More recently it has become clear that the rate of decline in the immune system is malleable and can be influenced by environmental factors such as physical activity as well as pharmacological interventions. This review discusses briefly our current understanding of immunesenescence and then focuses on lifestyle interventions and therapeutic strategies that have been shown to restore immune functioning in aged individuals.
Collapse
Affiliation(s)
- Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University, Birmingham, UK.
| |
Collapse
|
36
|
Cabanas-Sánchez V, Guallar-Castillón P, Higueras-Fresnillo S, García-Esquinas E, Rodríguez-Artalejo F, Martinez-Gomez D. Physical Activity, Sitting Time, and Mortality From Inflammatory Diseases in Older Adults. Front Physiol 2018. [PMID: 30050463 DOI: 10.3389/fphys.2018.00898.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of this study was to examine the independent and combined associations of physical activity (PA) and sitting time (ST) with long-term mortality attributed to inflammatory causes other than cardiovascular disease (CVD) and cancer in a national cohort of older adults in Spain. Design: Prospective study. Setting and Participants: A cohort of 3,677 individuals (1,626 men) aged ≥60 years was followed-up during 14.3 years. Measures: At baseline, individuals reported PA and ST. The study outcome was death from inflammatory diseases when CVD or cancer mortality was excluded. This outcome was classified into infectious and non-infectious conditions. Analyses were performed with Cox regression and adjusted for PA, ST, and other main confounders (age, sex, educational level, smoking, alcohol consumption, body mass index, and chronic conditions). Results: During follow-up, 286 deaths from inflammatory diseases (77 from infectious diseases) were identified. Compared to individuals who defined themselves as inactive/less active, mortality from inflammatory diseases was lower in those who were moderately active (hazard ratio [HR] = 0.67, 95% confidence interval [CI] = 0.50-0.90) or very active (HR = 0.48, 95%CI = 0.33-0.68), independently of ST. Also, being seated ≥7 h/d vs. <7 h/d was linked to higher mortality (HR = 1.38, 95%CI = 1.02-1.87). The largest risk of mortality was observed in inactive/less active individuals with ST≥7 h/d (HR = 2.29, 95%CI = 1.59-3.29) compared to those with moderate/very PA and ST <7 h/d. Low PA and high ST were consistently associated with a higher risk of mortality from non-infectious inflammatory causes. Associations of PA and ST with mortality from infectious inflammatory causes showed a similar trend, but most of them did not reach statistical significance. Conclusions: Low PA and high ST were independently associated with higher mortality from inflammatory diseases other than CVD or cancer in older adults. Interventions addressing simultaneously both behaviors could have greater benefits than those focusing on only one of them.
Collapse
Affiliation(s)
- Verónica Cabanas-Sánchez
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz, Madrid, Spain.,CIBERESP and IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Sara Higueras-Fresnillo
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| | - Esther García-Esquinas
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz, Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz, Madrid, Spain.,CIBERESP and IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - David Martinez-Gomez
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain.,IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
37
|
Cabanas-Sánchez V, Guallar-Castillón P, Higueras-Fresnillo S, García-Esquinas E, Rodríguez-Artalejo F, Martinez-Gomez D. Physical Activity, Sitting Time, and Mortality From Inflammatory Diseases in Older Adults. Front Physiol 2018; 9:898. [PMID: 30050463 PMCID: PMC6052124 DOI: 10.3389/fphys.2018.00898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/21/2018] [Indexed: 01/22/2023] Open
Abstract
Objective: The aim of this study was to examine the independent and combined associations of physical activity (PA) and sitting time (ST) with long-term mortality attributed to inflammatory causes other than cardiovascular disease (CVD) and cancer in a national cohort of older adults in Spain. Design: Prospective study. Setting and Participants: A cohort of 3,677 individuals (1,626 men) aged ≥60 years was followed-up during 14.3 years. Measures: At baseline, individuals reported PA and ST. The study outcome was death from inflammatory diseases when CVD or cancer mortality was excluded. This outcome was classified into infectious and non-infectious conditions. Analyses were performed with Cox regression and adjusted for PA, ST, and other main confounders (age, sex, educational level, smoking, alcohol consumption, body mass index, and chronic conditions). Results: During follow-up, 286 deaths from inflammatory diseases (77 from infectious diseases) were identified. Compared to individuals who defined themselves as inactive/less active, mortality from inflammatory diseases was lower in those who were moderately active (hazard ratio [HR] = 0.67, 95% confidence interval [CI] = 0.50-0.90) or very active (HR = 0.48, 95%CI = 0.33-0.68), independently of ST. Also, being seated ≥7 h/d vs. <7 h/d was linked to higher mortality (HR = 1.38, 95%CI = 1.02-1.87). The largest risk of mortality was observed in inactive/less active individuals with ST≥7 h/d (HR = 2.29, 95%CI = 1.59-3.29) compared to those with moderate/very PA and ST <7 h/d. Low PA and high ST were consistently associated with a higher risk of mortality from non-infectious inflammatory causes. Associations of PA and ST with mortality from infectious inflammatory causes showed a similar trend, but most of them did not reach statistical significance. Conclusions: Low PA and high ST were independently associated with higher mortality from inflammatory diseases other than CVD or cancer in older adults. Interventions addressing simultaneously both behaviors could have greater benefits than those focusing on only one of them.
Collapse
Affiliation(s)
- Verónica Cabanas-Sánchez
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| | - Pilar Guallar-Castillón
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz, Madrid, Spain.,CIBERESP and IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Sara Higueras-Fresnillo
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| | - Esther García-Esquinas
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz, Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz, Madrid, Spain.,CIBERESP and IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - David Martinez-Gomez
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain.,IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
38
|
Fernandez DM, Clemente JC, Giannarelli C. Physical Activity, Immune System, and the Microbiome in Cardiovascular Disease. Front Physiol 2018; 9:763. [PMID: 30013482 PMCID: PMC6036301 DOI: 10.3389/fphys.2018.00763] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular health is a primary research focus, as it is a leading contributor to mortality and morbidity worldwide, and is prohibitively costly for healthcare. Atherosclerosis, the main driver of cardiovascular disease, is now recognized as an inflammatory disorder. Physical activity (PA) may have a more important role in cardiovascular health than previously expected. This review overviews the contribution of PA to cardiovascular health, the inflammatory role of atherosclerosis, and the emerging evidence of the microbiome as a regulator of inflammation.
Collapse
Affiliation(s)
- Dawn M. Fernandez
- Department of Medicine, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose C. Clemente
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chiara Giannarelli
- Department of Medicine, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
39
|
Bartlett DB, Willis LH, Slentz CA, Hoselton A, Kelly L, Huebner JL, Kraus VB, Moss J, Muehlbauer MJ, Spielmann G, Kraus WE, Lord JM, Huffman KM. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: a pilot study. Arthritis Res Ther 2018; 20:127. [PMID: 29898765 PMCID: PMC6001166 DOI: 10.1186/s13075-018-1624-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory disease in which adults have significant joint issues leading to poor health. Poor health is compounded by many factors, including exercise avoidance and increased risk of opportunistic infection. Exercise training can improve the health of patients with RA and potentially improve immune function; however, information on the effects of high-intensity interval training (HIIT) in RA is limited. We sought to determine whether 10 weeks of a walking-based HIIT program would be associated with health improvements as measured by disease activity and aerobic fitness. Further, we assessed whether HIIT was associated with improved immune function, specifically antimicrobial/bacterial functions of neutrophils and monocytes. Methods Twelve physically inactive adults aged 64 ± 7 years with either seropositive or radiographically proven (bone erosions) RA completed 10 weeks of high-intensity interval walking. Training consisted of 3 × 30-minute sessions/week of ten ≥ 60-second intervals of high intensity (80–90% VO2reserve) separated by similar bouts of lower-intensity intervals (50–60% VO2reserve). Pre- and postintervention assessments included aerobic and physical function; disease activity as measured by Disease Activity score in 28 joints (DAS28), self-perceived health, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR); plasma interleukin (IL)-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-8, IL-10, and tumor necrosis factor (TNF)-α concentrations; and neutrophil and monocyte phenotypes and functions. Results Despite minimal body composition change, cardiorespiratory fitness increased by 9% (change in both relative and absolute aerobic capacity; p < 0.001), and resting blood pressure and heart rate were both reduced (both p < 0.05). Postintervention disease activity was reduced by 38% (DAS28; p = 0.001) with significant reductions in ESR and swollen joints as well as improved self-perceived health. Neutrophil migration toward CXCL-8 (p = 0.003), phagocytosis of Escherichia coli (p = 0.03), and ROS production (p < 0.001) all increased following training. The frequency of cluster of differentiation 14-positive (CD14+)/CD16+ monocytes was reduced (p = 0.002), with both nonclassical (CD14dim/CD16bright) and intermediate (CD14bright/CD16positive) monocytes being reduced (both p < 0.05). Following training, the cell surface expression of intermediate monocyte Toll-like receptor 2 (TLR2), TLR4, and HLA-DR was reduced (all p < 0.05), and monocyte phagocytosis of E. coli increased (p = 0.02). No changes were observed for inflammatory markers IL-1β, IL-6, CXCL-8, IL-10, CRP, or TNF-α. Conclusions We report for the first time, to our knowledge, that a high-intensity interval walking protocol in older adults with stable RA is associated with reduced disease activity, improved cardiovascular fitness, and improved innate immune functions, indicative of reduced infection risk and inflammatory potential. Importantly, the exercise program was well tolerated by these patients. Trial registration ClinicalTrials.gov, NCT02528344. Registered on 19 August 2015.
Collapse
Affiliation(s)
- David B Bartlett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA. .,Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27701, USA. .,MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Leslie H Willis
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Cris A Slentz
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Andrew Hoselton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Leslie Kelly
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jennifer Moss
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Janet M Lord
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,NIHR Birmingham Biomedical Research Centre in Inflammation, University Hospital Birmingham, Birmingham, UK
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
40
|
Campbell JP, Turner JE. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front Immunol 2018; 9:648. [PMID: 29713319 PMCID: PMC5911985 DOI: 10.3389/fimmu.2018.00648] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory-referred to as the "open window" hypothesis-and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1-2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances-rather than suppresses-immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.
Collapse
Affiliation(s)
- John P Campbell
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
41
|
Duggal NA, Pollock RD, Lazarus NR, Harridge S, Lord JM. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell 2018. [PMID: 29517845 PMCID: PMC5847865 DOI: 10.1111/acel.12750] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is widely accepted that aging is accompanied by remodelling of the immune system including thymic atrophy and increased frequency of senescent T cells, leading to immune compromise. However, physical activity, which influences immunity but declines dramatically with age, is not considered in this literature. We assessed immune profiles in 125 adults (55-79 years) who had maintained a high level of physical activity (cycling) for much of their adult lives, 75 age-matched older adults and 55 young adults not involved in regular exercise. The frequency of naïve T cells and recent thymic emigrants (RTE) were both higher in cyclists compared with inactive elders, and RTE frequency in cyclists was no different to young adults. Compared with their less active counterparts, the cyclists had significantly higher serum levels of the thymoprotective cytokine IL-7 and lower IL-6, which promotes thymic atrophy. Cyclists also showed additional evidence of reduced immunesenescence, namely lower Th17 polarization and higher B regulatory cell frequency than inactive elders. Physical activity did not protect against all aspects of immunesenescence: CD28-ve CD57+ve senescent CD8 T-cell frequency did not differ between cyclists and inactive elders. We conclude that many features of immunesenescence may be driven by reduced physical activity with age.
Collapse
Affiliation(s)
- Niharika Arora Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research; Institute of Inflammation and Ageing; University of Birmingham; Birmingham UK
| | - Ross D. Pollock
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Norman R. Lazarus
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Stephen Harridge
- Centre of Human and Aerospace Physiological Sciences; King's College London; London UK
| | - Janet M. Lord
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research; Institute of Inflammation and Ageing; University of Birmingham; Birmingham UK
- NIHR Biomedical Research Centre in Inflammation; University Hospital Birmingham; Birmingham UK
| |
Collapse
|
42
|
Neutrophil and Monocyte Bactericidal Responses to 10 Weeks of Low-Volume High-Intensity Interval or Moderate-Intensity Continuous Training in Sedentary Adults. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8148742. [PMID: 28656073 PMCID: PMC5471589 DOI: 10.1155/2017/8148742] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022]
Abstract
Neutrophils and monocytes are key components of the innate immune system that undergo age-associated declines in function. This study compared the impact of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on immune function in sedentary adults. Twenty-seven (43 ± 11 years) healthy sedentary adults were randomized into ten weeks of either a HIIT (>90% maximum heart rate) or MICT (70% maximum heart rate) group training program. Aerobic capacity (VO2peak), neutrophil and monocyte bacterial phagocytosis and oxidative burst, cell surface receptor expression, and systemic inflammation were measured before and after the training. Total exercise time commitment was 57% less for HIIT compared to that for MICT while both significantly improved VO2peak similarly. Neutrophil phagocytosis and oxidative burst and monocyte phagocytosis and percentage of monocytes producing an oxidative burst were improved by training similarly in both groups. Expression of monocyte but not neutrophil CD16, TLR2, and TLR4 was reduced by training similarly in both groups. No differences in systemic inflammation were observed for training; however, leptin was reduced in the MICT group only. With similar immune-enhancing effects for HIIT compared to those for MICT at 50% of the time commitment, our results support HIIT as a time efficient exercise option to improve neutrophil and monocyte function.
Collapse
|
43
|
Simpson RJ. Aging and inflammation: Directing traffic through physical activity. Brain Behav Immun 2016; 56:10-1. [PMID: 27223097 DOI: 10.1016/j.bbi.2016.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 02/02/2023] Open
Affiliation(s)
- Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3855 Holman Street, Houston, TX 77204, USA.
| |
Collapse
|