1
|
Shen H, Ma Z, Hans E, Duan Y, Bi GH, Chae YC, Bonifazi A, Battiti FO, Newman AH, Xi ZX, Yang Y. Involvement of dopamine D3 receptor in impulsive choice decision-making in male rats. Neuropharmacology 2024; 257:110051. [PMID: 38917939 PMCID: PMC11401648 DOI: 10.1016/j.neuropharm.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Impulsive decision-making has been linked to impulse control disorders and substance use disorders. However, the neural mechanisms underlying impulsive choice are not fully understood. While previous PET imaging and autoradiography studies have shown involvement of dopamine and D2/3 receptors in impulsive behavior, the roles of distinct D1, D2, and D3 receptors in impulsive decision-making remain unclear. In this study, we used a food reward delay-discounting task (DDT) to identify low- and high-impulsive rats, in which low-impulsive rats exhibited preference for large delayed reward over small immediate rewards, while high-impulsive rats showed the opposite preference. We then examined D1, D2, and D3 receptor gene expression using RNAscope in situ hybridization assays. We found that high-impulsive male rats exhibited lower levels of D2 and D3, and particularly D3, receptor expression in the nucleus accumbens (NAc), with no significant changes in the insular, prelimbic, and infralimbic cortices. Based on these findings, we further explored the role of the D3 receptor in impulsive decision-making. Systemic administration of a selective D3 receptor agonist (FOB02-04) significantly reduced impulsive choices in high-impulsive rats but had no effects in low-impulsive rats. Conversely, a selective D3 receptor antagonist (VK4-116) produced increased both impulsive and omission choices in both groups of rats. These findings suggest that impulsive decision-making is associated with a reduction in D3 receptor expression in the NAc. Selective D3 receptor agonists, but not antagonists, may hold therapeutic potentials for mitigating impulsivity in high-impulsive subjects.
Collapse
Affiliation(s)
- Hui Shen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zilu Ma
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Emma Hans
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Ying Duan
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Yurim C Chae
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Francisco O Battiti
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Noble DJ, Mohammadkhani A, Qiao M, Borgland SL. Characterization of dopaminergic projections from the ventral tegmental area and the dorsal raphe nucleus to the orbital frontal cortex. Eur J Neurosci 2024; 59:1460-1479. [PMID: 38155094 DOI: 10.1111/ejn.16230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
The orbitofrontal cortex (OFC) is a key node in the cortico-limbic-striatal circuitry that influences decision-making guided by the relative value of outcomes. Midbrain dopamine from either the ventral tegmental area (VTA) or the dorsal raphe nucleus (DRN) has the potential to modulate OFC neurons; however, it is unknown at what concentrations these terminals release dopamine. Male and female adult dopamine transporter (DAT)IRES-Cre-tdTomato mice were injected with AAV2/8-EF1a-DIO-eYFP into either the DRN or the VTA or the retrograde label cholera toxin B (CTB) 488 in the medial or lateral OFC. We quantified co-expression of CTB 488 or enhanced yellow fluorescent protein (eYFP) with tdTomato fluorescence in VTA or DRN and eYFP fibre density in the medial or lateral OFC. Both VTA and DRN dopamine neurons project to either the medial OFC or the lateral OFC, with greater expression of fibres in the medial OFC. Using fast-scan cyclic voltammetry, we detected optogenetically evoked dopamine from channelrhodopsin 2 (ChR2)-expressing VTA or DRN dopamine terminals in either the medial OFC or the lateral OFC. We assessed if optical stimulation of dopamine from the VTA or the DRN onto the medial OFC could alter layer V pyramidal neuronal firing; however, we did not observe a change in firing at stimulation parameters that evoked dopamine release from either projection even though bath application of dopamine with the monoamine transporter inhibitor, nomifensine, decreased firing. In summary, dopaminergic neurons from the VTA or the DRN project to the OFC and release submicromolar dopamine in the medial and lateral OFC.
Collapse
Affiliation(s)
- Duncan J Noble
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Aida Mohammadkhani
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Min Qiao
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Bezard E, Gray D, Kozak R, Leoni M, Combs C, Duvvuri S. Rationale and Development of Tavapadon, a D1/D5-Selective Partial Dopamine Agonist for the Treatment of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:476-487. [PMID: 36999711 PMCID: PMC10909821 DOI: 10.2174/1871527322666230331121028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 04/01/2023]
Abstract
Currently, available therapeutics for the treatment of Parkinson's disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon's therapeutic potential for the treatment of early through advanced PD.
Collapse
Affiliation(s)
- Erwan Bezard
- Université de Bordeaux, CNRS Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
- Motac Neuroscience, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
4
|
Mittelstadt JK, Kanold PO. Orbitofrontal cortex conveys stimulus and task information to the auditory cortex. Curr Biol 2023; 33:4160-4173.e4. [PMID: 37716349 PMCID: PMC10602585 DOI: 10.1016/j.cub.2023.08.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Auditory cortical neurons modify their response profiles in response to numerous external factors. During task performance, changes in primary auditory cortex (A1) responses are thought to be driven by top-down inputs from the orbitofrontal cortex (OFC), which may lead to response modification on a trial-by-trial basis. While OFC neurons respond to auditory stimuli and project to A1, the function of OFC projections to A1 during auditory tasks is unknown. Here, we observed the activity of putative OFC terminals in A1 in mice by using in vivo two-photon calcium imaging of OFC terminals under passive conditions and during a tone detection task. We found that behavioral activity modulates but is not necessary to evoke OFC terminal responses in A1. OFC terminals in A1 form distinct populations that exclusively respond to either the tone, reward, or error. Using tones against a background of white noise, we found that OFC terminal activity was modulated by the signal-to-noise ratio (SNR) in both the passive and active conditions and that OFC terminal activity varied with SNR, and thus task difficulty in the active condition. Therefore, OFC projections in A1 are heterogeneous in their modulation of auditory encoding and likely contribute to auditory processing under various auditory conditions.
Collapse
Affiliation(s)
- Jonah K Mittelstadt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Klem L, Nielsen MM, Gestsdóttir SB, Frandsen SL, Prichardt S, Andreasen JT. Assessing attention and impulsivity in the variable stimulus duration and variable intertrial interval rodent continuous performance test schedules using dopamine receptor antagonists in female C57BL/6JRj mice. Psychopharmacology (Berl) 2023; 240:1651-1666. [PMID: 37378887 PMCID: PMC10349733 DOI: 10.1007/s00213-023-06387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
RATIONALE Dopaminergic dysfunction is implicated in disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) has been used to quantify changes in attention and impulsivity. OBJECTIVE To examine the roles of dopamine receptors in attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval schedules (vITI) using DA receptor antagonists. METHODS Two cohorts of 35 and 36 female C57BL/6JRj mice were examined separately in the rCPT, vSD, and vITI schedules, respectively. Both cohorts received antagonists of the following receptors: D1/5 (SCH23390, SCH: 0.01, 0.02, 0.04 mg/kg) and D2/3 (raclopride, RAC 0.03, 0.10, 0.30 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS SCH showed similar effects in both schedules, and the effects were reference-dependent in the vITI schedule. SCH reduced responding, but improved response accuracy, impulsivity, discriminability, and locomotor activity. RAC showed mixed effects on responsivity, but improved accuracy and discriminability. The discriminability improvement was driven by an increase in hit rate in the vITI schedule and a reduction in false alarm rate in the vSD schedule. RAC also decreased locomotor activity. CONCLUSION Both D1/5 and D2/3 receptor antagonism reduced responding, but the outcome on discriminability differed, stemming from individual effects on hit and false alarm rate, and the weight of omissions within the calculation. The effects of SCH and RAC suggest that endogenous DA increases responding and impulsivity, but reduces accuracy and shows mixed effects on discriminability.
Collapse
Affiliation(s)
- L Klem
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - M M Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S B Gestsdóttir
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S L Frandsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - S Prichardt
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - J T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
6
|
Bellés L, Arrondeau C, Urueña-Méndez G, Ginovart N. Concurrent measures of impulsive action and choice are partially related and differentially modulated by dopamine D 1- and D 2-like receptors in a rat model of impulsivity. Pharmacol Biochem Behav 2023; 222:173508. [PMID: 36473517 DOI: 10.1016/j.pbb.2022.173508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Impulsivity is a multidimensional construct, but the relationships between its constructs and their respective underlying dopaminergic underpinnings in the general population remain unclear. A cohort of Roman high- (RHA) and low- (RLA) avoidance rats were tested for impulsive action and risky decision-making in the rat gambling task, and then for delay discounting in the delay-discounting task to concurrently measure the relationships among the three constructs of impulsivity using a within-subject design. Then, we evaluated the effects of dopaminergic drugs on the three constructs of impulsivity, considering innate differences in impulsive behaviors at baseline. Risky decision-making and delay-discounting were positively correlated, indicating that both constructs of impulsive choice are related. Impulsive action positively correlated with risky decision-making but not with delay discounting, suggesting partial overlap between impulsive action and impulsive choice. RHAs showed a more impulsive phenotype in the three constructs of impulsivity compared to RLAs, demonstrating the comorbid nature of impulsivity in a population of rats. Amphetamine increased impulsive action and had no effect on risky decision-making regardless of baseline levels of impulsivity, but it decreased delay discounting only in high impulsive RHAs. In contrast, while D1R and D3R agonism as well as D2/3R partial agonism decreased impulsive action regardless of baseline levels of impulsivity, D2/3R agonism decreased impulsive action exclusively in high impulsive RHAs. Irrespective of baseline levels of impulsivity, risky decision-making was increased by D1R and D2/3R agonism but not by D3R agonism or D2/3R partial agonism. Finally, while D1R and D3R agonism, D2/3R partial agonism and D2R blockade increased delay discounting irrespective of baseline levels of impulsivity, D2/3R agonism decreased it in low impulsive RLAs only. These findings indicate that the acute effects of dopamine drugs were partially overlapping across dimensions of impulsivity, and that only D2/3R agonism showed baseline-dependent effects on impulsive action and impulsive choice.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
7
|
Seizurogenic effect of perfluorooctane sulfonate in zebrafish larvae. Neurotoxicology 2022; 93:257-264. [DOI: 10.1016/j.neuro.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
8
|
Russell B, Hrelja KM, Adams WK, Zeeb FD, Taves MD, Kaur S, Soma KK, Winstanley CA. Differential effects of lipopolysaccharide on cognition, corticosterone and cytokines in socially-housed vs isolated male rats. Behav Brain Res 2022; 433:114000. [PMID: 35817135 DOI: 10.1016/j.bbr.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Social isolation is an established risk factor for mental illness and impaired immune function. Evidence suggests that neuroinflammatory processes contribute to mental illness, possibly via cytokine-induced modulation of neural activity. We examined the effects of lipopolysaccharide (LPS) administration and social home cage environment on cognitive performance in the 5-Choice Serial Reaction Time Task (5CSRTT), and their effects on corticosterone and cytokines in serum and brain tissue. Male Long-Evans rats were reared in pairs or in isolation before training on the 5CSRTT. The effects of saline and LPS (150 µg/kg i.p.) administration on sickness behaviour and task performance were then assessed. LPS-induced sickness behaviour was augmented in socially-isolated rats, translating to increased omissions and slower response times in the 5CSRTT. Both social isolation and LPS administration reduced impulsive responding, while discriminative accuracy remained unaffected. With the exception of reduced impulsivity in isolated rats, these effects were not observed following a second administration of LPS, revealing behavioural tolerance to repeated LPS injections. In a separate cohort of animals, social isolation potentiated the ability of LPS to increase serum corticosterone and IL-6, which corresponded to increased IL-6 in the orbitofrontal and medial prefrontal cortices and the nucleus accumbens. Basal IL-4 levels in the nucleus accumbens were reduced in socially-isolated rats. These findings are consistent with the adaptive response of reduced motivational drive following immune challenge, and identify social isolation as an exacerbating factor. Enhanced IL-6 signalling may play a role in mediating the potentiated behavioural response to LPS administration in isolated animals.
Collapse
Affiliation(s)
- Brittney Russell
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fiona D Zeeb
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthew D Taves
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Sanchez EO, Bangasser DA. The effects of early life stress on impulsivity. Neurosci Biobehav Rev 2022; 137:104638. [PMID: 35341796 DOI: 10.1016/j.neubiorev.2022.104638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023]
Abstract
Elevated impulsivity is a symptom shared by various psychiatric disorders such as substance use disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. However, impulsivity is not a unitary construct and impulsive behaviors fall into two subcategories: impulsive action and impulsive choice. Impulsive choice refers to the tendency to prefer immediate, small rewards over delayed, large rewards, whereas impulsive action involves difficulty inhibiting rash, premature, or mistimed behaviors. These behaviors are mediated by the mesocorticolimbic dopamine (DA) system, which consists of projections from the ventral tegmental area to the nucleus accumbens and prefrontal cortex. Early life stress (ELS) alters both impulsive choice and impulsive action in rodents. ELS also changes DA receptor expression, transmission, and activity within the mesocorticolimbic system. This review integrates the dopamine, impulsivity, and ELS literature to provide evidence that ELS alters impulsivity via inducing changes in the mesocorticolimbic DA system. Understanding how ELS affects brain circuits associated with impulsivity can help advance treatments aimed towards reducing impulsivity symptoms in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Evelyn Ordoñes Sanchez
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
10
|
Kendricks DR, Boomhower SR, Newland MC. Adolescence as a sensitive period for neurotoxicity: Lifespan developmental effects of methylmercury. Pharmacol Biochem Behav 2022; 217:173389. [PMID: 35452710 DOI: 10.1016/j.pbb.2022.173389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity resulting from the environmental contaminant, methylmercury (MeHg), is a source of concern for many human populations that rely heavily on the consumption of fish and rice as stable ingredients in the diet. The developmental period of exposure is important both to the qualitative effects of MeHg and to the dose required to produce those effects. MeHg exposure during the sensitive prenatal period causes deleterious and long-lasting changes in neurodevelopment at particularly low doses. The effects include a wide host of cognitive and behavioral outcomes expressed in adulthood and sometimes not until aging. However, neurotoxic outcomes of methylmercury when exposure occurs during adolescence are only recently revealing impacts on human populations and animal models. This review examines the current body of work and showcases the sensitivity of adolescence, a period that straddles early development and adulthood, to methylmercury neurotoxicity and the implications such toxicity has in our understanding of methylmercury's effects in human populations and animal models.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychology, Auburn University, Auburn, AL, United States of America.
| | - Steven R Boomhower
- Gradient, Boston, MA, United States of America; Harvard Division of Continuing Education, Harvard University, Cambridge, MA, United States of America
| | | |
Collapse
|
11
|
Vonder Haar C, Wampler SK, Bhatia HS, Ozga JE, Toegel C, Lake AD, Iames CW, Cabral CE, Martens KM. Repeat Closed-Head Injury in Male Rats Impairs Attention but Causes Heterogeneous Outcomes in Multiple Measures of Impulsivity and Glial Pathology. Front Behav Neurosci 2022; 16:809249. [PMID: 35359588 PMCID: PMC8963781 DOI: 10.3389/fnbeh.2022.809249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023] Open
Abstract
Repetitive mild traumatic brain injury, or concussion, can lead to the development of long-term psychiatric impairments. However, modeling these deficits is challenging in animal models and necessitates sophisticated behavioral approaches. The current set of studies were designed to evaluate whether a rubberized versus metal impact tip would cause functional deficits, the number of injuries required to generate such deficits, and whether different psychiatric domains would be affected. Across two studies, male rats were trained in either the 5-choice serial reaction time task (5CSRT; Experiment 1) to assess attention and motor impulsivity or concurrently on the 5CSRT and the delay discounting task (Experiment 2) to also assess choice impulsivity. After behavior was stable, brain injuries were delivered with the Closed-head Injury Model of Engineered Rotational Acceleration (CHIMERA) either once per week or twice per week (Experiment 1) or just once per week (Experiment 2). Astrocyte and microglia pathology was also assayed in relevant regions of interest. CHIMERA injury caused attentional deficits across both experiments, but only increased motor impulsivity in Experiment 1. Surprisingly, choice impulsivity was actually reduced on the Delay Discounting Task after repeat injuries. However, subsequent analyses suggested potential visual issues which could alter interpretation of these and attentional data. Subtle changes in glial pathology immediately after the injury (Experiment 1) were attenuated after 4 weeks recovery (Experiment 2). Given the heterogenous findings between experiments, additional research is needed to determine the root causes of psychiatric disturbances which may arise as a results of repeated brain injuries.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Sarah K. Wampler
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Henna S. Bhatia
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Jenny E. Ozga
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Cory Toegel
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Anastasios D. Lake
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Christopher W. Iames
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Caitlyn E. Cabral
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Kris M. Martens
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
- *Correspondence: Kris M. Martens,
| |
Collapse
|
12
|
Zoratto F, Oddi G, Pillitteri S, Festucci F, Puzzo C, Curcio G, Laviola G, Paglieri F, Adriani W, Addessi E. The presence of a potential competitor modulates risk preferences in rats. Behav Processes 2022; 196:104602. [DOI: 10.1016/j.beproc.2022.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/20/2021] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
|
13
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
14
|
Medial orbitofrontal cortex dopamine D 1/D 2 receptors differentially modulate distinct forms of probabilistic decision-making. Neuropsychopharmacology 2021; 46:1240-1251. [PMID: 33452435 PMCID: PMC8134636 DOI: 10.1038/s41386-020-00931-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023]
Abstract
Efficient decision-making involves weighing the costs and benefits associated with different actions and outcomes to maximize long-term utility. The medial orbitofrontal cortex (mOFC) has been implicated in guiding choice in situations involving reward uncertainty, as inactivation in rats alters choice involving probabilistic rewards. The mOFC receives considerable dopaminergic input, yet how dopamine (DA) modulates mOFC function has been virtually unexplored. Here, we assessed how mOFC D1 and D2 receptors modulate two forms of reward seeking mediated by this region, probabilistic reversal learning and probabilistic discounting. Separate groups of well-trained rats received intra-mOFC microinfusions of selective D1 or D2 antagonists or agonists prior to task performance. mOFC D1 and D2 blockade had opposing effects on performance during probabilistic reversal learning and probabilistic discounting. D1 blockade impaired, while D2 blockade increased the number of reversals completed, both mediated by changes in errors and negative feedback sensitivity apparent during the initial discrimination of the task, which suggests changes in probabilistic reinforcement learning rather than flexibility. Similarly, D1 blockade reduced, while D2 blockade increased preference for larger/risky rewards. Excess D1 stimulation had no effect on either task, while excessive D2 stimulation impaired probabilistic reversal performance, and reduced both profitable risky choice and overall task engagement. These findings highlight a previously uncharacterized role for mOFC DA, showing that D1 and D2 receptors play dissociable and opposing roles in different forms of reward-related action selection. Elucidating how DA biases behavior in these situations will expand our understanding of the mechanisms regulating optimal and aberrant decision-making.
Collapse
|
15
|
Carroll ME, Zlebnik NE, Holtz NA. Preference for Palatable Food, Impulsivity, and Relation to Drug Addiction in Rats. NEUROMETHODS 2021. [DOI: 10.1007/978-1-0716-0924-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Verharen JPH, Adan RAH, Vanderschuren LJMJ. Differential contributions of striatal dopamine D1 and D2 receptors to component processes of value-based decision making. Neuropsychopharmacology 2019; 44:2195-2204. [PMID: 31254972 PMCID: PMC6897916 DOI: 10.1038/s41386-019-0454-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 01/26/2023]
Abstract
Dopamine has been implicated in value-based learning and decision making by signaling reward prediction errors and facilitating cognitive flexibility, incentive motivation, and voluntary movement. Dopamine receptors can roughly be divided into the D1 and D2 subtypes, and it has been hypothesized that these two types of receptors have an opposite function in facilitating reward-related and aversion-related behaviors, respectively. Here, we tested the contribution of striatal dopamine D1 and D2 receptors to processes underlying value-based learning and decision making in rats, employing a probabilistic reversal learning paradigm. Using computational trial-by-trial analysis of task behavior after systemic or intracranial treatment with dopamine D1 and D2 receptor agonists and antagonists, we show that negative feedback learning can be modulated through D2 receptor signaling and positive feedback learning through D1 receptor signaling in the ventral striatum. Furthermore, stimulation of D2 receptors in the ventral or dorsolateral (but not dorsomedial) striatum promoted explorative choice behavior, suggesting an additional function of dopamine in these areas in value-based decision making. Finally, treatment with most dopaminergic drugs affected response latencies and number of trials completed, which was also seen after infusion of D2, but not D1 receptor-acting drugs into the striatum. Together, our data support the idea that dopamine D1 and D2 receptors have complementary functions in learning on the basis of emotionally valenced feedback, and provide evidence that dopamine facilitates value-based and motivated behaviors through distinct striatal regions.
Collapse
Affiliation(s)
- Jeroen P. H. Verharen
- 0000000090126352grid.7692.aDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands ,0000000120346234grid.5477.1Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Roger A. H. Adan
- 0000000090126352grid.7692.aDepartment of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Louk J. M. J. Vanderschuren
- 0000000120346234grid.5477.1Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
17
|
Bryce CA, Floresco SB. Alterations in effort-related decision-making induced by stimulation of dopamine D 1, D 2, D 3, and corticotropin-releasing factor receptors in nucleus accumbens subregions. Psychopharmacology (Berl) 2019; 236:2699-2712. [PMID: 30972447 DOI: 10.1007/s00213-019-05244-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
RATIONALE Nucleus accumbens (NAc) dopamine (DA) plays an integral role in overcoming effort costs, as blockade of D1 and D2 receptors reduces the choice of larger, more-costly rewards. Similarly, the stress neuropeptide corticotropin-releasing factor (CRF) modulates DA transmission and mediates stress-induced alterations in effort-related choice. OBJECTIVES The current study explored how excessive stimulation of different DA receptors within the NAc core and shell alters effort-related decision-making and compared these effects to those induced by CRF stimulation. METHODS Male Long Evans rats were well-trained on an effort-discounting task wherein they choose between a low-effort/low-reward and a high-effort/high-reward lever where the effort requirement increased over blocks (2-20 presses). Dopamine D1 (SKF 81297, 0.2-2 μg), D2/3 (quinpirole, 1-10 μg), or D3 (PD 128,907, 1.5-3 μg) receptor agonists, or CRF (0.5 μg), were infused into the NAc core or shell prior to testing. RESULTS Stimulation of D2/3 receptors with quinpirole in the NAc core or shell markedly reduced the choice of high-effort option and increase choice latencies, without altering preference for larger vs smaller rewards. Stimulation of D1 or D3 receptors did not alter choice, although SKF 81297 infusions into the shell reduced response vigor. In comparison, core infusions of CRF flattened the discounting curve, reducing effortful choice when costs were low and increasing it when costs were high. CONCLUSIONS Excessive stimulation of NAc D2 receptors has detrimental effects on effort-related decision-making. Furthermore, CRF stimulation induces dissociable effects on decision-making compared with those induced the effects of stimulation of different DA receptors.
Collapse
Affiliation(s)
- Courtney A Bryce
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
18
|
Anastasio NC, Stutz SJ, Price AE, Davis-Reyes BD, Sholler DJ, Ferguson SM, Neumaier JF, Moeller FG, Hommel JD, Cunningham KA. Convergent neural connectivity in motor impulsivity and high-fat food binge-like eating in male Sprague-Dawley rats. Neuropsychopharmacology 2019; 44:1752-1761. [PMID: 31003231 PMCID: PMC6785029 DOI: 10.1038/s41386-019-0394-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 12/27/2022]
Abstract
Food intake is essential for survival, but maladaptive patterns of intake, possibly encoded by a preexisting vulnerability coupled with the influence of environmental variables, can modify the reward value of food. Impulsivity, a predisposition toward rapid unplanned reactions to stimuli, is one of the multifaceted determinants underlying the etiology of dysregulated eating and its evolving pathogenesis. The medial prefrontal cortex (mPFC) is a major neural director of reward-driven behavior and impulsivity. Compromised signaling between the mPFC and nucleus accumbens shell (NAcSh) is thought to underlie the cognitive inability to withhold prepotent responses (motor impulsivity) and binge intake of high-fat food (HFF) seen in binge eating disorder. To explore the relationship between motor impulsivity and binge-like eating in rodents, we identified high (HI) and low impulsive (LI) rats in the 1-choice serial reaction time task and employed a rat model of binge-like eating behavior. HFF binge rats consumed significantly greater calories relative to control rats maintained on continual access to standard food or HFF. HI rats repeatedly exhibited significantly higher bingeing on HFF vs. LI rats. Next, we employed dual viral vector chemogenetic technology which allows for the targeted and isolated modulation of ventral mPFC (vmPFC) neurons that project to the NAcSh. Chemogenetic activation of the vmPFC to NAcSh pathway significantly suppressed motor impulsivity and binge-like intake for high-fat food. Thus, inherent motor impulsivity and binge-like eating are linked and the vmPFC to NAcSh pathway serves as a 'brake' over both behaviors.
Collapse
Affiliation(s)
- Noelle C. Anastasio
- 0000 0001 1547 9964grid.176731.5Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX USA
| | - Sonja J. Stutz
- 0000 0001 1547 9964grid.176731.5Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX USA
| | - Amanda E. Price
- 0000 0001 1547 9964grid.176731.5Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX USA
| | - Brionna D. Davis-Reyes
- 0000 0001 1547 9964grid.176731.5Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX USA
| | - Dennis J. Sholler
- 0000 0001 1547 9964grid.176731.5Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX USA
| | - Susan M. Ferguson
- 0000 0000 9026 4165grid.240741.4Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - John F. Neumaier
- 0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - F. Gerard Moeller
- 0000 0004 0458 8737grid.224260.0Department of Psychiatry and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA USA
| | - Jonathan D. Hommel
- 0000 0001 1547 9964grid.176731.5Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX USA
| | - Kathryn A. Cunningham
- 0000 0001 1547 9964grid.176731.5Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
19
|
Tremblay M, Barrus MM, Cocker PJ, Baunez C, Winstanley CA. Increased motor impulsivity in a rat gambling task during chronic ropinirole treatment: potentiation by win-paired audiovisual cues. Psychopharmacology (Berl) 2019; 236:1901-1915. [PMID: 30706098 DOI: 10.1007/s00213-019-5173-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
RATIONALE Chronic administration of D2/3 receptor agonists ropinirole or pramipexole can increase the choice of uncertain rewards in rats, theoretically approximating iatrogenic gambling disorder (iGD). OBJECTIVES We aimed to assess the effect of chronic ropinirole in animal models that attempt to capture critical aspects of commercial gambling, including the risk of losing rather than failing to gain, and the use of win-paired sensory stimuli heavily featured in electronic gambling machines (EGMs). METHODS Male Long-Evans rats learned the rat gambling task (rGT; n = 24), in which animals sample between four options that differ in the magnitude and probability of rewards and time-out punishments. In the cued rGT (n = 40), reward-concurrent audiovisual cues were added that scaled in complexity with win size. Rats were then implanted with an osmotic pump delivering ropinirole (5 mg/kg/day) or saline for 28 days. RESULTS Chronic ropinirole did not unequivocally increase preference for more uncertain outcomes in either the cued or uncued rGT. Ropinirole transiently increased premature responses, a measure of motor impulsivity, and this change was larger and more long-lasting in the cued task. CONCLUSIONS These data suggest that explicitly signaling loss prevents the increase in preference for uncertain rewards caused by D2/3 receptor agonists observed previously. The ability of win-paired cues to amplify ropinirole-induced increases in motor impulsivity may explain why compulsive use of EGMs is particularly common in iGD. These data offer valuable insight into the cognitive-behavioral mechanisms through which chronic dopamine agonist treatments may induce iGD and related impulse control disorders.
Collapse
Affiliation(s)
- Melanie Tremblay
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Michael M Barrus
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Paul J Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada.,Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Christelle Baunez
- Institut de Neurosciences de la Timone (INT), UMR7289, Centre National de la Recherche Scientifique (CNRS) ∓ Aix-Marseille Université (AMU), Marseille, France
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
20
|
Balachandran RC, Sieg ML, Tran CT, Clancy BM, Beaudin SA, Eubig PA. Cholinergic and dopaminergic interactions alter attention and response inhibition in Long-Evans rats performing the 5-choice serial reaction time task. Pharmacol Biochem Behav 2018; 175:160-173. [DOI: 10.1016/j.pbb.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/30/2018] [Accepted: 10/24/2018] [Indexed: 01/07/2023]
|
21
|
Kuusinen V, Cesnaite E, Peräkylä J, Ogawa KH, Hartikainen KM. Orbitofrontal Lesion Alters Brain Dynamics of Emotion-Attention and Emotion-Cognitive Control Interaction in Humans. Front Hum Neurosci 2018; 12:437. [PMID: 30443211 PMCID: PMC6221981 DOI: 10.3389/fnhum.2018.00437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 11/14/2022] Open
Abstract
Patients with lesion to the orbitofrontal cortex (OFC) experience challenges in emotional control and emotion-guided behaviors. The OFC is known to participate in executive functions and attentional control of emotion and our previous research suggests OFC lesion alters the balance between voluntary and involuntary attention and cognitive control within the context of emotion. To better understand how OFC lesion affects the dynamics and interaction of these functions, we studied EEG and performance of 12 patients with lesion to the OFC and 11 control subjects with intact OFC in a Go/NoGo visual reaction time (RT) task with neutral targets and intervening threat-related emotional distractors (Executive RT Test). Event-related potentials (ERPs), specifically N2P3 peak-to-peak amplitude and the following late positive potential (LPP), were used to measure allocation of attention and cognitive control to emotional distractors. Task performance and Behavior Rating Inventory of Executive Functions—Adult version (BRIEF-A) scores were used to assess executive functions. As expected, the Control group showed increased N2P3 amplitude in the context of threat-related distractors, particularly over the right hemisphere, while LPP was not modulated by these distractors. In contrast, patients with OFC lesion showed no such impact of threat-related distractors on N2P3 amplitude but exhibited increased and prolonged left-lateralized impact of threat on LPP in the Go-condition. In NoGo-condition, the N2P3 amplitude was increased in both groups due to threat, but the impact was seen earlier, i.e., at the N2 peak in the OFC group and later at the P3 peak in Controls. The OFC group committed more errors in the Executive RT Test and reported more problems in BRIEF-A, thus both objective and subjective evidence for challenges in executive functions was obtained in patients with orbitofrontal lesion. Furthermore, the time-course of attention allocation and cognitive control towards task-irrelevant emotional stimuli was altered as evidenced by ERPs. We conclude that orbitofrontal lesion is associated with altered neural dynamics underlying the interaction of involuntary attention to emotion and cognitive control. These alterations in brain dynamics may underlie some of the challenges patients encounter in everyday life when emotional events interact with cognitive demands.
Collapse
Affiliation(s)
- Venla Kuusinen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Elena Cesnaite
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Keith H Ogawa
- Department of Psychology, Saint Mary's College of California, Moraga, CA, United States
| | - Kaisa M Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
22
|
Napier TC, Persons AL. Pharmacological insights into impulsive-compulsive spectrum disorders associated with dopaminergic therapy. Eur J Neurosci 2018; 50:2492-2502. [PMID: 30269390 DOI: 10.1111/ejn.14177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022]
Abstract
Impulsive-compulsive spectrum disorders are associated with dopamine agonist therapy in some patients. These untoward outcomes occur with direct-acting, full and partial agonists at D2 dopamine family receptors. The disorders typically emerge during chronic treatment, and exhibit common features that are independent of the neurological or psychiatric pathology for which the initial therapy was indicated. It is well-documented that the brain is 'plastic', changing in response to alterations to internal factors (e.g., disease processes), as well as external factors (e.g., therapies). The complexities of these clinical scenarios have eluded a clear depiction of the neurobiology for impulsive-compulsive spectrum disorders and engendered considerable debate regarding the mechanistic underpinnings of the disorders. In this opinion, we use pharmacological concepts related to homeostatic compensation subsequent to chronic receptor activation to provide a unifying construct. This construct helps explain the occurrence of impulsive-compulsive spectrum disorders across disease states, and during therapy with full and partial agonists.
Collapse
Affiliation(s)
- T Celeste Napier
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA.,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - Amanda L Persons
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA.,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA.,Department of Physician Assistant Studies, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
23
|
GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization. Proc Natl Acad Sci U S A 2018; 115:E9479-E9488. [PMID: 30228121 PMCID: PMC6176583 DOI: 10.1073/pnas.1807788115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D2R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse's sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.
Collapse
|
24
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
25
|
Fredriksson I, Wirf M, Steensland P. The monoamine stabilizer (-)-OSU6162 prevents the alcohol deprivation effect and improves motor impulsive behavior in rats. Addict Biol 2018; 24:471-484. [PMID: 29480646 PMCID: PMC6585824 DOI: 10.1111/adb.12613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/14/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
Alcohol craving, in combination with impaired impulse control, often leads to relapse. The dopamine system mediates the rewarding properties of alcohol but is also involved in regulating impulsive behavior. The monoamine stabilizer (−)‐OSU6162 (OSU6162) has the ability to stabilize dopamine activity depending on the prevailing dopaminergic tone and may therefore normalize the dopaminergic transmission regulating both alcohol use disorder and impulsivity. We have recently showed that OSU6162 attenuates voluntary alcohol consumption, operant alcohol self‐administration, alcohol withdrawal symptoms and cue‐induced reinstatement of alcohol seeking in rats. Here, we evaluated OSU6162's effects on motor impulsivity in Wistar rats that had voluntarily consumed alcohol or water for 10 weeks. The five‐choice serial reaction time task was used to measure motor impulsivity, and a prolonged waiting period (changed from 5 to 7 seconds) was applied to induce premature responses. OSU6162‐testing was conducted twice a week (Tuesdays and Fridays), every other week with regular baseline training sessions in between. We also tested OSU6162's effects on the alcohol deprivation effect in long‐term alcohol drinking Wistar rats. The results showed that OSU6162 (30 mg/kg) pre‐treatment significantly improved motor impulsivity in the five‐choice serial reaction time task in both alcohol and alcohol‐naïve rats. Moreover, OSU6162 (30 mg/kg) pre‐treatment prevented the alcohol deprivation effect, i.e. relapse‐like drinking behavior after a forced period of abstinence in long‐term drinking rats. In conclusion, our results provide further support for OSU6162 as a novel treatment for alcohol use disorder. The results further indicate that improvement of motor impulse control might be one mechanism behind OSU6162's ability to attenuate alcohol‐mediated behaviors.
Collapse
Affiliation(s)
- Ida Fredriksson
- Department of Clinical Neuroscience, Karolinska InstitutetKarolinska University Hospital Sweden
| | - Malin Wirf
- Department of Clinical Neuroscience, Karolinska InstitutetKarolinska University Hospital Sweden
| | - Pia Steensland
- Department of Clinical Neuroscience, Karolinska InstitutetKarolinska University Hospital Sweden
| |
Collapse
|
26
|
Wang Z, Liang S, Yu S, Xie T, Wang B, Wang J, Li Y, Shan B, Cui C. Distinct Roles of Dopamine Receptors in the Lateral Thalamus in a Rat Model of Decisional Impulsivity. Neurosci Bull 2017; 33:413-422. [PMID: 28585114 DOI: 10.1007/s12264-017-0146-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 01/02/2023] Open
Abstract
The thalamus and central dopamine signaling have been shown to play important roles in high-level cognitive processes including impulsivity. However, little is known about the role of dopamine receptors in the thalamus in decisional impulsivity. In the present study, rats were tested using a delay discounting task and divided into three groups: high impulsivity (HI), medium impulsivity (MI), and low impulsivity (LI). Subsequent in vivo voxel-based magnetic resonance imaging revealed that the HI rats displayed a markedly reduced density of gray matter in the lateral thalamus compared with the LI rats. In the MI rats, the dopamine D1 receptor antagonist SCH23390 or the D2 receptor antagonist eticlopride was microinjected into the lateral thalamus. SCH23390 significantly decreased their choice of a large, delayed reward and increased their omission of lever presses. In contrast, eticlopride increased the choice of a large, delayed reward but had no effect on the omissions. Together, our results indicate that the lateral thalamus is involved in decisional impulsivity, and dopamine D1 and D2 receptors in the lateral thalamus have distinct effects on decisional impulsive behaviors in rats. These results provide a new insight into the dopamine signaling in the lateral thalamus in decisional impulsivity.
Collapse
Affiliation(s)
- Zhiyan Wang
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Shengxiang Liang
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangshuang Yu
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Tong Xie
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Baicheng Wang
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Junkai Wang
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Yijing Li
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China
| | - Baoci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Cailian Cui
- Neuroscience Research Institute, Peking University, Beijing, 100191, China. .,Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China. .,Key Laboratory of Neuroscience, The Ministry of Education and Ministry of Public Health, Beijing, 100191, China.
| |
Collapse
|
27
|
Chemogenetic Activation of Midbrain Dopamine Neurons Affects Attention, but not Impulsivity, in the Five-Choice Serial Reaction Time Task in Rats. Neuropsychopharmacology 2017; 42:1315-1325. [PMID: 27748741 PMCID: PMC5437879 DOI: 10.1038/npp.2016.235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
Abstract
Attentional impairments and exaggerated impulsivity are key features of psychiatric disorders, such as attention-deficit/hyperactivity disorder, schizophrenia, and addiction. These deficits in attentional performance and impulsive behaviors have been associated with aberrant dopamine (DA) signaling, but it remains unknown whether these deficits result from enhanced DA neuronal activity in the midbrain. Here, we took a novel approach by testing the impact of chemogenetically activating DA neurons in the ventral tegmental area (VTA) or substantia nigra pars compacta (SNc) on attention and impulsivity in the five-choice serial reaction time task (5-CSRTT) in rats. We found that activation of DA neurons in both the VTA and SNc impaired attention by increasing trial omissions. In addition, SNc DA neuron activation decreased attentional accuracy. Surprisingly, enhanced DA neuron activity did not affect impulsive action in this task. These results show that enhanced midbrain DA neuronal activity induces deficits in attentional performance, but not impulsivity. Furthermore, DA neurons in the VTA and SNc have different roles in regulating attention. These findings contribute to our understanding of the neural substrates underlying attention deficits and impulsivity, and provide valuable insights to improve treatment of these symptoms.
Collapse
|
28
|
Adams WK, Barrus MM, Zeeb FD, Cocker PJ, Benoit J, Winstanley CA. Dissociable effects of systemic and orbitofrontal administration of adrenoceptor antagonists on yohimbine-induced motor impulsivity. Behav Brain Res 2017; 328:19-27. [PMID: 28344096 DOI: 10.1016/j.bbr.2017.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 01/17/2023]
Abstract
The α2-adrenoceptor antagonist, yohimbine, is commonly used as a pharmacological stressor. Its behavioural effects are typically attributed to elevated noradrenaline release via blockade of central, inhibitory autoreceptors. We have previously reported that yohimbine increases motor impulsivity in rats on the five-choice serial reaction time task (5CSRTT), a cognitive behavioural assessment which measures motor impulsivity and visuospatial attention. Furthermore, this effect depended on cyclic adenomonophosphate (cAMP) signalling via cAMP response element binding (CREB) protein in the orbitofrontal cortex (OFC). However, the role of specific adrenoceptors in this effect is not well-characterised. We therefore investigated whether the pro-impulsive effects of systemic yohimbine could be reproduced by direct administration into the OFC, or attenuated by intra-OFC or systemic administration of prazosin and propranolol-antagonists at the α1- and β-adrenoceptor, respectively. Male Long-Evans rats were trained on the 5CSRTT and implanted with guide cannulae aimed at the OFC. Systemically administered α1- or β-adrenoceptor antagonists attenuated yohimbine-induced increases in premature responding. In contrast, local infusion of yohimbine into the OFC reduced such impulsive responding, while blockade of α1- or β-adrenoceptors within the OFC had no effect on either basal or yohimbine-stimulated motor impulsivity. Direct administration of selective antagonists at the α1-, α2- or β-adrenoceptor into the OFC therefore produce clearly dissociable effects from systemic administration. Collectively, these data suggest that the pro-impulsivity effect of yohimbine can be modulated by adrenergic signalling in brain areas outside of the OFC, in addition to non-adrenergic signalling pathways within the OFC.
Collapse
Affiliation(s)
- Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; UBC Institute of Mental Health, University of British Columbia, Vancouver, BC, Canada
| | - Michael M Barrus
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Fiona D Zeeb
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Paul J Cocker
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - James Benoit
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; UBC Institute of Mental Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
29
|
van der Meer D, Hartman CA, van Rooij D, Franke B, Heslenfeld DJ, Oosterlaan J, Faraone SV, Buitelaar JK, Hoekstra PJ. Effects of dopaminergic genes, prenatal adversities, and their interaction on attention-deficit/hyperactivity disorder and neural correlates of response inhibition. J Psychiatry Neurosci 2017; 42:113-121. [PMID: 28234207 PMCID: PMC5373700 DOI: 10.1503/jpn.150350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is often accompanied by impaired response inhibition; both have been associated with aberrant dopamine signalling. Given that prenatal exposure to alcohol or smoking is known to affect dopamine-rich brain regions, we hypothesized that individuals carrying the ADHD risk alleles of the dopamine receptor D4 (DRD4) and dopamine transporter (DAT1) genes may be especially sensitive to their effects. METHODS Functional MRI data, information on prenatal adversities and genetic data were available for 239 adolescents and young adults participating in the multicentre ADHD cohort study NeuroIMAGE (average age 17.3 yr). We analyzed the effects of DRD4 and DAT1, prenatal exposure to alcohol and smoking and their interactions on ADHD severity, response inhibition and neural activity. RESULTS We found no significant gene × environment interaction effects. We did find that the DRD4 7-repeat allele was associated with less superior frontal and parietal brain activity and with greater activity in the frontal pole and occipital cortex. Prenatal exposure to smoking was also associated with lower superior frontal activity, but with greater activity in the parietal lobe. Further, those exposed to alcohol had more activity in the lateral orbitofrontal cortex, and the DAT1 risk variant was associated with lower cerebellar activity. LIMITATIONS Retrospective reports of maternal substance use and the cross-sectional study design restrict causal inference. CONCLUSION While we found no evidence of gene × environment interactions, the risk factors under investigation influenced activity of brain regions associated with response inhibition, suggesting they may add to problems with inhibiting behaviour.
Collapse
Affiliation(s)
- Dennis van der Meer
- Correspondence to: D. van der Meer, University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, 9700 RB Groningen, The Netherlands;
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex. J Neurosci 2017; 37:1493-1504. [PMID: 28069917 DOI: 10.1523/jneurosci.2827-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/18/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022] Open
Abstract
Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks.SIGNIFICANCE STATEMENT A key role of any neuromodulator may be the reconfiguration of functional brain circuits. Here we test this idea with regard to dopamine and the organization of functional networks in the orbitofrontal cortex (OFC). We show that blockade of dopamine D2 receptors has profound effects on the functional connectivity patterns of the OFC, yielding altered connectivity-based subdivisions of this region. Our results suggest that dopamine changes the connectional configuration of the OFC, possibly leading to transitions between different operating modes that favor either sensory input or recurrent processing in the prefrontal cortex. More generally, our findings support a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks and may have clinical implications for understanding the actions of antipsychotic agents.
Collapse
|
31
|
Korte SM, Prins J, Van den Bergh FS, Oosting RS, Dupree R, Korte-Bouws GA, Westphal KG, Olivier B, Denys DA, Garland A, Güntürkün O. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and “waiting” impulsivity, but increases “stopping” impulsivity. Eur J Pharmacol 2017; 794:257-269. [DOI: 10.1016/j.ejphar.2016.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
32
|
Chen C, Nakagawa S, An Y, Ito K, Kitaichi Y, Kusumi I. The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Front Neuroendocrinol 2017; 44:83-102. [PMID: 27956050 DOI: 10.1016/j.yfrne.2016.12.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022]
Abstract
Exercise is known to have beneficial effects on cognition, mood, and the brain. However, exercise also activates the hypothalamic-pituitary-adrenal axis and increases levels of the glucocorticoid cortisol (CORT). CORT, also known as the "stress hormone," is considered a mediator between chronic stress and depression and to link various cognitive deficits. Here, we review the evidence that shows that while both chronic stress and exercise elevate basal CORT levels leading to increased secretion of CORT, the former is detrimental to cognition/memory, mood/stress coping, and brain plasticity, while the latter is beneficial. We propose three preliminary answers to the exercise-CORT paradox. Importantly, the elevated CORT, through glucocorticoid receptors, functions to elevate dopamine in the medial prefrontal cortex under chronic exercise but not chronic stress, and the medial prefrontal dopamine is essential for active coping. Future inquiries may provide further insights to promote our understanding of this paradox.
Collapse
Affiliation(s)
- Chong Chen
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Yan An
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Koki Ito
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yuji Kitaichi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
33
|
Haar CV, Lam FC, Adams WA, Riparip LK, Kaur S, Muthukrishna M, Rosi S, Winstanley CA. Frontal Traumatic Brain Injury in Rats Causes Long-Lasting Impairments in Impulse Control That Are Differentially Sensitive to Pharmacotherapeutics and Associated with Chronic Neuroinflammation. ACS Chem Neurosci 2016; 7:1531-1542. [PMID: 27525447 PMCID: PMC9487719 DOI: 10.1021/acschemneuro.6b00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions yearly, and is increasingly associated with chronic neuropsychiatric symptoms. We assessed the long-term effects of different bilateral frontal controlled cortical impact injury severities (mild, moderate, and severe) on the five-choice serial reaction time task, a paradigm with relatively independent measurements of attention, motor impulsivity, and motivation. Moderately- and severely injured animals exhibited impairments across all cognitive domains that were still evident 14 weeks postinjury, while mild-injured animals only demonstrated persistent deficits in impulse control. However, recovery of function varied considerably between subjects such that some showed no impairment ("TBI-resilient"), some demonstrated initial deficits that recovered ("TBI-vulnerable"), and some never recovered ("chronically-impaired"). Three clinically relevant treatments for impulse-control or TBI, amphetamine, atomoxetine, and amantadine, were assessed for efficacy in treating injury-induced deficits. Susceptibility to TBI affected the response to pharmacological challenge with amphetamine. Whereas sham and TBI-resilient animals showed characteristic impairments in impulse control at higher doses, amphetamine had the opposite effect in chronically impaired rats, improving task performance. In contrast, atomoxetine and amantadine reduced premature responding but increased omissions, suggesting psychomotor slowing. Analysis of brain tissue revealed that generalized neuroinflammation was associated with impulsivity even when accounting for the degree of brain damage. This is one of the first studies to characterize psychiatric-like symptoms in experimental TBI. Our data highlight the importance of testing pharmacotherapies in TBI models in order to predict efficacy, and suggest that neuroinflammation may represent a treatment target for impulse control problems following injury.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada,Department of Psychology, University of British Columbia, Vancouver, BC, Canada,Corresponding author: Cole Vonder Haar or Catharine A. Winstanley, CV: Department of Psychology, 53 Campus Dr, Morgantown, WV, 26506, Tel: 1-304-293-1787, , CAW: Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada, Tel: 1-604-822-2024,
| | - Frederick C.W. Lam
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Wendy A. Adams
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Lara-Kirstie Riparip
- Brain and Spinal Injury Center, Departments of Physical Therapy Rehabilitation Science and Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sukhbir Kaur
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | | | - Susanna Rosi
- Brain and Spinal Injury Center, Departments of Physical Therapy Rehabilitation Science and Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Catharine A. Winstanley
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Smith ES, Hardy GA, Schallert T, Lee HJ. The impact of l-dopa on attentional impairments in a rat model of Parkinson's disease. Neuroscience 2016; 337:295-305. [PMID: 27664460 DOI: 10.1016/j.neuroscience.2016.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 01/30/2023]
Abstract
Attentional deficits including difficulty in switching attention between tasks or rules, sustaining attention, and selectively attending to specific stimuli are commonly seen in patients with Parkinson's disease (PD). While these deficits are frequently reported, it is unclear how traditional dopamine replacement therapy such as l-dopa affects these deficits. In a rat model of PD in which dopamine is unilaterally depleted with a 6-hydroxydopamine infusion to the medial forebrain bundle, we first examined the impact of acute and chronic l-dopa treatment on attention switching as modeled by disengagement behavior (i.e. the ability to disengage from an on-going behavior such as eating or drinking to attend to perioral stimulation). Then, in a separate experiment, we evaluated the effects of l-dopa treatment on selective and sustained attention deficits using a five choice task. Our data suggest that the l-dopa dose necessary to recover motor function can successfully restore attention switching behavior (i.e. disengagement behavior), but further worsens performance in the selective and sustained attention task. Furthermore, this same dose was responsible for inducing dyskinesias in rats given chronic daily injections. Taken together, these findings demonstrate that dopamine replacement therapy may not be sufficient for treating all types of attentional dysfunction occurring in PD.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Department of Psychology, The University of Texas at Austin, United States
| | - Gwendolyn A Hardy
- Department of Psychology, The University of Texas at Austin, United States
| | - Timothy Schallert
- Department of Psychology, The University of Texas at Austin, United States
| | - Hongjoo J Lee
- Department of Psychology, The University of Texas at Austin, United States.
| |
Collapse
|
35
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
36
|
Sander CY, Hooker JM, Catana C, Rosen BR, Mandeville JB. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI. Neuropsychopharmacology 2016; 41:1427-36. [PMID: 26388148 PMCID: PMC4793127 DOI: 10.1038/npp.2015.296] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/23/2022]
Abstract
This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.
Collapse
Affiliation(s)
- Christin Y Sander
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Boston, MA, USA,A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Room 2301, Charlestown, MA 02129, USA, Tel: +617 724 1839, Fax: +617 726 7422, E-mail:
| | - Jacob M Hooker
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Ciprian Catana
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Boston, MA, USA,Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Joseph B Mandeville
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Hayward A, Tomlinson A, Neill JC. Low attentive and high impulsive rats: A translational animal model of ADHD and disorders of attention and impulse control. Pharmacol Ther 2016; 158:41-51. [DOI: 10.1016/j.pharmthera.2015.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
38
|
Tian L, Qin X, Sun J, Li X, Wei L. Differential effects of co-administration of oxotremorine with SCH 23390 on impulsive choice in high-impulsive rats and low-impulsive rats. Pharmacol Biochem Behav 2016; 142:56-63. [PMID: 26772787 DOI: 10.1016/j.pbb.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The effect of acetylcholine on impulsive choice is thought to be due to interactions between cholinergic and dopaminergic systems, but this hypothesis has not been proven. This study investigated whether D1-like receptors were involved in the effects of the muscarinic cholinergic agonist oxotremorine on impulsive choice in high-impulsive rats (HI rats, n=8) and low-impulsive rats (LI rats, n=8) characterized by basal levels of impulsive choice in a delay-discounting task. The results revealed that oxotremorine (0.05mg/kg) significantly increased the choice of the large reinforcer in HI rats, whereas decreased the choice of the large reinforcer in LI rats. The D1-like antagonist SCH 23390 produced significant reductions in the large-reinforcer choice in HI rats (0.01mg/kg) and LI rats (0.005, 0.0075, and 0.01mg/kg). SCH 23390 significantly inhibited the increase in the choice of the large reinforcer induced by oxotremorine (0.05mg/kg) in HI rats at doses of 0.005 and 0.0075mg/kg, but enhanced the effect of oxotremorine in LI rats only at the dose of 0.0075mg/kg. These findings suggested that D1-like receptors might be involved in the differential effects of oxotremorine on impulsive choice between HI rats and LI rats.
Collapse
Affiliation(s)
- Lin Tian
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China
| | - Xingna Qin
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China
| | - Jinling Sun
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing 100048, China.
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
39
|
Larkin JD, Jenni NL, Floresco SB. Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala. Psychopharmacology (Berl) 2016; 233:121-36. [PMID: 26432096 DOI: 10.1007/s00213-015-4094-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/21/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE Dopamine (DA) transmission within cortico-limbic-striatal circuitry is integral in modulating decisions involving reward uncertainty. The basolateral amygdala (BLA) also plays a role in these processes, yet how DA transmission within this nucleus regulates cost/benefit decision making is unknown. OBJECTIVES We investigated the contribution of DA transmission within the BLA to risk/reward decision making assessed with a probabilistic discounting task. METHODS Rats were well-trained to choose between a small/certain reward and a large/risky reward, with the probability of obtaining the larger reward decreasing (100-12.5 %) or increasing (12.5-100 %) over a session. We examined the effects of antagonizing BLA D1 (SCH 23390, 0.1-1 μg) or D2 (eticlopride, 0.1-1 μg) receptors, as well as intra-BLA infusions of agonists for D1 (SKF 81297, 0.1-1 μg) and D2 (quinpirole, 1-10 μg) receptors. We also assessed how DA receptor stimulation may induce differential effects related to baseline levels of risky choice. RESULTS BLA D1 receptor antagonism reduced risky choice by decreasing reward sensitivity, whereas D2 antagonism did not affect overall choice patterns. Stimulation of BLA D1 receptors optimized decision making in a baseline-dependent manner: in risk-averse rats, infusions of a lower dose of SKF81297 increased risky choice when reward probabilities were high (50 %), whereas in risk-prone rats, this drug reduced risky choice when probabilities were low (12.5 %). Quinpirole reduced risky choice in risk-prone rats, enhancing lose-shift behavior. CONCLUSIONS These data highlight previously uncharacterized roles for BLA DA D1 and D2 receptors in biasing choice during risk/reward decision making through mediation of reward/negative feedback sensitivity.
Collapse
Affiliation(s)
- Joshua D Larkin
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Nicole L Jenni
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| |
Collapse
|
40
|
Adams WK, Sussman JL, Kaur S, D'souza AM, Kieffer TJ, Winstanley CA. Long-term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral striatal D2receptor signalling - two markers of addiction vulnerability. Eur J Neurosci 2015; 42:3095-104. [DOI: 10.1111/ejn.13117] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Wendy K. Adams
- Department of Psychology; University of British Columbia; Djavad Mowafaghian Centre for Brain Health; 2215 Wesbrook Mall Vancouver BC V6T 1Z3 British Columbia Canada
- UBC Institute of Mental Health; University of British Columbia; Vancouver British Columbia Canada
| | - Jacob L. Sussman
- Department of Psychology; University of British Columbia; Djavad Mowafaghian Centre for Brain Health; 2215 Wesbrook Mall Vancouver BC V6T 1Z3 British Columbia Canada
| | - Sukhbir Kaur
- Department of Psychology; University of British Columbia; Djavad Mowafaghian Centre for Brain Health; 2215 Wesbrook Mall Vancouver BC V6T 1Z3 British Columbia Canada
| | - Anna M. D'souza
- Department of Cellular and Physiological Sciences; Life Sciences Institute; University of British Columbia; Vancouver British Columbia Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences; Life Sciences Institute; University of British Columbia; Vancouver British Columbia Canada
| | - Catharine A. Winstanley
- Department of Psychology; University of British Columbia; Djavad Mowafaghian Centre for Brain Health; 2215 Wesbrook Mall Vancouver BC V6T 1Z3 British Columbia Canada
- UBC Institute of Mental Health; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
41
|
Orbitofrontal (18) F-DOPA Uptake and Movement Preparation in Parkinson's Disease. PARKINSONS DISEASE 2015; 2015:180940. [PMID: 26171275 PMCID: PMC4480935 DOI: 10.1155/2015/180940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 11/29/2022]
Abstract
In Parkinson's disease (PD) degeneration of mesocortical dopaminergic projections may determine cognitive and behavioral symptoms. Choice reaction time task is related to attention, working memory, and goal-directed behavior. Such paradigm involves frontal cortical circuits receiving mesocortical dopamine which are affected early in PD. The aim of this study is to characterize the role of dopamine on the cognitive processes that precede movement in a reaction time paradigm in PD. We enrolled 16 newly diagnosed and untreated patients with PD without cognitive impairment or depression and 10 control subjects with essential tremor. They performed multiple-choice reaction time task with the right upper limb and brain 18F-DOPA PET/CT scan. A significant inverse correlation was highlighted between average reaction time and 18F-DOPA uptake in the left lateral orbitofrontal cortex. No correlations were found between reaction time and PD disease severity or between reaction time and 18F-DOPA uptake in controls. Our study shows that in PD, but not in controls, reaction time is inversely related to the levels of dopamine in the left lateral orbitofrontal cortex. This novel finding underlines the role of dopamine in the lateral orbitofrontal cortex in the early stages of PD, supporting a relation between the compensatory cortical dopamine and movement preparation.
Collapse
|
42
|
Barrus MM, Hosking JG, Zeeb FD, Tremblay M, Winstanley CA. Disadvantageous decision-making on a rodent gambling task is associated with increased motor impulsivity in a population of male rats. J Psychiatry Neurosci 2015; 40:108-17. [PMID: 25703645 PMCID: PMC4354816 DOI: 10.1503/jpn.140045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Impulsivity is understood as a range of behaviours, but the association between these behaviours is not well understood. Although high motor impulsivity is a key symptom of disorders like pathological gambling and addiction, in which decision-making on laboratory tasks is compromised, there have been no clear demonstrations that choice and motor impulsivity are associated in the general population. We examined this association in a large population of rodents. METHODS We performed a meta-analysis on behavioural data from 211 manipulation-naive male animals that performed a rodent gambling task in our laboratory between 2008 and 2012. The task measures an aspect of both impulsive decision-making and impulsive action, making it possible to evaluate whether these 2 forms of maladaptive behaviour are related. RESULTS Our meta-analysis revealed that motor impulsivity was positively correlated with poor decision-making under risk. Highly motor impulsive rats were slower to adopt an advantageous choice strategy and quicker to make a choice on individual trials. LIMITATIONS The data analyzed were limited to that produced by our laboratory and did not include data of other researchers who have used the task. CONCLUSION This work may represent the first demonstration of a clear association between choice and motor impulsivity in a nonclinical population. This lends support to the common practice of studying impulsivity in nonclinical populations to gain insight into impulse control disorders and suggests that differences in impulsive behaviours between clinical and nonclinical populations may be ones of magnitude rather than ones of quality.
Collapse
Affiliation(s)
- Michael M. Barrus
- Correspondence to: M.M. Barrus, Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver BC V6T 1Z4;
| | | | | | | | | |
Collapse
|
43
|
Hosking JG, Cocker PJ, Winstanley CA. Prefrontal Cortical Inactivations Decrease Willingness to Expend Cognitive Effort on a Rodent Cost/Benefit Decision-Making Task. Cereb Cortex 2015; 26:1529-38. [PMID: 25596594 DOI: 10.1093/cercor/bhu321] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Personal success often necessitates expending greater effort for greater reward but, equally important, also requires judicious use of our limited cognitive resources (e.g., attention). Previous animal models have shown that the prelimbic (PL) and infralimbic (IL) regions of the prefrontal cortex (PFC) are not involved in (physical) effort-based choice, whereas human studies have demonstrated PFC contributions to (mental) effort. Here, we utilize the rat Cognitive Effort Task (rCET) to probe PFC's role in effort-based decision making. In the rCET, animals can choose either an easy trial, where the attentional demand is low but the reward (sugar) is small or a difficult trial on which both the attentional demand and reward are greater. Temporary inactivation of PL and IL decreased all animals' willingness to expend mental effort and increased animals' distractibility; PL inactivations more substantially affected performance (i.e., attention), whereas IL inactivations increased motor impulsivity. These data imply that the PFC contributes to attentional resources, and when these resources are diminished, animals shift their choice (via other brain regions) accordingly. Thus, one novel therapeutic approach to deficits in effort expenditure may be to focus on the resources that such decision making requires, rather than the decision-making process per se.
Collapse
Affiliation(s)
- Jay G Hosking
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Paul J Cocker
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
44
|
Simon NW, Moghaddam B. Neural processing of reward in adolescent rodents. Dev Cogn Neurosci 2014; 11:145-54. [PMID: 25524828 PMCID: PMC4597598 DOI: 10.1016/j.dcn.2014.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/26/2022] Open
Abstract
The adolescent brain processes rewards differently than in adults. These differences occur even when behavior is similar between age groups. DS was the locus of substantial developmental differences in reward activity. Surprisingly, differences were not as pronounced in VS. These differences may have implications for adolescent psychiatric vulnerability.
Immaturities in adolescent reward processing are thought to contribute to poor decision making and increased susceptibility to develop addictive and psychiatric disorders. Very little is known; however, about how the adolescent brain processes reward. The current mechanistic theories of reward processing are derived from adult models. Here we review recent research focused on understanding of how the adolescent brain responds to rewards and reward-associated events. A critical aspect of this work is that age-related differences are evident in neuronal processing of reward-related events across multiple brain regions even when adolescent rats demonstrate behavior similar to adults. These include differences in reward processing between adolescent and adult rats in orbitofrontal cortex and dorsal striatum. Surprisingly, minimal age related differences are observed in ventral striatum, which has been a focal point of developmental studies. We go on to discuss the implications of these differences for behavioral traits affected in adolescence, such as impulsivity, risk-taking, and behavioral flexibility. Collectively, this work suggests that reward-evoked neural activity differs as a function of age and that regions such as the dorsal striatum that are not traditionally associated with affective processing in adults may be critical for reward processing and psychiatric vulnerability in adolescents.
Collapse
Affiliation(s)
- Nicholas W Simon
- University of Pittsburgh, Department of Neuroscience, United States
| | - Bita Moghaddam
- University of Pittsburgh, Department of Neuroscience, United States.
| |
Collapse
|
45
|
Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in "slacker" rats: insights into cholinergic regulation of cost/benefit decision making. PLoS One 2014; 9:e111580. [PMID: 25353339 PMCID: PMC4213040 DOI: 10.1371/journal.pone.0111580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022] Open
Abstract
Successful decision making in our daily lives requires weighing an option’s costs against its associated benefits. The neuromodulator acetylcholine underlies both the etiology and treatment of a number of illnesses in which decision making is perturbed, including Alzheimer’s disease, attention-deficit/hyperactivity disorder, and schizophrenia. Nicotine acts on the cholinergic system and has been touted as a cognitive enhancer by both smokers and some researchers for its attention-boosting effects; however, it is unclear whether treatments that have a beneficial effect on attention would also have a beneficial effect on decision making. Here we utilize the rodent Cognitive Effort Task (rCET), wherein animals can choose to allocate greater visuospatial attention for a greater reward, to examine cholinergic contributions to both attentional performance and choice based on attentional demand. Following the establishment of baseline behavior, four drug challenges were administered: nicotine, mecamylamine, scopolamine, and oxotremorine (saline plus three doses for each). As per previous rCET studies, animals were divided by their baseline preferences, with “worker” rats choosing high-effort/high-reward options more than their “slacker” counterparts. Nicotine caused slackers to choose even fewer high-effort trials than at baseline, but had no effect on workers’ choice. Despite slackers’ decreased willingness to expend effort, nicotine improved their attentional performance on the task. Nicotine also increased measures of motor impulsivity in all animals. In contrast, scopolamine decreased animals’ choice of high-effort trials, especially for workers, while oxotremorine decreased motor impulsivity for all animals. In sum, the cholinergic system appears to contribute to decision making, and in part these contributions can be understood as a function of individual differences. While nicotine has been considered as a cognitive enhancer, these data suggest that its modest benefits to attention may be coupled with impulsiveness and decreased willingness to work hard, especially in individuals who are particularly sensitive to effort costs (i.e. slackers).
Collapse
|
46
|
Jupp B, Dalley JW. Convergent pharmacological mechanisms in impulsivity and addiction: insights from rodent models. Br J Pharmacol 2014; 171:4729-66. [PMID: 24866553 PMCID: PMC4209940 DOI: 10.1111/bph.12787] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 01/15/2023] Open
Abstract
Research over the last two decades has widely demonstrated that impulsivity, in its various forms, is antecedent to the development of drug addiction and an important behavioural trait underlying the inability of addicts to refrain from continued drug use. Impulsivity describes a variety of rapidly and prematurely expressed behaviours that span several domains from impaired response inhibition to an intolerance of delayed rewards, and is a core symptom of attention deficit hyperactivity disorder (ADHD) and other brain disorders. Various theories have been advanced to explain how impulsivity interacts with addiction both causally and as a consequence of chronic drug abuse; these acknowledge the strong overlaps in neural circuitry and mechanisms between impulsivity and addiction and the seemingly paradoxical treatment of ADHD with stimulant drugs with high abuse potential. Recent years have witnessed unprecedented progress in the elucidation of pharmacological mechanisms underpinning impulsivity. Collectively, this work has significantly improved the prospect for new therapies in ADHD as well as our understanding of the neural mechanisms underlying the shift from recreational drug use to addiction. In this review, we consider the extent to which pharmacological interventions that target impulsive behaviour are also effective in animal models of addiction. We highlight several promising examples of convergence based on empirical findings in rodent-based studies.
Collapse
Affiliation(s)
- B Jupp
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, Australia
| | - J W Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of CambridgeCambridge, UK
- Department of Psychiatry, University of CambridgeCambridge, UK
| |
Collapse
|
47
|
Comeau WL, Winstanley CA, Weinberg J. Prenatal alcohol exposure and adolescent stress - unmasking persistent attentional deficits in rats. Eur J Neurosci 2014; 40:3078-95. [PMID: 25059261 PMCID: PMC4189965 DOI: 10.1111/ejn.12671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023]
Abstract
Prenatal alcohol exposure (PAE) can produce a myriad of deficits. Unfortunately, affected individuals may also be exposed to the stress of an adverse home environment, contributing to deficits of attentional processes that are the hallmark of optimal executive function. Male offspring of ad-libitum-fed Control (Con), Pairfed (PF), and PAE dams were randomly assigned to either a 5-day period of variable chronic mild stress (CMS) or no CMS in adolescence. In adulthood, rats were trained in a non-match to sample task (T-maze), followed by extensive assessment in the five-choice serial reaction time task. Once rats acquired the five-choice serial reaction time task (stable accuracy), they were tested in three challenge conditions: (i) increased sustained attention, (ii) selective attention and, (iii) varying doses of d-amphetamine, an indirect dopamine and norepinephrine agonist. At birth and throughout the study, PAE offspring showed reduced body weight. Moreover, although PAE animals were similar to Con animals in task acquisition, they were progressively less proficient with transitions to shorter stimulus durations (decreased accuracy and increased omissions). Five days of adolescent CMS increased basal corticosterone levels in adolescence and disrupted cognitive performance in adulthood. Further, CMS augmented PAE-related disturbances in acquisition and, to a lesser extent, also disrupted attentional processes in Con and PF animals. Following task acquisition, challenges unmasked persistent attentional difficulties resulting from both PAE and adolescent CMS. In conclusion, PAE, adolescent CMS, and their interaction produced unique behavioural profiles that suggest vulnerability in select neurobiological processes at different stages of development.
Collapse
Affiliation(s)
- Wendy L Comeau
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
48
|
Leyton M, Vezina P. Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends Pharmacol Sci 2014; 35:268-76. [PMID: 24794705 PMCID: PMC4041845 DOI: 10.1016/j.tips.2014.04.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
Addictions are commonly presaged by problems in childhood and adolescence. For many individuals this starts with the early expression of impulsive risk-taking, social gregariousness, and oppositional behaviors. Here we propose that these early diverse manifestations reflect a heightened ability of emotionally salient stimuli to activate dopamine pathways that foster behavioral approach. If substance use is initiated, these at-risk youth can also develop heightened responses to drug-paired cues. Through conditioning and drug-induced sensitization, these effects strengthen and accumulate, leading to responses that exceed those elicited by other rewards. At the same time, cues not paired with drug become associated with comparatively lower dopamine release, accentuating further the difference between drug and non-drug rewards. Together, these enhancing and inhibiting processes steer a pre-existing vulnerability toward a disproportionate concern for drugs and drug-related stimuli. Implications for prevention and treatment are discussed.
Collapse
Affiliation(s)
- Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Psychology, McGill University, Montreal, Quebec, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada.
| | - Paul Vezina
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA; Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Hosking JG, Cocker PJ, Winstanley CA. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort. Neuropsychopharmacology 2014; 39:1558-67. [PMID: 24496320 PMCID: PMC4023153 DOI: 10.1038/npp.2014.27] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/10/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
Personal success often requires the choice to expend greater effort for larger rewards, and deficits in such effortful decision making accompany a number of illnesses including depression, schizophrenia, and attention-deficit/hyperactivity disorder. Animal models have implicated brain regions such as the basolateral amygdala (BLA) and anterior cingulate cortex (ACC) in physical effort-based choice, but disentangling the unique contributions of these two regions has proven difficult, and effort demands in industrialized society are predominantly cognitive in nature. Here we utilize the rodent cognitive effort task (rCET), a modification of the five-choice serial reaction-time task, wherein animals can choose to expend greater visuospatial attention to obtain larger sucrose rewards. Temporary inactivation (via baclofen-muscimol) of BLA and ACC showed dissociable effects: BLA inactivation caused hard-working rats to 'slack off' and 'slacker' rats to work harder, whereas ACC inactivation caused all animals to reduce willingness to expend mental effort. Furthermore, BLA inactivation increased the time needed to make choices, whereas ACC inactivation increased motor impulsivity. These data illuminate unique contributions of BLA and ACC to effort-based decision making, and imply overlapping yet distinct circuitry for cognitive vs physical effort. Our understanding of effortful decision making may therefore require expanding our models beyond purely physical costs.
Collapse
Affiliation(s)
- Jay G Hosking
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Paul J Cocker
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
50
|
Kops MS, de Haas EN, Rodenburg TB, Ellen ED, Korte-Bouws GA, Olivier B, Güntürkün O, Korte SM, Bolhuis JE. Selection for low mortality in laying hens affects catecholamine levels in the arcopallium, a brain area involved in fear and motor regulation. Behav Brain Res 2013; 257:54-61. [DOI: 10.1016/j.bbr.2013.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 02/05/2023]
|