1
|
Fink AJP, Hogan M, Schoonover CE. Olfactory investigation in the home cage. Neurobiol Learn Mem 2024; 213:107951. [PMID: 38844099 DOI: 10.1016/j.nlm.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024]
Abstract
We have developed a behavioral paradigm to study volitional olfactory investigation in mice over several months. We placed odor ports in the wall of a standard cage that administer a neutral odorant stimulus when a mouse pokes its nose inside. Even though animals were fed and watered ad libitum, and sampling from the port elicited no outcome other than the delivery of an odor, mice readily sampled these stimuli hundreds of times per day. This self-paced olfactory investigation persisted for weeks with only modest habituation following the first day of exposure to a given set of odorants. If an unexpected odorant stimulus was administered at the port, the sampling rate increased transiently (in the first 20 min) by an order of magnitude and remained higher than baseline throughout the subsequent day, indicating learned implicit knowledge. Thus, this system may be used to study naturalistic olfactory learning over extended time scales outside of conventional task structures.
Collapse
Affiliation(s)
- Andrew J P Fink
- Present affiliation: Department of Neurobiology, Northwestern University, Evanston, IL, United States.
| | - Marcus Hogan
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, United States
| | - Carl E Schoonover
- Present affiliation: Allen Institute for Neural Dynamics, Seattle, WA, United States.
| |
Collapse
|
2
|
O'Leary TP, Brown RE. Age-related changes in species-typical behaviours in the 5xFAD mouse model of Alzheimer's disease from 4 to 16 months of age. Behav Brain Res 2024; 465:114970. [PMID: 38531510 DOI: 10.1016/j.bbr.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Alzheimer's disease (AD) patients show age-related decreases in the ability to perform activities of daily living and the decline in these activities is related to the severity of neurobiological deterioration underlying the disease. The 5xFAD mouse model of AD shows age-related impairments in sensory- motor and cognitive function, but little is known about changes in species-typical behaviours that may model activities of daily living in AD patients. Therefore, we examined species-typical behaviours used as indices of exploration (rearing) and compulsivity (grooming) across six tests of anxiety-like behaviour or motor function in female 5xFAD mice from 3 to 16 months of age. Robust decreases in rearing were found in 5xFAD mice across all tests after 9 months of age, although few differences were observed in grooming. A fine-scale analysis of grooming, however, revealed a previously unresolved and spatially restricted pattern of grooming in 5xFAD mice at 13-16 months of age. We then examined changes in species-typical behaviours in the home-cage, and show impaired nest building in 5xFAD mice at all ages tested. Lastly, we examined the relationship between reduced species typical behaviours in 5xFAD mice and the presentation of freezing behaviour, a commonly used measure of memory for conditioned fear. These results showed that along with cognitive and sensory-motor behaviour, 5xFAD mice have robust age-related impairments in species-typical behaviours. Therefore, species typical behaviours in 5xFAD mice may help to model the decline in activities of daily living observed in AD patients, and may provide useful behavioural phenotypes for evaluating the pre-clinical efficacy of novel therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
3
|
Zambon A, Rico LC, Herman M, Gundacker A, Telalovic A, Hartenberger LM, Kuehn R, Romanov RA, Hussaini SA, Harkany T, Pollak DD. Gestational immune activation disrupts hypothalamic neurocircuits of maternal care behavior. Mol Psychiatry 2024; 29:859-873. [PMID: 35581295 PMCID: PMC9112243 DOI: 10.1038/s41380-022-01602-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022]
Abstract
Immune activation is one of the most common complications during pregnancy, predominantly evoked by viral infections. Nevertheless, how immune activation affects mother-offspring relationships postpartum remains unknown. Here, by using the polyinosinic-polycytidylic acid (Poly I:C) model of gestational infection we show that viral-like immune activation at mid-gestation persistently changes hypothalamic neurocircuit parameters in mouse dams and, consequently, is adverse to parenting behavior. Poly I:C-exposed dams favor non-pup-directed exploratory behavior at the expense of pup retrieval. These behavioral deficits are underlain by dendrite pruning and lesser immediate early gene activation in Galanin (Gal)+ neurons with dam-specific transcriptional signatures that reside in the medial preoptic area (mPOA). Reduced activation of an exclusively inhibitory contingent of these distal-projecting Gal+ neurons allows for increased feed-forward inhibition onto putative dopaminergic neurons in the ventral tegmental area (VTA) in Poly I:C-exposed dams. Notably, destabilized VTA output specifically accompanies post-pup retrieval epochs. We suggest that gestational immunogenic insults bias both threat processing and reward perception, manifesting as disfavored infant caregiving.
Collapse
Affiliation(s)
- Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mathieu Herman
- Department of Pathology and Cell Biology, Taub Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Amina Telalovic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lisa-Marie Hartenberger
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rebekka Kuehn
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - S Abid Hussaini
- Department of Pathology and Cell Biology, Taub Institute, Columbia University Irving Medical Center, New York, NY, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD. Identification of 5-HT 2A receptor signaling pathways associated with psychedelic potential. Nat Commun 2023; 14:8221. [PMID: 38102107 PMCID: PMC10724237 DOI: 10.1038/s41467-023-44016-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and β-arrestin2 transducers, making their respective roles unclear. To elucidate this, we develop a series of 5-HT2A-selective ligands with varying Gq efficacies, including β-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-β-arrestin2 recruitment efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A Gq-efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that β-arrestin-biased 5-HT2A receptor agonists block psychedelic effects and induce receptor downregulation and tachyphylaxis. Overall, 5-HT2A receptor Gq-signaling can be fine-tuned to generate ligands distinct from classical psychedelics.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA.
| | - Andrew B Cao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maggie M Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew J Heim
- Department of Chemistry, Saint Joseph's University, Philadelphia, PA, 19104, USA
- Chemical Computing Group ULC, 910-1010 Sherbrooke W, Montréal, QC, H3A 2R7, Canada
| | - Janelle K Lanham
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emma M Bonniwell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Joseph J Hennessey
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hailey A Bock
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emilie I Anderson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Hamilton Morris
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Robbin de Klein
- Research Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Adam K Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
- Gilgamesh Pharmaceuticals, New York, NY, 10003, USA
| | - Bruna Cuccurazzu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - James Gamrat
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Tilka Fannana
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, PA, 19104, USA
| | - Randy Zauhar
- Department of Chemistry, Saint Joseph's University, Philadelphia, PA, 19104, USA
- Artemis Discovery, LLC, Suite 300, 709 N 2nd Street, Philadelphia, PA, 19123, USA
| | - Adam L Halberstadt
- Research Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Psychedelic Research, University of California San Diego, La Jolla, CA, 92093, USA.
| | - John D McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
5
|
Davidson M, Rashidi N, Sinnayah P, Ahmadi AH, Apostolopoulos V, Nurgali K. Improving behavioral test data collection and analysis in animal models with an image processing program. Behav Brain Res 2023; 452:114544. [PMID: 37321312 DOI: 10.1016/j.bbr.2023.114544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Behavioral studies are commonly used as a standard procedure to evaluate anxiety and depression in animal models. Recently, different methods have been developed to improve data collection and analysis of the behavioral tests. Currently available methods, including manual analysis and commercially available products, are either time-consuming or costly. The objective of this study was to improve the collection and analysis of behavioral test data in animal models by developing an image processing program. Eleven behavioral parameters were evaluated by three different methods, including (i) manual detection, (ii) commercially available TopScan software (CleverSys Inc, USA), and (iii) In-housed-developed Advanced Move Tracker (AMT) software. Results obtained from different methods were compared to validate the accuracy and efficiency of AMT. Results showed that AMT software provides highly accurate and reliable data analysis compared to other methods. Less than 5% tolerance was reported between results obtained from AMT compared to TopScan. In addition, the analysis processing time was remarkably reduced (68.3%) by using AMT compared to manual detection. Overall, the findings confirmed that AMT is an efficient program for automated data analysis, significantly enhancing research outcomes through accurate analysis of behavioral test data in animal models.
Collapse
Affiliation(s)
- Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Puspha Sinnayah
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Amir Hossein Ahmadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia.
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia; Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD. Identification of 5-HT 2A Receptor Signaling Pathways Responsible for Psychedelic Potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551106. [PMID: 37577474 PMCID: PMC10418054 DOI: 10.1101/2023.07.29.551106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Serotonergic psychedelics possess considerable therapeutic potential. Although 5-HT2A receptor activation mediates psychedelic effects, prototypical psychedelics activate both 5-HT2A-Gq/11 and β-arrestin2 signaling, making their respective roles unclear. To elucidate this, we developed a series of 5-HT2A-selective ligands with varying Gq efficacies, including β-arrestin-biased ligands. We show that 5-HT2A-Gq but not 5-HT2A-β-arrestin2 efficacy predicts psychedelic potential, assessed using head-twitch response (HTR) magnitude in male mice. We further show that disrupting Gq-PLC signaling attenuates the HTR and a threshold level of Gq activation is required to induce psychedelic-like effects, consistent with the fact that certain 5-HT2A partial agonists (e.g., lisuride) are non-psychedelic. Understanding the role of 5-HT2A-Gq efficacy in psychedelic-like psychopharmacology permits rational development of non-psychedelic 5-HT2A agonists. We also demonstrate that β-arrestin-biased 5-HT2A receptor agonists induce receptor downregulation and tachyphylaxis, and have an anti-psychotic-like behavioral profile. Overall, 5-HT2A receptor signaling can be fine-tuned to generate ligands with properties distinct from classical psychedelics.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Andrew B. Cao
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Maggie M. Calkins
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Andrew J. Heim
- Department of Chemistry, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Janelle K. Lanham
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Emma M. Bonniwell
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Joseph J. Hennessey
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Hailey A. Bock
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Emilie I. Anderson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | | | - Hamilton Morris
- Department of Pharmaceutical Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Robbin de Klein
- Research Service, VA San Diego Healthcare System, San Diego, California 92161, United States
| | - Adam K. Klein
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Bruna Cuccurazzu
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - James Gamrat
- Department of Pharmaceutical Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Tilka Fannana
- Department of Pharmaceutical Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Randy Zauhar
- Department of Chemistry, Saint Joseph’s University, Philadelphia, Pennsylvania 19104, United States
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, California 92161, United States
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
7
|
Slosky LM, Pires A, Bai Y, Clark NB, Hauser ER, Gross JD, Porkka F, Zhou Y, Chen X, Pogorelov VM, Toth K, Wetsel WC, Barak LS, Caron MG. Establishment of multi-stage intravenous self-administration paradigms in mice. Sci Rep 2022; 12:21422. [PMID: 36503898 PMCID: PMC9742147 DOI: 10.1038/s41598-022-24740-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Genetically tractable animal models provide needed strategies to resolve the biological basis of drug addiction. Intravenous self-administration (IVSA) is the gold standard for modeling psychostimulant and opioid addiction in animals, but technical limitations have precluded the widespread use of IVSA in mice. Here, we describe IVSA paradigms for mice that capture the multi-stage nature of the disorder and permit predictive modeling. In these paradigms, C57BL/6J mice with long-standing indwelling jugular catheters engaged in cocaine- or remifentanil-associated lever responding that was fixed ratio-dependent, dose-dependent, extinguished by withholding the drug, and reinstated by the presentation of drug-paired cues. The application of multivariate analysis suggested that drug taking in both paradigms was a function of two latent variables we termed incentive motivation and discriminative control. Machine learning revealed that vulnerability to drug seeking and relapse were predicted by a mouse's a priori response to novelty, sensitivity to drug-induced locomotion, and drug-taking behavior. The application of these behavioral and statistical-analysis approaches to genetically-engineered mice will facilitate the identification of neural circuits driving addiction susceptibility and relapse and focused therapeutic development.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Cell Biology, Duke University, Durham, NC, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Andrea Pires
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Yushi Bai
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Elizabeth R Hauser
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Joshua D Gross
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Fiona Porkka
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Yang Zhou
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Xiaoxiao Chen
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vladimir M Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Krisztian Toth
- Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, NC, USA
| | | | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Methamphetamine Induces Systemic Inflammation and Anxiety: The Role of the Gut–Immune–Brain Axis. Int J Mol Sci 2022; 23:ijms231911224. [PMID: 36232524 PMCID: PMC9569811 DOI: 10.3390/ijms231911224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive drug abused by millions of users worldwide, thus becoming a global health concern with limited management options. The inefficiency of existing treatment methods has driven research into understanding the mechanisms underlying METH-induced disorders and finding effective treatments. This study aims to understand the complex interactions of the gastrointestinal–immune–nervous systems following an acute METH dose administration as one of the potential underlying molecular mechanisms concentrating on the impact of METH abuse on gut permeability. Findings showed a decreased expression of tight junction proteins ZO-1 and EpCAm in intestinal tissue and the presence of FABP-1 in sera of METH treated mice suggests intestinal wall disruption. The increased presence of CD45+ immune cells in the intestinal wall further confirms gut wall inflammation/disruption. In the brain, the expression of inflammatory markers Ccl2, Cxcl1, IL-1β, TMEM119, and the presence of albumin were higher in METH mice compared to shams, suggesting METH-induced blood–brain barrier disruption. In the spleen, cellular and gene changes are also noted. In addition, mice treated with an acute dose of METH showed anxious behavior in dark and light, open field, and elevated maze tests compared to sham controls. The findings on METH-induced inflammation and anxiety may provide opportunities to develop effective treatments for METH addiction in the future.
Collapse
|
9
|
Chen ML, Wu RM. Homozygous mutation of the LRRK2 ROC domain as a novel genetic model of parkinsonism. J Biomed Sci 2022; 29:60. [PMID: 35965315 PMCID: PMC9375908 DOI: 10.1186/s12929-022-00844-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Parkinson’s disease (PD) is one of the most important neurodegenerative disorders in elderly people. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are found in a large proportion of the patients with sporadic and familial PD. Mutations can occur at different locations in the LRRK2. Patients with LRRK2 ROC-COR mutations face an increased risk of typical motor symptoms of PD, along with cognitive decline. An animal model with a monogenic LRRK2 gene mutation is a suitable model for exploring the pathophysiology of PD and identifying potential drug therapies. However, the effect of homozygous (HOM) LRRK2 in PD pathophysiology is unclear. Methods We established human LRRK2 (hLRRK2) R1441G HOM transgenic (Tg) mice to explore the phenotype and pathological features that are associated with hLRRK2 R1441G Tg mouse models and discuss the potential clinical relevance. The open field test (OFT) was performed to examine motor and nonmotor behaviors. A CatWalk analysis system was used to study gait function. [18F]FDOPA PET was used to investigate functional changes in the nigrostriatal pathway in vivo. Transmission electron microscopy was used to examine the morphological changes in mitochondria and lysosomes in the substantia nigra. Results The R1441G HOM Tg mice demonstrated gait disturbance and exhibited less anxiety-related behavior and exploratory behavior than mice with hLRRK2 at 12 months old. Additionally, [18F]FDOPA PET showed a reduction in FDOPA uptake in the striatum of the HOM Tg mice. Notably, there was significant lysosome and autophagosome accumulation in the cytoplasm of dopaminergic neurons in R1441G hemizygous (HEM) and HOM mice. Moreover, it was observed using transmission electron microscopy (TEM) that the mitochondria of R1441G Tg mice were smaller than those of hLRRK2 mice. Conclusion This animal provides a novel HOM hLRRK2 R1441G Tg mouse model that reproduces some phenotype of Parkinsonism in terms of both motor and behavioral dysfunction. There is an increased level of mitochondrial fission and no change in the fusion process in the group of HOM hLRRK2 R1441G Tg mouse. This mutant animal model of PD might be used to study the mechanisms of mitochondrial dysfunction and explore potential new drug targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00844-9.
Collapse
|
10
|
Huzard D, Martin M, Maingret F, Chemin J, Jeanneteau F, Mery PF, Fossat P, Bourinet E, François A. The impact of C-tactile low-threshold mechanoreceptors on affective touch and social interactions in mice. SCIENCE ADVANCES 2022; 8:eabo7566. [PMID: 35767616 PMCID: PMC9242590 DOI: 10.1126/sciadv.abo7566] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Affective touch is necessary for proper neurodevelopment and sociability. However, it remains unclear how the neurons innervating the skin detect affective and social behaviors. The C low-threshold mechanoreceptors (C-LTMRs), a specific population of somatosensory neurons in mice, appear particularly well suited, physiologically and anatomically, to perceive affective and social touch. However, their contribution to sociability has not been resolved yet. Our observations revealed that C-LTMR functional deficiency induced social isolation and reduced tactile interactions in adulthood. Conversely, transient increase in C-LTMR excitability in adults, using chemogenetics, was rewarding, promoted touch-seeking behaviors, and had prosocial influences on group dynamics. This work provides the first empirical evidence that specific peripheral inputs alone can drive complex social behaviors. It demonstrates the existence of a specialized neuronal circuit, originating in the skin, wired to promote interactions with other individuals.
Collapse
Affiliation(s)
- Damien Huzard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Miquel Martin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - François Maingret
- Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS, Bordeaux, France
| | - Jean Chemin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Freddy Jeanneteau
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pierre-François Mery
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Pascal Fossat
- Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS, Bordeaux, France
| | - Emmanuel Bourinet
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury François
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
- Corresponding author.
| |
Collapse
|
11
|
Ono T, Hino K, Kimura T, Uchimura Y, Ashihara T, Higa T, Kojima H, Murakami T, Udagawa J. Excessive folic acid intake combined with undernutrition during gestation alters offspring behavior and brain monoamine profiles. Congenit Anom (Kyoto) 2022; 62:169-180. [PMID: 35531602 DOI: 10.1111/cga.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
Dietary folic acid augmentation during gestation reduces neurodevelopmental disorder risk in offspring; however, it is still unclear if excessive maternal folic acid intake can impair brain function in offspring. We examined if excessive folic acid intake throughout gestation altered the behavior of male offspring under poor nutrition during early gestation (E5.5-E11.5). Dams were divided into four groups: control (CON, 2 mg folic acid/kg of food), excessive folic acid fortification (FF, 10 mg folic acid/kg of food), undernutrition (UN, 40% food reduction from E5.5-E11.5), and excessive folic acid fortification plus undernutrition (UN-FF). Excess maternal folic acid fortification induced hyperactivity in the open-field and lower anxiety-like behavior in the elevated plus maze at 9 weeks of age. These behavioral changes were accompanied by reduced dopamine in the prefrontal cortex (PFC), norepinephrine in the amygdala, and 5-hydroxytryptamine (5-HT) in the dorsal midbrain (DM), PFC, and amygdala where 5-HT neurons project from the DM. Furthermore, canonical discriminant analysis, including dopamine and DOPAC concentrations in the PFC, norepinephrine concentrations in the PFC, amygdala, and pons, and 5-HT and 5-HIAA concentrations in the amygdala and DM, correctly classified 73.5% of the offspring in CON, FF, UN, and UN-FF groups. The first discriminant function mainly classified groups based on nutritional status, whereas the second function mainly classified groups based on folic acid intake. Our study suggests that combined transformations of brain monoamine profiles by maternal undernutrition and excess folic acid intake is involved in the behavioral alteration of offsprings.
Collapse
Affiliation(s)
- Tetsuo Ono
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan.,Omihachiman Community Medical Center, Omihachiman, Shiga, Japan
| | - Kodai Hino
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoko Kimura
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Physical Therapy, Kyoto Tachibana University, Yamashina-ku, Kyoto, Japan
| | - Yasuhiro Uchimura
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takako Higa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
12
|
Something new and something blue: Responses to novelty in a rodent model of depression and epilepsy comorbidity. Physiol Behav 2022; 249:113778. [PMID: 35278474 DOI: 10.1016/j.physbeh.2022.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
A bidirectional comorbidity exists between depression and epilepsy such that patients with epilepsy are at higher risk for developing depression, and vice versa. Each of these conditions individually can be complicated by behavioral effects that worsen quality of life, but less is known about these interactions within the comorbidity of depression and epilepsy. The SwLo rat has been selectively bred for depression-relevant behaviors and exhibits enhanced limbic seizure susceptibility. This study sought to characterize the effects of novelty and stress on the SwLo rodent model of this comorbidity. It was hypothesized that SwLo rats would exhibit altered responses to novelty, reflected in hyperactivity-, anxiety-, sensation seeking-, and/or compulsive behaviors, and that this would be exacerbated with stress. Compared to the SwHi rat (their depression- and epilepsy-resistant counterparts), SwLo rats showed increased entries in all areas of the Open Field Test and spent significantly more time in the light compartment of the Light-Dark Box. SwLo rats also had a significantly higher number of rearing behaviors in the inner squares of the Open Field Test, the closed arms of the Elevated Plus Maze, and both areas of the Light-Dark Box. They demonstrated increased Nestlet shredding but showed no difference in a marble burying task or in latency to consume food in a novelty suppressed feeding task. Interestingly, restraint stress showed little effect on these behaviors, despite increasing corticosterone levels. Combined, these results suggest an increase in exploratory sensation seeking and hypervigilant information-gathering behaviors in the SwLo rat that are not dependent on corticosterone levels. This shows the utility of this model for studying behavioral effects of comorbid depression and epilepsy and allows for their use in identifying underlying mechanisms or screening treatment strategies for this complex comorbidity.
Collapse
|
13
|
Yepez JE, Juárez J. Modafinil acquires reinforcing effects when combined with citalopram. Pharmacol Biochem Behav 2022; 217:173407. [DOI: 10.1016/j.pbb.2022.173407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
14
|
Park S, Cho J, Huh Y. Role of the anterior insular cortex in restraint-stress induced fear behaviors. Sci Rep 2022; 12:6504. [PMID: 35444205 PMCID: PMC9021273 DOI: 10.1038/s41598-022-10345-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Anxiety disorders, such as post-traumatic stress disorder (PTSD), are thought to occur by dysfunction in the fear and anxiety-related brain circuit, however, the exact mechanisms remain unknown. Recent human studies have shown that the right anterior insular cortex (aIC) activity is positively correlated with the severity of PTSD symptoms. Understanding the role of the aIC in fear and anxiety may provide insights into the etiology of anxiety disorders. We used a modified shock-probe defensive burying behavioral test, which utilizes the natural propensity of rodents to bury potentially dangerous objects, to test the role of aIC in fear. Mice exposed to restraint stress exhibited burying of the restrainer-resembling object, indicative of defensive behavior. Electrolytic ablation of the aIC significantly diminished this defensive burying behavior, suggesting the involvement of the aIC. Single-unit recording of pyramidal neurons in the aIC showed that a proportion of neurons which increased activity in the presence of a restrainer-resembling object was significantly correlated with the defensive burying behavior. This correlation was only present in mice exposed to restraint stress. These results suggest that altered neuronal representation in the aIC may regulate fear and anxiety after exposure to a traumatic event. Overall, our result demonstrates that the aIC mediates fear and anxiety and that it could be a potential target for treating anxiety disorders.
Collapse
Affiliation(s)
- Sanggeon Park
- Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Korea.,Ewha Brain Institute, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeiwon Cho
- Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea. .,Ewha Brain Institute, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Yeowool Huh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, 25601, Korea. .,Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, South Korea.
| |
Collapse
|
15
|
Cosgrove JA, Kelly LK, Kiffmeyer EA, Kloth AD. Sex-dependent influence of postweaning environmental enrichment in Angelman syndrome model mice. Brain Behav 2022; 12:e2468. [PMID: 34985196 PMCID: PMC8865162 DOI: 10.1002/brb3.2468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/09/2021] [Accepted: 12/12/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by mutation or loss of UBE3A and marked by intellectual disability, ataxia, autism-like symptoms, and other atypical behaviors. One route to treatment may lie in the role that environment plays early in postnatal life. Environmental enrichment (EE) is one manipulation that has shown therapeutic potential in preclinical models of many brain disorders, including neurodevelopmental disorders. Here, we examined whether postweaning EE can rescue behavioral phenotypes in Ube3a maternal deletion mice (AS mice), and whether any improvements are sex-dependent. METHODS Male and female mice (C57BL/6J Ube3atm1Alb mice and wild-type (WT) littermates; ≥10 mice/group) were randomly assigned to standard housing (SH) or EE at weaning. EE had a larger footprint, a running wheel, and a variety of toys that promoted foraging, burrowing, and climbing. Following 6 weeks of EE, animals were submitted to a battery of tests that reliably elicit behavioral deficits in AS mice, including rotarod, open field, marble burying, and forced swim; weights were also monitored. RESULTS In male AS-EE mice, we found complete restoration of motor coordination, marble burying, and forced swim behavior to the level of WT-SH mice. We also observed a complete normalization of exploratory distance traveled in the open field, but we found no rescue of vertical behavior or center time. AS-EE mice also had weights comparable to WT-SH mice. Intriguingly, in the female AS-EE mice, we found a failure of EE to rescue the same behavioral deficits relative to female WT-SH mice. CONCLUSIONS Environmental enrichment is an effective route to correcting the most penetrant phenotypes in male AS mice but not female AS mice. This finding has important implications for the translatability of early behavioral intervention for AS patients, most importantly the potential dependency of treatment response on sex.
Collapse
Affiliation(s)
- Jameson A. Cosgrove
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Lauren K. Kelly
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Elizabeth A. Kiffmeyer
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| | - Alexander D. Kloth
- Department of BiologyAugustana University2001 S. Summit AvenueSioux FallsSouth DakotaUSA
| |
Collapse
|
16
|
Brehm AM, Mortelliti A. Land-use change alters associations between personality and microhabitat selection. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02443. [PMID: 34455633 DOI: 10.1002/eap.2443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Ecologists commonly assess ecological patterns at the population level, focusing on the average response of all individuals within a population, but to predict how populations will respond to land-use change we must understand how changes to habitat differentially affect individuals within a population. For example, forest management is a widespread type of land-use that impacts wildlife through the loss of key habitat features, but individuals within a population may vary in their responses to this loss due to differences in habitat selection among individuals. Specifically, intraspecific variation in habitat selection has been linked to animal personalities (i.e., consistent behavioral differences among conspecifics), but previous research has not examined whether the relationship between personality and habitat selection is influenced by land-use change. To address this knowledge gap, we tested the hypothesis that land-use change alters the association between personality and microhabitat selection in small mammals. Specifically, we investigated two main questions: (1) To what extent are personality type and microhabitat selection correlated among conspecifics? (2) Does land-use change alter individual patterns of microhabitat selection? To answer these questions, we conducted a large-scale field experiment over 4 years, contrasting unmanaged forest (control) with managed forest (two silvicultural treatments) in Maine, USA. We examined the relationships between habitat selection and personality traits in deer mice (Peromyscus maniculatus) and southern red-backed voles (Myodes gapperi). We found that personality traits were correlated with microhabitat selection at multiple spatial scales. Furthermore, land-use change altered these patterns of selection; resulting in either the loss of personality-associated selection or in novel patterns of selection in managed forests. These findings suggest that promoting structural complexity at multiple spatial scales, such as by interspersing stands of mature forest with managed stands, may maintain a variety of intraspecific habitat selection patterns and the associated ecological outcomes.
Collapse
Affiliation(s)
- Allison M Brehm
- Department of Wildlife, Fisheries and Conservation Biology, University of Maine, Orono, Maine, 04469, USA
| | - Alessio Mortelliti
- Department of Wildlife, Fisheries and Conservation Biology, University of Maine, Orono, Maine, 04469, USA
| |
Collapse
|
17
|
Marcelo A, Afonso IT, Afonso-Reis R, Brito DVC, Costa RG, Rosa A, Alves-Cruzeiro J, Ferreira B, Henriques C, Nobre RJ, Matos CA, de Almeida LP, Nóbrega C. Autophagy in Spinocerebellar ataxia type 2, a dysregulated pathway, and a target for therapy. Cell Death Dis 2021; 12:1117. [PMID: 34845184 PMCID: PMC8630050 DOI: 10.1038/s41419-021-04404-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an incurable and genetic neurodegenerative disorder. The disease is characterized by progressive degeneration of several brain regions, resulting in severe motor and non-motor clinical manifestations. The mutation causing SCA2 disease is an abnormal expansion of CAG trinucleotide repeats in the ATXN2 gene, leading to a toxic expanded polyglutamine segment in the translated ataxin-2 protein. While the genetic cause is well established, the exact mechanisms behind neuronal death induced by mutant ataxin-2 are not yet completely understood. Thus, the goal of this study is to investigate the role of autophagy in SCA2 pathogenesis and investigate its suitability as a target for therapeutic intervention. For that, we developed and characterized a new striatal lentiviral mouse model that resembled several neuropathological hallmarks observed in SCA2 disease, including formation of aggregates, neuronal marker loss, cell death and neuroinflammation. In this new model, we analyzed autophagic markers, which were also analyzed in a SCA2 cellular model and in human post-mortem brain samples. Our results showed altered levels of SQSTM1 and LC3B in cells and tissues expressing mutant ataxin-2. Moreover, an abnormal accumulation of these markers was detected in SCA2 patients' striatum and cerebellum. Importantly, the molecular activation of autophagy, using the compound cordycepin, mitigated the phenotypic alterations observed in disease models. Overall, our study suggests an important role for autophagy in the context of SCA2 pathology, proposing that targeting this pathway could be a potential target to treat SCA2 patients.
Collapse
Affiliation(s)
- Adriana Marcelo
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- PhD Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Inês T Afonso
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - Ricardo Afonso-Reis
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - David V C Brito
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - Rafael G Costa
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Ana Rosa
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
| | - João Alves-Cruzeiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Benedita Ferreira
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rui J Nobre
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Carlos A Matos
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
18
|
Hsu AI, Yttri EA. B-SOiD, an open-source unsupervised algorithm for identification and fast prediction of behaviors. Nat Commun 2021; 12:5188. [PMID: 34465784 PMCID: PMC8408193 DOI: 10.1038/s41467-021-25420-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Studying naturalistic animal behavior remains a difficult objective. Recent machine learning advances have enabled limb localization; however, extracting behaviors requires ascertaining the spatiotemporal patterns of these positions. To provide a link from poses to actions and their kinematics, we developed B-SOiD - an open-source, unsupervised algorithm that identifies behavior without user bias. By training a machine classifier on pose pattern statistics clustered using new methods, our approach achieves greatly improved processing speed and the ability to generalize across subjects or labs. Using a frameshift alignment paradigm, B-SOiD overcomes previous temporal resolution barriers. Using only a single, off-the-shelf camera, B-SOiD provides categories of sub-action for trained behaviors and kinematic measures of individual limb trajectories in any animal model. These behavioral and kinematic measures are difficult but critical to obtain, particularly in the study of rodent and other models of pain, OCD, and movement disorders.
Collapse
Affiliation(s)
- Alexander I Hsu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Bao X, Qi C, Liu T, Zheng X. Information transmission in mPFC-BLA network during exploratory behavior in the open field. Behav Brain Res 2021; 414:113483. [PMID: 34302874 DOI: 10.1016/j.bbr.2021.113483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. The open field test (OFT) is a classic method to investigate the exploratory behavior in rodents, also a widely adopted and pharmacologically validated procedure for evaluating anxiety and depression. Several lines of evidence have shown that medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) play crucial roles in anxiety-like or depression-like exploratory behavior. However, the dynamic characterization of the mPFC-BLA network in exploratory behavior is less well understood. Therefore, this study aimed to investigate the information transmission mechanism in the mPFC-BLA network during exploratory behavior. Local field potentials (LFPs) from mPFC and BLA were simultaneously recorded while the rats performed the OFT. Directed transfer function (DTF), which was derived from Granger causal connectivity analysis, was applied to measure the functional connectivity among LFPs. Information flow (IF) was calculated to explore the dynamics of information transmission in the mPFC-BLA network. Our results revealed that, for both mPFC and BLA, the theta-band functional connectivity in periphery was significantly higher than that in center of the open field. The IF from BLA to mPFC in the open field task was significantly higher than that from mPFC to BLA. These results suggest that the functional connectivity and IF in the mPFC-BLA network are related to the exploratory behavior, and information transmission from BLA to mPFC could be predominant for exploratory behavior.
Collapse
Affiliation(s)
- Xuehui Bao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Chengxi Qi
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
20
|
Rodrigues NC, Silva-Cruz A, Caulino-Rocha A, Bento-Oliveira A, Alexandre Ribeiro J, Cunha-Reis D. Hippocampal CA1 theta burst-induced LTP from weaning to adulthood: Cellular and molecular mechanisms in young male rats revisited. Eur J Neurosci 2021; 54:5272-5292. [PMID: 34251729 DOI: 10.1111/ejn.15390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023]
Abstract
Long-term potentiation (LTP) is a highly studied cellular process, yet determining the transduction and gamma aminobutyric acid (GABAergic) pathways that are the essential versus modulatory for LTP elicited by theta burst stimulation (TBS) in the hippocampal Cornu Ammonis 1 (CA1) area is still elusive, due to the use of different TBS intensities, patterns or different rodent/cellular models. We now characterised the developmental maturation and the transduction and GABAergic pathways required for mild TBS-induced LTP in hippocampal CA1 area in male rats. LTP induced by TBS (5x4) (five bursts of four pulses delivered at 100 Hz) lasted for up to 3 h and was increasingly larger from weaning to adulthood. Stronger TBS patterns - TBS (15x4) or three TBS (15x4) separated by 6 min induced nearly maximal LTP not being the best choice to study the value of LTP-enhancing drugs. LTP induced by TBS (5x4) in young adults was fully dependent on N-methyl D-aspartate (NMDA) receptor and calmodulin-dependent protein kinase II (CaMKII) activity but independent of protein kinase A (PKA) or protein kinase C (PKC) activity. Furthermore, it was partially dependent on GABAB receptor activation and was potentiated by GABAA receptor blockade and less by GAT-1 transporter blockade. AMPA GluA1 phosphorylation on Ser831 (CaMKII target) but not GluA1 Ser845 (PKA target) was essential for LTP expression. The phosphorylation of the Kv4.2 channel was observed at Ser438 (CaMKII target) but not at Thr602 or Thr607 (ERK/MAPK pathway target). This suggests that cellular kinases like PKA, PKC, or kinases of the ERK/MAPK family although important modulators of TBS (5x4)-induced LTP may not be essential for its expression in the CA1 area of the hippocampus.
Collapse
Affiliation(s)
| | - Armando Silva-Cruz
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal
| | - Ana Caulino-Rocha
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Bento-Oliveira
- Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim Alexandre Ribeiro
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal.,Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Cunha-Reis
- Instituto de Medicina Molecular, Unidade de Neurociências, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Mahmoodzadeh Y, Mahmoudi J, Gorgani-Firuzjaee S, Mohtavinejad N, Namvaran A. Effects of N-acetylcysteine on Noise Exposure-induced Oxidative Stress and Depressive- and Anxiety-like Behaviors in Adult Male Mice. Basic Clin Neurosci 2021; 12:499-510. [PMID: 35154590 PMCID: PMC8817184 DOI: 10.32598/bcn.2021.2026.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/16/2020] [Accepted: 06/30/2021] [Indexed: 01/28/2023] Open
Abstract
Introduction: Depression and anxiety are the most common psychiatric disorders. These conditions widely occur in industrial societies and severely affect individuals’ lives. N-Acetylcysteine (NAC) is a mucolytic compound with antioxidant and anti-inflammatory effects. This study aimed to investigate the potential therapeutic effects of NAC on chronic noise-induced depression- and anxiety-like behaviors in mice. Methods: Fifty male BALB/c mice were randomly divided into 5 groups, as follows: control, noise90 dB, noise110 dB, noise 90+NAC, and noise 110+NAC groups. Animals in the noise groups were exposed to 90 dB 2 h/day and 110 dB 2 h/day for 30 days. The NAC groups received NAC (325 mg/kg P.O.) 20 min after being exposed to noise. To evaluate depressive- and anxiety-like behaviors, the examined mice were subjected to the Open Field Test (OFT), Sucrose Preference Test (SPT), Tail Suspension Test (TST), and Elevated Plus Maze (EPM) tasks. At the end of the behavioral tests, the study animals were sacrificed. Accordingly, the levels of Malondialdehyde (MDA), Total Antioxidant Capacity (TAC), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx) were determined in the Hippocampus (HIP) and the Prefrontal Cortex (PFC). Results: The obtained results suggested that noise exposure would induce anxiety- and depressive-like behaviors, being reversed by NAC administration. Moreover, chronic administration of NAC significantly increased antioxidant enzyme activities and reduced lipid peroxidation (MDA levels) in the PFC and HIP of noise-exposed mice. Conclusion: Our findings revealed that administrating NAC would reduce the adverse effects of noise on the brain and would exert anti-depressant and anxiolytic effects.
Collapse
Affiliation(s)
- Yavar Mahmoodzadeh
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Naser Mohtavinejad
- Department of Radio Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Namvaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Liu N, Han Y, Ding H, Huang K, Wei P, Wang L. Objective and comprehensive re-evaluation of anxiety-like behaviors in mice using the Behavior Atlas. Biochem Biophys Res Commun 2021; 559:1-7. [PMID: 33932895 DOI: 10.1016/j.bbrc.2021.03.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Various animal models of anxiety have been developed to evaluate anxiety and anxiolytic drugs. However, non-uniform measuring paradigms, variability in apparatus use and individual differences in animals confound study results. In this study, when all animals were included in the data analysis, we found no significant differences between control and stressed mice using standard behavioral paradigms for assessing anxiety (elevated plus maze and open field test). To provide a better assessment of anxiety, we therefore used a machine learning approach to analyze the behavioral patterns of each animal, and selected typical subjects in each group for use as a training set according to classical anxiety parameters. Spontaneous behaviors in these animals were captured by multi-view cameras and decomposed into sub-second modules using Behavior Atlas, and six behavioral features providing statistically significant difference between stressed and control mice were identified. Combined with low-dimensional embedding and clustering, new features were used to discriminate stressed mice from controls, in both the training set and all objects. Our results show Behavior Atlas is a powerful approach for identifying new potential biomarkers in an unbiased fashion. Our approach can complement classical measuring paradigms to objectively and comprehensively evaluate anxiety-like behaviors.
Collapse
Affiliation(s)
- Nan Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaning Han
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ding
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Kang Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Wei
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Liaw K, Reddy R, Sharma A, Li J, Chang M, Sharma R, Salazar S, Kannan S, Kannan RM. Targeted systemic dendrimer delivery of CSF-1R inhibitor to tumor-associated macrophages improves outcomes in orthotopic glioblastoma. Bioeng Transl Med 2021; 6:e10205. [PMID: 34027092 PMCID: PMC8126814 DOI: 10.1002/btm2.10205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is the most common and aggressive form of primary brain cancer, with median survival of 16-20 months and a 5-year survival rates of <5%. Recent advances in immunotherapies have shown that addressing the tumor immune profile by targeting the colony-stimulating factor 1 (CSF-1) signaling pathway of tumor-associated macrophages (TAMs) has the potential to improve glioblastoma therapy. However, such therapies have shown limited successes in clinical translation partially due to lack of specific cell targeting in solid tumors and systemic toxicity. In this study, we present a novel hydroxyl dendrimer-mediated immunotherapy to deliver CSF-1R inhibitor BLZ945 (D-BLZ) from systemic administration selectively to TAMs in glioblastoma brain tumors to repolarize the tumor immune environment in a localized manner. We show that conjugation of BLZ945 to dendrimers enables sustained release in intracellular and intratumor conditions. We demonstrate that a single systemic dose of D-BLZ targeted to TAMs decreases pro-tumor expression in TAMs and promotes cytotoxic T cell infiltration, resulting in prolonged survival and ameliorated disease burden compared to free BLZ945. Our results demonstrate that dendrimer-drug conjugates can facilitate specific, localized manipulation of tumor immune responses from systemic administration by delivering immunotherapies selectively to TAMs, thereby improving therapeutic efficacy while reducing off-target effects.
Collapse
Affiliation(s)
- Kevin Liaw
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Nanomedicine, Department of OphthalmologyJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Rajsekhar Reddy
- Center for Nanomedicine, Department of OphthalmologyJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Anjali Sharma
- Center for Nanomedicine, Department of OphthalmologyJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Jiangyu Li
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michelle Chang
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rishi Sharma
- Center for Nanomedicine, Department of OphthalmologyJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Sebastian Salazar
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Sujatha Kannan
- Anesthesiology and Critical Care MedicineJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Rangaramanujam M. Kannan
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Nanomedicine, Department of OphthalmologyJohns Hopkins MedicineBaltimoreMarylandUSA
| |
Collapse
|
24
|
Mahmoud GS, Hosny G, Sayed SA. The protective effect of olanzapine on ketamine induced cognitive deficit and increased NR1 expression in rat model of schizophrenia. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2021; 13:22-35. [PMID: 34093963 PMCID: PMC8166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Impaired cognitive flexibility is the core manifestation of schizophrenia (SZ). Previous literature raised a claim against the effect of atypical antipsychotic drugs (AAD) on cognitive and executive functions whose cause needs further investigation. Attention set-shifting task (ASST) tests the prefrontal cortex's (PFC) executive and flexibility functions. GOALS To examine Olanzapine (OLZ) effect on ASST, expression of N-methyl-D-aspartate receptor 1 (NMDR-NR1) in prefrontal cortex (PFC), and metabolic comorbidity in ketamine (KET) model of SZ. METHODS Sixty-two male rats were divided into three groups: 8 for ASST and 30 for open field, ELISA and immunohistochemistry sub-chronic study, and 24 for regular serological and histopathological examination. Rats treated with V: vehicle; K: KET and KO: OLZ plus KET. RESULTS KET caused significant increase in time, trials, and errors to reach criterion. OLZ co-administration reversed effects of KET in ASST with no reduction of locomotor activity. OLZ normalized KET-induced rise of NR1 expression and protected against KET-induced degenerative changes in hippocampus and PFC. Significant increase in serum liver enzymes, total bilirubin, and lipids with chronic compared to sub-chronic OLZ administration. In contrast, insignificant difference between sub-chronic OLZ and vehicle was found. CONCLUSIONS Current study demonstrated the efficacy of OLZ to reverse KET-induced cognitive deficits in ASST with neither reduction in NR1 expression in PFC nor metabolic malfunction in the sub-chronic study. It also showed the protective effect of OLZ on KET induced neuronal degeneration and necrosis. We suggest that chronic OLZ treatment-induced-metabolic malfunction might be the cause of time-dependent cognitive deterioration.
Collapse
Affiliation(s)
- Ghada S Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | - Ghada Hosny
- Department of Pathology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | - Sally A Sayed
- Department of Medical Physiology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| |
Collapse
|
25
|
Adelöf J, Wiseman J, Zetterberg M, Hernebring M. PA28α overexpressing female mice maintain exploratory behavior and capacity to prevent protein aggregation in hippocampus as they age. Aging Cell 2021; 20:e13336. [PMID: 33720528 PMCID: PMC8045925 DOI: 10.1111/acel.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
With age, protein damage accumulates and increases the risk of age-related diseases. The proteasome activator PA28αβ is involved in protein damage clearance during early embryogenesis and has demonstrated protective effects against proteinopathy. We have recently discovered that adult female mice overexpressing PA28α (PA28αOE) have enhanced learning and memory, and protein extracts from their hippocampi prevent aggregation more efficiently than wild type. In this study, we investigated the effect of overexpressing PA28α on aging using C57BL/6N×BALB/c F2 hybrid mice. We found that the hippocampal anti-aggregation effect was maintained in young adult (7 months) to middle-aged (15 months) and old (22 months) PA28αOE females. While the PA28αOE influence on learning and memory gradually decreased with aging, old PA28αOE females did not display the typical drop in explorative behavior-a behavioral hallmark of aging-but were as explorative as young mice. PA28αOE lowered PA28-dependent proteasome capacity in both heart and hippocampus, and there was no indication of lower protein damage load in PA28αOE. The life span of PA28αOE was also similar to wild type. In both wild type and PA28αOE, PA28-dependent proteasome capacity increased with aging in the heart, while 26S and 20S proteasome capacities were unchanged in the timepoints analyzed. Thus, PA28αOE females exhibit improved hippocampal ability to prevent aggregation throughout life and enhanced cognitive capabilities with different behavioral outcomes dependent on age; improved memory at early age and a youth-like exploration at old age. The cognitive effects of PA28αβ combined with its anti-aggregation molecular effect highlight the therapeutical potential of PA28αβ in combating proteinopathies.
Collapse
Affiliation(s)
- Julia Adelöf
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Discovery Biology, Discovery Sciences BioPharmaceuticals R&DAstraZeneca Gothenburg Sweden
| | - John Wiseman
- Discovery Biology, Discovery Sciences BioPharmaceuticals R&DAstraZeneca Gothenburg Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
| | - Malin Hernebring
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy at the University of Gothenburg Gothenburg Sweden
- Discovery Biology, Discovery Sciences BioPharmaceuticals R&DAstraZeneca Gothenburg Sweden
| |
Collapse
|
26
|
Yeung SC, Ganesan K, Wong SSC, Chung SK, Cheung CW. Characterization of acute pain-induced behavioral passivity in mice: Insights from statistical modeling. Eur J Neurosci 2021; 53:3072-3092. [PMID: 33675141 DOI: 10.1111/ejn.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Affective-motivational disturbances are highly inconsistent in animal pain models. The reproducibility of the open-field test in assessing anxiety, malaise or disability remains controversial despite its popularity. While traumatic, persistent or multiregional pain models are commonly considered more effective in inducing negative affect or functional impairment, the early psychobehavioral changes before pain chronification are often underexplored. Here, we aimed to clarify the fundamental relationship between hypernociception and passive distress-like behavior using a model of transient inflammatory pain. To minimize latent confounders and increase data consistency, male C57BL/6N mice were habituated to the open-field arena 6 times before receiving the unilateral intraplantar injection of prostaglandin E2 (PGE2) or vehicle. Open-field (40-min exploration) and nociceptive behavior were evaluated repeatedly along the course of hypernociception in both wild-type and transgenic mice with a known pronociceptive phenotype. To reduce subjectivity, multivariate open-field behavioral outcomes were analyzed by statistical modeling based on exploratory factor analyses, which yielded a 2-factor solution. Within 3 hr after PGE2 injection, mice developed significantly reduced center exploration (factor 1) and a marginally significant increase in their habituation tendency (factor 2), which were not apparent in vehicle-injected mice. The behavioral passivity generally improved as hypernociception subsided. Therefore, transient inflammatory irritation is sufficient to suppress mouse open-field exploratory activity. The apparent absence of late affective-motivational changes in some rodents with prolonged hypernociception may not imply a lack of preceding or underlying neuropsychological alterations. Procedural pain after invasive animal experiments, however small, should be assessed and adequately controlled as a potential research confounder.
Collapse
Affiliation(s)
- Sung Ching Yeung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Kumar Ganesan
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Stanley Sau Ching Wong
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Kwiatkowski MA, Roberts BZ, van Enkhuizen J, Ji B, Zhou X, Young JW. Chronic nicotine, but not suramin or resveratrol, partially remediates the mania-like profile of dopamine transporter knockdown mice. Eur Neuropsychopharmacol 2021; 42:75-86. [PMID: 33191077 PMCID: PMC8853461 DOI: 10.1016/j.euroneuro.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Bipolar disorder (BD) is a severe mental illness affecting 2% of the global population. Current pharmacotherapies provide incomplete symptom remediation, highlighting the need for novel therapeutics. BD is characterized by fluctuations between mania and depression, likely driven by shifts between hyperdopaminergia and hypercholinergia, respectively. Hyperdopaminergia may result from insufficient activity of the dopamine transporter (DAT), the primary mediator of synaptic dopamine clearance. The DAT knockdown (DAT KD) mouse recreates this mechanism and exhibits a highly reproducible hyperexploratory profile in the cross-species translatable Behavioral Pattern Monitor (BPM) that is: (a) consistent with that observed in BD mania patients; and (b) partially normalized by chronic lithium and valproate treatment. The DAT KD/BPM model of mania therefore exhibits high levels of face-, construct-, and predictive-validity for the pre-clinical assessment of putative anti-mania drugs. Three different drug regimens - chronic nicotine (nicotinic acetylcholine receptor (nAChR) agonist; 40 mg/kg/d, 26 d), subchronic suramin (anti-purinergic; 20 mg/kg, 1 × /wk, 4 wks), and subchronic resveratrol (striatal DAT upregulator; 20 mg/kg/d, 4 d) - were administered to separate cohorts of male and female DAT KD- and wildtype (WT) littermate mice, and exploration was assessed in the BPM. Throughout, DAT KD mice exhibited robust hyperexploratory profiles relative to WTs. Nicotine partially normalized this behavior. Resveratrol modestly upregulated DAT expression but did not normalize DAT KD behavior. These results support the mania-like profile of DAT KD mice, which may be partially remediated by nAChR agonists via restoration of disrupted catecholaminergic/cholinergic equilibrium. Delineating the precise mechanism of action of nicotine could identify more selective therapeutic targets.
Collapse
Affiliation(s)
- Molly A Kwiatkowski
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Benjamin Z Roberts
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Jordy van Enkhuizen
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Baohu Ji
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Xianjin Zhou
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States
| | - Jared W Young
- Department of Psychiatry, UC San Diego School of Medicine, University of California, San Diego, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, United States.
| |
Collapse
|
28
|
Eyolfson E, Carr T, Khan A, Wright DK, Mychasiuk R, Lohman AW. Repetitive Mild Traumatic Brain Injuries in Mice during Adolescence Cause Sexually Dimorphic Behavioral Deficits and Neuroinflammatory Dynamics. J Neurotrauma 2020; 37:2718-2732. [DOI: 10.1089/neu.2020.7195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
| | - Thomas Carr
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Asher Khan
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alexander W. Lohman
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Counts BR, Hardee JP, Fix DK, Vanderveen BN, Montalvo RN, Carson JA. Cachexia Disrupts Diurnal Regulation of Activity, Feeding, and Muscle Mechanistic Target of Rapamycin Complex 1 in Mice. Med Sci Sports Exerc 2020; 52:577-587. [PMID: 32058469 DOI: 10.1249/mss.0000000000002166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Cancer cachexia is characterized by severe skeletal muscle mass loss, which is driven by decreased muscle protein synthesis and increased protein degradation. Daily physical activity and feeding behaviors exhibit diurnal fluctuations in mice that can impact the systemic environment and skeletal muscle signaling. PURPOSE We investigated the effect of cancer cachexia on the diurnal regulation of feeding, physical activity, and skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) signaling in tumor-bearing mice. We also examined the impact of increased physical activity on diurnal behaviors and skeletal muscle mTROC1 signaling in the cancer environment. METHODS Physical activity and feeding behaviors were measured for four consecutive days before sacrifice in male C57BL/6 (B6; n = 24) and Apc (MIN; n = 22) mice at 7:00 AM and 7:00 PM under ad libitum condition. A subset of B6 (n = 16) and MIN (n = 19) mice were given wheel access for 2 wk before diurnal behavior measurements. Gastrocnemius muscle protein expression was examined. RESULTS The MIN mice demonstrated altered diurnal fluctuations in feeding and activity compared with the B6. Interestingly, cachexia did not alter MIN total food intake, but dramatically reduced cage physical activity. As a measurement of mTORC1 activity, 4E-BP1 phosphorylation increased after the dark cycle in B6 and precachectic MIN mice, whereas rpS6 phosphorylation was only increased after the dark cycle in MIN mice. MIN 4E-BP1 phosphorylation at the end of the light cycle was significantly correlated with cachexia progression and reduced physical activity. Voluntary wheel running increased light cycle MIN 4E-BP1 phosphorylation and attenuated muscle mass loss. CONCLUSIONS The cancer environment can alter diurnal feeding and physical activity behaviors in tumor-bearing mice, which are linked to the progression of cachexia and muscle wasting. Furthermore, suppressed physical activity during cachexia is associated with decreased skeletal muscle mTORC1 signaling.
Collapse
Affiliation(s)
- Brittany R Counts
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis TN
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Dennis K Fix
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Brandon N Vanderveen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Ryan N Montalvo
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - James A Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis TN
| |
Collapse
|
30
|
Supplementation with Combined Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 Across Development Reveals Sex Differences in Physiological and Behavioural Effects of Western Diet in Long-Evans Rats. Microorganisms 2020; 8:microorganisms8101527. [PMID: 33027912 PMCID: PMC7601208 DOI: 10.3390/microorganisms8101527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome affects various physiological and psychological processes in animals and humans, and environmental influences profoundly impact its composition. Disorders such as anxiety, obesity, and inflammation have been associated with certain microbiome compositions, which may be modulated in early life. In 62 Long–Evans rats, we characterised the effects of lifelong Bifidobacterium longum R0175 and Lactobacillus helveticus R0052 administration—along with Western diet exposure—on later anxiety, metabolic consequences, and inflammation. We found that the probiotic formulation altered specific anxiety-like behaviours in adulthood. We further show distinct sex differences in metabolic measures. In females, probiotic treatment increased calorie intake and leptin levels without affecting body weight. In males, the probiotic seemed to mitigate the effects of Western diet on adult weight gain and calorie intake, without altering leptin levels. The greatest inflammatory response was seen in male, Western-diet-exposed, and probiotic-treated rats, which may be related to levels of specific steroid hormones in these groups. These results suggest that early-life probiotic supplementation and diet exposure can have particular implications on adult health in a sex-dependent manner, and highlight the need for further studies to examine the health outcomes of probiotic treatment in both sexes.
Collapse
|
31
|
McVeigh LG, Perugini AJ, Fehrenbacher JC, White FA, Kacena MA. Assessment, Quantification, and Management of Fracture Pain: from Animals to the Clinic. Curr Osteoporos Rep 2020; 18:460-470. [PMID: 32827293 PMCID: PMC7541703 DOI: 10.1007/s11914-020-00617-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Fractures are painful and disabling injuries that can occur due to trauma, especially when compounded with pathologic conditions, such as osteoporosis in older adults. It is well documented that acute pain management plays an integral role in the treatment of orthopedic patients. There is no current therapy available to completely control post-fracture pain that does not interfere with bone healing or have major adverse effects. In this review, we focus on recent advances in the understanding of pain behaviors post-fracture. RECENT FINDINGS We review animal models of bone fracture and the assays that have been developed to assess and quantify spontaneous and evoked pain behaviors, including the two most commonly used assays: dynamic weight bearing and von Frey testing to assess withdrawal from a cutaneous (hindpaw) stimulus. Additionally, we discuss the assessment and quantification of fracture pain in the clinical setting, including the use of numeric pain rating scales, satisfaction with pain relief, and other biopsychosocial factor measurements. We review how pain behaviors in animal models and clinical cases can change with the use of current pain management therapies. We conclude by discussing the use of pain behavioral analyses in assessing potential therapeutic treatment options for addressing acute and chronic fracture pain without compromising fracture healing. There currently is a lack of effective treatment options for fracture pain that reliably relieve pain without potentially interfering with bone healing. Continued development and verification of reliable measurements of fracture pain in both pre-clinical and clinical settings is an essential aspect of continued research into novel analgesic treatments for fracture pain.
Collapse
Affiliation(s)
- Luke G McVeigh
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, 46202, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Eroli F, Johnell K, Latorre Leal M, Adamo C, Hilmer S, Wastesson JW, Cedazo-Minguez A, Maioli S. Chronic polypharmacy impairs explorative behavior and reduces synaptic functions in young adult mice. Aging (Albany NY) 2020; 12:10147-10161. [PMID: 32445552 PMCID: PMC7346056 DOI: 10.18632/aging.103315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/28/2020] [Indexed: 12/28/2022]
Abstract
A major challenge in the health care system is the lack of knowledge about the possible harmful effects of multiple drug treatments in old age. The present study aims to characterize a mouse model of polypharmacy, in order to investigate whether long-term exposure to multiple drugs could lead to adverse outcomes. To this purpose we selected five drugs from the ten most commonly used by older adults in Sweden (metoprolol, paracetamol, aspirin, simvastatin and citalopram). Five-month-old wild type male mice were fed for eight weeks with control or polypharmacy diet. We report for the first time that young adult polypharmacy-treated mice showed a significant decrease in exploration and spatial working memory compared to the control group. This memory impairment was further supported by a significant reduction of synaptic proteins in the hippocampus of treated mice. These novel results suggest that already at young adult age, use of polypharmacy affects explorative behavior and synaptic functions. This study underlines the importance of investigating the potentially negative outcomes from concomitant administration of different drugs, which have been poorly explored until now. The mouse model proposed here has translatable findings and can be applied as a useful tool for future studies on polypharmacy.
Collapse
Affiliation(s)
- Francesca Eroli
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Kristina Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - María Latorre Leal
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Chiara Adamo
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Sarah Hilmer
- Kolling Institute, Royal North Shore Hosptial and University of Sydney, Clinical Pharmacology and Aged Care, Sidney, Australia
| | - Jonas W Wastesson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| | - Silvia Maioli
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Solna, Sweden
| |
Collapse
|
33
|
Heyer-Osorno R, Juárez J. Modafinil reduces choice impulsivity while increasing motor activity in preadolescent rats treated prenatally with alcohol. Pharmacol Biochem Behav 2020; 194:172936. [PMID: 32360693 DOI: 10.1016/j.pbb.2020.172936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Rats exposed prenatally to alcohol show a reduction in the spontaneous activity of dopaminergic neurons of the ventral tegmental area (VTA), as well as greater impulsive behavior and motor activity, behavioral alterations that have been related to dopaminergic dysfunction. Modafinil (MOD) is a dopamine (DA) reuptake blocker prescribed to treat sleep disorders; however, in recent years it has been used for the treatment of ADHD with positive results. Also, studies in humans and rodents show beneficial effects on learning and attention; however, studies evaluating MOD effects on impulsivity are few and show contradictory results. The purpose of this work was to evaluate the effect of a daily dose of MOD (60 mg/kg i.g.) on cognitive (or choice) impulsivity and motor activity in male preadolescent rats exposed prenatally to alcohol or sucrose (isocaloric control). MOD reduced the impulsive responses in a delay discounting task (DDT) at the same time that increased the motor activity, in both healthy and prenatal alcohol treated rats; however, MOD reduced the response latency in DDT only in prenatal alcohol treated rats. This differential effect of DA activation on impulsivity and motor activity show that the MOD dose that improves the impulse control, does not necessarily decrease motor activity, and suggests a possible differential neural mechanism underlying the expression of these behaviors. On the other hand, the changes in the response latency, only in prenatal alcohol treated groups, suggest that decision-making in animals with a dopaminergic dysfunction is more susceptible to be affected by MOD action.
Collapse
Affiliation(s)
- Rocio Heyer-Osorno
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Juárez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
34
|
Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med 2019; 69:555-570. [PMID: 31822322 PMCID: PMC6935695 DOI: 10.30802/aalas-cm-19-000062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Pain is a clinical syndrome arising from a variety of etiologies in a heterogeneous population, which makes successfully treating the individual patient difficult. Organizations and governments recognize the need for tailored and specific therapies, which drives pain research. This review summarizes the different types of pain assessments currently being used and the various rodent models that have been developed to recapitulate the human pain condition.
Collapse
Affiliation(s)
- Christina M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, St Paul, Minnesota
| | - George L Wilcox
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota;,
| |
Collapse
|
35
|
Adelöf J, Ross JM, Lazic SE, Zetterberg M, Wiseman J, Hernebring M. Conclusions from a behavioral aging study on male and female F2 hybrid mice on age-related behavior, buoyancy in water-based tests, and an ethical method to assess lifespan. Aging (Albany NY) 2019; 11:7150-7168. [PMID: 31509518 PMCID: PMC6756906 DOI: 10.18632/aging.102242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Due to strain-specific behavioral idiosyncrasies, inbred mouse strains are suboptimal research models for behavioral aging studies. The aim of this study is to determine age-related behavioral changes of F2 hybrid C57BL/6NxBALB/c male and female mice. Lifespan was followed (nmales=48, nfemales=51) and cohorts of mature adult (7 months), middle-aged (15 months), and old mice (22 months of age; n=7-12 per group) were assessed regarding open-field activity, exploration, passive avoidance learning/memory, and depressive-like behavior. We found that both males and females demonstrated decreased exploratory behavior with age, while memory and depressive-like behavior were maintained. Females exhibited enhanced depressive-like behavior compared to males; however, a correlation between fat mass and swimming activity in the test directly accounted for 30-46% of this behavioral sex difference. In addition, we suggest a method to qualitatively estimate natural lifespan from survival analyses in which animals with signs of pain or severe disease are euthanized. This is, to our knowledge, the first behavioral study to consider both sex and aging in hybrid mice. We here define decreased exploratory behavior as a conserved hallmark of aging independent of sex, highlight the effect of buoyancy in water tests, and provide a method to assay lifespan with reduced animal suffering.
Collapse
Affiliation(s)
- Julia Adelöf
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden.,Discovery Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Mölndal 43153, Sweden
| | - Jaime M Ross
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02215, USA.,Department of Neuroscience, Biomedicum, Karolinska Institutet, Stockholm 17165, Sweden
| | - Stanley E Lazic
- Quantitative Biology, Discovery Sciences, R&D AstraZeneca, Cambridge CB4 0WG, UK.,Current address: Prioris.ai Inc., Ottawa K2P 2N2, Canada
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden
| | - John Wiseman
- Discovery Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Mölndal 43153, Sweden
| | - Malin Hernebring
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 41390, Sweden.,Discovery Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Mölndal 43153, Sweden
| |
Collapse
|
36
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
37
|
Garlet QI, Rodrigues P, Barbosa LB, Londero AL, Mello CF, Heinzmann BM. Nectandra grandiflora essential oil and its isolated sesquiterpenoids minimize anxiety-related behaviors in mice through GABAergic mechanisms. Toxicol Appl Pharmacol 2019; 375:64-80. [PMID: 31075342 DOI: 10.1016/j.taap.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/22/2023]
Abstract
Nectandra grandiflora Ness (Lauraceae) essential oil (EO) main constituent, the sesquiterpenoid (+)-dehydrofukinone (DHF), has sedative and anticonvulsant effects through GABAergic mechanisms. Other DHF-related sesquiterpenoids have been identified in the EO, such as, dehydrofukinone epoxide (DFX), eremophil-11-en-10-ol (ERM) and selin-11-en-4-α-ol (SEL). However, the neuronal effects of these compounds in mammals remain unknown. Therefore, the aim of this study was to evaluate the anxiolytic potential of the N. grandiflora EO and the isolated compounds in in mice. For this purpose, mice were administered orally with vehicle, 10, 30 or 100 mg/kg EO, DHF, DFX, ERM or SEL or 1 mg/kg diazepam. Locomotion and ethological parameters in the open field (OF) and elevated plus maze (EPM) were recorded. We also examined the effect of DFX, ERM and SEL on the membrane potential and calcium influx in synaptosomes, and the presence of the compounds in the cortical tissue using gas chromatography. EOs and isolated compounds reduced anxiety-related parameters in the EPM (open arms time and entries, end activity, head dipping) and OF (center time and entries, total rearing, unprotected rearing, sniffing, grooming) without alter ambulation or induce sedation. Flumazenil (2 mg/kg, i.p.) altered the anxiolytic-like effect of all treatments and vanished the DFX, ERM and SEL-induced changes in membrane potential. However, FMZ did not blocked the DFX-, ERM- and SEL-induced inhibition of calcium influx. Therefore, our results suggest that N. grandiflora EO and isolated compounds induced anxiolytic-like effect in mice due to positive modulation of GABAa receptors and/or inhibition of neuronal calcium influx.
Collapse
Affiliation(s)
- Quelen Iane Garlet
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Patrícia Rodrigues
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - André Luís Londero
- Medicine Graduation Course, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Carlos Fernando Mello
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Medicine Graduation Course, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Berta Maria Heinzmann
- Post-Graduation Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Pharmacy Graduation Course, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
38
|
Hamidkhaniha S, Bashiri H, Omidi A, Hosseini‐Chegeni A, Tavangar SM, Sabouri S, Montazeri H, Sahebgharani M. Effect of pretreatment with intracerebroventricular injection of minocycline on morphine‐induced memory impairment in passive avoidance test: Role of P‐
CREB
and c‐Fos expression in the dorsal hippocampus and basolateral amygdala regions. Clin Exp Pharmacol Physiol 2019; 46:711-722. [DOI: 10.1111/1440-1681.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/24/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shokouh Hamidkhaniha
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology Afzalipour School of Medicine Kerman University of Medical Sciences Kerman Iran
| | - Ameneh Omidi
- Department of Anatomical Sciences Medical Sciences Faculty Tarbiat Modares University Tehran Iran
| | | | - Seyed Mohammad Tavangar
- Department of Pathology Dr. Shariati Hospital Tehran University of Medical Sciences Tehran Iran
| | - Salehe Sabouri
- Department of Pharmacognosy and Pharmaceutical Biotechnology Faculty of Pharmacy Kerman University of Medical Sciences Kerman Iran
| | - Hamed Montazeri
- School of Pharmacy‐ International Campus Iran University of Medical Sciences Tehran Iran
| | - Mousa Sahebgharani
- Department of Pharmacology School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
39
|
Kharas N, Yang PB, Robles T, Sanchez A, Dafny N. Sex differences in the intensity of cross-sensitization between methylphenidate and amphetamine in adolescent rats. Physiol Behav 2019; 202:77-86. [PMID: 30653974 DOI: 10.1016/j.physbeh.2018.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Chronic use of psychostimulants such as methylphenidate (MPD) and amphetamine (Amph) leads to abuse and dependence. Cross-sensitization occurs when exposure to a drug causes a significant intensified response to a different drug as compared to the effect of the drug in subjects with no previous exposure. Cross-sensitization is used as an experimental correlate for a drug's potential to elicit dependence. The present study uses male and female adolescent rats to examine whether cross-sensitization occurs with MPD, a drug not traditionally considered to elicit dependence, and Amph, a drug considered to elicit dependence. The results showed that there is cross-sensitization with MPD to Amph in adolescent rats and that there is a significant difference in male and female responses. Cross-sensitization between MPD and Amph was observed in a linear dose dependent manner in males and in an inverted U-shape pattern in females. Males treated with the highest dose of 10.0 mg/kg MPD and females treated with the mid-dose of 2.5 mg/kg MPD showed the most robust cross-sensitization. Overall, adolescent female rodents had a greater intensity of response to MPD, Amph, and cross-sensitization between MPD and Amph. This study shows that there are significant sex differences in psychostimulant cross-sensitization in adolescence, indicating the maturity of the gonadal system is not the predominant reason for differences between male and female responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Natasha Kharas
- McGovern Medical School, University of Texas Health Science Center, Houston, TX 77006, United States
| | - Pamela B Yang
- Department of Biological Sciences, Chapman University, Orange, CA 92866, United States
| | - Tiffany Robles
- McGovern Medical School, University of Texas Health Science Center, Houston, TX 77006, United States
| | - Ashley Sanchez
- McGovern Medical School, University of Texas Health Science Center, Houston, TX 77006, United States
| | - Nachum Dafny
- McGovern Medical School, University of Texas Health Science Center, Houston, TX 77006, United States.
| |
Collapse
|
40
|
Takahashi K, Yanai S, Takisawa S, Kono N, Arai H, Nishida Y, Yokota T, Endo S, Ishigami A. Vitamin C and vitamin E double-deficiency increased neuroinflammation and impaired conditioned fear memory. Arch Biochem Biophys 2019; 663:120-128. [DOI: 10.1016/j.abb.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/25/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
|
41
|
Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D. Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 2019; 10:emmm.201708166. [PMID: 29335339 PMCID: PMC5840540 DOI: 10.15252/emmm.201708166] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioenergetic failure and oxidative stress are common pathological hallmarks of amyotrophic lateral sclerosis (ALS), but whether these could be targeted effectively for novel therapeutic intervention needs to be determined. One of the reported contributors to ALS pathology is mitochondrial dysfunction associated with excessive mitochondrial fission and fragmentation, which is predominantly mediated by Drp1 hyperactivation. Here, we determined whether inhibition of excessive fission by inhibiting Drp1/Fis1 interaction affects disease progression. We observed mitochondrial excessive fragmentation and dysfunction in several familial forms of ALS patient‐derived fibroblasts as well as in cultured motor neurons expressing SOD1 mutant. In both cell models, inhibition of Drp1/Fis1 interaction by a selective peptide inhibitor, P110, led to a significant reduction in reactive oxygen species levels, and to improvement in mitochondrial structure and functions. Sustained treatment of mice expressing G93A SOD1 mutation with P110, beginning at the onset of disease symptoms at day 90, produced an improvement in motor performance and survival, suggesting that Drp1 hyperactivation may be an attractive target in the treatment of ALS patients.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna D Cunnigham
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
42
|
Mundugaru R, Sivanesan S, Popa-Wagner A, Udaykumar P, Kirubagaran R, KP G, Vidyadhara D. Pluchea lanceolata protects hippocampal neurons from endothelin-1 induced ischemic injury to ameliorate cognitive deficits. J Chem Neuroanat 2018; 94:75-85. [DOI: 10.1016/j.jchemneu.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022]
|
43
|
Waddington JL, O'Tuathaigh CM. Modelling the neuromotor abnormalities of psychotic illness: Putative mechanisms and systems dysfunction. Schizophr Res 2018; 200:12-19. [PMID: 28867516 DOI: 10.1016/j.schres.2017.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
Abstract
Limitations in access to antipsychotic-naïve patients and in the incisiveness of studies that can be conducted on them, together with the inevitability of subsequent antipsychotic treatment, indicate an enduring role for animal models that can inform on the pathobiology of neuromotor abnormalities in schizophrenia and related psychotic illness. This review focusses particularly on genetically modified mouse models that involve genes associated with risk for schizophrenia and with mechanisms implicated in the neuromotor abnormalities evident in psychotic patients, as well as developmental models that seek to mirror the trajectory, phenomenology and putative pathophysiology of psychotic illness. Such abnormalities are inconsistent and subtle in mice mutant for some schizophrenia risk genes but more evident for others. The phenotype of dopaminergic and glutamatergic mutants indicates the involvement of these mechanisms, informs on the roles of specific receptor subtypes, and implicates the interplay of cortical and subcortical processes. Developmental models suggest a criticality in the timing of early adversity for diversity in the relative emergence of psychological symptoms vis-à-vis neuromotor abnormalities in the overall psychosis phenotype. These findings elaborate current concepts of dysfunction in a neuronal network linking the cerebral cortex, basal ganglia, thalamus and cerebellum. Both findings in model systems and clinical evidence converge in indicating that any distinction between 'psychomotor' and 'neuromotor' abnormality is artificial and arbitrary due to a unitary origin in developmentally determined systems/network dysfunction that underlies the lifetime trajectory of psychotic illness.
Collapse
Affiliation(s)
- John L Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | | |
Collapse
|
44
|
Sturman O, Germain PL, Bohacek J. Exploratory rearing: a context- and stress-sensitive behavior recorded in the open-field test. Stress 2018; 21:443-452. [PMID: 29451062 DOI: 10.1080/10253890.2018.1438405] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stressful experiences are linked to anxiety disorders in humans. Similar effects are observed in rodent models, where anxiety is often measured in classic conflict tests such as the open-field test. Spontaneous rearing behavior, in which rodents stand on their hind legs to explore, can also be observed in this test yet is often ignored. We define two forms of rearing, supported rearing (in which the animal rears against the walls of the arena) and unsupported rearing (in which the animal rears without contacting the walls of the arena). Using an automated open-field test, we show that both rearing behaviors appear to be strongly context dependent and show clear sex differences, with females rearing less than males. We show that unsupported rearing is sensitive to acute stress, and is reduced under more averse testing conditions. Repeated testing and handling procedures lead to changes in several parameters over varying test sessions, yet unsupported rearing appears to be rather stable within a given animal. Rearing behaviors could therefore provide an additional measure of anxiety in rodents relevant for behavioral studies, as they appear to be highly sensitive to context and may be used in repeated testing designs.
Collapse
Affiliation(s)
- Oliver Sturman
- a Department of Health Sciences and Technology, Lab of Molecular and Behavioral Neuroscience , ETH Zurich , Zurich , Switzerland
| | - Pierre-Luc Germain
- b Brain Research Institute , University of Zurich , Zurich , Switzerland
| | - Johannes Bohacek
- a Department of Health Sciences and Technology, Lab of Molecular and Behavioral Neuroscience , ETH Zurich , Zurich , Switzerland
| |
Collapse
|
45
|
Zaitone SA, Ahmed E, Elsherbiny NM, Mehanna ET, El-Kherbetawy MK, ElSayed MH, Alshareef DM, Moustafa YM. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: Relevance to Parkinson's disease therapy. Pharmacol Rep 2018; 71:32-41. [PMID: 30368226 DOI: 10.1016/j.pharep.2018.08.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Caffeic acid phenethyl ester is found in honey bee propolis. It has immunomodulatory, anti-inflammatory and anti-cancer properties. Rotenone is a pesticide commonly used for inducing experimental Parkinson's disease (PD) due to complex I inhibition and microglia activating properties. The current study examined neuroprotective effect of caffeic acid against rotenone-induced neurodegeneration in groups of seven mice. METHODS Mice received protective doses of caffeic acid (2.5, 5 or 10 mg/kg) daily and nine injections of rotenone (1 mg kg, subcutaneously) - every 48 h. Behavioral evaluation of motor function was done by a battery of tests including open-field test, cylinder test, pole test and rotarod test; all these tests showed motor impairment. RESULTS Assay of striatal dopamine highlighted a significant decrease and increases in inflammatory markers. In addition, histopathological assessment of substantia nigra neurons demonstrated low immunostaining for tyrosine hydroxylase (TH) in rotenone treated mice. PCR analysis highlighted upregulation for genes encoding CD11b (a microglia surface antigen), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NFκB). Treatment with caffeic acid (5 or 10 mg/kg) amended most of rotenone-induced motor deficits, lessened microglia expression and inflammatory mediators and improved the nigral TH immunostaining. CONCLUSION These results confirmed the anti-inflammatory activity of caffeic acid and highlighted its neuroprotective activity against rotenone-induced neurodegeneration in mice.
Collapse
Affiliation(s)
- Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Eman Ahmed
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | - Mohamed H ElSayed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Duha M Alshareef
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
46
|
Baker BA, Hickman DL. Bias in Rating of Rodent Distress during Anesthesia Induction for Anesthesia Compared with Euthanasia. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:143-156. [PMID: 29555004 PMCID: PMC5868381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
Selection of an appropriate method of euthanasia involves balancing the wellbeing of the animal during the procedure with the intended use of the animal after death and the physical and psychologic safety of the observer or operator. The recommended practices for anesthesia as compared with euthanasia are very disparate, despite the fact that all chemical methods of euthanasia are anesthetic overdoses. To explain this disparity, this study sought to determine whether perception bias is inherent in the discussion of euthanasia compared with anesthesia. In this study, participants viewed videorecordings of the anesthesia of either 4 rats or 4 mice, from induction to loss of consciousness. Half of the participants were told that they were observing anesthesia; the other half understood that they were observing euthanasia. Participants were asked to rate the distress of the animals by scoring escape behaviors, fear behaviors, respiratory distress, and other distress markers. For mice, the participants generally rated the distress as high when they were told that the mouse was being euthanized, as compared with the participants who were told that the mouse was being anesthetized. For rats, the effect was not as strong, and the distress was generally rated higher when participants were told they were watching anesthesia. Because the interpretation of distress showed bias in both species-even though the bias differed regarding the procedure that interpreted as distressing-this study demonstrates that laboratory animal professionals must consider the influence of potential perception bias when developing policies for euthanasia and anesthesia.
Collapse
Affiliation(s)
- Brittany A Baker
- Laboratory Animal Resource Center, School of Medicine, Indiana University, Indianapolis
| | - Debra L Hickman
- Laboratory Animal Resource Center, School of Medicine, Indiana University, Indianapolis;,
| |
Collapse
|
47
|
Abstract
Because of the ethical and regulatory hurdles associated with human studies, much of what is known about the psychopharmacology of hallucinogens has been derived from animal models. However, developing reliable animal models has proven to be a challenging task due to the complexity and variability of hallucinogen effects in humans. This chapter focuses on three animal models that are frequently used to test the effects of hallucinogens on unconditioned behavior: head twitch response (HTR), prepulse inhibition of startle (PPI), and exploratory behavior. The HTR has demonstrated considerable utility in the neurochemical actions of hallucinogens. However, the latter two models have clearer conceptual bridges to human phenomenology. Consistent with the known mechanism of action of hallucinogens in humans, the behavioral effects of hallucinogens in rodents are mediated primarily by activation of 5-HT2A receptors. There is evidence, however, that other receptors may play secondary roles. The structure-activity relationships (SAR) of hallucinogens are reviewed in relation to each model, with a focus on the HTR in rats and mice.
Collapse
Affiliation(s)
- Adam L Halberstadt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
48
|
Milienne-Petiot M, Geyer MA, Arnt J, Young JW. Brexpiprazole reduces hyperactivity, impulsivity, and risk-preference behavior in mice with dopamine transporter knockdown-a model of mania. Psychopharmacology (Berl) 2017; 234:1017-1028. [PMID: 28160035 PMCID: PMC5391249 DOI: 10.1007/s00213-017-4543-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
RATIONALE Bipolar disorder (BD) is a unique mood disorder defined by periods of depression and mania. The defining diagnosis of BD is the presence of mania/hypomania, with symptoms including hyperactivity and risk-taking. Since current treatments do not ameliorate cognitive deficits such as risky decision-making, and impulsivity that can negatively affect a patient's quality of life, better treatments are needed. OBJECTIVES Here, we tested whether acute treatment with brexpiprazole, a serotonin-dopamine activity modulator with partial agonist activity at D2/3 and 5-HT1A receptors, would attenuate the BD mania-relevant behaviors of the dopamine transporter (DAT) knockdown mouse model of mania. METHODS The effects of brexpiprazole on DAT knockdown and wild-type littermate mice were examined in the behavioral pattern monitor (BPM) and Iowa gambling task (IGT) to quantify activity/exploration and impulsivity/risk-taking behavior respectively. RESULTS DAT knockdown mice exhibited hyper-exploratory behavior in the BPM and made fewer safe choices in the IGT. Brexpiprazole attenuated the mania-like hyper-exploratory phenotype and increased safe choices in risk-preferring DAT knockdown mice. Brexpiprazole also reduced safe choices in safe-preferring mice irrespective of genotype. Finally, brexpiprazole reduced premature (impulsive-like) responses in both groups of mice. CONCLUSIONS Consistent with earlier reports, DAT knockdown mice exhibited hyper-exploratory, risk-preferring, and impulsive-like profiles consistent with patients with BD mania in these tasks. These behaviors were attenuated after brexpiprazole treatment. These data therefore indicate that brexpiprazole could be a novel treatment for BD mania and/or risk-taking/impulsivity disorders, since it remediates some relevant behavioral abnormalities in this mouse model.
Collapse
Affiliation(s)
- Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jørn Arnt
- Sunred Pharma Consulting, Solrod Strand, Denmark
- Synaptic Transmission, Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, DK, Denmark
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
49
|
Chakraborty N, Meyerhoff J, Jett M, Hammamieh R. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. Methods Mol Biol 2017; 1598:117-154. [PMID: 28508360 DOI: 10.1007/978-1-4939-6952-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A molecular pattern that links the atypical fear plasticity to energy deficiency was thereby identified to be causally associated with many behavioral shifts and transformations.PTSD is a multifactorial illness sensitive to environmental influence. Accordingly, it is essential to employ the optimal animal model approximating the environmental condition that elicits PTSD-like symptoms. Integration of an optimal animal model with a systems biology approach can contribute to a more knowledge-driven and efficient next-generation care management system and, potentially, prevention of PTSD.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - James Meyerhoff
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA.
| |
Collapse
|
50
|
de Souza JM, da Silva WAM, de Oliveira Mendes B, Guimarães ATB, de Lima Rodrigues AS, Montalvão MF, da Costa Estrela D, da Silva AR, Malafaia G. Inbred mice strain shows neurobehavioral changes when exposed to tannery effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2035-2046. [PMID: 27807787 DOI: 10.1007/s11356-016-7949-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/20/2016] [Indexed: 06/06/2023]
Abstract
The bovine leather processing (tanning industries) stands as a generating activity of potentially toxic waste. The emission of untreated effluents into the environment may cause serious harm to human and environmental health. Nevertheless, few studies have investigated the possible effects of intake of these effluents in experimental mammalian models. Thus, this study aimed to evaluate the neurobehavioral effects of chronic intake of different tannery effluent concentrations diluted with water (0.1, 1, and 5%) in male C57BL/6J mice. After 120 days of exposure, the animals were subjected to different behavioral tests, predictive of anxiety (elevated plus maze (EPM), open-field (OF), and neophobia test), depression (forced swim), and memory deficits (object recognition test). From the EPM test, it was observed that the mice exposed to 0.1, 1, and 5% of tannery effluents showed higher anxiety scores compared to the animals in the control group. However, the results of this study revealed no differences among the experimental groups in the proportion (percentage) of locomotion in the central quarters/total locomotion calculated (by OF), considered an indirect measure for anxiety. At neophobia test, all the animals exposed to chronic intake of tannery effluents showed higher latency time to start eating, which corresponds to an anxiogenic behavior. Regarding the forced swim test, it was observed that the animals exposed to tannery effluents had longer time in immobility behavior, suggesting a predictive behavior to depression. Finally, the object recognition test showed that the treatments did not cause damage to the animals' memory. The recognition rate of the new object did not differ among the experimental groups. Thus, it is concluded that male C57BL/6J mice (inbred strain) exposed to tannery effluents have predictive neurobehavioral changes of anxiety and depression, without memory deficit.
Collapse
Affiliation(s)
- Joyce Moreira de Souza
- Instituto Federal Goiano-Câmpus Urutaí, Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, Brazil
| | | | - Bruna de Oliveira Mendes
- Instituto Federal Goiano-Câmpus Urutaí, Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, Brazil
| | | | | | - Mateus Flores Montalvão
- Instituto Federal Goiano-Câmpus Urutaí, Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, Brazil
| | - Dieferson da Costa Estrela
- Instituto Federal Goiano-Câmpus Urutaí, Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, Brazil
| | - Anderson Rodrigo da Silva
- Instituto Federal Goiano-Câmpus Urutaí, Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Instituto Federal Goiano-Câmpus Urutaí, Rodovia Geraldo Silva Nascimento, 2.5 km, Zona Rural, Urutaí, GO, Brazil.
| |
Collapse
|