1
|
Li XY, Yu WK, Wu JH, He WJ, Cheng YN, Gao K, Wei YH, Li YS. Tryptophan metabolism-related gene CYP1B1 serves as a shared biomarker for both Parkinson's disease and insomnia. Sci Rep 2025; 15:1362. [PMID: 39779759 PMCID: PMC11711247 DOI: 10.1038/s41598-024-84362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) and insomnia are prevalent neurological disorders, with emerging evidence implicating tryptophan (TRP) metabolism in their pathogenesis. However, the precise mechanisms by which TRP metabolism contributes to these conditions remain insufficiently elucidated. This study explores shared tryptophan metabolism-related genes (TMRGs) and molecular mechanisms underlying PD and insomnia, aiming to provide insights into their shared pathogenesis. We analyzed datasets for PD (GSE100054) and insomnia (GSE208668) obtained from the Gene Expression Omnibus (GEO) database. TMRGs were obtained from the Molecular Signatures Database (MSigDB) and the Genecards database. Tryptophan metabolism-related differentially expressed genes (TM-DEGs) were identified by intersecting TMRGs with shared differentially expressed genes (DEGs) from these datasets. Through Protein-Protein Interaction (PPI) network analysis, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) , and Extreme Gradient Boosting (XGBoost) machine learning, we identified Cytochrome P4501B1 (CYP1B1) and Electron Transfer Flavoprotein Alpha (ETFA) as key hub genes. Subsequently, we employed CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) to further investigate the association between hub genes and peripheral immune activation and inflammatory response. Additionally, gene interaction, Drug-mRNA, Transcription Factor (TF)-mRNA, and competing endogenous RNA (ceRNA) networks centered on these hub genes were constructed to explore regulatory mechanisms and potential drug interactions. Finally, validation through bioinformatics and animal experiments identified CYP1B1 as a promising biomarker associated with both PD and insomnia.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Wen-Kai Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Jing-Hao Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Wen-Jun He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Yu-Nan Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Kai Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Yi-Han Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, Henan, China.
- Henan Engineering Research Center of Neural Function Detection and Regulation, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou University), Zhengzhou, China.
| |
Collapse
|
2
|
Meier TB, Savitz J, España LY, Goeckner BD, Kent Teague T, van der Horn HJ, Tugan Muftuler L, Mayer AR, Brett BL. Association of concussion history with psychiatric symptoms, limbic system structure, and kynurenine pathway metabolites in healthy, collegiate-aged athletes. Brain Behav Immun 2025; 123:619-630. [PMID: 39414174 PMCID: PMC11624060 DOI: 10.1016/j.bbi.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Psychiatric outcomes are commonly observed in individuals with repeated concussions, though their underlying mechanism is unknown. One potential mechanism linking concussion with psychiatric symptoms is inflammation-induced activation of the kynurenine pathway, which is thought to play a role in the pathogenesis of mood disorders. Here, we investigated the association of prior concussion with multiple psychiatric-related outcomes in otherwise healthy male and female collegiate-aged athletes (N = 212) with varying histories of concussion recruited from the community. Specially, we tested the hypotheses that concussion history is associated with worse psychiatric symptoms, limbic system structural abnormalities (hippocampal volume, white matter microstructure assessed using neurite orientation dispersion and density imaging; NODDI), and elevations in kynurenine pathway (KP) metabolites (e.g., Quinolinic acid; QuinA). Given known sex-effects on concussion risk and recovery, psychiatric outcomes, and the kynurenine pathway, the moderating effect of sex was considered for all analyses. More concussions were associated with greater depression, anxiety, and anhedonia symptoms in female athletes (ps ≤ 0.005) and greater depression symptoms in male athletes (p = 0.011). More concussions were associated with smaller bilateral hippocampal tail (ps < 0.010) and left hippocampal body (p < 0.001) volumes across male and female athletes. Prior concussion was also associated with elevations in the orientation dispersion index (ODI) and lower intracellular volume fraction in several white matter tracts including the in uncinate fasciculus, cingulum-gyrus, and forceps major and minor, with evidence of female-specific associations in select regions. Regarding serum KP metabolites, more concussions were associated with elevated QuinA in females and lower tryptophan in males (ps ≤ 0.010). Finally, serum levels of QuinA were associated with elevated ODI (male and female athletes) and worse anxiety symptoms (females only), while higher ODI in female athletes and smaller hippocampal volumes in male athletes were associated with more severe anxiety and depression symptoms (ps ≤ 0.05). These data suggest that cumulative concussion is associated with psychiatric symptoms and limbic system structure in healthy athletes, with increased susceptibility to these effects in female athletes. Moreover, the associations of outcomes with serum KP metabolites highlight the KP as one potential molecular pathway underlying these observations.
Collapse
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, the United States of America.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, the United States of America; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, the United States of America
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - T Kent Teague
- Department of Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Surgery, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135, the United States of America
| | - Harm Jan van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; University of Groningen, University Medical Center Groningen, the Netherlands
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, the United States of America; Department of Psychology, University of New Mexico, Albuquerque, NM, the United States of America
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| |
Collapse
|
3
|
Liu L, Jia P, Liu T, Liang J, Dang Y, Rastegar-Kashkooli Y, Li Q, Liu J, Man J, Zhao T, Xing N, Wang F, Chen X, Zhang J, Jiang C, Zille M, Zhang Z, Fan X, Wang J, Wang J. Metabolic dysfunction contributes to mood disorders after traumatic brain injury. Ageing Res Rev 2024; 104:102652. [PMID: 39746403 DOI: 10.1016/j.arr.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Traumatic brain injury (TBI) presents significant risks concerning mortality and morbidity. Individuals who suffer from TBI may exhibit mood disorders, including anxiety and depression. Both preclinical and clinical research have established correlations between TBI and disturbances in the metabolism of amino acids, lipids, iron, zinc, and copper, which are implicated in the emergence of mood disorders post-TBI. The purpose of this review is to elucidate the impact of metabolic dysfunction on mood disorders following TBI and to explore potential strategies for mitigating anxiety and depression symptoms. We researched the PubMed and Web of Science databases to delineate the mechanisms by which metabolic dysfunction contributes to mood disorders in the context of TBI. Particular emphasis was placed on the roles of glutamate, kynurenine, lipids, iron, zinc, and copper metabolism. Metabolic dysfunction is linked to mood disorders post-TBI through multiple pathways, encompassing the glutamatergic system, the kynurenine pathway, endocannabinoids, iron deposition, iron-related ferroptosis, zinc deficiency, and copper dysregulation. Furthermore, this review addresses the influence of metabolic dysfunction on mood disorders in the elderly demographic following TBI. Targeting metabolic dysfunction for therapeutic intervention appears promising in alleviating symptoms of anxiety and depression that arise after TBI. While further investigation is warranted to delineate the underlying pathophysiologic mechanisms of mood disorders post-TBI, current evidence underscores the potential contribution of metabolic dysfunction to these conditions. Therefore, rectifying metabolic dysfunction represents a viable and strategic approach to addressing mood disorders following TBI.
Collapse
Affiliation(s)
- Lang Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Peijun Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Tongzhou Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiaxin Liang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yijia Dang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Qiang Li
- Department of Neurology, Shanghai Gongli Hospital of Pudong New Area, Shanghai 200135, China.
| | - Jingqi Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiang Man
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Ting Zhao
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Fushun Wang
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan 610060, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jiewen Zhang
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Chao Jiang
- Department of Neurology, The People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria.
| | - Zhenhua Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
Visser K, Ciubotariu D, de Koning ME, Jacobs B, van Faassen M, van der Ley C, Mayer AR, Meier TB, Bourgonje AR, Kema IP, van Goor H, van der Naalt J, van der Horn HJ. Exploring the kynurenine pathway in mild traumatic brain injury: A longitudinal study. J Neurochem 2024; 168:2710-2721. [PMID: 38770668 DOI: 10.1111/jnc.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
A potential source of novel biomarkers for mTBI is the kynurenine pathway (KP), a metabolic pathway of tryptophan (Trp), that is up-regulated by neuroinflammation and stress. Considering that metabolites of the KP (kynurenines) are implicated in various neuropsychiatric diseases, exploration of this pathway could potentially bridge the gap between physiological and psychological factors in the recovery process after mTBI. This study, therefore, set out to characterize the KP after mTBI and to examine associations with long-term outcome. Patients were prospectively recruited at the emergency department (ED), and blood samples were obtained in the acute phase (<24 h; N = 256) and at 1-month follow-up (N = 146). A comparison group of healthy controls (HC; N = 32) was studied at both timepoints. Trp, kynurenines, and interleukin (IL)-6 and IL-10 were quantified in plasma. Clinical outcome was measured at six months post-injury. Trp, xanthurenic acid (XA), and picolinic acid (PA) were significantly reduced in patients with mTBI relative to HC, corrected for age and sex. For Trp (d = -0.57 vs. d = -0.29) and XA (d = -0.98 vs. d = -0.32), larger effects sizes were observed during the acute phase compared to one-month follow-up, while for PA (d = -0.49 vs. d = -0.52) effect sizes remained consistent. Findings for other kynurenines (e.g., kynurenine, kynurenic acid, and quinolinic acid) were non-significant after correction for multiple testing. Within the mTBI group, lower acute Trp levels were significantly related to incomplete functional recovery and higher depression scores at 6 months post-injury. No significant relationships were found for Trp, XA, and PA with IL-6 or IL-10 concentrations. In conclusion, our findings indicate that perturbations of the plasma KP in the hyperacute phase of mTBI and 1 month later are limited to the precursor Trp, and glutamate system modulating kynurenines XA and PA. Correlations between acute reductions of Trp and unfavorable outcomes may suggest a potential substrate for pharmacological intervention.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana Ciubotariu
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Myrthe E de Koning
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Claude van der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Arno R Bourgonje
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Division of Pathology of the Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm J van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
Eggertsen PP, Palmfeldt J, Pedersen AR, Frederiksen OV, Olsen RKJ, Nielsen JF. Serum neurofilament light chain, inflammatory markers, and kynurenine metabolites in patients with persistent post-concussion symptoms: A cohort study. J Neurol Sci 2024; 460:123016. [PMID: 38636323 DOI: 10.1016/j.jns.2024.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Concussion leads to persistent post-concussion symptoms (PPCS) in up to one-third of those affected. While previous research has linked the initial trauma to elevated serum levels of neurofilament light chain (NFL), inflammatory markers, and neurotoxic metabolites within the kynurenine pathway, few studies have explored their relevance in PPCS. This study aims to investigate these biomarkers in PPCS patients, elucidating their relevance in the prolonged phase of concussion. METHODS Serum samples from 86 PPCS individuals aged 18-30 years, 2-6 months post-trauma were analyzed, with 54 providing follow-up samples after seven months. NFL was measured using single-molecule array (Simoa) technology, 13 inflammatory markers via a Luminex immunoassay, and five kynurenine metabolites using liquid chromatography-mass spectrometry. A control group of 120 healthy anonymous blood donors was recruited for comparison. RESULTS No significant NFL differences were found in PPCS participants compared with healthy individuals (p = 0.22). Intriguingly, a subset (9.3%) of PPCS participants initially exhibited abnormally high NFL levels (>9.7 pg/mL), which normalized upon follow-up (p = 0.032). Additionally, serum levels of the inflammatory markers, monocyte chemoattractant protein-1 (MCP-1/CCL2), and eotaxin-1/CCL11 were 25-40% lower than in healthy individuals (p ≤ 0.001). As hypothesized, PPCS participants exhibited a 22% reduction in the ratio of kynurenic acid to quinolinic acid (neuroprotective index) (p < 0.0001), indicating a shift towards the formation of neurotoxic metabolites. CONCLUSION NFL may serve as a biomarker to monitor recovery, and future studies should investigate the potential therapeutic benefits of modulating the kynurenine pathway to improve PPCS.
Collapse
Affiliation(s)
- Peter Preben Eggertsen
- Hammel Neurorehabilitation Centre and University Research Clinic, Department of Clinical Medicine, Aarhus University, Voldbyvej 15A, Hammel 8450, Denmark; Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark.
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| | - Asger Roer Pedersen
- University Research Clinic for Innovative Patient Pathways, Diagnostic Centre, Silkeborg Regional Hospital, Falkevej 1, Silkeborg 8600, Denmark
| | | | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| | - Jørgen Feldbæk Nielsen
- Hammel Neurorehabilitation Centre and University Research Clinic, Department of Clinical Medicine, Aarhus University, Voldbyvej 15A, Hammel 8450, Denmark
| |
Collapse
|
6
|
Wilkerson GB, Wynn KR, Dill PW, Acocello S, Carlson LM, Hogg J. Concussion history and virtual reality metrics predict core or lower extremity injury occurrence among high school athletes. Front Sports Act Living 2024; 6:1374772. [PMID: 38600904 PMCID: PMC11004318 DOI: 10.3389/fspor.2024.1374772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction A history of concussion is recognized as a risk factor for musculoskeletal injury, which is likely associated with physiological effects that warrant better understanding. This study aimed to assess the potential of measurements obtained from an immersive virtual reality (VR) test to identify a subtle perceptual-motor impairment that may be prospectively associated with the occurrence of a core or lower extremity sprain or strain. Methods A cohort of 68 high school athletes (41 female soccer players and 27 male football players) provided survey responses and completed an immersive VR test several days prior to the initiation of preseason practice sessions. Measurements of eye, neck, arm, and whole-body displacements were obtained during 40 successive lunging/reaching responses to visual stimuli moving horizontally across the VR headset display. Injury occurrences were electronically documented from the initial preseason practice session to the final game of the season. Results A statistically significant and intrinsically credible two-factor prediction model for core or lower extremity injury occurrence included an interaction between female sex and a self-reported history of two or more concussions, along with slow response time (RT) for arm reach (OR = 4.67; 95% CI, 1.51-14.43). Follow-up analyses identified sex-specific cut points for arm reach RT associated with elevated injury risk, which were ≥1.385 s for females and ≥1.257 s for males. Discussion High school female soccer players who have sustained more than one concussion appear to be highly vulnerable to core or lower extremity sprain or strain, with the risk of injury compounded by a slow arm reach RT. Male football players as a group demonstrated significantly faster arm reach RT than that of female soccer players, but slow perceptual-motor RT for arm reach was also identified as a potentially important injury risk factor for male players. Immersive VR appears to provide precise measurements of behavioral performance characteristics that depend on brain processing efficiency. Given that the speed, accuracy, and consistency of perceptual-motor responses may be modifiable, future research should explore the potential benefits of VR training for reducing the risk of sport-related injuries.
Collapse
Affiliation(s)
- Gary B. Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Kimberly R. Wynn
- Department of Intercollegiate Athletics, Mercer University, Macon, GA, United States
| | - Paige W. Dill
- Sports Medicine Outreach Program, Optim Health System, Mount Vernon, GA, United States
| | - Shellie Acocello
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Lynette M. Carlson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Jennifer Hogg
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| |
Collapse
|
7
|
Neumann KD, Broshek DK, Newman BT, Druzgal TJ, Kundu BK, Resch JE. Concussion: Beyond the Cascade. Cells 2023; 12:2128. [PMID: 37681861 PMCID: PMC10487087 DOI: 10.3390/cells12172128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Sport concussion affects millions of athletes each year at all levels of sport. Increasing evidence demonstrates clinical and physiological recovery are becoming more divergent definitions, as evidenced by several studies examining blood-based biomarkers of inflammation and imaging studies of the central nervous system (CNS). Recent studies have shown elevated microglial activation in the CNS in active and retired American football players, as well as in active collegiate athletes who were diagnosed with a concussion and returned to sport. These data are supportive of discordance in clinical symptomology and the inflammatory response in the CNS upon symptom resolution. In this review, we will summarize recent advances in the understanding of the inflammatory response associated with sport concussion and broader mild traumatic brain injury, as well as provide an outlook for important research questions to better align clinical and physiological recovery.
Collapse
Affiliation(s)
- Kiel D. Neumann
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Donna K. Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22903, USA;
| | - Benjamin T. Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Bijoy K. Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Jacob E. Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Schmidt MA, Jones JA, Mason CE. Optimizing human performance in extreme environments through precision medicine: From spaceflight to high-performance operations on Earth. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e27. [PMID: 38550927 PMCID: PMC10953751 DOI: 10.1017/pcm.2023.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 04/12/2024]
Abstract
Humans operating in extreme environments often conduct their operations at the edges of the limits of human performance. Sometimes, they are required to push these limits to previously unattained levels. As a result, their margins for error in execution are much smaller than that found in the general public. These same small margins for error that impact execution may also impact risk, safety, health, and even survival. Thus, humans operating in extreme environments have a need for greater refinement in their preparation, training, fitness, and medical care. Precision medicine (PM) is uniquely suited to address the needs of those engaged in these extreme operations because of its depth of molecular analysis, derived precision countermeasures, and ability to match each individual (and his or her specific molecular phenotype) with any given operating context (environment). Herein, we present an overview of a systems approach to PM in extreme environments, which affords clinicians one method to contextualize the inputs, processes, and outputs that can form the basis of a formal practice. For the sake of brevity, this overview is focused on molecular dynamics, while providing only a brief introduction to the also important physiologic and behavioral phenotypes in PM. Moreover, rather than a full review, it highlights important concepts, while using only selected citations to illustrate those concepts. It further explores, by demonstration, the basic principles of using functionally characterized molecular networks to guide the practical application of PM in extreme environments. At its core, PM in extreme environments is about attention to incremental gains and losses in molecular network efficiency that can scale to produce notable changes in health and performance. The aim of this overview is to provide a conceptual overview of one approach to PM in extreme environments, coupled with a selected suite of practical considerations for molecular profiling and countermeasures.
Collapse
Affiliation(s)
- Michael A. Schmidt
- Sovaris Aerospace, Boulder, CO, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO, USA
| | - Jeffrey A. Jones
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
9
|
Dehhaghi M, Heng B, Guillemin GJ. The kynurenine pathway in traumatic brain injuries and concussion. Front Neurol 2023; 14:1210453. [PMID: 37360356 PMCID: PMC10289013 DOI: 10.3389/fneur.2023.1210453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Up to 10 million people per annum experience traumatic brain injury (TBI), 80-90% of which are categorized as mild. A hit to the brain can cause TBI, which can lead to secondary brain injuries within minutes to weeks after the initial injury through unknown mechanisms. However, it is assumed that neurochemical changes due to inflammation, excitotoxicity, reactive oxygen species, etc., that are triggered by TBI are associated with the emergence of secondary brain injuries. The kynurenine pathway (KP) is an important pathway that gets significantly overactivated during inflammation. Some KP metabolites such as QUIN have neurotoxic effects suggesting a possible mechanism through which TBI can cause secondary brain injury. That said, this review scrutinizes the potential association between KP and TBI. A more detailed understanding of the changes in KP metabolites during TBI is essential to prevent the onset or at least attenuate the severity of secondary brain injuries. Moreover, this information is crucial for the development of biomarker/s to probe the severity of TBI and predict the risk of secondary brain injuries. Overall, this review tries to fill the knowledge gap about the role of the KP in TBI and highlights the areas that need to be studied.
Collapse
|
10
|
Echemendia RJ, Burma JS, Bruce JM, Davis GA, Giza CC, Guskiewicz KM, Naidu D, Black AM, Broglio S, Kemp S, Patricios JS, Putukian M, Zemek R, Arango-Lasprilla JC, Bailey CM, Brett BL, Didehbani N, Gioia G, Herring SA, Howell D, Master CL, Valovich McLeod TC, Meehan WP, Premji Z, Salmon D, van Ierssel J, Bhathela N, Makdissi M, Walton SR, Kissick J, Pardini J, Schneider KJ. Acute evaluation of sport-related concussion and implications for the Sport Concussion Assessment Tool (SCAT6) for adults, adolescents and children: a systematic review. Br J Sports Med 2023; 57:722-735. [PMID: 37316213 DOI: 10.1136/bjsports-2022-106661] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES To systematically review the scientific literature regarding the acute assessment of sport-related concussion (SRC) and provide recommendations for improving the Sport Concussion Assessment Tool (SCAT6). DATA SOURCES Systematic searches of seven databases from 2001 to 2022 using key words and controlled vocabulary relevant to concussion, sports, SCAT, and acute evaluation. ELIGIBILITY CRITERIA (1) Original research articles, cohort studies, case-control studies, and case series with a sample of >10; (2) ≥80% SRC; and (3) studies using a screening tool/technology to assess SRC acutely (<7 days), and/or studies containing psychometric/normative data for common tools used to assess SRC. DATA EXTRACTION Separate reviews were conducted involving six subdomains: Cognition, Balance/Postural Stability, Oculomotor/Cervical/Vestibular, Emerging Technologies, and Neurological Examination/Autonomic Dysfunction. Paediatric/Child studies were included in each subdomain. Risk of Bias and study quality were rated by coauthors using a modified SIGN (Scottish Intercollegiate Guidelines Network) tool. RESULTS Out of 12 192 articles screened, 612 were included (189 normative data and 423 SRC assessment studies). Of these, 183 focused on cognition, 126 balance/postural stability, 76 oculomotor/cervical/vestibular, 142 emerging technologies, 13 neurological examination/autonomic dysfunction, and 23 paediatric/child SCAT. The SCAT discriminates between concussed and non-concussed athletes within 72 hours of injury with diminishing utility up to 7 days post injury. Ceiling effects were apparent on the 5-word list learning and concentration subtests. More challenging tests, including the 10-word list, were recommended. Test-retest data revealed limitations in temporal stability. Studies primarily originated in North America with scant data on children. CONCLUSION Support exists for using the SCAT within the acute phase of injury. Maximal utility occurs within the first 72 hours and then diminishes up to 7 days after injury. The SCAT has limited utility as a return to play tool beyond 7 days. Empirical data are limited in pre-adolescents, women, sport type, geographical and culturally diverse populations and para athletes. PROSPERO REGISTRATION NUMBER CRD42020154787.
Collapse
Affiliation(s)
- Ruben J Echemendia
- Concussion Care Clinic, University Orthopedics, State College, Pennsylvania, USA
- University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jared M Bruce
- Biomedical and Health Informatics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Christopher C Giza
- Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dhiren Naidu
- Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Simon Kemp
- Sports Medicine, Rugby Football Union, London, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg-Braamfontein, South Africa
| | | | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Christopher M Bailey
- Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Brett
- Neurosurgery/ Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Gerry Gioia
- Depts of Pediatrics and Psychiatry & Behavioral Sciences, Children's National Health System, Washington, District of Columbia, USA
| | - Stanley A Herring
- Department of Rehabilitation Medicine, Orthopaedics and Sports Medicine, and Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - David Howell
- Orthopedics, Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Tamara C Valovich McLeod
- Department of Athletic Training and School of Osteopathic Medicine in Arizona, A.T. Still University, Mesa, Arizona, USA
| | - William P Meehan
- Sports Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
- Emergency Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | | | | | - Neil Bhathela
- UCLA Health Steve Tisch BrainSPORT Program, Los Angeles, California, USA
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Samuel R Walton
- Department of Physical Medicine and Rehabilitation, School of Medicine, Richmond, Virginia, USA
| | - James Kissick
- Dept of Family Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamie Pardini
- Departments of Internal Medicine and Neurology, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Tabor JB, Brett BL, Nelson L, Meier T, Penner LC, Mayer AR, Echemendia RJ, McAllister T, Meehan WP, Patricios J, Makdissi M, Bressan S, Davis GA, Premji Z, Schneider KJ, Zetterberg H, McCrea M. Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: a systematic review. Br J Sports Med 2023; 57:789-797. [PMID: 37316184 DOI: 10.1136/bjsports-2022-106680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Determine the role of fluid-based biomarkers, advanced neuroimaging, genetic testing and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion (SRC). DESIGN Systematic review. DATA SOURCES Searches of seven databases from 1 January 2001 through 24 March 2022 using keywords and index terms relevant to concussion, sports and neurobiological recovery. Separate reviews were conducted for studies involving neuroimaging, fluid biomarkers, genetic testing and emerging technologies. A standardised method and data extraction tool was used to document the study design, population, methodology and results. Reviewers also rated the risk of bias and quality of each study. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies were included if they: (1) were published in English; (2) represented original research; (3) involved human research; (4) pertained only to SRC; (5) included data involving neuroimaging (including electrophysiological testing), fluid biomarkers or genetic testing or other advanced technologies used to assess neurobiological recovery after SRC; (6) had a minimum of one data collection point within 6 months post-SRC; and (7) contained a minimum sample size of 10 participants. RESULTS A total of 205 studies met inclusion criteria, including 81 neuroimaging, 50 fluid biomarkers, 5 genetic testing, 73 advanced technologies studies (4 studies overlapped two separate domains). Numerous studies have demonstrated the ability of neuroimaging and fluid-based biomarkers to detect the acute effects of concussion and to track neurobiological recovery after injury. Recent studies have also reported on the diagnostic and prognostic performance of emerging technologies in the assessment of SRC. In sum, the available evidence reinforces the theory that physiological recovery may persist beyond clinical recovery after SRC. The potential role of genetic testing remains unclear based on limited research. CONCLUSIONS Advanced neuroimaging, fluid-based biomarkers, genetic testing and emerging technologies are valuable research tools for the study of SRC, but there is not sufficient evidence to recommend their use in clinical practice. PROSPERO REGISTRATION NUMBER CRD42020164558.
Collapse
Affiliation(s)
- Jason B Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Benjamin L Brett
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lindsay Nelson
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy Meier
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Linden C Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Andrew R Mayer
- The Mind Research Network, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ruben J Echemendia
- Psychology, University of Missouri Kansas City, Kansas City, Missouri, USA
- Psychological and Neurobehavioral Associates, Inc, State College, PA, USA
| | - Thomas McAllister
- Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William P Meehan
- Micheli Center for Sports Injury Prevention, Boston Children's Hospital, Boston, Massachusetts, USA
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand South, Johannesburg, South Africa
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health - Austin Campus, Heidelberg, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Silvia Bressan
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Zahra Premji
- Libraries, University of Victoria, Victoria, British Columbia, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology; University of Calgary, Calgary, Alberta, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Molndal, Sweden
| | - Michael McCrea
- Department of Neurosurgery and Center for Neurotrauma Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Swaney EEK, Cai T, Seal ML, Ignjatovic V. Blood biomarkers of secondary outcomes following concussion: A systematic review. Front Neurol 2023; 14:989974. [PMID: 36925940 PMCID: PMC10011122 DOI: 10.3389/fneur.2023.989974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Blood biomarkers have been identified as an alternative tool for predicting secondary outcomes following concussion. This systematic review aimed to summarize the literature on blood biomarkers of secondary outcomes following concussion in both pediatric and adult cohorts. Methods A literature search of Embase, Medline and PubMed was conducted. Two reviewers independently assessed retrieved studies to determine inclusion in systematic review synthesis. Results A total of 1771 unique studies were retrieved, 58 of which were included in the final synthesis. S100B, GFAP and tau were identified as being associated with secondary outcomes following concussion. Seventeen percent of studies were performed in a solely pediatric setting. Conclusions Validation of biomarkers associated with secondary outcomes following concussion have been largely limited by heterogeneous study cohorts and definitions of concussion and mTBI, presenting a hurdle for translation of these markers into clinical practice. Additionally, there was an underrepresentation of studies which investigated pediatric cohorts. Adult markers are not appropriate for children, therefore pediatric specific markers of secondary outcomes following concussion present the biggest gap in this field.
Collapse
Affiliation(s)
- Ella E K Swaney
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tengyi Cai
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Marc L Seal
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Vera Ignjatovic
- Department of Haematology, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Feiger JA, Snyder RL, Walsh MJ, Cissne M, Cwiek A, Al-Momani SI, Chiou KS. The Role of Neuroinflammation in Neuropsychiatric Disorders Following Traumatic Brain Injury: A Systematic Review. J Head Trauma Rehabil 2022; 37:E370-E382. [PMID: 35125427 DOI: 10.1097/htr.0000000000000754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms are common following traumatic brain injury (TBI), but their etiological onset remains unclear. Mental health research implicates neuroinflammation in the development of psychiatric disorders. The presence of neuroinflammatory responses after TBI thus prompts an investigation of their involvement in the emergence of neuropsychiatric disorders postinjury. OBJECTIVE Review the literature surrounding the role of neuroinflammation and immune response post-TBI in the development of neuropsychiatric disorders. METHODS A search of scientific databases was conducted for original, empirical studies in human subjects. Key words such as "neuroinflammation," "TBI," and "depression" were used to identify psychopathology as an outcome TBI and the relation to neuroinflammatory response. RESULTS Study results provide evidence of neuroinflammation mediated post-TBI neuropsychiatric disorders including anxiety, trauma/stress, and depression. Inflammatory processes and stress response dysregulation can lead to secondary cell damage, which promote the development and maintenance of neuropsychiatric disorders postinjury. CONCLUSION This review identifies both theoretical and empirical support for neuroinflammatory response as feasible mechanisms underlying neuropsychiatric disorders after TBI. Further understanding of these processes in this context has significant clinical implications for guiding the development of novel treatments to reduce psychiatric symptoms postinjury. Future directions to address current limitations in the literature are discussed.
Collapse
Affiliation(s)
- Jeremy A Feiger
- Department of Psychology, University of Nebraska-Lincoln (Messrs Feiger and Walsh, Mss Snyder and Al-Momani, and Dr Chiou); Department of Psychology, University of Missouri-Columbia (Ms Cissne); and Department of Psychology, Penn State University, State College, Pennsylvania (Mr Cwiek)
| | | | | | | | | | | | | |
Collapse
|
14
|
Meier TB, Savitz J. The Kynurenine Pathway in Traumatic Brain Injury: Implications for Psychiatric Outcomes. Biol Psychiatry 2022; 91:449-458. [PMID: 34266671 PMCID: PMC8630076 DOI: 10.1016/j.biopsych.2021.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is an established risk factor for the development of psychiatric disorders, especially depression and anxiety. However, the mechanistic pathways underlying this risk remain unclear, limiting treatment options and hindering the identification of clinically useful biomarkers. One salient pathophysiological process implicated in both primary psychiatric disorders and TBI is inflammation. An important consequence of inflammation is the increased breakdown of tryptophan to kynurenine and, subsequently, the metabolism of kynurenine into several neuroactive metabolites, including the neurotoxic NMDA receptor agonist quinolinic acid and the neuroprotective NMDA receptor antagonist kynurenic acid. Here, we review studies of the kynurenine pathway (KP) in TBI and examine their potential clinical implications. The weight of the literature suggests that there is increased production of neurotoxic kynurenines such as quinolinic acid in TBI of all severities and that elevated quinolinic acid concentrations in both the cerebrospinal fluid and blood are a negative prognostic indicator, being associated with death, magnetic resonance imaging abnormalities, increased depressive and anxiety symptoms, and prolonged recovery. We hypothesize that an imbalance in KP metabolism is also one molecular pathway through which the TBI-induced neurometabolic cascade may predispose to the development of psychiatric sequelae. If this model is correct, KP metabolites could serve to predict who is likely to develop psychiatric illness while drugs that target the KP could help to prevent or treat depression and anxiety arising in the context of TBI.
Collapse
Affiliation(s)
- Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin,Corresponding author: Timothy Meier, PhD, 414-955-7310, , Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, Oklahoma,Oxley College of Health Sciences, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
15
|
Vike NL, Bari S, Stetsiv K, Talavage TM, Nauman EA, Papa L, Slobounov S, Breiter HC, Cornelis MC. Metabolomic response to collegiate football participation: Pre- and Post-season analysis. Sci Rep 2022; 12:3091. [PMID: 35197541 PMCID: PMC8866500 DOI: 10.1038/s41598-022-07079-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Contact sports participation has been shown to have both beneficial and detrimental effects on health, however little is known about the metabolic sequelae of these effects. We aimed to identify metabolite alterations across a collegiate American football season. Serum was collected from 23 male collegiate football athletes before the athletic season (Pre) and after the last game (Post). Samples underwent nontargeted metabolomic profiling and 1131 metabolites were included for univariate, pathway enrichment, and multivariate analyses. Significant metabolites were assessed against head acceleration events (HAEs). 200 metabolites changed from Pre to Post (P < 0.05 and Q < 0.05); 160 had known identity and mapped to one of 57 pre-defined biological pathways. There was significant enrichment of metabolites belonging to five pathways (P < 0.05): xanthine, fatty acid (acyl choline), medium chain fatty acid, primary bile acid, and glycolysis, gluconeogenesis, and pyruvate metabolism. A set of 12 metabolites was sufficient to discriminate Pre from Post status, and changes in 64 of the 200 metabolites were also associated with HAEs (P < 0.05). In summary, the identified metabolites, and candidate pathways, argue there are metabolic consequences of both physical training and head impacts with football participation. These findings additionally identify a potential set of objective biomarkers of repetitive head injury.
Collapse
Affiliation(s)
- Nicole L Vike
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumra Bari
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Khrystyna Stetsiv
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas M Talavage
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Eric A Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL, USA
| | - Semyon Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.
| | - Hans C Breiter
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Huang Y, Zhao M, Chen X, Zhang R, Le A, Hong M, Zhang Y, Jia L, Zang W, Jiang C, Wang J, Fan X, Wang J. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis 2022; 14:858-878. [PMID: 37191427 DOI: 10.14336/ad.2022.0916] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
The metabolism of L-tryptophan (TRP) regulates homeostasis, immunity, and neuronal function. Altered TRP metabolism has been implicated in the pathophysiology of various diseases of the central nervous system. TRP is metabolized through two main pathways, the kynurenine pathway and the methoxyindole pathway. First, TRP is metabolized to kynurenine, then kynurenic acid, quinolinic acid, anthranilic acid, 3-hydroxykynurenine, and finally 3-hydroxyanthranilic acid along the kynurenine pathway. Second, TRP is metabolized to serotonin and melatonin along the methoxyindole pathway. In this review, we summarize the biological properties of key metabolites and their pathogenic functions in 12 disorders of the central nervous system: schizophrenia, bipolar disorder, major depressive disorder, spinal cord injury, traumatic brain injury, ischemic stroke, intracerebral hemorrhage, multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Furthermore, we summarize preclinical and clinical studies, mainly since 2015, that investigated the metabolic pathway of TRP, focusing on changes in biomarkers of these neurologic disorders, their pathogenic implications, and potential therapeutic strategies targeting this metabolic pathway. This critical, comprehensive, and up-to-date review helps identify promising directions for future preclinical, clinical, and translational research on neuropsychiatric disorders.
Collapse
|
17
|
Meier TB, España L, Nitta ME, Kent Teague T, Brett BL, Nelson LD, McCrea MA, Savitz J. Positive association between serum quinolinic acid and functional connectivity following concussion. Brain Behav Immun 2021; 91:531-540. [PMID: 33176183 PMCID: PMC7769223 DOI: 10.1016/j.bbi.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanisms underlying the diverse psychiatric and neuropathological sequalae documented in subsets of athletes with concussion have not been identified. We have previously reported elevated quinolinic acid (QuinA), a neurotoxic kynurenine pathway metabolite, acutely following concussion in football players with prior concussion. Similarly, work from our group and others has shown that increased functional connectivity strength, assessed using resting state fMRI, occurs following concussion and is associated with worse concussion-related symptoms and outcome. Moreover, other work has shown that repetitive concussion may have cumulative effects on functional connectivity and is a risk factor for adverse outcomes. Understanding the molecular mechanisms underlying these cumulative effects may ultimately be important for therapeutic interventions or the development of prognostic biomarkers. Thus, in this work, we tested the hypothesis that the relationship between QuinA in serum and functional connectivity following concussion would depend on the presence of a prior concussion. Concussed football players with prior concussion (N = 21) and without prior concussion (N = 16) completed a MRI session and provided a blood sample at approximately 1 days, 8 days, 15 days, and 45 days post-injury. Matched, uninjured football players with (N = 18) and without prior concussion (N = 24) completed similar visits. The association between QuinA and global connectivity strength differed based on group (F(3, 127) = 3.46, p = 0.019); post-hoc analyses showed a positive association between QuinA and connectivity strength in concussed athletes with prior concussion (B = 16.05, SE = 5.06, p = 0.002, 95%CI[6.06, 26.03]), but no relationship in concussed athletes without prior concussion or controls. Region-specific analyses showed that this association was strongest in bilateral orbitofrontal cortices, insulae, and basal ganglia. Finally, exploratory analyses found elevated global connectivity strength in concussed athletes with prior concussion who reported depressive symptoms at the 1-day visit compared to those who did not report depressive symptoms (t(15) = 2.37, mean difference = 13.50, SE = 5.69, p = 0.032, 95%CI[1.36, 25.63], Cohen's d = 1.15.). The results highlight a potential role of kynurenine pathway (KP) metabolites in altered functional connectivity following concussion and raise the possibility that repeated concussion has a "priming" effect on KP metabolism.
Collapse
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Lezlie España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Morgan E Nitta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - T Kent Teague
- Departments of Surgery and Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK, United States; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK, United States
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lindsay D Nelson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, United States; Oxley College of Health Sciences, Tulsa, OK, United States
| |
Collapse
|
18
|
Chen YY, Wang MC, Wang YN, Hu HH, Liu QQ, Liu HJ, Zhao YY. Redox signaling and Alzheimer's disease: from pathomechanism insights to biomarker discovery and therapy strategy. Biomark Res 2020; 8:42. [PMID: 32944245 PMCID: PMC7488504 DOI: 10.1186/s40364-020-00218-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract Aging and average life expectancy have been increasing at a rapid rate, while there is an exponential risk to suffer from brain-related frailties and neurodegenerative diseases as the population ages. Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide with a projected expectation to blossom into the major challenge in elders and the cases are forecasted to increase about 3-fold in the next 40 years. Considering the etiological factors of AD are too complex to be completely understood, there is almost no effective cure to date, suggesting deeper pathomechanism insights are urgently needed. Metabolites are able to reflect the dynamic processes that are in progress or have happened, and metabolomic may therefore provide a more cost-effective and productive route to disease intervention, especially in the arena for pathomechanism exploration and new biomarker identification. In this review, we primarily focused on how redox signaling was involved in AD-related pathologies and the association between redox signaling and altered metabolic pathways. Moreover, we also expatiated the main redox signaling-associated mechanisms and their cross-talk that may be amenable to mechanism-based therapies. Five natural products with promising efficacy on AD inhibition and the benefit of AD intervention on its complications were highlighted as well. Graphical Abstract
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Min-Chang Wang
- Instrumental Analysis Center, Xi'an Modern Chemistry Institute, Xi'an, 710065 Shaanxi China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| | - Qing-Quan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Hai-Jing Liu
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065 Shaanxi China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069 Shaanxi China
| |
Collapse
|