1
|
Ontiveros-Ángel P, Vega-Torres JD, Simon TB, Williams V, Inostroza-Nives Y, Alvarado-Crespo N, Gonzalez YV, Pompolius M, Katzka W, Lou J, Sharafeddin F, De la Peña I, Dong T, Gupta A, Viet CT, Febo M, Obenaus A, Nair A, Figueroa JD. Early-life obesogenic environment integrates immunometabolic and epigenetic signatures governing neuroinflammation. Brain Behav Immun Health 2024; 42:100879. [PMID: 39430879 PMCID: PMC11490928 DOI: 10.1016/j.bbih.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Childhood overweight/obesity is associated with stress-related psychopathology, yet the pathways connecting childhood obesity to stress susceptibility are poorly understood. We employed a systems biology approach with 62 adolescent Lewis rats fed a Western-like high-saturated fat diet (WD, 41% kcal from fat) or a control diet (CD, 13% kcal from fat). A subset of rats underwent a 31-day model of predator exposures and social instability (PSS). Effects were assessed using behavioral tests, DTI (diffusion tensor imaging), NODDI (neurite orientation dispersion and density imaging), 16S rRNA gene sequencing for gut microbiome profiling, hippocampal microglia analysis, and targeted gene methylation. Parallel experiments on human microglia cells (HMC3) examined how palmitic acid influences cortisol-related inflammatory responses. Rats exposed to WD and PSS exhibited deficits in sociability, increased fear/anxiety-like behaviors, food consumption, and body weight. WD/PSS altered hippocampal microstructure (subiculum, CA1, dentate gyrus), and microbiome analysis showed a reduced abundance of members of the phylum Firmicutes. WD/PSS synergistically promoted neuroinflammatory changes in hippocampal microglia, linked with microbiome shifts and altered Fkbp5 expression/methylation. In HMC3, palmitate disrupted cortisol responses, affecting morphology, phagocytic markers, and cytokine release, partially mediated by FKBP5. This study identifies gene-environment interactions that influence microglia biology and may contribute to the connection between childhood obesity and stress-related psychopathology later in life.
Collapse
Affiliation(s)
- Perla Ontiveros-Ángel
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Julio David Vega-Torres
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Timothy B. Simon
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Vivianna Williams
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Yaritza Inostroza-Nives
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Nashareth Alvarado-Crespo
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Yarimar Vega Gonzalez
- Department of Biochemistry and Pharmacology, San Juan Bautista School of Medicine, Caguas, Puerto Rico, USA
| | - Marjory Pompolius
- Translational Research Imaging Laboratory, Department of Psychiatry, Department of Neuroscience, College of Medicine, University of Florida Health, Gainesville, FL, USA
| | - William Katzka
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - John Lou
- Loma Linda University Health School of Behavioral Health, Loma Linda, CA, USA
| | - Fransua Sharafeddin
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| | - Ike De la Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA
| | - Tien Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA Microbiome Center, University of California, Los Angeles, CA, USA
| | - Chi T. Viet
- Department of Oral & Maxillofacial Surgery, Loma Linda University Health School of Dentistry, Loma Linda, CA, USA
| | - Marcelo Febo
- Translational Research Imaging Laboratory, Department of Psychiatry, Department of Neuroscience, College of Medicine, University of Florida Health, Gainesville, FL, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Aarti Nair
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
2
|
Ju S, McBride BA, Oleschuk M, Bost KK. Biopsychosocial pathways model of early childhood appetite self-regulation: Temperament as a key to modulation of interactions among systems. Soc Sci Med 2024; 360:117338. [PMID: 39299152 DOI: 10.1016/j.socscimed.2024.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
The widespread discrimination against individuals with obesity often stems from a simplistic perception of obesity as a mere consequence of personal choices of overeating and insufficient physical activity. This reductionist perception fails to acknowledge the complexity of the epidemic of obesity, which extends beyond diet and exercise decisions. The concept of appetite self-regulation (ASR) has been explored as a crucial element in identifying obesogenic behavioral approaches to food. Although an extensive understanding of ASR in children is essential as an early precursor and modifiable factor influencing obesity, the prevailing view of self-regulation of eating solely as a matter of cognitive and behavioral processing tends to overlook interacting systems of influences. This narrow approach attributes obesity to the lack of voluntary self-control in food consumption while neglecting to account for the biological, psychological, and social influences implicated in the developmental processes of ASR, which may further contribute to the stigmatization of obesity. The current critical analysis provides a comprehensive developmental framework that could guide future studies with testable hypotheses, outlining pathways of interactions among biopsychosocial systems, all of which contribute to the development of ASR in early childhood. Adopting developmental perspectives allows a holistic approach to investigating ASR, which accounts for intricate interactions between biological (B), psychological (P), and social (S) factors influential in the early manifestation of ASR.
Collapse
Affiliation(s)
- Sehyun Ju
- Department of Human Development and Family Studies, University of Illinois, Urbana, IL, USA.
| | - Brent A McBride
- Department of Human Development and Family Studies, University of Illinois, Urbana, IL, USA; Child Development Laboratory, University of Illinois, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.
| | - Merin Oleschuk
- Department of Human Development and Family Studies, University of Illinois, Urbana, IL, USA.
| | - Kelly K Bost
- Department of Human Development and Family Studies, University of Illinois, Urbana, IL, USA; Family Resiliency Center, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
3
|
Karaboycheva G, Conrad ML, Dörr P, Dittrich K, Murray E, Skonieczna-Żydecka K, Kaczmarczyk M, Łoniewski I, Klawitter H, Buss C, Entringer S, Binder E, Winter SM, Heim C. Altered Gut Microbiota Patterns in Young Children with Recent Maltreatment Exposure. Biomolecules 2024; 14:1313. [PMID: 39456245 PMCID: PMC11506340 DOI: 10.3390/biom14101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The brain and the intestinal microbiota are highly interconnected and especially vulnerable to disruptions in early life. Emerging evidence indicates that psychosocial adversity detrimentally impacts the intestinal microbiota, affecting both physical and mental health. This study aims to investigate the gut microbiome in young children in the immediate aftermath of maltreatment exposure. METHODS Maltreatment exposure was assessed in 88 children (ages 3-7) using the Maternal Interview for the Classification of Maltreatment [MICM]. Children were allocated to three groups according to the number of experienced maltreatment categories: no maltreatment, low maltreatment, and high maltreatment exposures. Stool samples were collected and analyzed by 16S rRNA sequencing. RESULTS Children subjected to high maltreatment exposure exhibited lower alpha diversity in comparison to those with both no and low maltreatment exposure (Simpson Index, Tukey post hoc, p = 0.059 and p = 0.007, respectively). No significant distinctions in beta diversity were identified. High maltreatment exposure was associated with the enrichment of several genera from the class Clostridia (Clostridium, Intestinibacter, Howardella and Butyrivibrio) and the depletion of the genus Phocaeicola (class Bacteriodia). CONCLUSIONS Severe maltreatment exposure is associated with alterations in the gut microbiota of young children. Longitudinal trajectories of intestinal microbiota composition in the context of maltreatment may reveal important insights related to psychiatric and somatic health outcomes.
Collapse
Affiliation(s)
- Gergana Karaboycheva
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Melanie L. Conrad
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peggy Dörr
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Katja Dittrich
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Elena Murray
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Mariusz Kaczmarczyk
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Igor Łoniewski
- Department of Biochemical Research, Pomeranian Medical University, Szczecin, Poland; (K.S.-Ż.); (M.K.); (I.Ł.)
| | - Heiko Klawitter
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
| | - Claudia Buss
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Sonja Entringer
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | | | - Sibylle M. Winter
- Department of Child & Adolescent Psychiatry, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (P.D.); (K.D.); (E.M.); (S.M.W.)
| | - Christine Heim
- Institute of Medical Psychology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; (G.K.); (M.L.C.); (H.K.); (C.B.); (S.E.)
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
4
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
5
|
Agusti A, Molina-Mendoza GV, Tamayo M, Rossini V, Cenit MC, Frances-Cuesta C, Tolosa-Enguis V, Gómez Del Pulgar EM, Flor-Duro A, Sanz Y. Christensenella minuta mitigates behavioral and cardiometabolic hallmarks of social defeat stress. Biomed Pharmacother 2024; 180:117377. [PMID: 39316970 DOI: 10.1016/j.biopha.2024.117377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Psychological stress during early development and adolescence may increase the risk of psychiatric and cardiometabolic comorbidities in adulthood. The gut microbiota has been associated with mental health problems such as depression and anxiety and with cardiometabolic disease, but the potential role of the gut microbiota in their comorbidity is not well understood. We investigated the effects and mode of action of the intestinal bacterium Christensenella minuta DSM 32891 on stress-induced mental health and cardiometabolic disturbances in a mouse model of social defeat stress. We demonstrate that administered C. minuta alleviates chronic stress-induced depressive, anxiogenic and antisocial behavior. These effects are attributed to the bacterium's ability to modulate the hypothalamic-pituitary-adrenal axis, which mediates the stress response. This included the oversecretion of corticosterone and the overexpression of its receptors, as well as the metabolism of dopamine (DA) and the expression of its receptors (D1, D2L and D2S). Additionally, C. minuta administration reduced chronically induced inflammation in plasma, spleen and some brain areas, which likely contribute to the recovery of physical and behavioral function. Furthermore, C. minuta administration prevented chronic stress-induced cardiovascular damage by regulating key enzymes mediating liver fibrosis and oxidative stress. Finally, C. minuta increased the abundance of bacteria associated with mental health. Overall, our study highlights the potential of microbiota-directed interventions to alleviate both the physical and mental effects of chronic stress.
Collapse
Affiliation(s)
- A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - M C Cenit
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain; Department of Medicine, Autonomous University of Madrid, Madrid 28029, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - V Tolosa-Enguis
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - E M Gómez Del Pulgar
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - A Flor-Duro
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain.
| |
Collapse
|
6
|
Karatzoglou V, Carollo A, Karagiannopoulou E, Esposito G, Séaghdha XTÓ, Dimitriou D. A scientometric review of the association between childhood trauma and sleep. Acta Psychol (Amst) 2024; 250:104488. [PMID: 39303583 DOI: 10.1016/j.actpsy.2024.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/17/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Sleep is a complex state which involves interactions between neurophysiological, psychological and neurochemical processes which in turn have an important impact on brain functioning, immune responses, mental health, and quality of life. The incidence of Adverse Childhood Experiences (ACEs) varies across different countries and have been linked with lifespan sleep disturbances with further effects on people's physical and mental health functioning. This review aims to explore the significance of ACE and its impact on sleep by identifying key documents, thematic trends, and knowledge gaps in the literature. A document co-citation analysis of 882 documents from Scopus was conducted to achieve this goal. Research trends focused on the long-term consequences of childhood adverse events with respect to sleep, with emphasis on the role of type, timing and accumulation of these experiences. A recent study has also taken advantage of machine learning and network analysis for discovering essential factors could offer useful information about adults with history of childhood adversity and sleep problems. The studies show unanimously that ACEs are associated with multiple sleep disturbances/disorders which can persist into adulthood, with consequences for suboptimal cognitive and behavioral functioning. Such neurobiological scars can be associated with an increased risk of mental disorders. Future studies are needed that focus on longitudinal analysis of the relationship between early adversity, sleep, and resilience characteristics in adult populations exploring the use of objective assessment measures as well as neurobiological markers.
Collapse
Affiliation(s)
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | | | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Xóté Tadhg Ó Séaghdha
- ReducingSAD - The National Organisation for Reducing Stress, Anxiety & Depression, Johann Aberli Strasse, CH-2503 Biel/Bienne, Switzerland
| | - Dagmara Dimitriou
- Sleep Education and Research Laboratory, Psychology and Human Development, UCL Institute of Education, London WC1H 0AA, UK.
| |
Collapse
|
7
|
Clavell-Sansalvador A, Río-López R, González-Rodríguez O, García-Gil LJ, Xifró X, Zigovski G, Ochoteco-Asensio J, Ballester M, Dalmau A, Ramayo-Caldas Y. Effect of Group Mixing and Available Space on Performance, Feeding Behavior, and Fecal Microbiota Composition during the Growth Period of Pigs. Animals (Basel) 2024; 14:2704. [PMID: 39335293 PMCID: PMC11428945 DOI: 10.3390/ani14182704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Stress significantly affects the health, welfare, and productivity of farm animals. We performed a longitudinal study to evaluate stress's effects on pig performance, feeding behavior, and fecal microbiota composition. This study involved 64 Duroc pigs during the fattening period, divided into two experimental groups: a stress group (n = 32) and a control group (n = 32). Stressed groups had less space and were mixed twice during the experiment. We monitored body weight, feed efficiency, feeding behavior, and fecal microbiota composition. Compared to the control group, the stressed pigs exhibited reduced body weight, feed efficiency, fewer feeder visits, and longer meal durations. In the fecal microbiota, resilience was observed, with greater differences between groups when sampling was closer to the stressful stimulus. Stressed pigs showed an increase in opportunistic bacteria, such as Streptococcus, Treponema and members of the Erysipelotrichaceae family, while control pigs had more butyrate- and propionate-producing genera like Anaerobutyricum, Coprococcus and HUN007. Our findings confirm that prolonged stress negatively impacts porcine welfare, behavior, and performance, and alters their gut microbiota. Specific microorganisms identified could serve as non-invasive biomarkers for stress, potentially informing both animal welfare and similar gut-brain axis mechanisms relevant to human research.
Collapse
Affiliation(s)
- Adrià Clavell-Sansalvador
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Raquel Río-López
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| | - L. Jesús García-Gil
- Digestive Diseases and Microbiota Group, Biomedical Research Institute of Girona (IDIBGI), 17190 Girona, Girona, Spain;
- New Therapeutic Targets Lab Research Group, Medical Sciences Departament, Faculty of Medicine, Universitat de Girona, 17071 Girona, Girona, Spain;
| | - Xavier Xifró
- New Therapeutic Targets Lab Research Group, Medical Sciences Departament, Faculty of Medicine, Universitat de Girona, 17071 Girona, Girona, Spain;
| | - Gustavo Zigovski
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil;
| | - Juan Ochoteco-Asensio
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| | - Antoni Dalmau
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| |
Collapse
|
8
|
Castells-Nobau A, Mayneris-Perxachs J, Fernández-Real JM. Unlocking the mind-gut connection: Impact of human microbiome on cognition. Cell Host Microbe 2024; 32:1248-1263. [PMID: 39146797 DOI: 10.1016/j.chom.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
This perspective explores the current understanding of the gut microbiota's impact on cognitive function in apparently healthy humans and in individuals with metabolic disease. We discuss how alterations in gut microbiota can influence cognitive processes, focusing not only on bacterial composition but also on often overlooked components of the gut microbiota, such as bacteriophages and eukaryotes, as well as microbial functionality. We examine the mechanisms through which gut microbes might communicate with the central nervous system, highlighting the complexity of these interactions. We provide a comprehensive overview of the emerging field of microbiota-gut-brain interactions and its significance for cognitive health. Additionally, we summarize novel therapeutic strategies designed to promote cognitive resilience and reduce the risk of cognitive disorders, focusing on interventions that target the gut microbiota. An in-depth understanding of the microbiome-brain axis is imperative for developing innovative treatments aimed at improving cognitive health.
Collapse
Affiliation(s)
- Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
9
|
Guy A, McAuliffe S, Cross R, Zhang Y, Kennedy RE, Estes NR, Giordano-Mooga S, Loyd C. Pilot study assessing gut microbial diversity among sexual and gender minority young adults. PLoS One 2024; 19:e0306638. [PMID: 38959280 PMCID: PMC11221641 DOI: 10.1371/journal.pone.0306638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Evidence supports that people identifying as a sexual or gender minority (SGMs) experience minority-related stress resulting from discrimination or expectations of prejudice, and that this is associated with increased mental and physical health problems compared to cisgender heterosexuals. However, the biological mechanisms driving minority-related stress impacts remain unknown, including the role of the gut microbiome. Thus, the aim of this study was to determine the relationship between SGM status and gut microbiome health among young adults attending a 4-year university. To this end, a prospective pilot study was completed in the fall and spring semesters of 2021-22. Self-identified SGMs (N = 22) and cisgender-heterosexuals (CIS-HET, N = 43) completed in-person interviews to provide mental health data and demographic information. Nail and saliva samples were collected at the time of interview to quantify chronic and acute cortisol. Stool samples were collected within 48 hours of interview for microbiome analysis. Assessment of the gut microbiota identified a significant reduction in alpha diversity among the SGM group, even when adjusting for mental health outcome. SGM group showed trends for higher abundance of microbes in phylum Bacteroidetes and lower abundance of microbes in phyla Firmicutes, Actinobacteria, and Proteobacteria compared to the CIS-HET group. These findings support that the gut microbiome could be contributing to negative health effects among the SGM community.
Collapse
Affiliation(s)
- Ashley Guy
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shannon McAuliffe
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robbie Cross
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yue Zhang
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard E. Kennedy
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Norman R. Estes
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Samantha Giordano-Mooga
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christine Loyd
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
10
|
Miranda-Angulo AL, Sánchez-López JD, Vargas-Tejada DA, Hawkins-Caicedo V, Calderón JC, Gallo-Villegas J, Alzate-Restrepo JF, Suarez-Revelo JX, Castrillón G. Sympathovagal quotient and resting-state functional connectivity of control networks are related to gut Ruminococcaceae abundance in healthy men. Psychoneuroendocrinology 2024; 164:107003. [PMID: 38471256 DOI: 10.1016/j.psyneuen.2024.107003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Heart rate variability (HRV), brain resting-state functional connectivity (rsFC), and gut microbiota (GM) are three recognized indicators of health status, whose relationship has not been characterized. We aimed to identify the GM genera and families related to HRV and rsFC, the interaction effect of HRV and rsFC on GM taxa abundance, and the mediation effect of diet on these relationships. METHODS Eighty-eight healthy, young Colombian men were included in this cross-sectional study. HRV metrics were extracted from 24-hour Holter monitoring data and the resting functional connectivity strength (FCS) of 15 networks were derived from functional magnetic resonance imaging. Gut microbiota composition was assessed using the sequences of the V3-V4 regions of the 16 S rRNA gene, and diet was evaluated using a food frequency questionnaire. Multivariate linear regression analyses were performed to evaluate the correlations between the independent variables (HRV metrics and FCS) and the dependent variables (GM taxa abundance or alpha diversity indexes). Mediation analyses were used to test the role of diet in the relationship between HRV and GM. RESULTS The sympathovagal quotient (SQ) and the FCS of control networks were positively correlated with the abundance of the gut Ruminococcaceae family and an unclassified Ruminococcaceae genus (Ruminococcaceae_unc). Additionally, the interaction between the FCS of the control network and SQ reduced the individual main effects on the Ruminococcaceae_unc abundance. Finally, reduced habitual fiber intake partially mediated the relationship between SQ and this genus. CONCLUSION Two indicators of self-regulation, HRV and the rsFC of control networks, are related to the abundance of gut microbiota taxa in healthy men. However, only HRV is related to habitual dietary intake; thus, HRV could serve as a marker of food choice and GM composition in the future.
Collapse
Affiliation(s)
- Ana L Miranda-Angulo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia.
| | - Juan D Sánchez-López
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Daniel A Vargas-Tejada
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Valentina Hawkins-Caicedo
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Juan C Calderón
- Grupo de Investigación en Fisiología y Bioquímica (PHYSIS), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jaime Gallo-Villegas
- Grupo de Investigación en Medicina Aplicada a la Actividad Física y el Deporte (GRINMADE), Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia; Centro Clínico y de Investigación SICOR, Calle 19 No. 42-40, Medellín, Colombia
| | - Juan F Alzate-Restrepo
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia
| | - Jazmin X Suarez-Revelo
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia
| | - Gabriel Castrillón
- Grupo de Investigación en Imágenes SURA, Ayudas diagnósticas SURA, Carrera 48 No. 26-50, piso 2, Medellín, Colombia; Department of Neuroradiology, Universitätsklinikum Erlangen, Maximiliansplatz 2, Erlangen, Germany
| |
Collapse
|
11
|
Mulder RH, Kraaij R, Schuurmans IK, Frances-Cuesta C, Sanz Y, Medina-Gomez C, Duijts L, Rivadeneira F, Tiemeier H, Jaddoe VWV, Felix JF, Cecil CAM. Early-life stress and the gut microbiome: A comprehensive population-based investigation. Brain Behav Immun 2024; 118:117-127. [PMID: 38402916 PMCID: PMC7615798 DOI: 10.1016/j.bbi.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024] Open
Abstract
Early-life stress (ELS) has been robustly associated with a range of poor mental and physical health outcomes. Recent studies implicate the gut microbiome in stress-related mental, cardio-metabolic and immune health problems, but research on humans is scarce and thus far often based on small, selected samples, often using retrospective reports of ELS. We examined associations between ELS and the human gut microbiome in a large, population-based study of children. ELS was measured prospectively from birth to 10 years of age in 2,004 children from the Generation R Study. We studied overall ELS, as well as unique effects of five different ELS domains, including life events, contextual risk, parental risk, interpersonal risk, and direct victimization. Stool microbiome was assessed using 16S rRNA sequencing at age 10 years and data were analyzed at multiple levels (i.e. α- and β-diversity indices, individual genera and predicted functional pathways). In addition, we explored potential mediators of ELS-microbiome associations, including diet at age 8 and body mass index at 10 years. While no associations were observed between overall ELS (composite score of five domains) and the microbiome after multiple testing correction, contextual risk - a specific ELS domain related to socio-economic stress, including risk factors such as financial difficulties and low maternal education - was significantly associated with microbiome variability. This ELS domain was associated with lower α-diversity, with β-diversity, and with predicted functional pathways involved, amongst others, in tryptophan biosynthesis. These associations were in part mediated by overall diet quality, a pro-inflammatory diet, fiber intake, and body mass index (BMI). These results suggest that stress related to socio-economic adversity - but not overall early life stress - is associated with a less diverse microbiome in the general population, and that this association may in part be explained by poorer diet and higher BMI. Future research is needed to test causality and to establish whether modifiable factors such as diet could be used to mitigate the negative effects of socio-economic adversity on the microbiome and related health consequences.
Collapse
Affiliation(s)
- Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Isabel K Schuurmans
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Carlos Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Severo Ochoa Centre of Excellence, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Yolanda Sanz
- Microbiome, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Severo Ochoa Centre of Excellence, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Yang S, Wu S, Zhao F, Zhao Z, Shen X, Yu X, Zhang M, Wen F, Sun Z, Menghe B. Diversity Analysis of Intestinal Bifidobacteria in the Hohhot Population. Microorganisms 2024; 12:756. [PMID: 38674700 PMCID: PMC11051944 DOI: 10.3390/microorganisms12040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Bifidobacterium plays a pivotal role within the gut microbiota, significantly affecting host health through its abundance and composition in the intestine. Factors such as age, gender, and living environment exert considerable influence on the gut microbiota, yet scant attention has been directed towards understanding the specific effects of these factors on the Bifidobacterium population. Therefore, this study focused on 98 adult fecal samples to conduct absolute and relative quantitative analyses of bifidobacteria. (2) Methods: Using droplet digital PCR and the PacBio Sequel II sequencing platform, this study sought to determine the influence of various factors, including living environment, age, and BMI, on the absolute content and biodiversity of intestinal bifidobacteria. (3) Results: Quantitative results indicated that the bifidobacteria content in the intestinal tract ranged from 106 to 109 CFU/g. Notably, the number of bifidobacteria in the intestinal tract of the school population surpassed that of the off-campus population significantly (p = 0.003). Additionally, the group of young people exhibited a significantly higher count of bifidobacteria than the middle-aged and elderly groups (p = 0.041). The normal-weight group displayed a significantly higher bifidobacteria count than the obese group (p = 0.027). Further analysis of the relative abundance of bifidobacteria under different influencing factors revealed that the living environment emerged as the primary factor affecting the intestinal bifidobacteria structure (p = 0.046, R2 = 2.411). Moreover, the diversity of bifidobacteria in the intestinal tract of college students surpassed that in the out-of-school population (p = 0.034). This was characterized by a notable increase in 11 strains, including B. longum, B. bifidum, and B. pseudolongum, in the intestinal tract of college students, forming a more intricate intestinal bifidobacteria interaction network. (4) Conclusions: In summary, this study elucidated the principal factors affecting intestinal bifidobacteria and delineated their characteristics of intestinal bifidobacteria in diverse populations. By enriching the theory surrounding gut microbiota and health, this study provides essential data support for further investigations into the intricate dynamics of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bilige Menghe
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Y.); (S.W.); (F.W.)
| |
Collapse
|
13
|
Xia Y, Li Z, Wang C, Zhang X, Li J, Zhou Q, Yang J, Chen Q, Meng X, Wang J. Dynamic alterations of locomotor activity and the microbiota in zebrafish larvae with low concentrations of lead exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2042-2052. [PMID: 38051486 DOI: 10.1007/s11356-023-31279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Lead (Pb) is a ubiquitous heavy metal associated with developmental and behavioral disorders. The establishment of pioneer microbiota overlaps with the development of the brain during early life, and Pb-induced developmental neurotoxicity may be partially caused by early-life microbiota dysbiosis. This study investigated the locomotor activity and the microbiota in developing zebrafish at multiple developmental time points (five days post fertilization [5 dpf], 6 dpf, and 7 dpf) under exposure to low concentrations of lead (0.05 mg/L). Time-dependent reductions in the number of activities and the average movement distance of larvae compared to the control were observed following Pb exposure. Furthermore, Pb exposure significantly altered the composition of the gut microbiota of zebrafish larvae. At the phylum level, the abundance of Proteobacteria decreased from 5 to 7 dpf, while that of Actinobacteria increased in the control groups. At the class level, the proportion of Alphaproteobacteria decreased, while that of Actinobacteria increased in the control groups. Notably, all showed the opposite trend in Pb groups. A correlation analysis between indices of locomotor activity and microbial communities revealed genus-level features that were clearly linked to the neurobehavioral performance of zebrafish. Seven genera were significantly correlated with the two performance indicators of the locomotion analysis, namely Rhodococcus, Deinococcus, Bacillus, Bosea, Bradyrhizobium, Staphylococcus, and Rhizobium. Rhizobium was dominant in zebrafish and increased in the Pb groups in a time-dependent manner. In addition, the expression levels of bdnf, trkb1, trkb2, and p75ntr changed in zebrafish from 5 to 7 dpf under Pb exposure. Collectively, these results suggest that Pb-induced neurotoxicity could potentially be treated by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yuan Xia
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Ziyi Li
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Chunyu Wang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Xiaoshun Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyi Li
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Yang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Qingsong Chen
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Junyi Wang
- School of Public Health, Guangdong Pharmaceutical University, Jianghaidadao, Guangzhou, 283, Guangdong, China.
| |
Collapse
|
14
|
Mengelkoch S, Gassen J, Lev-Ari S, Alley JC, Schüssler-Fiorenza Rose SM, Snyder MP, Slavich GM. Multi-omics in stress and health research: study designs that will drive the field forward. Stress 2024; 27:2321610. [PMID: 38425100 PMCID: PMC11216062 DOI: 10.1080/10253890.2024.2321610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Despite decades of stress research, there still exist substantial gaps in our understanding of how social, environmental, and biological factors interact and combine with developmental stressor exposures, cognitive appraisals of stressors, and psychosocial coping processes to shape individuals' stress reactivity, health, and disease risk. Relatively new biological profiling approaches, called multi-omics, are helping address these issues by enabling researchers to quantify thousands of molecules from a single blood or tissue sample, thus providing a panoramic snapshot of the molecular processes occurring in an organism from a systems perspective. In this review, we summarize two types of research designs for which multi-omics approaches are best suited, and describe how these approaches can help advance our understanding of stress processes and the development, prevention, and treatment of stress-related pathologies. We first discuss incorporating multi-omics approaches into theory-rich, intensive longitudinal study designs to characterize, in high-resolution, the transition to stress-related multisystem dysfunction and disease throughout development. Next, we discuss how multi-omics approaches should be incorporated into intervention research to better understand the transition from stress-related dysfunction back to health, which can help inform novel precision medicine approaches to managing stress and fostering biopsychosocial resilience. Throughout, we provide concrete recommendations for types of studies that will help advance stress research, and translate multi-omics data into better health and health care.
Collapse
Affiliation(s)
- Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Jeffrey Gassen
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Shahar Lev-Ari
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Health Promotion, Tel Aviv University, Tel Aviv, Israel
| | - Jenna C. Alley
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | | | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Hayer SS, Conrin M, French JA, Benson AK, Alvarez S, Cooper K, Fischer A, Alsafwani ZW, Gasper W, Suhr Van Haute MJ, Hassenstab HR, Azadmanesh S, Briardy M, Gerbers S, Jabenis A, Thompson JL, Clayton JB. Antibiotic-induced gut dysbiosis elicits gut-brain axis relevant multi-omic signatures and behavioral and neuroendocrine changes in a nonhuman primate model. Gut Microbes 2024; 16:2305476. [PMID: 38284649 PMCID: PMC10826635 DOI: 10.1080/19490976.2024.2305476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Emerging evidence indicates that antibiotic-induced dysbiosis can play an etiological role in the pathogenesis of neuropsychiatric disorders. However, most of this evidence comes from rodent models. The objective of this study was to evaluate if antibiotic-induced gut dysbiosis can elicit changes in gut metabolites and behavior indicative of gut-brain axis disruption in common marmosets (Callithrix jacchus) - a nonhuman primate model often used to study sociability and stress. We were able to successfully induce dysbiosis in marmosets using a custom antibiotic cocktail (vancomycin, enrofloxacin and neomycin) administered orally for 28 days. This gut dysbiosis altered gut metabolite profiles, behavior, and stress reactivity. Increase in gut Fusobacterium spp. post-antibiotic administration was a novel dysbiotic response and has not been observed in any rodent or human studies to date. There were significant changes in concentrations of several gut metabolites which are either neurotransmitters (e.g., GABA and serotonin) or have been found to be moderators of gut-brain axis communication in rodent models (e.g., short-chain fatty acids and bile acids). There was an increase in affiliative behavior and sociability in antibiotic-administered marmosets, which might be a coping mechanism in response to gut dysbiosis-induced stress. Increase in urinary cortisol levels after multiple stressors provides more definitive proof that this model of dysbiosis may cause disrupted communication between gut and brain in common marmosets. This study is a first attempt to establish common marmosets as a novel model to study the impact of severe gut dysbiosis on gut-brain axis cross-talk and behavior.
Collapse
Affiliation(s)
- Shivdeep S. Hayer
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Mackenzie Conrin
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jeffrey A. French
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE, USA
| | - Andrew K. Benson
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kathryn Cooper
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Anne Fischer
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zahraa Wajih Alsafwani
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - William Gasper
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Mallory J. Suhr Van Haute
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Haley R. Hassenstab
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Shayda Azadmanesh
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Missy Briardy
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Skyler Gerbers
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Aliyah Jabenis
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jennifer L. Thompson
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jonathan B. Clayton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Callitrichid Research Center, University of Nebraska at Omaha, Omaha, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
16
|
Nguyen TQ, Martínez-Álvaro M, Lima J, Auffret MD, Rutherford KMD, Simm G, Dewhurst RJ, Baima ET, Roehe R. Identification of intestinal and fecal microbial biomarkers using a porcine social stress model. Front Microbiol 2023; 14:1197371. [PMID: 38029169 PMCID: PMC10670831 DOI: 10.3389/fmicb.2023.1197371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Understanding the relationships between social stress and the gastrointestinal microbiota, and how they influence host health and performance is expected to have many scientific and commercial implementations in different species, including identification and improvement of challenges to animal welfare and health. In particular, the study of the stress impact on the gastrointestinal microbiota of pigs may be of interest as a model for human health. A porcine stress model based on repeated regrouping and reduced space allowance during the last 4 weeks of the finishing period was developed to identify stress-induced changes in the gut microbiome composition. The application of the porcine stress model resulted in a significant increase in salivary cortisol concentration over the course of the trial and decreased growth performance and appetite. The applied social stress resulted in 32 bacteria being either enriched (13) or depleted (19) in the intestine and feces. Fecal samples showed a greater number of microbial genera influenced by stress than caecum or colon samples. Our trial revealed that the opportunistic pathogens Treponema and Clostridium were enriched in colonic and fecal samples from stressed pigs. Additionally, genera such as Streptococcus, Parabacteroides, Desulfovibrio, Terrisporobacter, Marvinbryantia, and Romboutsia were found to be enriched in response to social stress. In contrast, the genera Prevotella, Faecalibacterium, Butyricicoccus, Dialister, Alloprevotella, Megasphaera, and Mitsuokella were depleted. These depleted bacteria are of great interest because they synthesize metabolites [e.g., short-chain fatty acids (SCFA), in particular, butyrate] showing beneficial health benefits due to inhibitory effects on pathogenic bacteria in different animal species. Of particular interest are Dialister and Faecalibacterium, as their depletion was identified in a human study to be associated with inferior quality of life and depression. We also revealed that some pigs were more susceptible to pathogens as indicated by large enrichments of opportunistic pathogens of Clostridium, Treponema, Streptococcus and Campylobacter. Generally, our results provide further evidence for the microbiota-gut-brain axis as indicated by an increase in cortisol concentration due to social stress regulated by the hypothalamic-pituitary-adrenal axis, and a change in microbiota composition, particularly of bacteria known to be associated with pathogenicity and mental health diseases.
Collapse
Affiliation(s)
- Tuan Q. Nguyen
- Scotland’s Rural College, Edinburgh, United Kingdom
- Department of Animal Breeding, Faculty of Animal Science and Veterinary Medicine, Nong Lam University – Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Joana Lima
- Scotland’s Rural College, Edinburgh, United Kingdom
| | | | | | - Geoff Simm
- Global Academy of Agriculture and Food Security, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Eric T. Baima
- Zoetis Inc., Parsippany-Troy Hills, NJ, United States
| | - Rainer Roehe
- Scotland’s Rural College, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Ou Y, Belzer C, Smidt H, de Weerth C. Methodological recommendations for human microbiota-gut-brain axis research. MICROBIOME RESEARCH REPORTS 2023; 3:1. [PMID: 38455088 PMCID: PMC10917620 DOI: 10.20517/mrr.2023.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 03/09/2024]
Abstract
Observational studies have determined numerous correlations between sequence-based gut microbiota data and human mental traits. However, these associations are often inconsistent across studies. This inconsistency is one of the reasons that mechanistic validation studies of the observed correlations are lagging, making it difficult to establish causal associations. The absence of consistent study findings may partially be due to the lack of clear guidelines for identifying confounders of relations between complex microbial communities and mental conditions. Gut microbial complexity also impedes deciphering microbiota-host relations by using a single analytical approach. The aim of the current review is to help solve these problems by providing methodological recommendations for future human microbiota-gut-brain axis research on the selection of confounders, the use of integrative biostatistical methods, and the steps needed to translate correlative findings into causal conclusions.
Collapse
Affiliation(s)
- Yangwenshan Ou
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH Wageningen, The Netherlands
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH Wageningen, The Netherlands
| | - Carolina de Weerth
- Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
18
|
Ma L, Yan Y, Webb RJ, Li Y, Mehrabani S, Xin B, Sun X, Wang Y, Mazidi M. Psychological Stress and Gut Microbiota Composition: A Systematic Review of Human Studies. Neuropsychobiology 2023; 82:247-262. [PMID: 37673059 DOI: 10.1159/000533131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/10/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The associations between psychological stress and gut microbiota composition are not fully understood. This study investigated associations between psychological stress and gut microbiota composition and examined the potential modifying effects of age, sex, and ethnicity on such associations. METHODS A systematic literature search was conducted using PubMed, Web of Science, PsycINFO, and Embase databases for studies published until November 2021 which examined associations between psychological stress and gut microbiota composition. RESULTS During the search process, 10,790 studies were identified, and after screening, 13 met the eligibility criteria and were included. The median sample size was 70, and the median age of participants was 28.0 years. Most of the included studies did not report associations between measures of alpha- and beta diversity of the gut microbiota composition and psychological stress. A few studies reported that the Shannon index, Chao 1, Simpson index, and weighted UniFrac were negatively associated with psychological stress. Significant reductions in several taxa at the phyla-, family-, and genus-levels were observed in participants with higher psychological stress. At the phylum level, the abundance of Proteobacteria and Verrucomicrobia were negatively associated with psychological stress. At the family-level, no more than two studies reported associations of the same microbiota with psychological stress. At the genus level, the following results were found in more than two studies; psychological stress was negatively associated with the abundance of Lachnospira, Lachnospiraceae, Phascolarctobacterium, Sutterella, and Veillonella, and positively associated with the abundance of Methanobrevibacter, Rhodococcus, and Roseburia. However, it was not possible to determine the influence of age, sex, or ethnicity due to the limited studies included. CONCLUSION Our findings provide evidence that psychological stress is associated with changes in the abundance of the gut microbiota. Larger sample longitudinal studies are needed to determine the causal relationship between psychological stress and the gut microbiota.
Collapse
Affiliation(s)
- Lu Ma
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yating Yan
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China,
| | - Richard James Webb
- School of Health and Sports Sciences, Hope Park Campus, Liverpool Hope University, Liverpool, UK
| | - Ying Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sanaz Mehrabani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Oxford, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, South Wing St Thomas', London, UK
| |
Collapse
|
19
|
Mahiddine FY, You I, Park H, Kim MJ. Management of dog sperm parameters and gut microbiota composition with Lactobacillus rhamnosus supplementation. Vet Res Commun 2023; 47:1629-1640. [PMID: 36977954 DOI: 10.1007/s11259-023-10116-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The effects of probiotics supplementation on the reproductive function have been evaluated in many species, but no study has evaluated the changes in the gut microbiome along with the sperm quality changes simultaneously. This study evaluated the effects of dietary supplementation with probiotics on the gut microbiome, sperm quality and gene expression, along with possible correlations between these parameters in dogs. The dogs were supplemented with Lactobacillus rhamnosus for six weeks, and fecal and semen samples were collected at 0, 3, and 6 weeks. Fecal samples were assessed using 16S Metagenomic Sequencing for gut microbiome analysis; and semen samples were analyzed using computer-assisted sperm analysis, DNA and acrosome integrity assessment, viability and morphology assessment, and real-time PCR. The analyses suggested that probiotic supplementation improved kinematic parameters, viability, DNA and acrosome integrity, and morphology of sperms. The mRNA levels of genes associated with fertility, DNA repair and integrity, and antioxidation were also upregulated. The sperm parameters were positively correlated with the relative abundance of Actinobacteria, Allobaculum, Phascolarctobacterium and Catenibacterium, and negatively correlated with Faecalibacterium and Streptococcus. Taken together, the sperm quality enhancement through the gut-testis axis may be due to a change in the gut microorganisms populations.
Collapse
Affiliation(s)
- Feriel Yasmine Mahiddine
- Department of Research and Development, Mjbiogen Corp, Seoul, 04788, Republic of Korea
- Department of Theriogenology and Biotechnologies, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inhwan You
- Department of Research and Development, Mjbiogen Corp, Seoul, 04788, Republic of Korea
- Department of Theriogenology and Biotechnologies, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heekee Park
- Department of Research and Development, Mjbiogen Corp, Seoul, 04788, Republic of Korea
| | - Min Jung Kim
- Department of Research and Development, Mjbiogen Corp, Seoul, 04788, Republic of Korea.
- Department of Theriogenology and Biotechnologies, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
20
|
Querdasi FR, Enders C, Karnani N, Broekman B, Yap Seng C, Gluckman PD, Mary Daniel L, Yap F, Eriksson JG, Cai S, Chong MFF, Toh JY, Godfrey K, Meaney MJ, Callaghan BL. Multigenerational adversity impacts on human gut microbiome composition and socioemotional functioning in early childhood. Proc Natl Acad Sci U S A 2023; 120:e2213768120. [PMID: 37463211 PMCID: PMC10372691 DOI: 10.1073/pnas.2213768120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
Adversity exposures in the prenatal and postnatal period are associated with an increased risk for psychopathology, which can be perpetuated across generations. Nonhuman animal research highlights the gut microbiome as a putative biological mechanism underlying such generational risks. In a sample of 450 mother-child dyads living in Singapore, we examined associations between three distinct adversity exposures experienced across two generations-maternal childhood maltreatment, maternal prenatal anxiety, and second-generation children's exposure to stressful life events-and the gut microbiome composition of second-generation children at 2 y of age. We found distinct differences in gut microbiome profiles linked to each adversity exposure, as well as some nonaffected microbiome features (e.g., beta diversity). Remarkably, some of the microbial taxa associated with concurrent and prospective child socioemotional functioning shared overlapping putative functions with those affected by adversity, suggesting that the intergenerational transmission of adversity may have a lasting impact on children's mental health via alterations to gut microbiome functions. Our findings open up a new avenue of research into the underlying mechanisms of intergenerational transmission of mental health risks and the potential of the gut microbiome as a target for intervention.
Collapse
Affiliation(s)
- Francesca R. Querdasi
- Department of Psychology, University of California Los Angeles, Los Angeles, CA90095
| | - Craig Enders
- Department of Psychology, University of California Los Angeles, Los Angeles, CA90095
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Birit Broekman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Chong Yap Seng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo School of Medicine, National University of Singapore, Singapore117597, Singapore
| | - Peter D. Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
- Liggins Institute, University of Auckland, Auckland1023, New Zealand
| | - Lourdes Mary Daniel
- Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Department of Child Development, KK Women’s and Children’s Hospital, Singapore229899, Singapore
| | - Fabian Yap
- Department of Paediatrics, KK Women’s and Children’s Hopsital, Singapore229899, Singapore
- Department of Pediatrics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore636921, Singapore
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore229899, Singapore
| | - Johan G. Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo School of Medicine, National University of Singapore, Singapore117597, Singapore
- Department of General Practice and Primary Health, University of Helsinki and Helsinki University Hospital, 00100Helsinki, Finland
- Program of Public Health Research, Folkhälsan Research Center, 00250Helsinki, Finland
| | - Shirong Cai
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Mary Foong-Fong Chong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore117561, Singapore
| | - Jia Ying Toh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Keith Godfrey
- Department of Epidemiology, University of Southampton, SouthamptonSO16 6YD, United Kingdom
- Department of Human Development, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Michael J. Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, Singapore138632, Singapore
- Department of Psychiatry, McGill University, Montreal, QuebecH3A 0G4, Canada
- Brain–Body Initiative, Agency for Science, Technology, and Research, Singapore138632, Singapore
| | - Bridget L. Callaghan
- Department of Psychology, University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
21
|
McMath AL, Aguilar-Lopez M, Cannavale CN, Khan NA, Donovan SM. A systematic review on the impact of gastrointestinal microbiota composition and function on cognition in healthy infants and children. Front Neurosci 2023; 17:1171970. [PMID: 37389363 PMCID: PMC10306408 DOI: 10.3389/fnins.2023.1171970] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Evidence from animal models or children with neurodevelopmental disorders has implicated the gut microbiome (GM) in neurocognitive development. However, even subclinical impairement of cognition can have negative consequences, as cognition serves as the foundation for skills necessary to succeed in school, vocation and socially. The present study aims to identify gut microbiome characteristics or changes in gut microbiome characteristics that consistently associate with cognitive outcomes in healthy, neurotypical infants and children. Of the 1,520 articles identified in the search, 23 were included in qualitative synthesis after applying exclusion criteria. Most studies were cross-sectional and focused on behavior or motor and language skills. Bifidobacterium, Bacteroides, Clostridia, Prevotella, and Roseburia were related to these aspects of cognition across several studies. While these results support the role of GM in cognitive development, higher quality studies focused on more complex cognition are needed to understand the extent to which the GM contributes to cognitive development.
Collapse
Affiliation(s)
- Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Miriam Aguilar-Lopez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Corinne N. Cannavale
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Naiman A. Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
22
|
Agusti A, Lamers F, Tamayo M, Benito-Amat C, Molina-Mendoza GV, Penninx BWJH, Sanz Y. The Gut Microbiome in Early Life Stress: A Systematic Review. Nutrients 2023; 15:nu15112566. [PMID: 37299527 DOI: 10.3390/nu15112566] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Exposure to early life stress (ELS), prenatal or postnatal during childhood and adolescence, can significantly impact mental and physical health. The role of the intestinal microbiome in human health, and particularly mental health, is becoming increasingly evident. This systematic review aims to summarize the clinical data evaluating the effect of ELS on the human intestinal microbiome. The systematic review (CRD42022351092) was performed following PRISMA guidelines, with ELS considered as exposure to psychological stressors prenatally and during early life (childhood and adolescence). Thirteen articles met all inclusion criteria, and all studies reviewed found a link between ELS and the gut microbiome in both prenatal and postnatal periods. However, we failed to find consensus microbiome signatures associated with pre- or postnatal stress, or both. The inconsistency of results is likely attributed to various factors such as different experimental designs, ages examined, questionnaires, timing of sample collection and analysis methods, small population sizes, and the type of stressors. Additional studies using similar stressors and validated stress measures, as well as higher-resolution microbiome analytical approaches, are needed to draw definitive conclusions about the links between stress and the human gut microbiome.
Collapse
Affiliation(s)
- Ana Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa-Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Femke Lamers
- Amsterdam UMC, Amsterdam Public Health, Mental Health Program, Department of Psychiatry, Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Maria Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa-Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
- Department of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Carlos Benito-Amat
- Institute for the Management and Innovation of Knowledge (INGENIO-CSIC-UPV), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Gara V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa-Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Brenda W J H Penninx
- Amsterdam UMC, Amsterdam Public Health, Mental Health Program, Department of Psychiatry, Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Yolanda Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa-Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
23
|
Koskinen MK, Aatsinki A, Kortesluoma S, Mustonen P, Munukka E, Lukkarinen M, Perasto L, Keskitalo A, Karlsson H, Karlsson L. Hair cortisol, cortisone and DHEA concentrations and the composition of microbiota in toddlers. Psychoneuroendocrinology 2023; 154:106309. [PMID: 37257330 DOI: 10.1016/j.psyneuen.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Animal research suggests that the gut microbiota and the HPA axis communicate in a bidirectional manner. However, human data, especially on early childhood, remain limited. In this exploratory design, we investigated the connections between long-term HPA axis functioning, measured as cortisol, cortisone or dehydroepiandrosterone concentrations and their ratios from hair segments of three centimeters, and gut microbiota profiles, (measured as diversity and bacterial composition by 16 S rRNA sequencing) in healthy 2.5-year-old toddlers (n = 135) recruited from the FinnBrain Birth Cohort Study. The alpha diversity of the microbiota was studied by linear regression. Beta diversity analyses with weighted UniFrac or Bray-Curtis distances were performed using PERMANOVA. The bacterial core genus level analyses were conducted using DESeq2 and ALDEx2. These analyses suggested that hair sample concentrations of separate hormones, cortisol/cortisone and cortisol/dehydroepiandrosterone ratios were associated with various gut bacterial genera such as the Veillonella, the [Ruminococcus] torques group and [Eubacterium] hallii group, although multiple testing correction attenuated the p-values. Alpha or beta diversity was not linked with either steroid concentrations or ratios. These findings in toddlers suggest that long-term HPA axis activity may be related to genera abundancies but not to ecosystem-level measures in gut microbiota. The influence of these observed interrelations on later child health and development warrants further research.
Collapse
Affiliation(s)
- Maarit K Koskinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland.
| | - Anna Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| | - Susanna Kortesluoma
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| | - Paula Mustonen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland; Department of Clinical Medicine, Child Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Eveliina Munukka
- Microbiology and Immunology, Institute of Biomedicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland; Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Department of Clinical Medicine, Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| | - Laura Perasto
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| | - Anniina Keskitalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland; Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland; Department of Clinical Medicine, Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Department of Clinical Medicine, Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| |
Collapse
|
24
|
Determinants of hair cortisol in preschool children and their mothers: A Brazilian birth cohort study. Psychoneuroendocrinology 2023; 150:106027. [PMID: 36702042 DOI: 10.1016/j.psyneuen.2023.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Few large-scale studies have provided population-based estimates of hair cortisol levels and its determinants. Hair cortisol and potential determinants were measured in children and their mothers in a population-based sample in a Brazilian city with large variations in socioeconomic conditions. METHODS We used data from the 4-year follow-up of the 2015 Pelotas (Brazil) Birth Cohort Study. Hair samples were collected by trained fieldworkers to analyze average levels of cortisol over a 3-month period. Four groups of variables were tested as potential determinants: hair characteristics (natural color, treatment, type, and frequency of wash), use of corticosteroids and oral contraceptives, sociodemographic factors (sex, age, skin color, socioeconomic level, maternal relationship, pregnancy, daycare enrollment), maternal perceived stress, and substance exposure (smoking and illicit drug use). Linear regression with log transformation was used to test associations. RESULTS 3235 children and 3102 mothers were analyzed (80.7% and 77.4% of those interviewed when children were 4 years of age, respectively), for whom sufficient hair was collected for cortisol analysis. The median of hair cortisol concentration was 7.8 pg/mg (IQR = 5.6 - 11.0) for children, and 5.6 pg/mg (IQR = 4.2 - 7.8) for mothers. In adjusted models, sex and socioeconomic level were associated with child cortisol levels. For mothers, hair cortisol levels were associated with socioeconomic level, skin color, age, hair treatment and hair natural color. CONCLUSION This study provides estimates of hair cortisol levels in a diverse population in a upper-middle income country. Although just a few predictors were associated with maternal/child cortisol levels, socioeconomic level was the key variable that should be incorporated in studies using hair cortisol to measure biological manifestations of stress, but other variables, such as some hair and sociodemographic characteristics are important to consider when using hair cortisol.
Collapse
|
25
|
Ramírez-Acosta S, Huertas-Abril PV, Selma-Royo M, Prieto-Álamo MJ, Collado MC, Abril N, García-Barrera T. The role of selenium in shaping mice brain metabolome and selenoproteome through the gut-brain axis by combining metabolomics, metallomics, gene expression and amplicon sequencing. J Nutr Biochem 2023; 117:109323. [PMID: 36958417 DOI: 10.1016/j.jnutbio.2023.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Selenium (Se) is a trace element crucial for human health. Recently, the impact of Se supplementation on gut microbiota has been pointed out as well as its influence on the expression of certain selenoproteins and gut metabolites. This study aims to elucidate the link between Se supplementation, brain selenoproteins and brain metabolome as well as the possible connection with the gut-brain axis. To this end, an in vivo study with 40 BALB/c mice was carried out. The study included conventional (n=20) and mice model with microbiota depleted by antibiotics (n=20) under a regular or Se supplemented diet. Brain selenoproteome was determined by a transcriptomic/gene expression profile, while brain metabolome and gut microbiota profiles were accomplished by untargeted metabolomics and amplicon sequencing, respectively. The total content of Se in brain was also determined. The selenoproteins genes Dio and Gpx isoenzymes, SelenoH, SelenoI, SelenoT, SelenoV and SelenoW and 31 metabolites were significantly altered in the brain after Se supplementation in conventional mice, while 11 selenoproteins and 26 metabolites were altered in microbiota depleted mice. The main altered brain metabolites were related to glyoxylate and dicarboxylate metabolism, amino acid metabolism, and gut microbiota that have been previously related with the gut-brain axis (e.g., members of Lachnospiraceae and Ruminococcaceae families). Moreover, specific associations were determined between brain selenoproteome and metabolome, which correlated with the same bacteria, suggesting an intertwined mechanism. Our results demonstrated the effect of Se on brain metabolome through specific selenoproteins gene expression and gut microbiota.
Collapse
Affiliation(s)
- Sara Ramírez-Acosta
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Agustin Escardino 7. 46980 Paterna, Valencia, Spain
| | - Maria J Prieto-Álamo
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - M Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Department of Biotechnology, Agustin Escardino 7. 46980 Paterna, Valencia, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., 21007, Huelva, Spain.
| |
Collapse
|
26
|
Prophylactic effect of Tongxieyaofang polysaccharide on depressive behavior in adolescent male mice with chronic unpredictable stress through the microbiome-gut-brain axis. Biomed Pharmacother 2023; 161:114525. [PMID: 36921537 DOI: 10.1016/j.biopha.2023.114525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Major depression disorder is more common among adolescents and is a primary reason for suicide in adolescents. Some antidepressants are ineffective and may possess side effects. Therefore, developing an adolescent antidepressant is the need of the hour. We designed the stress model of adolescent male mice induced by chronic unpredictable stress (CUS). The mice were treated using Tongxieyaofang neutral polysaccharide (TXYF-NP), Tongxieyaofang acidic polysaccharide (TXYF-AP), TXYF-AP + TXYF-NP and fructooligosaccharide + galactooligosaccharides to determine their body weight, behavior, and serum hormone levels. RT-qPCR was used to detect the gene expression of Crhr1, Nr3c1, and Nr3c2 in the hypothalamus and hippocampus and the gene expression of glutamic acid and γ-aminobutyric acid-related receptors in the hippocampus. RT-qPCR, Western blot, and ELISA detected tryptophan metabolism in the colon, serum, and hippocampus. 16s rDNA helped sequence colon microflora, and non-targeted metabolomics enabled the collection of metabolic profiles of colon microflora. In adolescent male mice, CUS induced depression-like behavior, hypothalamic-pituitary-adrenal axis hyperactivity, hippocampal tissue damage, abnormal expression of its related receptors, and dysregulation of tryptophan metabolism. The 16s rDNA and non-targeted metabolomics revealed that CUS led to colon microflora disorder and bile acid metabolism abnormality. Tongxieyaofang polysaccharide could improve the bacterial community and bile acid metabolism disorder by upregulating the relative abundance of Lactobacillus gasseri, Lachnospiraceae bacterium 28-4, Bacteroides and Ruminococcaceae UCG-014 while preventing CUS-induced changes. TXYF-P can inhibit depression-like behavior due to CUS by regulating colonic microflora and restoring bile acid metabolism disorder. Thus, based on the different comparisons, TXYF-NP possessed the best effect.
Collapse
|
27
|
Couch CE, Neal WT, Herron CL, Kent ML, Schreck CB, Peterson JT. Gut microbiome composition associates with corticosteroid treatment, morbidity, and senescence in Chinook salmon (Oncorhynchus tshawytscha). Sci Rep 2023; 13:2567. [PMID: 36782001 PMCID: PMC9925776 DOI: 10.1038/s41598-023-29663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Pacific salmon experience prolonged elevation in corticosteroid hormones during important life history events including migration, reproduction, and senescence. These periods of elevated corticosteroids correspond with changes to immunity and energy metabolism; therefore, fish may be particularly vulnerable to mortality at these times. Recent studies found that stress-induced cortisol release associated with microbial community shifts in salmonids, raising the question of how longer-term corticosteroid dynamics that accompany life history transitions affect salmonid microbiomes. In this work, we experimentally evaluated the relationships between gut microbiome composition, chronically elevated corticosteroids, and mortality in juvenile Chinook salmon (Oncorhynchus tshawytscha). We found that treatment with slow-release implants of the corticosteroids cortisol or dexamethasone resulted in changes to the gut microbiome. Morbidity was also associated with microbiome composition, suggesting that the gut microbiome reflects individual differences in susceptibility to opportunistic pathogens. Additionally, we analyzed a small number of samples from adult fish at various stages of senescence. Results from these samples suggest that microbiome composition associated with gut integrity, and that the microbial communities of corticosteroid treated juveniles shift in composition toward those of senescent adults. Overall, findings from this work indicate that the gut microbiome correlates with mortality risk during periods of chronic corticosteroid elevation.
Collapse
Affiliation(s)
- Claire E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA.
| | - William T Neal
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Crystal L Herron
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Carl B Schreck
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - James T Peterson
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
- U.S. Geological Survey Oregon Cooperative Fish and Wildlife Research Unit, Corvallis, OR, USA
| |
Collapse
|
28
|
Jia Y, Cheng S, Liu L, Cheng B, Liang C, Ye J, Chu X, Yao Y, Wen Y, Kafle OP, Zhang F. Evaluating the Genetic Effects of Gut Microbiota on the Development of Neuroticism and General Happiness: A Polygenic Score Analysis and Interaction Study Using UK Biobank Data. Genes (Basel) 2023; 14:156. [PMID: 36672898 PMCID: PMC9858947 DOI: 10.3390/genes14010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Limited efforts have been invested in exploring the interaction effects between genetic factors and gut microbiota on neuroticism and general happiness. The polygenic risk scores (PRS) of gut microbiota were calculated from individual-level genotype data of the UK Biobank cohort. Linear regression models were then used to assess the associations between individual PRS of gut microbiota and mental traits and interaction analysis was performed by PLINK2.0. KOBAS-i was used to conduct gene ontology (GO) enrichment analysis of the identified genes. We observed suggestive significant associations between neuroticism and PRS for the genus Bifidobacterium (rank-normal transformation, RNT) (beta = -1.10, P = 4.16 × 10-3) and the genus Desulfovibrio (RNT) (beta = 0.54, P = 7.46 × 10-3). PRS for the genus Bifidobacterium (hurdle binary, HB) (beta = 1.99, P = 5.24 × 10-3) and the genus Clostridium (RNT) (beta = 1.26, P = 9.27 × 10-3) were found to be suggestive positively associated with general happiness. Interaction analysis identified several significant genes that interacted with gut microbiota, such as RORA (rs575949009, beta = -45.00, P = 1.82 × 10-9) for neuroticism and ASTN2 (rs36005728, beta = 19.15, P = 3.37 × 10-8) for general happiness. Our study results support the genetic effects of gut microbiota on the development of neuroticism and general happiness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
29
|
Jiao W, Liu L, Zeng Z, Li L, Chen J. Differences in gut microbes in captive pangolins and the effects of captive breeding. Front Microbiol 2022; 13:1053925. [PMID: 36560954 PMCID: PMC9763570 DOI: 10.3389/fmicb.2022.1053925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal microorganisms are crucial for health and have a significant impact on biological processes, such as metabolism, immunity, and neural regulation. Although pangolin are protected animals in China and listed as critically endangered (CR) level by The International Union for Conservation of Nature (IUCN), the population of wild pangolins has decreased sharply in recent decades. Captive breeding has been adopted to protect pangolins, but the survival is low due to gastrointestinal infections, diarrhea, and parasitic infections. Studies on intestinal microbes in pangolins may reveal the relationship between intestinal microorganisms and health and assist protection. To explore the relationship between intestinal microorganisms and pangolin health, blood parameters and intestinal microorganisms of 10 pangolins (two Manis pentadactyla and eight Manis javanica) were studied at the Shenzhen Wildlife Rescue Center. There is difference among adult Sunda pangolins (M. javanica), adult Chinese pangolins (M. pentadactyla) and sub-adult Sunda pangolins (M. javanica) in intestinal microbial composition, diversity and phenotypic diversity, which suggested that adult Sunda pangolins occupied more diversity and proportion of microbial species to resist environmental pressure than the others. Due to the captive breeding serum cortisol of pangolins was increased, and the intestinal microbial structure changed, which may affect immunity. This study provides a scientific basis for the rescue of pangolins through artificial breeding.
Collapse
Affiliation(s)
- Wenjing Jiao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China,*Correspondence: Wenjing Jiao
| | - Lina Liu
- Shenzhen Management Bureau of Natural Reserve, Guangdong, China
| | - Zhiliao Zeng
- Shenzhen Management Bureau of Natural Reserve, Guangdong, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China,Jinping Chen
| |
Collapse
|
30
|
Porosyuk MV, Klementiev DD, Hodov NA, Gumenyuk LN, Esatova ES, Sereda EV, Chetveruhina-Malova KS, Sarchuk EV, Ivanov SV. Gut microbiota alterations in patients with juvenile idiopathic arthritis. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Currently, the issue of the relationship between gut microbiota and juvenile idiopathic arthritis (JIA) is still relevant. The study was aimed to assess alterations in the gut microbiota taxonomic composition and estimate the relationship between these alterations and cortisol, melatonin, and TNFα at the genus level in patients with JIA. The comparative cross-sectional study involved 65 patients with JIA (index group) and 60 healthy children (control group). The gut microbiota taxonomic composition and plasma levels of cortisol, melatonin, and TNFα were assessed. The following alterations of the gut microbiota taxonomic composition were found in patients with JIA: the significantly decreased abundance of Anaerostipes (р = 0.042), Lachnospira (р = 0.034), Roseburia (р = 0.002), Coprococcus (р = 0.014), Dialister (р = 0.003) and the increase in the abundance of Ruminococcus (р = 0.012). There were significant correlations of cortisol levels with the abundance of Lachnospira (r = –0.44; p = 0.001), melatonin concentrations and the abundance of Coprococcus (r = –0.48; p = 0.023), the levels of TNFα and the abundance of Ruminococcus (r = 0.52; p = 0.001). The association of the Lachnospira, Roseburia, and Ruminococcus abundance with the higher DAS28 scores was discovered (r = –0.57; p = 0.002; r = –0.44; p = 0.002; r = 0.54; p = 0.032, respectively). The findings provide additional information about the features of gut microbiota alterations and their correlation with some hormone and inflammatory biomarkers associated with JIA, that could provide the basis for further research and possibly for new approaches to treatment of this disorder.
Collapse
Affiliation(s)
- MV Porosyuk
- Georgievsky Medical Academy, Vernadsky Crimean Federal University, Simferopol, Russia
| | - DD Klementiev
- Georgievsky Medical Academy, Vernadsky Crimean Federal University, Simferopol, Russia
| | - NA Hodov
- Georgievsky Medical Academy, Vernadsky Crimean Federal University, Simferopol, Russia
| | - LN Gumenyuk
- Georgievsky Medical Academy, Vernadsky Crimean Federal University, Simferopol, Russia
| | - ES Esatova
- Georgievsky Medical Academy, Vernadsky Crimean Federal University, Simferopol, Russia
| | - EV Sereda
- Georgievsky Medical Academy, Vernadsky Crimean Federal University, Simferopol, Russia
| | | | - EV Sarchuk
- Georgievsky Medical Academy, Vernadsky Crimean Federal University, Simferopol, Russia
| | - SV Ivanov
- Georgievsky Medical Academy, Vernadsky Crimean Federal University, Simferopol, Russia
| |
Collapse
|
31
|
Freimer D, Yang TT, Ho TC, Tymofiyeva O, Leung C. The gut microbiota, HPA axis, and brain in adolescent-onset depression: Probiotics as a novel treatment. Brain Behav Immun Health 2022; 26:100541. [PMID: 36536630 PMCID: PMC9758412 DOI: 10.1016/j.bbih.2022.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
Stress-associated disruptions in the development of frontolimbic regions may play a critical role in the emergence of adolescent-onset depression. These regions are particularly sensitive to Hypothalamic-Pituitary-Adrenal (HPA) axis signaling. The HPA axis is hyperactive in adolescent depression, and interventions that attenuate such hyperactivity hold promise as potential treatments. The Microbiome-Gut-Brain (MGB) axis is an important pathway through which stress dysregulates HPA-axis activity and thus exerts deleterious effects on the adolescent brain. Probiotic agents, which alter the gut microbiota composition by introducing bacterial strains with beneficial physiological effects, normalize aberrant HPA-axis activity and reduce depressive symptoms in both animal studies and adult clinical trials. While the potential utility of such agents in treating or preventing adolescent depression remains largely unexplored, recent data suggest the existence of an adolescent sensitive window during which probiotics may be especially efficacious in reducing depressive symptoms compared to effects observed in adult populations. In this review, we outline evidence that probiotic use may attenuate stress effects on frontolimbic development, providing a novel means of improving depressive symptoms among adolescent populations.
Collapse
Affiliation(s)
- Daniel Freimer
- University of California, San Francisco (UCSF), School of Medicine, USA
| | - Tony T. Yang
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, USA
- Division of Child and Adolescent Psychiatry, USA
- The Langley Porter Psychiatric Institute, USA
| | - Tiffany C. Ho
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, USA
| | - Olga Tymofiyeva
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Radiology and Biomedical Imaging, USA
| | - Cherry Leung
- University of California, San Francisco (UCSF), School of Nursing, Department of Community Health Systems, USA
| |
Collapse
|
32
|
Abomoelak B, Saps M, Sudakaran S, Deb C, Mehta D. Gut Microbiome Remains Static in Functional Abdominal Pain Disorders Patients Compared to Controls: Potential for Diagnostic Tools. BIOTECH 2022; 11:biotech11040050. [PMID: 36412751 PMCID: PMC9680443 DOI: 10.3390/biotech11040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Functional Abdominal Pain disorders (FAPDs) are a group of heterogeneous gastrointestinal disorders with unclear pathophysiology. In children, FAPDs are more common in the winter months than summer months. The possible influence of school stressors has been proposed. Previously, our group showed differences in bacterial relative abundances and alpha diversity in the gut microbiome and its relationship with stressors in a cross-sectional evaluation of children suffering from FAPDs compared to a healthy control group. We present longitudinal data to assess whether the gut microbiome changes over school terms in the control and FAPDs groups. Methods: The longitudinal study included children with FAPDs (n = 28) and healthy controls (n = 54). Gastrointestinal symptoms, as well as stool microbiome, were assessed in both groups. Stool samples were serially collected from all participants during both the school term and summer vacation. The stool samples were subjected to total genomic extraction, 16S rRNA amplicon sequencing, and bioinformatics analysis. The gut microbiome was compared at school and during vacation. Other metrics, alpha diversity, and beta diversity, were also compared between the two school terms in every group. Results: In the healthy group, there were differences in microbiome composition between school terms and summer vacation. Conversely, we found no differences in the FAPDs group between the two terms. The healthy control group revealed differences (p-value < 0.05) in 55 bacterial species between the school term and vacation. Several of the differentially abundant identified bacteria were involved in short-chain fatty acids production (SCFAs), inflammation reduction, and gut homeostasis. Alpha diversity metrics, such as the Shannon index, were different in the control group and remained unchanged in the FAPDs group. Conclusion: Although preliminary, our findings suggest that the gut microbiome is static in FAPDs. This compares with a more dynamic healthy gut microbiome. Further studies are warranted to corroborate this and understand the interplay between stress, symptoms, and a less diverse and static microbiome. Future studies will also account for different variables such as diet and other patient demographic criteria that were missing in the current study.
Collapse
Affiliation(s)
- Bassam Abomoelak
- Arnold Palmer Pediatric Gastroenterology Clinic, Orlando Health, Orlando, FL 32806, USA
| | - Miguel Saps
- Pediatric Gastroenterology, Hepatology and Nutrition Division, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Chirajyoti Deb
- Arnold Palmer Pediatric Gastroenterology Clinic, Orlando Health, Orlando, FL 32806, USA
| | - Devendra Mehta
- Arnold Palmer Pediatric Gastroenterology Clinic, Orlando Health, Orlando, FL 32806, USA
- Correspondence:
| |
Collapse
|
33
|
Soltysova M, Tomova A, Ostatnikova D. Gut Microbiota Profiles in Children and Adolescents with Psychiatric Disorders. Microorganisms 2022; 10:2009. [PMID: 36296284 PMCID: PMC9608804 DOI: 10.3390/microorganisms10102009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our work is to summarize the current state of knowledge on gut microbiota differences in children and adolescents with psychiatric disorders. To find the relevant articles, the PubMed, Web of Science, and Google Scholar databases were searched. Articles in English presenting original data and comparing the composition of gut microbiota in child psychiatric patients with gut microbiota in healthy children and adolescents were selected. Finally, we identified 55 articles eligible for our purpose. The majority of patients with autism spectrum disorders (ASD) were investigated. A smaller number of studies evaluating the gut microbiota in children and adolescents with attention-deficit/hyperactivity disorder (ADHD), Rett syndrome, anorexia nervosa, depressive disorder (DD), and tic disorders were found. The main findings of this research are discussed in our review, focusing on the age-related gut microbiota specificity for psychiatric disorders and the differences between individual diagnosis. To conclude, the gut microbiota in children and adolescents with psychiatric disorders is evidently different from that in controls. The most pronounced differences are seen in children with ASD, less in ADHD. Moreover, the changes are not identical to those in adult psychiatric patients, as Ruminococcus, Turicibacter, and Bilophila were increased in adults, and decreased in children with ASD, and Parabacteroides and Alistipes were more frequently represented in adults, but less frequently represented in children with depression. The available data suggest some genera have a different abundance in individual psychiatric disorders (e.g., Bilophila, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, and Ruminococcus), suggesting their importance for the gut-brain axis. Other bacterial genera might be more important for the pathophysiology of specific disorder in children and adolescents, as Akkermansia and Desulfovibrio for ASD, or Romboutsia for DD. Based on the research findings, we assume that gut microbiota corrections have the potential to improve clinical symptoms in psychiatric patients.
Collapse
Affiliation(s)
- Marcela Soltysova
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine in Bratislava, Comenius University, 813 72 Bratislava, Slovakia
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| | - Aleksandra Tomova
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| | - Daniela Ostatnikova
- Child Psychiatry Outpatient Care Unit, Zvolen Hospital, 960 01 Zvolen, Slovakia
| |
Collapse
|
34
|
Mörkl S, Oberascher A, Tatschl JM, Lackner S, Bastiaanssen TFS, Butler MI, Moser M, Frühwirth M, Mangge H, Cryan JF, Dinan TG, Holasek SJ. Cardiac vagal activity is associated with gut-microbiome patterns in women-An exploratory pilot study. DIALOGUES IN CLINICAL NEUROSCIENCE 2022; 24:1-9. [PMID: 36246995 PMCID: PMC9559470 DOI: 10.1080/19585969.2022.2128697] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Introduction A functional reciprocity between the gut microbiome and vagal nerve activity has been suggested, however, human studies addressing this phenomenon are limited. Methods Twenty-four-hour cardiac vagal activity (CVA) was assessed from 73 female participants (aged 24.5 ± 4.3 years). Additionally, stool samples were subjected to 16SrRNA gene analysis (V1–V2). Quantitative Insights Into Microbial Ecology (QIIME) was used to analyse microbiome data. Additionally, inflammatory parameters (such as CRP and IL-6) were derived from serum samples. Results Daytime CVA correlated significantly with gut microbiota diversity (rsp = 0.254, p = 0.030), CRP (rsp = −0.348, p = 0.003), and IL-6 (rsp = −0.320, p = 0.006). When the group was divided at the median of 24 h CVA (Mdn = 1.322), the following features were more abundant in the high CVA group: Clostridia (Linear discriminant analysis effect size (LDA) = 4.195, p = 0.029), Clostridiales (LDA = 4.195, p = 0.029), Lachnospira (LDA = 3.489, p = 0.004), Ruminococcaceae (LDA = 4.073, p = 0.010), Faecalibacterium (LDA = 3.982, p = 0.042), Lactobacillales (LDA = 3.317, p = 0.029), Bacilli (LDA = 3.294, p = 0.0350), Streptococcaceae (LDA = 3.353, p = 0.006), Streptococcus (LDA = 3.332, p = 0.011). Based on Dirichlet multinomial mixtures two enterotypes could be detected, which differed significantly in CVA, age, BMI, CRP, IL-6, and diversity. Conclusions As an indicator of gut-brain communication, gut microbiome analysis could be extended by measurements of CVA to enhance our understanding of signalling via microbiota-gut-brain-axis and its alterations through psychobiotics.
Collapse
Affiliation(s)
- Sabrina Mörkl
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria,CONTACT Sabrina Mörkl Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31/1, Graz, 8036, Austria
| | - Andreas Oberascher
- Department of Psychiatry, Psychotherapy and Psychosomatics, Paracelsus Medical University of Salzburg, Salzburg, Austria,Division of Physiology, Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | | | - Sonja Lackner
- Division of Immunology and Pathophysiology, Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| | | | - Mary I. Butler
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Clinical Neuroscience, University College Cork, Cork, Ireland
| | - Maximilian Moser
- Division of Physiology, Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria,Human Research Institute of Health Technology and Prevention Research, Weiz, Austria
| | - Matthias Frühwirth
- Human Research Institute of Health Technology and Prevention Research, Weiz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Clinical Neuroscience, University College Cork, Cork, Ireland
| | - Sandra J. Holasek
- Division of Immunology and Pathophysiology, Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Medical University of Graz, Graz, Austria
| |
Collapse
|
35
|
Delgadillo DR, Pressman SD, Christian LM, Galley JD, Bailey MT. Associations Between Gut Microbes and Social Behavior in Healthy 2-Year-Old Children. Psychosom Med 2022; 84:749-756. [PMID: 35797533 PMCID: PMC9437120 DOI: 10.1097/psy.0000000000001103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Emerging research has connected abundances of specific bacteria to differences in psychosocial behaviors in animals and adult humans. However, research assessing mind-microbiome associations in children is sparse with extant work primarily focused on populations with autism, making it unclear whether links are also present in typically developing children. The current study fills this gap by examining associations between prosocial-self-regulating temperaments (effortful control; EC) and the gut microbiome in typically developing children. METHODS Maternal ratings of temperament were assessed in 77 toddlers 18 to 27 months of age (46.7% female, mean age = 23.14 months). Next-generation pyrosequencing of the V1-V3 region of the 16S rRNA gene was used to classify children's gut microbial composition from fecal samples. EC included the following subcategories: cuddliness, attentional focusing, attentional shifting, inhibitory control, and low-intensity pleasure. RESULTS After adjusting for covariates, EC was positively associated with relative abundances of Akkermansia (Δ R2 = 0.117, b = 0.022, SE = 0.007, p = .002), with cuddliness (i.e., joy and ease of being held) driving the relation. Furthermore, attentional focusing was negatively associated with Alistipes (Δ R2 = 0.062, b = -0.011, SE = 0.005, p = .028). Permutational analysis of variance revealed no significant differences in community structure between high and low EC groups on the phylum level ( R2 = 0.00372, p = .745) or the genus level ( R2 = 0.01559, p = .276). CONCLUSIONS Findings suggest that certain microbes may be linked to prosocial behaviors used to regulate emotion in typically developing children. Further research is needed to test whether these observations replicate in larger samples.
Collapse
Affiliation(s)
| | - Sarah D. Pressman
- Department of Psychological Science, University of
California, Irvine, USA
| | | | - Jeffrey D. Galley
- Institute for Behavioral Medicine Research, The Ohio State
University, College of Medicine
| | - Michael T. Bailey
- Department of Psychiatry, The Ohio State University,
Columbus, USA
- Abigail Wexner Research Institute at Nationwide
Children’s Hospital, Columbus, USA
| |
Collapse
|
36
|
Mittinty MM, Lee JY, Walton DM, El-Omar EM, Elliott JM. Integrating the Gut Microbiome and Stress-Diathesis to Explore Post-Trauma Recovery: An Updated Model. Pathogens 2022; 11:pathogens11070716. [PMID: 35889962 PMCID: PMC9323039 DOI: 10.3390/pathogens11070716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Musculoskeletal conditions of traumatic and non-traumatic origin represent an ongoing health challenge. While the last three decades have seen significant advancement in our understanding of musculoskeletal conditions, the mechanisms of a delayed or lack of recovery are still a mystery. Here, we present an expansion of the integrated stress-diathesis model through the inclusion of the gut microbiome. Connecting the microbiome with known adverse neurobiologic, microbiologic and pathophysiologic sequelae following an injury, trauma or stressful event may help improve our knowledge of the pathogenesis of poor recovery. Such knowledge could provide a foundation for the exploration and development of more effective interventions to prevent the transition from acute to chronic pain.
Collapse
Affiliation(s)
- Manasi Murthy Mittinty
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2065, Australia
- Correspondence: ; Tel.: +61-2-9463-1516
| | - Joshua Y. Lee
- School of Physical Therapy, Western University, London, ON N6G 1H1, Canada; (J.Y.L.); (D.M.W.)
| | - David M. Walton
- School of Physical Therapy, Western University, London, ON N6G 1H1, Canada; (J.Y.L.); (D.M.W.)
| | - Emad M. El-Omar
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia;
| | - James M. Elliott
- School of Health Sciences, Faculty of Medicine and Health, The Kolling Institute, The University of Sydney, Sydney, NSW 2065, Australia;
- The Northern Sydney Local Health District, Sydney, NSW 2006, Australia
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Xiang M, Zheng L, Pu D, Lin F, Ma X, Ye H, Pu D, Zhang Y, Wang D, Wang X, Zou K, Chen L, Zhang Y, Sun Z, Zhang T, Wu G. Intestinal Microbes in Patients With Schizophrenia Undergoing Short-Term Treatment: Core Species Identification Based on Co-Occurrence Networks and Regression Analysis. Front Microbiol 2022; 13:909729. [PMID: 35783418 PMCID: PMC9247572 DOI: 10.3389/fmicb.2022.909729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 01/12/2023] Open
Abstract
Schizophrenia, a common mental disorder, has a tremendous impact on the health and economy of people worldwide. Evidence suggests that the microbial-gut-brain axis is an important pathway for the interaction between the gut microbiome and the development of schizophrenia. What is not clear is how changes in the gut microbiota composition and structure during antipsychotic treatment improve the symptoms of schizophrenia. In this study, 25 patients with schizophrenia were recruited. Their fecal samples were collected before and after hospital treatment for 14–19 days. The composition and structure of the intestinal microbiota were evaluated by 16S rRNA sequencing analysis, and the results showed significant differences in fecal microbiota before and after treatment. Firmicutes (relative abundances of 82.60 and 86.64%) and Gemminger (relative abundances of 14.17 and 13.57%) were the first dominant species at the phylum and genus levels, respectively. The random forest algorithm and co-occurrence network analysis demonstrated that intestinal flora (especially the core species ASV57) could be used as biomarkers to distinguish different clinical states and match treatment regimens accordingly. In addition, after fecal microbiota transplantation, antibiotic-treated recipient mice showed multiple behavioral improvements. These included decreased psychomotor hyperactivity, increased social interaction, and memory. In conclusion, this study suggests that differences in the composition and structure of gut microbiota after treatment are associated with the development and severity of schizophrenia. Results may provide a potential target for the treatment of this disorder.
Collapse
Affiliation(s)
- Min Xiang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Liqin Zheng
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Daoshen Pu
- The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Feng Lin
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaodong Ma
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Huiqian Ye
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Daoqiong Pu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Ying Zhang
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Dong Wang
- Psychiatry Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Xiaoli Wang
- Internal Medicine, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Kaiqing Zou
- The Outpatient Department, The Fourth People's Hospital of Ya'an, Ya'an, China
| | - Linqi Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhanjiang Sun
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
- Tao Zhang
| | - Guolin Wu
- Medical Laboratory, The Fourth People's Hospital of Ya'an, Ya'an, China
- *Correspondence: Guolin Wu
| |
Collapse
|
38
|
de Vries LP, van de Weijer MP, Bartels M. The human physiology of well-being: A systematic review on the association between neurotransmitters, hormones, inflammatory markers, the microbiome and well-being. Neurosci Biobehav Rev 2022; 139:104733. [PMID: 35697161 DOI: 10.1016/j.neubiorev.2022.104733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/09/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023]
Abstract
To understand the pathways through which well-being contributes to health, we performed a systematic review according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines on the association between well-being and physiological markers in four categories, neurotransmitters, hormones, inflammatory markers, and microbiome. We identified 91 studies. Neurotransmitter studies (knumber of studies=9) reported only a possible positive association between serotonin and well-being. For the hormone studies (k = 48), a lower momentary cortisol level was related to higher well-being (meta-analytic r = -0.06), and a steeper diurnal slope of cortisol levels. Inflammatory marker studies (k = 36) reported negative or non-significant relations with well-being, with meta-analytic estimates of respectively r = -0.07 and r = -0.05 for C-reactive protein and interleukin-6. Microbiome studies (k = 4) reported inconsistent associations between different bacteria abundance and well-being. The results indicate possible but small roles of serotonin, cortisol, and inflammatory markers in explaining differences in well-being. The inconsistent and limited results for other markers and microbiome require further research. Future directions for a complete picture of the physiological factors underlying well-being are proposed.
Collapse
Affiliation(s)
- Lianne P de Vries
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands.
| | - Margot P van de Weijer
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Zhou C, Gao X, Cao X, Tian G, Huang C, Guo L, Zhao Y, Hu G, Liu P, Guo X. Gut Microbiota and Serum Metabolite Potential Interactions in Growing Layer Hens Exposed to High-Ambient Temperature. Front Nutr 2022; 9:877975. [PMID: 35571932 PMCID: PMC9093710 DOI: 10.3389/fnut.2022.877975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence has revealed the dysbiosis of gut microbiota contributes to development of metabolic diseases in animals. However, the potential interaction between gut microbiota and host metabolism in growing hens under metabolic disorder induced by chronic heat exposure (CHE) remains inconclusive. The aim of our study was to examine the potential association among the cecal microbiota community, physiological indicators, and serum metabolite profiles in CHE hens. One hundred and eighty Hy-Line Brown hens were randomly allocated into three groups: thermoneutral control (TN), heat stress (HS), and pair-fed (PF). The experiment lasted for 5 weeks, with the first 2 weeks serving as the adaptation period. Results showed that the expression level of heat shock protein 70 (HSP70) in both serum and cecal tissues was significantly increased in the HS group. Serum parameters analysis also revealed that CHE caused physiological function damage and metabolic disorders. These results suggest the experiment was successful, inducing chronic heat stress. 16S rRNA sequencing analysis showed that the CHE can clearly induce dysbiosis of the gut microbial community reflected in the increment of the F/B ratio. Besides, serum untargeted metabolomics revealed the relative concentrations of 40 metabolites were significantly altered in the HS group compared with the TN group. Pathway analysis showed that these metabolites were mainly involving the increased proteolysis rather than lipolysis, and this tendency could be a specific metabolic adaptation of the poultry. The pair-feed experiment showed that the above changes induced by CHE were partly independent from the reduction of feed intake. Mantel correlation analysis between gut microorganisms and physiological indicators showed that the phylum Firmicutes and Euryarchaeota have a potential interaction with a serum lipid parameter. Random forest analysis showed that both genus Faecalibacterium and Methanobrevibacter were important predictors of the CHE-induced lipid metabolism disorder. Taken together, our findings may contribute to a better understanding of the metabolic mechanisms underlying the energy metabolism imbalance caused by the CHE and provide novel insights into the host-microbes interactions and its effects on the metabolic adaptation of hens under chronic heat exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
40
|
Stressful events induce long-term gut microbiota dysbiosis and associated post-traumatic stress symptoms in healthcare workers fighting against COVID-19. J Affect Disord 2022; 303:187-195. [PMID: 35157946 PMCID: PMC8837476 DOI: 10.1016/j.jad.2022.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The microbiota-gut-brain axis is a key pathway perturbed by prolonged stressors to produce brain and behavioral disorders. Frontline healthcare workers (FHWs) fighting against COVID-19 typically experience stressful event sequences and manifest some mental symptoms; however, the role of gut microbiota in such stress-induced mental problems remains unclear. We investigated the association between the psychological stress of FHW and gut microbiota. METHODS We used full-length 16S rRNA gene sequencing to characterize the longitudinal changes in gut microbiota and investigated the impact of microbial changes on FHWs' mental status. RESULTS Stressful events induced significant depression, anxiety, and stress in FHWs and disrupted the gut microbiome; gut dysbiosis persisted for at least half a year. Different microbes followed discrete trajectories during the half-year of follow-up. Microbes associated with mental health were mainly Faecalibacterium spp. and [Eubacterium] eligens group spp. with anti-inflammatory effects. Of note, the prediction model indicated that low abundance of [Eubacterium] hallii group uncultured bacterium and high abundance of Bacteroides eggerthii at Day 0 (immediately after the two-month frontline work) were significant determinants of the reappearance of post-traumatic stress symptoms in FHWs. LIMITATIONS The lack of metabolomic evidence and animal experiments result in the unclear mechanism of gut dysbiosis-related stress symptoms. CONCLUSION The stressful event sequences of fighting against COVID-19 induce characteristic longitudinal changes in gut microbiota, which underlies dynamic mental state changes.
Collapse
|
41
|
Lukoševičiūtė J, Argustaitė-Zailskienė G, Šmigelskas K. Measuring Happiness in Adolescent Samples: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9020227. [PMID: 35204948 PMCID: PMC8870059 DOI: 10.3390/children9020227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 12/28/2022]
Abstract
Background: Happiness is a phenomenon that relates to better mental and physical health and even longevity. There has been an increase in surveys assessing subjective well-being as well as happiness, one of the well-being components that reflect one’s feelings or moods. Happiness is mostly measured in adult samples. There is a lack of an overview of the tools used to evaluate adolescent happiness, so this paper aimed to review them. Methods: A literature search was performed in the PubMed and PsycArticles databases (2010–2019). In total, 133 papers met the eligibility criteria for this systematic review. Results: The results are grouped according to the type of measure, single or multiple items, that was used in a study. Almost half of the studies (64 of 133) evaluated subjective happiness using single-item measures. The most commonly used scales were the 4-item Subjective Happiness Scale and the Oxford Happiness Questionnaire. Among the 133 articles analyzed, 18 reported some validation procedures related to happiness. However, in the majority of cases (14 studies), happiness was not the central phenomenon of validation, which suggests a lack of happiness validation studies. Conclusions: Finally, recommendations for future research and for the choice of happiness assessment tools are presented.
Collapse
Affiliation(s)
- Justė Lukoševičiūtė
- Department of Health Psychology, Faculty of Public Health, Medical Academy, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (G.A.-Z.); (K.Š.)
- Faculty of Public Health, Health Research Institute, Medical Academy, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-37-242908
| | - Gita Argustaitė-Zailskienė
- Department of Health Psychology, Faculty of Public Health, Medical Academy, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (G.A.-Z.); (K.Š.)
| | - Kastytis Šmigelskas
- Department of Health Psychology, Faculty of Public Health, Medical Academy, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania; (G.A.-Z.); (K.Š.)
- Faculty of Public Health, Health Research Institute, Medical Academy, Lithuanian University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
42
|
Relationship Among Blastocystis, the Firmicutes/Bacteroidetes Ratio and Chronic Stress in Mexican University Students. Curr Microbiol 2022; 79:72. [PMID: 35067729 PMCID: PMC8784498 DOI: 10.1007/s00284-021-02756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
The role played by Blastocystis in humans has been a subject of discussion due to its intestinal effects and modifications in the intestinal microbiota. We aimed to analyze the relationship between Blastocystis subtypes ST1-4 and 7, the Firmicutes to Bacteroidetes ratio (F/B ratio) of fecal microbiota, and chronic stress in university students. This study had a cross-sectional design with a sample of 202 students. We analyzed fecal and hair samples, and stress inventories were applied to the students. The results showed a frequency of Blastocystis-colonized students of 52.97%. Regarding fecal microbiota, a median RAU of 0.801 for Firmicutes and 0.82 of Bacteroidetes were obtained, with an F/B ratio of 0.83. A low F/B ratio (66.04%) was more frequent in Blastocystis-colonized students, whereas a high F/B ratio (68.09%) (p = < 0.0001) was found in the Blastocystis-non-colonized. Only Blastocystis ST3 did not significantly correlate with a low F/B ratio (p = 0.290). The ST4 was associated with lower values of cortisol (p = 0.030), psychological stress (p = 0.040), and lower frequency of constipation (p = 0.010). Only two students with the ST1 had abdominal pain (p = 0.007). Our results suggest that colonization by Blastocystis subtypes can modify the intestinal microbiota due to a decreased ratio between the two most representative phyla (F/B). Also, the results of this study show that ST4 colonization is related to a lower level of chronic stress.
Collapse
|
43
|
Sgro M, Kodila ZN, Brady RD, Reichelt AC, Mychaisuk R, Yamakawa GR. Synchronizing Our Clocks as We Age: The Influence of the Brain-Gut-Immune Axis on the Sleep-Wake Cycle Across the Lifespan. Sleep 2021; 45:6425072. [PMID: 34757429 DOI: 10.1093/sleep/zsab268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
The microbes that colonize the small and large intestines, known as the gut microbiome, play an integral role in optimal brain development and function. The gut microbiome is a vital component of the bi-directional communication pathway between the brain, immune system, and gut, also known as the brain-gut-immune axis. To date there has been minimal investigation into the implications of improper development of the gut microbiome and the brain-gut-immune axis on the sleep-wake cycle, particularly during sensitive periods of physical and neurological development, such as childhood, adolescence, and senescence. Therefore, this review will explore the current literature surrounding the overlapping developmental periods of the gut microbiome, brain, and immune system from birth through to senescence, while highlighting how the brain-gut-immune axis affects maturation and organisation of the sleep-wake cycle. We also examine how dysfunction to either the microbiome or the sleep-wake cycle negatively affects the bidirectional relationship between the brain and gut, and subsequently the overall health and functionality of this complex system. Additionally, this review integrates therapeutic studies to demonstrate when dietary manipulations, such as supplementation with probiotics and prebiotics, can modulate the gut microbiome to enhance health of the brain-gut-immune axis and optimize our sleep-wake cycle.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Zoe N Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Amy C Reichelt
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Richelle Mychaisuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Li S, Hu J, Yao H, Geng F, Nie S. Interaction between four galactans with different structural characteristics and gut microbiota. Crit Rev Food Sci Nutr 2021:1-11. [PMID: 34669541 DOI: 10.1080/10408398.2021.1992605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human gut microbiota played a key role in maintaining and regulating host health. Gut microbiota composition could be altered by daily diet and related nutrients. Diet polysaccharide, an important dietary nutrient, was one kind of biological macromolecules linked by the glycosidic bonds. Galactans were widely used in foods due to their gelling, thickening and stabilizing properties. Recently, effects of different galactans on gut microbiota have attracted much attention. This review described the structural characteristics of 4 kinds of galactans, including porphyran, agarose, carrageenan, and arabinogalactan, along with the effects of different galactans on gut microbiota and production of short-chain fatty acids. The ability of gut microbiota to utilize galactans with different structural characteristics and related degradation mechanism were also summarized. All these four galactans could be used by gut Bacteroides. Besides, the porphyran could be utilized by Lactobacillus and Bifidobacterium, while the arabinogalactan could be utilized by Lactobacillus, Bifidobacterium and Roseburia. Four galactans with significant difference in molecular weight/degree of polymerization, glycosidic linkage, esterification, branching and monosaccharide composition required gut microbes which could utilize them have corresponding genes encoding the corresponding enzymes for decomposition. This review could help to understand the relationship between galactans with different structural characteristics and gut microbiota, and provide information for potential use of galactans as functional foods.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| |
Collapse
|
45
|
Lee J, Chi S, Lee MS. Molecular Biomarkers for Pediatric Depressive Disorders: A Narrative Review. Int J Mol Sci 2021; 22:ijms221810051. [PMID: 34576215 PMCID: PMC8464852 DOI: 10.3390/ijms221810051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 01/31/2023] Open
Abstract
Depressive disorder in childhood and adolescence is a highly prevalent mood disorder that tends to recur throughout life. Untreated mood disorders can adversely impact a patient’s quality of life and cause socioeconomic loss. Thus, an accurate diagnosis and appropriate treatment is crucial. However, until now, diagnoses and treatments were conducted according to clinical symptoms. Objective and biological validation is lacking. This may result in a poor outcome for patients with depressive disorder. Research has been conducted to identify the biomarkers that are related to depressive disorder. Cumulative evidence has revealed that certain immunologic biomarkers including brain-derived neurotrophic factor (BDNF) and cytokines, gastrointestinal biomarkers, hormones, oxidative stress, and certain hypothalamus-pituitary axis biomarkers are associated with depressive disorder. This article reviews the biomarkers related to the diagnosis and treatment of pediatric depressive disorders. To date, clinical biomarker tests are not yet available for diagnosis or for the prediction of treatment prognosis. However, cytokines such as Interleukin-2, interferon-gamma, tumor necrosis factor-alpha, and BDNF have shown significant results in previous studies of pediatric depressive disorder. These biomarkers have the potential to be used for diagnosis, prognostic assessment, and group screening for those at high risk.
Collapse
Affiliation(s)
- Jongha Lee
- Department of Psychiatry, Korea University Ansan Hospital, Ansan 15355, Korea;
| | - Suhyuk Chi
- Department of Psychiatry, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University Guro Hospital, Seoul 08308, Korea;
- Correspondence: ; Tel.: +82-2-2626-3163; Fax: +82-2-852-1937
| |
Collapse
|
46
|
Hantsoo L, Zemel BS. Stress gets into the belly: Early life stress and the gut microbiome. Behav Brain Res 2021. [DOI: 10.1016/j.bbr.2021.113474
expr 831417737 + 864631554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
47
|
Keskitalo A, Aatsinki AK, Kortesluoma S, Pelto J, Korhonen L, Lahti L, Lukkarinen M, Munukka E, Karlsson H, Karlsson L. Gut microbiota diversity but not composition is related to saliva cortisol stress response at the age of 2.5 months. Stress 2021; 24:551-560. [PMID: 33729084 DOI: 10.1080/10253890.2021.1895110] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human brain and intestinal microbes reportedly maintain a constant bidirectional connection through diverse neural, endocrine, immune, and metabolic pathways. Increasing evidence indicates that this communication system, referred to as microbiota-gut-brain axis, enables the gut microbes to influence several aspects of brain function and behavior, including hypothalamic-pituitary-adrenal (HPA) axis stress responses, and on the other hand, stress can affect gut microbiota. However, the role of gut microbiota in the HPA axis functioning in humans remains to be specified especially in early life. This study aimed at identifying the potential link between the cortisol stress response and the gut microbiota at the age of 2.5 months. Fecal microbiota profiles were acquired by 16S rRNA gene sequencing, while salivary cortisol responses after an exposure to a mild acute stressor represented the HPA axis reactivity. We observed that a blunted cortisol stress response was weakly associated with a diverse gut microbiota diversity at the age of 2.5 months. Gut microbiota composition was not associated with cortisol stress responsiveness, but rather with covariates, i.e. factors that influence gut microbiota composition and colonization.LAY SUMMARYThis exploratory study aimed at identifying possible links between cortisol stress responses and fecal microbiota composition in early infancy. In a well-characterized study population of 2.5-month-old infants, we observed that an attenuated cortisol stress responsiveness after a mild stressor was weakly associated with a diverse fecal microbiota. Our results suggest that the gut microbiota composition is associated with environmental factors, such as delivery mode and number of siblings, rather than with cortisol stress responsiveness, in this age group.
Collapse
Affiliation(s)
- Anniina Keskitalo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Susanna Kortesluoma
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Juho Pelto
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Laura Korhonen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, Faculty of Science and Engineering, University of Turku, Turku, Finland
| | - Minna Lukkarinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Eveliina Munukka
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Microbiome Biobank, Faculty of Medicine, University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
48
|
Hantsoo L, Zemel BS. Stress gets into the belly: Early life stress and the gut microbiome. Behav Brain Res 2021; 414:113474. [PMID: 34280457 DOI: 10.1016/j.bbr.2021.113474] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Research has established that stress "gets under the skin," impacting neuroendocrine and neuroimmune pathways to influence risk for physical and mental health outcomes. These effects can be particularly significant for early life stress (ELS), or adverse childhood experiences (ACEs). In this review, we explore whether stress gets "into the belly," that is, whether psychosocial stress affects the gut microbiome. We review animal and human research utilizing a variety of stress paradigms (acute laboratory stressors, chronic stress, stressful life events, perceived stress, ELS, in utero stress) and their impacts on the gut microbiota, with a particular focus on ELS. We also review data on dietary interventions to moderate impact of stress on the gut microbiome. Our review suggests strong evidence that acute laboratory stress, chronic stress, and ELS affect the gut microbiota in rodents, and growing evidence that perceived stress and ELS may impact the gut microbiota in humans. Emerging data also suggests, particularly in rodents, that dietary interventions such as omega-3 fatty acids and pre- and pro-biotics may buffer against the effects of stress on the gut microbiome, but more research is needed. In sum, growing evidence suggests that stress impacts not only the neuroendocrine and neuroimmune axes, but also the microbiota-gut-brain-axis, providing a pathway by which stress may get "into the belly" to influence health risk.
Collapse
Affiliation(s)
- Liisa Hantsoo
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway Street, Baltimore, MD 21205, USA.
| | - Babette S Zemel
- Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
| |
Collapse
|
49
|
Shao S, Jia R, Zhao L, Zhang Y, Guan Y, Wen H, Liu J, Zhao Y, Feng Y, Zhang Z, Ji Q, Li Q, Wang Y. Xiao-Chai-Hu-Tang ameliorates tumor growth in cancer comorbid depressive symptoms via modulating gut microbiota-mediated TLR4/MyD88/NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153606. [PMID: 34111616 DOI: 10.1016/j.phymed.2021.153606] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/04/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Depressive symptoms are thought to promote cancer development and depressive remission has been reported to be effective for defeating cancer. The herbal formula Xiao-Chai-Hu-Tang (XCHT), that has an anti-depressive efficacy, has been widely utilized in China. However, its anti-cancer effect and underlying mechanisms remain unclear. PURPOSE The present study aims to investigate the effects of XCHT on the depression-associated tumor and its potential mechanisms. METHODS A placebo-controlled trial was conducted in cancer patients comorbid with depressive symptoms to evaluate the effects of XCHT on depressive scales, tumor-related immune indicators, and gut microbial composition. A xenografted colorectal cancer (CRC) mouse model exposure to chronic restraint stress (CRS) was established to examine XCHT effects on tumorigenesis in vivo. Further, by manipulating gut bacteria with fecal microbial transplantation (FMT) or antibiotics-induced bacterial elimination in CRS-associated xenografted model, gut microbiota-mediated anti-tumor mechanism was explored. RESULTS In cancer patients comorbid with depressive symptoms, XCHT showed substantial effects on improvement of depressive scales, system inflammatory levels and gut dysbiosis. In vivo, XCHT inhibited tumor growth and prolonged survival time in addition to showing anti-depressive effect. Similarly, in our clinical trial, XCHT partially reversed gut dysbiosis, particularly through reducing abundances of Parabacteroides, Blautia and Ruminococcaceae bacterium. Manipulation of gut bacteria in CRS-associated xenografted model further proved that the inhibition of XCHT on tumor progression was mediated by gut microbiota and that the underlying mechanism involves in downregulation of TLR4/MyD88/NF-κB signaling. CONCLUSIONS We demonstrated that gut microbiota mediates the anti-tumor action of the formula XCHT in cancer patients and models that were comorbid with depressive symptoms. This study implies a novel clinical significance of anti-depressive herbal medicine in the cancer treatment and clarifies the important role of gut microbiota in treating cancer accompanied by depressive symptoms.
Collapse
Affiliation(s)
- Shiyun Shao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunfeng Guan
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haotian Wen
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingwen Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Zhao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Feng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhou Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
50
|
Reid BM, Horne R, Donzella B, Szamosi JC, Coe CL, Foster JA, Gunnar MR. Microbiota-immune alterations in adolescents following early life adversity: A proof of concept study. Dev Psychobiol 2021; 63:851-863. [PMID: 33249563 DOI: 10.1002/dev.22061] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Early adverse care has long-term impacts on physical and mental health. The influence of rearing conditions on the infant's gut microbiota and its relationship with developmental health has become more evident. The microbiome is essential for normal growth and metabolism, and the signaling from the gut to the brain may underlie individual differences in resilience later in life. Microbial diversity and composition were determined using 16S rRNA gene amplicon sequencing in fecal samples from 17 adolescents adopted internationally from orphanages into the United States and 18 adolescents reared in birth families who had similar educational and income levels. Analyses focused on diversity of the microbial community structure and differences in the abundance of specific bacterial taxa. Blood samples were used to immunophenotype the numbers of several T-cell subsets and cytomegalovirus (CMV) seropositivity. Negative binomial regression analysis revealed several operational taxonomic units that were significantly different based on early rearing conditions and CMV seropositivity. There were significant associations between the relative abundance of certain taxa, the percentages of T-cell subsets in circulation, and CMV seropositivity. These findings demonstrate a possible link between the gut microbiota and associations with immune alterations initiated by early life adversity.
Collapse
Affiliation(s)
- Brie M Reid
- Institute of Child Development, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Rachael Horne
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, USA
| | - Bonny Donzella
- Institute of Child Development, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Jake C Szamosi
- Department of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, USA
| | | | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, USA
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|