1
|
Sanchez LM, Acosta G, Cushing SD, Johnson SA, Turner SM, Davies S, Savage DD, Burke SN, Clark BJ. The effects of moderate prenatal alcohol exposure on performance in object and spatial discrimination tasks by adult male rats. Behav Brain Res 2025; 478:115324. [PMID: 39521144 PMCID: PMC11606775 DOI: 10.1016/j.bbr.2024.115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Exposure to alcohol during pregnancy produces Fetal Alcohol Spectrum Disorders, which in its most severe form is characterized by physical dysmorphology and neurobehavioral alterations. Moderate prenatal alcohol exposure (mPAE) is known to produce deficits in discrimination of spatial locations in adulthood. However, the impact of mPAE on higher-order sensory representations, such as discrimination of perceptually similar stimuli, is currently unknown. In the present study, we tested the hypothesis that mPAE would disrupt performance on hippocampal-sensitive tasks that require discrimination between perceptually similar objects or discrimination between spatial locations in a radial arm maze. Here we report that male mPAE rats exhibited intact performance on three types of object discrimination tasks: one in which rats discriminated between distinct toy objects, a second in which discrimination was made between distinct and similar LEGO objects, and a mnemonic similarity task in which rats discriminated between randomly presented LEGO objects that varied in similarity with a learned object. Although adult male mPAE rats performed similarly to control rats on all three object discrimination tasks, they showed deficits when tested in a radial arm maze spatial discrimination task. Specifically, male mPAE rats expressed a significantly higher number of working memory errors (returns to previously visited arms) and were more likely to use non-spatial strategies during training. Together, the findings of the present study support the conclusion that mPAE produces specific deficits in the online processing of spatial information and executing spatial navigation strategies, but spares the ability to discriminate between perceptually similar stimuli.
Collapse
Affiliation(s)
- Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Gabriela Acosta
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah D Cushing
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah A Johnson
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Sean M Turner
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
2
|
Wright P, McCall E, Collier S, Johnson F, Iyer L, Koretsky AP, Petrus E. Behavioral adaptations after unilateral whisker denervation. Behav Brain Res 2025; 482:115435. [PMID: 39842643 DOI: 10.1016/j.bbr.2025.115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
The rodent whisker system provides an excellent model to study experience dependent plasticity in neural morphology, circuitry, and behavior. Rodents use bilateral whisker sensation to gather information about their environment. Unilateral whisker denervation disrupts whisker circuitry but its impact on task specific behavior is largely unknown. Adult mice with unilateral whisker denervation display a preference to using the intact whisker set to inspect objects, but do not have altered open field navigation. An object localization task requiring only the intact whisker set did not detect any change in performance, but gap crossing was impaired after unilateral whisker denervation. Finally, chronic whisker denervation led to increased anxiety-like behavior which was rescued by training on the gap cross task. These findings indicate that mice use behavioral strategies to adapt to life with only one set of intact whiskers.
Collapse
Affiliation(s)
- Patrick Wright
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Program, Bethesda, MD, USA
| | - Eleanor McCall
- Neuroscience Program, Emory University, Atlanta, GA, USA
| | - Sean Collier
- Neuroscience Program, Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Fred Johnson
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Laxmi Iyer
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alan P Koretsky
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Program, Bethesda, MD, USA
| | - Emily Petrus
- Neuroscience Program, Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
3
|
Sahid AS, Bebbington MJ, Marcus A, Baracz SJ, Zimmermann KS, Oei J, Ward MC, Clemens KJ. Perinatal exposure to methadone or buprenorphine impairs hippocampal-dependent cognition and brain development in juvenile rats. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111255. [PMID: 39832750 DOI: 10.1016/j.pnpbp.2025.111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The opioid crisis continues to escalate, disproportionately affecting women of reproductive age. Traditionally the first line of treatment for pregnant women with opioid use disorder is the mu-opioid receptor agonist methadone. However, in recent years, the use of buprenorphine as a replacement therapy has increased as it has fewer side-effects and longer duration of action. Either drug significantly improves outcomes for the mother, but their impact on the developing infant is less certain. To this end, we directly compared the effects of perinatal methadone (MET; 9 mg/kg/day starting dose) versus buprenorphine (BUP; 1 mg/kg/day starting dose) delivered via mini osmotic pump on the long-term behavior of offspring and associated molecular changes in the brain. Opioid exposure across pregnancy resulted in reduced weight gain and smaller litters compared to sham controls, and female pups in particular gained weight at a slower rate across development. Opioid treatment delayed neuromuscular reflex development, with subtle differences observed between MET and BUP. As juveniles, pups with prenatal MET exposure showed poor object recognition, although both MET and BUP have led to deficits in place recognition task. Immunofluorescence studies found corresponding decreases in astrocytes and myelin-positive cells in the hippocampus in both MET and BUP pups. Overall, both MET and BUP were associated with significant developmental and cognitive delays and changes in markers of neuronal development and inflammation, particularly in the hippocampus. The majority of changes were similar between MET and BUP-treated pups, suggesting that gestational exposure to either drug has a similar long-term negative impact on offspring.
Collapse
Affiliation(s)
- Arshman S Sahid
- School of Psychology, University of New South Wales, Sydney, Australia
| | | | - Abigail Marcus
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Sarah J Baracz
- School of Psychology, University of New South Wales, Sydney, Australia
| | | | - JuLee Oei
- School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia
| | - Meredith C Ward
- School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia
| | - Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Duck SA, Nazareth M, Fassinger A, Pinto C, Elmore G, Nugent M, St Pierre M, Vannucci SJ, Chavez-Valdez R. Blood glucose and β-hydroxybutyrate predict significant brain injury after hypoxia-ischemia in neonatal mice. Pediatr Res 2024:10.1038/s41390-024-03461-4. [PMID: 39181984 DOI: 10.1038/s41390-024-03461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The Vannucci procedure is widely used to model cerebral hypoxic-ischemic (HI) injury in neonatal rodents. Identifying minimally invasive biomarkers linked to brain injury would improve stratification of pups to experimental treatments. We hypothesized that extreme blood glucose (BG) and β-hydroxybutyrate (bHB) levels immediately after HI will correlate with severity of brain injury in this model. METHODS C57BL6 mice of both sexes underwent the Vannucci procedure with BG and bHB measured immediately after hypoxia. GFAP and α-fodrin were measured to assess injury severity at 4h, P11, P18 and P40. Open field (OF), Y-maze (YM), and Object-location task (OLT) were tested at P40. RESULTS Clinical seizures-like stereotypies during hypoxia were associated with lower post-hypoxia BG in HI-injured mice. Low BG after HI was related to higher GFAP expression, higher α-fodrin breakdown, lower residual regional volume, and worse working memory. BG was superior to bHB in ROC analysis with BG threshold of <111 mg/dL providing 100% specificity with 72% sensitivity for hippocampal HI-injury. CONCLUSIONS Post-hypoxic BG is a minimally invasive screening tool to identify pups with significant HI brain injury in the Vannucci model modified for mice improving our ability to stratify pups to experimental treatments to assess effectiveness. IMPACT End hypoxic-ischemic blood glucose levels are a reliable and inexpensive biomarker to detect hypoxic-ischemic brain injury in mice. Screening with blood glucose levels post-hypoxia allows appropriate stratification of those mouse pups most likely to be injured to experimental treatments improving validity and translatability of the results. These findings provide biological plausibility to the clinical observation that extreme blood glucose levels relate to worse outcomes after hypoxia-ischemia.
Collapse
Affiliation(s)
- Sarah Ann Duck
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Michelle Nazareth
- Department of Neuroscience, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Abigail Fassinger
- Department of Neuroscience, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Charles Pinto
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Genesis Elmore
- Department of Neuroscience, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Michael Nugent
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Mark St Pierre
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University - School of Medicine, Baltimore, MD, USA
| | - Susan J Vannucci
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Raul Chavez-Valdez
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University - School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Cuevas K, Adler SA, Barr R, Colombo J, Gerhardstein P, Hayne H, Hunt PS, Richardson R. Commentary on the scientific rigor of Sen and Gredebäck's simulation: Why empirical parameters are necessary to build simulations. Child Dev 2024; 95:331-337. [PMID: 38140889 DOI: 10.1111/cdev.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023]
Affiliation(s)
| | | | - Rachel Barr
- Georgetown University, Washington, District of Columbia, USA
| | | | - Peter Gerhardstein
- Binghamton University, State University of New York, Binghamton, New York, USA
| | | | - Pamela S Hunt
- College of William & Mary, Williamsburg, Virginia, USA
| | - Rick Richardson
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Lei C, Liu C, Peng Y, Zhan Y, Zhang X, Liu T, Liu Z. A high-salt diet induces synaptic loss and memory impairment via gut microbiota and butyrate in mice. IMETA 2023; 2:e97. [PMID: 38868427 PMCID: PMC10989808 DOI: 10.1002/imt2.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/14/2024]
Abstract
High-salt diet (HSD)-fed mice display cognitive impairment and lower synaptic proteins via changed gut microbiota composition and short-chain fatty acids production. Gut microbiota from HSD-fed mice impairs memory and synapse in normal salt diet-fed mice. Butyrate treatment partially reverses memory impairment in HSD-fed mice. Above all, this study indicates the important role of the gut microbiome and butyrate production in synaptic loss and memory impairment.
Collapse
Affiliation(s)
- Chao Lei
- Department of Anorectal Surgery, Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)DongguanChina
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Cong Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yuling Peng
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yu Zhan
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xiaoming Zhang
- Department of Internal MedicineHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenChina
| | - Ting Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhihua Liu
- Department of Anorectal Surgery, Affiliated Dongguan HospitalSouthern Medical University (Dongguan People's Hospital)DongguanChina
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Spahic H, Parmar P, Miller S, Emerson PC, Lechner C, St. Pierre M, Rastogi N, Nugent M, Duck SA, Kirkwood A, Chavez-Valdez R. Dysregulation of ErbB4 Signaling Pathway in the Dorsal Hippocampus after Neonatal Hypoxia-Ischemia and Late Deficits in PV + Interneurons, Synaptic Plasticity and Working Memory. Int J Mol Sci 2022; 24:ijms24010508. [PMID: 36613949 PMCID: PMC9820818 DOI: 10.3390/ijms24010508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) injury leads to deficits in hippocampal parvalbumin (PV)+ interneurons (INs) and working memory. Therapeutic hypothermia (TH) does not prevent these deficits. ErbB4 supports maturation and maintenance of PV+ IN. Thus, we hypothesized that neonatal HI leads to persistent deficits in PV+ INs, working memory and synaptic plasticity associated with ErbB4 dysregulation despite TH. P10 HI-injured mice were randomized to normothermia (NT, 36 °C) or TH (31 °C) for 4 h and compared to sham. Hippocampi were studied for α-fodrin, glial fibrillary acidic protein (GFAP), and neuroregulin (Nrg) 1 levels; erb-b2 receptor tyrosine kinase 4 (ErbB4)/ Ak strain transforming (Akt) activation; and PV, synaptotagmin (Syt) 2, vesicular-glutamate transporter (VGlut) 2, Nrg1, and ErbB4 expression in coronal sections. Extracellular field potentials and behavioral testing were performed. At P40, deficits in PV+ INs correlated with impaired memory and coincided with blunted long-term depression (LTD), heightened long-term potentiation (LTP) and increased Vglut2/Syt2 ratio, supporting excitatory-inhibitory (E/I) imbalance. Hippocampal Nrg1 levels were increased in the hippocampus 24 h after neonatal HI, delaying the decline documented in shams. Paradoxically ErbB4 activation decreased 24 h and again 30 days after HI. Neonatal HI leads to persistent deficits in hippocampal PV+ INs, memory, and synaptic plasticity. While acute decreased ErbB4 activation supports impaired maturation and survival after HI, late deficit reemergence may impair PV+ INs maintenance after HI.
Collapse
Affiliation(s)
- Harisa Spahic
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pritika Parmar
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Miller
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul Casey Emerson
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charles Lechner
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark St. Pierre
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Neetika Rastogi
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Nugent
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah Ann Duck
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Alfredo Kirkwood
- Mind-Brain Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence:
| |
Collapse
|
8
|
Asiminas A, Lyon SA, Langston RF, Wood ER. Developmental trajectory of episodic-like memory in rats. Front Behav Neurosci 2022; 16:969871. [PMID: 36523755 PMCID: PMC9745197 DOI: 10.3389/fnbeh.2022.969871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
Introduction Episodic memory formation requires the binding of multiple associations to a coherent episodic representation, with rich detail of times, places, and contextual information. During postnatal development, the ability to recall episodic memories emerges later than other types of memory such as object recognition. However, the precise developmental trajectory of episodic memory, from weaning to adulthood has not yet been established in rats. Spontaneous object exploration tasks do not require training, and allow repeated testing of subjects, provided novel objects are used on each trial. Therefore, these tasks are ideally suited for the study of the ontogeny of episodic memory and its constituents (e.g., object, spatial, and contextual memory). Methods In the present study, we used four spontaneous short-term object exploration tasks over two days: object (OR), object-context (OCR), object-place (OPR), and object-place-context (OPCR) recognition to characterise the ontogeny of episodic-like memory and its components in three commonly used outbred rat strains (Lister Hooded, Long Evans Hooded, and Sprague Dawley). Results In longitudinal studies starting at 3-4 weeks of age, we observed that short term memory for objects was already present at the earliest time point we tested, indicating that it is established before the end of the third week of life (consistent with several other reports). Object-context memory developed during the fifth week of life, while both object-in-place and the episodic-like object-place-context memory developed around the seventh postnatal week. To control for the effects of previous experience in the development of associative memory, we confirmed these developmental trajectories using a cross-sectional protocol. Discussion Our work provides robust evidence for different developmental trajectories of recognition memory in rats depending on the content and/or complexity of the associations and emphasises the utility of spontaneous object exploration tasks to assess the ontogeny of memory systems with high temporal resolution.
Collapse
Affiliation(s)
- Antonis Asiminas
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A. Lyon
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rosamund F. Langston
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Emma R. Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, Bengaluru, India
| |
Collapse
|
9
|
Does a Single Exposure to General Anesthesia Have a Cumulative Effect on the Developing Brain after Mild Perinatal Asphyxia? LIFE (BASEL, SWITZERLAND) 2022; 12:life12101568. [PMID: 36295002 PMCID: PMC9605013 DOI: 10.3390/life12101568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Background: General anesthesia (GA) in pediatric patients represents a clinical routine. Factors such as increased birth age and maternal chronic conditions cause more infants to experience hypoxic-ischemic encephalopathy, an additional risk for anesthesia. Aim: This study evaluates the effect of one sevoflurane-induced GA episode on the immature brain previously exposed to perinatal asphyxia (PA). Methods: Postnatal day 6 (PND6) Wistar rats were exposed to a 90-min episode of normoxia/PA and at PND15 to a 120-min episode of normoxia/GA. Four groups were analyzed: Control (C), PA, GA, and PA-GA. Post-exposures, fifteen pups/group were sacrificed and the hippocampi were isolated to assess S-100B and IL-1B protein levels, using ELISA. At maturity, the behavior was assessed by: forced swimming test (FST), and novel object recognition test. Results: Hippocampal S-100B level was increased in PA, GA, and PA-GA groups, while IL-1B was increased in PA, but decreased in PA-GA. The immobility time was increased in PA and PA-GA, in FST. Conclusions: Both PA and GA contribute to glial activation, however with no cumulative effect. Moreover, PA reduces the rats’ mobility, irrespective of GA exposure, while memory evaluated by the novel object recognition test was not influenced.
Collapse
|
10
|
Combined exposure to maternal high-fat diet and neonatal lipopolysaccharide disrupts stress-related signaling but normalizes spatial memory in juvenile rats. Brain Behav Immun 2022; 102:299-311. [PMID: 35259428 DOI: 10.1016/j.bbi.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022] Open
Abstract
Both neonatal infections and exposure to maternal obesity are inflammatory stressors in early life linked to increased rates of psychopathologies related to mood and cognition. Epidemiological studies indicate that neonates born to mothers with obesity have a higher likelihood of developing neonatal infections, however effects on offspring physiology and behavior resulting from the combination of these stressors have yet to be investigated. The aim of this study was to explore immediate and persistent phenotypes resulting from neonatal lipopolysaccharide (nLPS) administration in rat offspring born to dams consuming a high-fat diet (HFD). Neural transcript abundance of genes involved with stress regulation and spatial memory were examined alongside related behaviors. At the juvenile age point, unlike offspring exposed to maternal HFD (mHFD) or nLPS alone, offspring with combined exposure to mHFD + nLPS displayed altered transcript abundances of stress-related genes in the ventral hippocampus (HPC) in a manner conducive to potentiating stress responses. For memory-related phenotypes, juveniles exposed to mHFD + nLPS exhibited normalized spatial memory and levels of memory-related gene expression in the dorsal HPC similar to control diet offspring, while control diet + nLPS, and mHFD offspring exhibited reduced levels of memory-related gene expression and impaired spatial memory. These findings suggest that dual exposure to unique inflammatory stressors in early life can disrupt neural stress regulation but normalize spatial memory processes.
Collapse
|
11
|
Andrade TA, Fahel JS, de Souza JM, Terra AC, Souza DG, Costa VV, Teixeira MM, Bloise E, Ribeiro FM. In Utero Exposure to Zika Virus Results in sex-Specific Memory Deficits and Neurological Alterations in Adult Mice. ASN Neuro 2022; 14:17590914221121257. [PMID: 36017573 PMCID: PMC9421007 DOI: 10.1177/17590914221121257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
SUMMARY STATEMENT In utero exposure to ZIKV leads to decreased number of neurons in adult mice. Female mice exposed to ZIKV in utero exhibit lower levels of BDNF, a decrease in synaptic markers, memory deficits, and risk-taking behavior during adulthood.
Collapse
Affiliation(s)
- Thiago A. Andrade
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Julia S. Fahel
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jessica M. de Souza
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana C. Terra
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle G. Souza
- Department of Microbiology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Vivian V. Costa
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Enrrico Bloise
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
12
|
Promoting and Optimizing the Use of 3D-Printed Objects in Spontaneous Recognition Memory Tasks in Rodents: A Method for Improving Rigor and Reproducibility. eNeuro 2021; 8:ENEURO.0319-21.2021. [PMID: 34503967 PMCID: PMC8489023 DOI: 10.1523/eneuro.0319-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Spontaneous recognition memory tasks are widely used to assess cognitive function in rodents and have become commonplace in the characterization of rodent models of neurodegenerative, neuropsychiatric and neurodevelopmental disorders. Leveraging an animal’s innate preference for novelty, these tasks use object exploration to capture the what, where and when components of recognition memory. Choosing and optimizing objects is a key feature when designing recognition memory tasks. Although the range of objects used in these tasks varies extensively across studies, object features can bias exploration, influence task difficulty and alter brain circuit recruitment. Here, we discuss the advantages of using 3D-printed objects in rodent spontaneous recognition memory tasks. We provide strategies for optimizing their design and usage, and offer a repository of tested, open-source designs for use with commonly used rodent species. The easy accessibility, low-cost, renewability and flexibility of 3D-printed open-source designs make this approach an important step toward improving rigor and reproducibility in rodent spontaneous recognition memory tasks.
Collapse
|
13
|
Liu J, Yu C, Li R, Liu K, Jin G, Ge R, Tang F, Cui S. High-altitude Tibetan fermented milk ameliorated cognitive dysfunction by modified gut microbiota in Alzheimer's disease transgenic mice. Food Funct 2021; 11:5308-5319. [PMID: 32458851 DOI: 10.1039/c9fo03007g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that is regarded as a growing global challenge. Accumulating evidence linking gut microbiota with AD has become intriguing. The purpose of this study was to investigate how Tibetan fermented milk affected memory impairment in amyloid precursor protein (APP)/presenilin-1 (PS1) mice, using APP/PS1 transgenic mice as examples. We used Tibetan fermented milk (the yogurt samples with the highest microbial diversity were selected by 16S sequencing) as an intervention in such mice for 20 weeks, with aseptic maintenance feed as their basic diet. At the end of the intervention, we collected fecal samples for 16S ribosomal ribonucleic acid (rRNA) sequencing. We evaluated the effects of Tibetan fermented milk on the mice's cognitive function by behavioral examination, and deposition of amyloid beta (Aβ) in the hippocampus and cortex of the mice by immunohistochemistry (IHC). Results showed that Tibetan fermented milk could improve cognitive impairment in APP/PS1 mice, including spatial learning/memory and object recognition/memory. Sequencing of 16S ribosomal RNA in mouse feces showed that Tibetan fermented milk increased intestinal microbial diversity and elevated the relative abundance of Bacteroides and Faecalibacterium spp. Mucispirillum and Ruminiclostridium were highly abundant in APP/PS1 mice. Additionally, correlation analysis revealed that cognitive function was correlated negatively with Mucispirillum abundance and positively with Muribaculum and Erysipelatoclostridium abundance. Tibetan fermented milk could also reduce deposition of Aβ in the cerebral cortex and hippocampus. Our data suggested that long-term intake of Tibetan fermented milk had a beneficial effect on the composition of intestinal flora, which was correlated with cognitive improvements in APP/PS1 mice and seemed to help prevent and treat AD-induced cognitive decline.
Collapse
Affiliation(s)
- JunLi Liu
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China. and Qinghai University Affiliated Hospital, Xining, China
| | - ChunYang Yu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - RunLe Li
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China.
| | - KunMei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Laboratory Medicine, Ningxia Medical University, Yinchuan, China
| | - GuoEn Jin
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China.
| | - RiLi Ge
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China.
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China.
| | - Sen Cui
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Xining, China. and Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
14
|
Gursky ZH, Savage LM, Klintsova AY. Executive functioning-specific behavioral impairments in a rat model of human third trimester binge drinking implicate prefrontal-thalamo-hippocampal circuitry in Fetal Alcohol Spectrum Disorders. Behav Brain Res 2021; 405:113208. [PMID: 33640395 PMCID: PMC8005484 DOI: 10.1016/j.bbr.2021.113208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022]
Abstract
Individuals diagnosed with Fetal Alcohol Spectrum Disorders (FASD) often display behavioral impairments in executive functioning (EF). Specifically, the domains of working memory, inhibition, and set shifting are frequently impacted by prenatal alcohol exposure. Coordination between prefrontal cortex and hippocampus appear to be essential for these domains of executive functioning. The current study uses a rodent model of human third-trimester binge drinking to identify the extent of persistent executive functioning deficits following developmental alcohol by using a behavioral battery of hippocampus- and prefrontal cortex-dependent behavioral assays in adulthood. Alcohol added to milk formula was administered to Long Evans rat pups on postnatal days 4-9 (5.25 g/kg/day of ethanol; intragastric intubation), a period when rodent brain development undergoes comparable processes to human third-trimester neurodevelopment. Procedural control animals underwent sham intubation, without administration of any liquids (i.e., alcohol, milk solution). In adulthood, male rats were run on a battery of behavioral assays: novel object recognition, object-in-place associative memory, spontaneous alternation, and behavioral flexibility tasks. Alcohol-exposed rats demonstrated behavioral impairment in object-in-place preference and performed worse when the rule was switched on a plus maze task. All rats showed similar levels of novel object recognition, spontaneous alternation, discrimination learning, and reversal learning, suggesting alcohol-induced behavioral alterations are selective to executive functioning domains of spatial working memory and set-shifting in this widely-utilized rodent model. These specific behavioral alterations support the hypothesis that behavioral impairments in EF following prenatal alcohol exposure are caused by distributed damage to the prefrontal-thalamo-hippocampal circuit consisting of the medial prefrontal cortex, thalamic nucleus reuniens, and CA1 of hippocampus.
Collapse
Affiliation(s)
- Z H Gursky
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - L M Savage
- Department of Psychology, Binghamton University (State University of New York), Binghamton, NY 13902, USA
| | - A Y Klintsova
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
15
|
Perez Garcia G, De Gasperi R, Gama Sosa MA, Perez GM, Otero-Pagan A, Pryor D, Abutarboush R, Kawoos U, Hof PR, Dickstein DL, Cook DG, Gandy S, Ahlers ST, Elder GA. Laterality and region-specific tau phosphorylation correlate with PTSD-related behavioral traits in rats exposed to repetitive low-level blast. Acta Neuropathol Commun 2021; 9:33. [PMID: 33648608 PMCID: PMC7923605 DOI: 10.1186/s40478-021-01128-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Military veterans who experience blast-related traumatic brain injuries often suffer from chronic cognitive and neurobehavioral syndromes. Reports of abnormal tau processing following blast injury have raised concerns that some cases may have a neurodegenerative basis. Rats exposed to repetitive low-level blast exhibit chronic neurobehavioral traits and accumulate tau phosphorylated at threonine 181 (Thr181). Using data previously reported in separate studies we tested the hypothesis that region-specific patterns of Thr181 phosphorylation correlate with behavioral measures also previously determined and reported in the same animals. Elevated p-tau Thr181 in anterior neocortical regions and right hippocampus correlated with anxiety as well as fear learning and novel object localization. There were no correlations with levels in amygdala or posterior neocortical regions. Particularly striking were asymmetrical effects on the right and left hippocampus. No systematic variation in head orientation toward the blast wave seems to explain the laterality. Levels did not correlate with behavioral measures of hyperarousal. Results were specific to Thr181 in that no correlations were observed for three other phospho-acceptor sites (threonine 231, serine 396, and serine 404). No consistent correlations were linked with total tau. These correlations are significant in suggesting that p-tau accumulation in anterior neocortical regions and the hippocampus may lead to disinhibited amygdala function without p-tau elevation in the amygdala itself. They also suggest an association linking blast injury with tauopathy, which has implications for understanding the relationship of chronic blast-related neurobehavioral syndromes in humans to neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine At Mount Sinai, One Gustave Levy, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Dara L Dickstein
- Department of Pathology, Uniformed Services University of Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
- Department of Neurology, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
- Barbara and Maurice A. Deane Center for Wellness and Cognitive Health, and Mount Sinai NFL Neurological Care Center, Icahn School of Medicine At Mount Sinai, 5 East 98th Street, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA.
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Neurology Service (3E16), 130 West Kingsbridge Road, Bronx, NY, 10468, USA.
| |
Collapse
|
16
|
Pascual M, López‐Hidalgo R, Montagud‐Romero S, Ureña‐Peralta JR, Rodríguez‐Arias M, Guerri C. Role of mTOR-regulated autophagy in spine pruning defects and memory impairments induced by binge-like ethanol treatment in adolescent mice. Brain Pathol 2021; 31:174-188. [PMID: 32876364 PMCID: PMC8018167 DOI: 10.1111/bpa.12896] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adolescence is a brain maturation developmental period during which remodeling and changes in synaptic plasticity and neural connectivity take place in some brain regions. Different mechanism participates in adolescent brain maturation, including autophagy that plays a role in synaptic development and plasticity. Alcohol is a neurotoxic compound and its abuse in adolescence induces neuroinflammation, synaptic and myelin alterations, neural damage and behavioral impairments. Changes in synaptic plasticity and its regulation by mTOR have also been suggested to play a role in the behavioral dysfunction of binge ethanol drinking in adolescence. Therefore, by considering the critical role of mTOR in both autophagy and synaptic plasticity in the developing brain, the present study aims to evaluate whether binge ethanol treatment in adolescence would induce dysfunctions in synaptic plasticity and cognitive functions and if mTOR inhibition with rapamycin is capable of restoring both effects. Using C57BL/6 adolescent female and male mice (PND30) treated with ethanol (3 g/kg) on two consecutive days at 48-hour intervals over 2 weeks, we show that binge ethanol treatment alters the density and morphology of dendritic spines, effects that are associated with learning and memory impairments and changes in the levels of both transcription factor CREB phosphorylation and miRNAs. Rapamycin administration (3 mg/kg) prior to ethanol administration restores ethanol-induced changes in both plasticity and behavior dysfunctions in adolescent mice. These results support the critical role of mTOR/autophagy dysfunctions in the dendritic spines alterations and cognitive alterations induced by binge alcohol in adolescence.
Collapse
Affiliation(s)
- María Pascual
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
- Department of PhysiologySchool of Medicine and DentistryUniversity of ValenciaValenciaSpain
| | - Rosa López‐Hidalgo
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Juan R. Ureña‐Peralta
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| | | | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of AlcoholPríncipe Felipe Research CenterValenciaSpain
| |
Collapse
|
17
|
Ontogeny of spontaneous recognition memory in rodents. Neurobiol Learn Mem 2020; 177:107361. [PMID: 33307181 DOI: 10.1016/j.nlm.2020.107361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Spontaneous recognition memory tasks explore thewhat,whereandwhencomponents of recognition memory. These tasks are widely used in rodents to assess cognitive function across the lifespan. While several neurodevelopmental and mental disorders present symptom onset in early life, very little is known about how memories are expressed in early life, and as a consequence how they may be affected in pathological conditions. In this review, we conduct an analysis of the studies examining the expression of spontaneous recognition memory in young rodents. We compiled studies using four different tasks: novel object recognition, object location, temporal order recognition and object place. First, we identify major sources of variability between early life spontaneous recognition studies and classify them for later comparison. Second, we use these classifications to explore the current knowledge on the ontogeny of each of these four spontaneous recognition memory tasks. We conclude by discussing the possible implications of the relative time of onset for each of these tasks and their respective neural correlates. In compiling this research, we hope to advance on establishing a developmental timeline for the emergence of distinct components of recognition memory, while also identifying key areas of focus for future research. Establishing the ontogenetic profile of rodent spontaneous recognition memory tasks will create a necessary blueprint for cognitive assessment in animal models of neurodevelopmental and mental disorders, a first step towards improved and earlier diagnosis as well as novel intervention strategies.
Collapse
|
18
|
Wait J, Burns C, Jones T, Harper Z, Allen E, Langley‐Evans SC, Voigt J. Early postnatal exposure to a cafeteria diet interferes with recency and spatial memory, but not open field habituation in adolescent rats. Dev Psychobiol 2020; 63:572-581. [DOI: 10.1002/dev.22063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/06/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Janina Wait
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Catherine Burns
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Taylor Jones
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Zoe Harper
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | - Emily Allen
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | | | - Jörg‐Peter Voigt
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| |
Collapse
|
19
|
Brancato A, Castelli V, Lavanco G, Cannizzaro C. Environmental Enrichment During Adolescence Mitigates Cognitive Deficits and Alcohol Vulnerability due to Continuous and Intermittent Perinatal Alcohol Exposure in Adult Rats. Front Behav Neurosci 2020; 14:583122. [PMID: 33100982 PMCID: PMC7546794 DOI: 10.3389/fnbeh.2020.583122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
Perinatal alcohol exposure affects ontogenic neurodevelopment, causing physical and functional long-term abnormalities with limited treatment options. This study investigated long-term consequences of continuous and intermittent maternal alcohol drinking on behavioral readouts of cognitive function and alcohol vulnerability in the offspring. The effects of environmental enrichment (EE) during adolescence were also evaluated. Female rats underwent continuous alcohol drinking (CAD)—or intermittent alcohol drinking paradigm (IAD), along pregestation, gestation, and lactation periods—equivalent to the whole gestational period in humans. Male offspring were reared in standard conditions or EE until adulthood and were then assessed for declarative memory in the novel object recognition test; spatial learning, cognitive flexibility, and reference memory in the Morris water maze (MWM); alcohol consumption and relapse by a two-bottle choice paradigm. Our data show that perinatal CAD decreased locomotor activity, exploratory behavior, and declarative memory with respect to controls, whereas perinatal IAD displayed impaired declarative memory and spatial learning and memory. Moreover, both perinatal alcohol-exposed offspring showed higher vulnerability to alcohol consummatory behavior than controls, albeit perinatal IAD rats showed a greater alcohol consumption and relapse behavior with respect to perinatal-CAD progeny. EE ameliorated declarative memory in perinatal CAD, while it mitigated spatial learning and reference memory impairment in perinatal-IAD progeny. In addition, EE decreased vulnerability to alcohol in both control and perinatal alcohol-exposed rats. Maternal alcohol consumption produces drinking pattern-related long-term consequences on cognition and vulnerability to alcohol in the offspring. However, increased positive environmental stimuli during adolescence may curtail the detrimental effects of developmental alcohol exposure.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Kwan LY, Eaton DL, Andersen SL, Dow-Edwards D, Levin ED, Talpos J, Vorhees CV, Li AA. This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicol Teratol 2020; 81:106916. [DOI: 10.1016/j.ntt.2020.106916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
|
21
|
Westbrook SR, Dwyer MR, Cortes LR, Gulley JM. Extended access self-administration of methamphetamine is associated with age- and sex-dependent differences in drug taking behavior and recognition memory in rats. Behav Brain Res 2020; 390:112659. [PMID: 32437887 PMCID: PMC7307427 DOI: 10.1016/j.bbr.2020.112659] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Individuals who begin drug use during early adolescence experience more adverse consequences compared to those initiating later, especially if they are female. The mechanisms for these age and gender differences remain obscure, but studies in rodents suggest that psychostimulants may disrupt the normal ontogeny of dopamine and glutamate systems in the prefrontal cortex (PFC). Here, we studied Sprague-Dawley rats of both sexes who began methamphetamine (METH, i.v.) self-administration in adolescence (postnatal [P] day 41) or adulthood (P91). Rats received seven daily 2-h self-administration sessions with METH or saccharin as the reinforcer, followed by 14 daily long access (LgA; 6 h) sessions. After 7 and 14 days of abstinence, novel object (NOR) or object-in-place (OiP) recognition was assessed. PFC and nucleus accumbens were collected 7 days after the final cognitive test and NMDA receptor subunits and dopamine D1 receptor expression was measured. We found that during LgA sessions, adolescent-onset rats escalated METH intake more rapidly than adult-onset rats, with adolescent-onset females earning the most infusions. Adolescent-onset rats with a history of METH self-administration exhibited modest deficits in OiP compared to their adult-onset counterparts, but there was no sex difference and self-administration groups did not differ from naïve control rats. All rats displayed intact novel object recognition memory. We found no group differences in D1 and NMDA receptor expression, suggesting no long-lasting alteration of ontogenetic expression profiles. Our findings suggest that adolescent-onset drug use is more likely to lead to compulsive-like patterns of drug-taking and modest dysfunction in PFC-dependent cognition.
Collapse
Affiliation(s)
- Sara R Westbrook
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Megan R Dwyer
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Laura R Cortes
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
22
|
Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci Rep 2020; 10:10612. [PMID: 32606443 PMCID: PMC7326931 DOI: 10.1038/s41598-020-67619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Spontaneous recognition memory tasks build on an animal’s natural preference for novelty to assess the what, where and when components of episodic memory. Their simplicity, ethological relevance and cross-species adaptability make them extremely useful to study the physiology and pathology of memory. Recognition memory deficits are common in rodent models of neurodevelopmental disorders, and yet very little is known about the expression of spontaneous recognition memory in young rodents. This is exacerbated by the paucity of data on the developmental onset of recognition memory in mice, a major animal model of disease. To address this, we characterized the ontogeny of three types of spontaneous recognition memory in mice: object location, novel object recognition and temporal order recognition. We found that object location is the first to emerge, at postnatal day (P)21. This was followed by novel object recognition (24 h delay), at P25. Temporal order recognition was the last to emerge, at P28. Elucidating the developmental expression of recognition memory in mice is critical to improving our understanding of the ontogeny of episodic memory, and establishes a necessary blueprint to apply these tasks to probe cognitive deficits at clinically relevant time points in animal models of developmental disorders.
Collapse
|
23
|
Salguero A, Suarez A, Luque M, Ruiz-Leyva L, Cendán CM, Morón I, Pautassi RM. Binge-Like, Naloxone-Sensitive, Voluntary Ethanol Intake at Adolescence Is Greater Than at Adulthood, but Does Not Exacerbate Subsequent Two-Bottle Choice Drinking. Front Behav Neurosci 2020; 14:50. [PMID: 32327981 PMCID: PMC7161160 DOI: 10.3389/fnbeh.2020.00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
The present study assessed the effects of ethanol exposure during adolescence or adulthood. We exposed Wistar rats, males or females, to self-administered 8–10% (v/v) ethanol (BINGE group) during the first 2 h of the dark cycle, three times a week (Monday, Wednesday, and Friday) during postnatal days (PDs) 32–54 or 72–94 (adolescent and adults, respectively). During this period, controls were only handled, and a third (IP) condition was given ethanol intraperitoneal administrations, three times a week (Monday, Wednesday, and Friday), at doses that matched those self-administered by the BINGE group. The rats were tested for ethanol intake and preference in a two-bottle (24 h long) choice test, shortly before (PD 30 or 70) and shortly after (PD 56 or 96) exposure to the binge or intraperitoneal protocol; and then tested for free-choice drinking during late adulthood (PDs 120–139) in intermittent two-bottle intake tests. Binge drinking was significantly greater in adolescents vs. adults, and was blocked by naloxone (5.0 mg/kg) administered immediately before the binge session. Mean blood ethanol levels (mg/dl) at termination of binge session 3 were 60.82 ± 22.39. Ethanol exposure at adolescence, but not at adulthood, significantly reduced exploration of an open field-like chamber and significantly increased shelter-seeking behavior in the multivariate concentric square field. The rats that had been initially exposed to ethanol at adolescence drank, during the intake tests conducted at adulthood, significantly more than those that had their first experience with ethanol at adulthood, an effect that was similar among BINGE, IP and control groups. The study indicates that binge ethanol drinking is greater in adolescent that in adults and is associated with heightened ethanol intake at adulthood. Preventing alcohol access to adolescents should reduce the likelihood of problematic alcohol use or alcohol-related consequences.
Collapse
Affiliation(s)
- Agustín Salguero
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Suarez
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maribel Luque
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Ruiz-Leyva
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), University Hospital Complex of Granada, Granada, Spain
| | - Cruz Miguel Cendán
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), University Hospital Complex of Granada, Granada, Spain
| | - Ignacio Morón
- Department of Psychobiology and Research Center for Mind, Brain, and Behavior (CIMCYC), University of Granada, Faculty of Psychology, Granada, Spain
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
24
|
Skórkowska A, Maciejska A, Pomierny B, Krzyżanowska W, Starek-Świechowicz B, Bystrowska B, Broniowska Ż, Kazek G, Budziszewska B. Effect of Combined Prenatal and Adult Benzophenone-3 Dermal Exposure on Factors Regulating Neurodegenerative Processes, Blood Hormone Levels, and Hematological Parameters in Female Rats. Neurotox Res 2020; 37:683-701. [PMID: 31970650 PMCID: PMC7062666 DOI: 10.1007/s12640-020-00163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Benzophenone-3 (BP-3), the most widely used UV chemical filter, is absorbed well through the skin and gastrointestinal tract and can affect some body functions, including the survival of nerve cells. Previously, we showed that BP-3 evoked a neurotoxic effect in male rats, but since the effects of this compound are known to depend on gender, the aim of the present study was to show the concentration and potential neurotoxic action of this compound in the female rat brain. BP-3 was administered dermally to female rats during pregnancy, and then in the 7th and 8th weeks of age to their female offspring. The effect of BP-3 exposure on short-term and spatial memory, its concentrations in blood, the liver, the frontal cortex, and the hippocampus, and the effect on selected markers of brain damage were determined. Also, the impact of BP-3 on sex and thyroid hormone levels in blood and hematological parameters was examined. It has been found that this compound was present in blood and brain structures in females at a lower concentration than in males. BP-3 in both examined brain structures increased extracellular glutamate concentration and enhanced lipid peroxidation, but did not induce the apoptotic process. The tested compound also evoked hyperthyroidism and decreased the blood progesterone level and the number of erythrocytes. The presented data indicated that, after the same exposure to BP-3, this compound was at a lower concentration in the female brain than in that of the males. Although BP-3 did not induce apoptosis in the hippocampus and frontal cortex, the increased extracellular glutamate concentration and lipid peroxidation, as well as impaired spatial memory, suggested that this compound also had adverse effects in the female brain yet was weaker than in males. In contrast to the weaker effects of the BP-3 on females than the brain of males, this compound affected the endocrine system and evoked a disturbance in hematological parameters more strongly than in male rats.
Collapse
Affiliation(s)
- Alicja Skórkowska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Alicja Maciejska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Weronika Krzyżanowska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Beata Starek-Świechowicz
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Beata Bystrowska
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Żaneta Broniowska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland.
| |
Collapse
|
25
|
Jaeger ECB, Miller LE, Goins EC, Super CE, Chyr CU, Lower JW, Honican LS, Morrison DE, Ramdev RA, Spritzer MD. Testosterone replacement causes dose-dependent improvements in spatial memory among aged male rats. Psychoneuroendocrinology 2020; 113:104550. [PMID: 31901624 PMCID: PMC7080566 DOI: 10.1016/j.psyneuen.2019.104550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/16/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Testosterone has been shown to have dose-dependent effects on spatial memory in males, but the effects of aging upon this relationship remain unclear. Additionally, the mechanism by which testosterone regulates memory is unknown, but may involve changes in brain-derived neurotrophic factor (BDNF) within specific brain regions. We tested the effects of age and testosterone on spatial memory among male rats using two spatial memory tasks: an object-location memory task (OLMT) and the radial-arm maze (RAM). Castration had minimal effect on performance on the RAM, but young rats (2 months) performed significantly fewer working memory errors than aged rats (20 months), and aged rats performed significantly fewer reference memory errors. Both age and castration impaired performance on the OLMT, with only the young rats with intact gonads successfully performing the task. Subsequent experiments involved daily injections of either drug vehicle or one of four doses of testosterone propionate (0.125, 0.250, 0.500, and 1.00 mg/rat) given to castrated aged males. On the RAM, a low physiological dose (0.125 mg) and high doses (0.500-1.000 mg) of testosterone improved working memory, while an intermediate dose (0.250 mg) did not. On the OLMT, only the 0.250 mg T group showed a significant increase in exploration ratios from the exposure trials to the testing trials, indicating that this group remembered the position of the objects. Brain tissue (prefrontal cortex, hippocampus, and striatum) was collected from all subjects to assay BDNF. We found no evidence that testosterone influenced BDNF, indicating that it is unlikely that testosterone regulates spatial memory through changes in BDNF levels.
Collapse
Affiliation(s)
- Eliza C B Jaeger
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| | - L Erin Miller
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| | - Emily C Goins
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| | - Chloe E Super
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| | - Christina U Chyr
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA.
| | - John W Lower
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| | - Lauren S Honican
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| | - Daryl E Morrison
- Department of Biology, Middlebury College, Middlebury, VT, 05753, USA.
| | - Rajan A Ramdev
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA.
| | - Mark D Spritzer
- Program in Neuroscience, Middlebury College, Middlebury, VT, 05753, USA; Department of Biology, Middlebury College, Middlebury, VT, 05753, USA.
| |
Collapse
|
26
|
Arakawa H. Sensorimotor developmental factors influencing the performance of laboratory rodents on learning and memory. Behav Brain Res 2019; 375:112140. [PMID: 31401145 PMCID: PMC6741784 DOI: 10.1016/j.bbr.2019.112140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Behavioral studies in animal models have advanced our knowledge of brain function and the neural mechanisms of human diseases. Commonly used laboratory rodents, such as mice and rats, provide a useful tool for studying the behaviors and mechanisms associated with learning and memory processes which are cooperatively regulated by multiple underlying factors, including sensory and motor performance and emotional/defense innate components. Each of these factors shows unique ontogeny and governs the sustainment of behavioral performance in learning tasks, and thus, understanding the integrative processes of behavioral development are crucial in the accurate interpretation of the functional meaning of learning and memory behaviors expressed in commonly employed behavioral test paradigms. In this review, we will summarize the major findings in the developmental processes of rodent behavior on the basis of the emergence of fundamental components for sustaining learning and memory behaviors. Briefly, most sensory modalities (except for vision) and motor abilities are functional at the juvenile stage, in which several defensive components, including active and passive defensive strategies and risk assessment behavior, emerge. Sex differences are detectable from the juvenile stage through adulthood and are considerable factors that influence behavioral tests. The test paradigms addressed in this review include associative learning (with an emphasis on fear conditioning), spatial learning, and recognition. This basic background information will aid in accurately performing behavioral studies in laboratory rodents and will therefore contribute to reducing inappropriate interpretations of behavioral data and further advance research on learning and memory in rodent models.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St. HSF2/S251, Baltimore, MD, 21201, USA.
| |
Collapse
|
27
|
Gulinello M, Mitchell HA, Chang Q, Timothy O'Brien W, Zhou Z, Abel T, Wang L, Corbin JG, Veeraragavan S, Samaco RC, Andrews NA, Fagiolini M, Cole TB, Burbacher TM, Crawley JN. Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem 2019; 165:106780. [PMID: 29307548 PMCID: PMC6034984 DOI: 10.1016/j.nlm.2018.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
Behavioral neuroscience research incorporates the identical high level of meticulous methodologies and exacting attention to detail as all other scientific disciplines. To achieve maximal rigor and reproducibility of findings, well-trained investigators employ a variety of established best practices. Here we explicate some of the requirements for rigorous experimental design and accurate data analysis in conducting mouse and rat behavioral tests. Novel object recognition is used as an example of a cognitive assay which has been conducted successfully with a range of methods, all based on common principles of appropriate procedures, controls, and statistics. Directors of Rodent Core facilities within Intellectual and Developmental Disabilities Research Centers contribute key aspects of their own novel object recognition protocols, offering insights into essential similarities and less-critical differences. Literature cited in this review article will lead the interested reader to source papers that provide step-by-step protocols which illustrate optimized methods for many standard rodent behavioral assays. Adhering to best practices in behavioral neuroscience will enhance the value of animal models for the multiple goals of understanding biological mechanisms, evaluating consequences of genetic mutations, and discovering efficacious therapeutics.
Collapse
Affiliation(s)
- Maria Gulinello
- IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Heather A Mitchell
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Qiang Chang
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - W Timothy O'Brien
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhaolan Zhou
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ted Abel
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Current affiliation: Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Li Wang
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Joshua G Corbin
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Surabi Veeraragavan
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodney C Samaco
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nick A Andrews
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michela Fagiolini
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Toby B Cole
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Burbacher
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline N Crawley
- IDDRC Rodent Behavior Core, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
28
|
Miller LA, Heroux NA, Stanton ME. NMDA receptors and the ontogeny of post-shock and retention freezing during contextual fear conditioning. Dev Psychobiol 2019; 62:380-385. [PMID: 31621064 DOI: 10.1002/dev.21928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2019] [Accepted: 09/15/2019] [Indexed: 01/03/2023]
Abstract
The ontogeny and NMDA-receptor (NMDAR) mechanisms of context conditioning were examined during standard contextual fear conditioning (sCFC) - involving context and context-shock learning in the same trial - as a comparison with our previous reports on the Context Preexposure Facilitation Effect (CPFE), which separates these two types of learning by 24 hr. In Experiment 1, systemic administration of the NMDAR antagonist, MK-801, prior to conditioning disrupted retention but not post-shock freezing during sCFC in PD31 rats. Experiment 2 replicated and extended this effect to PD17 versus PD31 rats. Consistent with Experiment 1, pre-training MK-801 spared post-shock freezing but impaired retention freezing in PD31 rats. In contrast, pre-training MK-801 disrupted post-shock freezing in PD17 rats, which showed no retention freezing regardless of drug. These results reveal developmental differences in the role of NMDAR activity in the acquisition versus retention of a context-shock association during sCFC in pre-weanling and adolescent rats.
Collapse
Affiliation(s)
- Lauren A Miller
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Nicholas A Heroux
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| | - Mark E Stanton
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
29
|
Pomierny B, Krzyżanowska W, Broniowska Ż, Strach B, Bystrowska B, Starek-Świechowicz B, Maciejska A, Skórkowska A, Wesołowska J, Walczak M, Budziszewska B. Benzophenone-3 Passes Through the Blood-Brain Barrier, Increases the Level of Extracellular Glutamate, and Induces Apoptotic Processes in the Hippocampus and Frontal Cortex of Rats. Toxicol Sci 2019; 171:485-500. [PMID: 31368502 DOI: 10.1093/toxsci/kfz160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Benzophenone-3 is the most commonly used UV filter. It is well absorbed through the skin and gastrointestinal tract. Its best-known side effect is the impact on the function of sex hormones. Little is known about the influence of BP-3 on the brain. The aim of this study was to show whether BP-3 crosses the blood-brain barrier (BBB), to determine whether it induces nerve cell damage in susceptible brain structures, and to identify the mechanism of its action in the central nervous system. BP-3 was administered dermally during the prenatal period and adulthood to rats. BP-3 effect on short-term and spatial memory was determined by novel object and novel location recognition tests. BP-3 concentrations were assayed in the brain and peripheral tissues. In brain structures, selected markers of brain damage were measured. The study showed that BP-3 is absorbed through the rat skin, passes through the BBB. BP-3 raised oxidative stress and induced apoptosis in the brain. BP-3 increased the concentration of extracellular glutamate in examined brain structures and changed the expression of glutamate transporters. BP-3 had no effect on short-term memory but impaired spatial memory. The present study showed that dermal BP-3 exposure may cause damage to neurons what might be associated with the increase in the level of extracellular glutamate, most likely evoked by changes in the expression of GLT-1 and xCT glutamate transporters. Thus, exposure to BP-3 may be one of the causes that increase the risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Beata Bystrowska
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | | | | | | | - Julita Wesołowska
- Laboratory for In vivo and In Vitro Imaging, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Maria Walczak
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, 30-688 Kraków, Poland
| | | |
Collapse
|
30
|
Moreton E, Baron P, Tiplady S, McCall S, Clifford B, Langley-Evans S, Fone K, Voigt J. Impact of early exposure to a cafeteria diet on prefrontal cortex monoamines and novel object recognition in adolescent rats. Behav Brain Res 2019; 363:191-198. [DOI: 10.1016/j.bbr.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 02/02/2019] [Indexed: 12/19/2022]
|
31
|
Sanchez LM, Goss J, Wagner J, Davies S, Savage DD, Hamilton DA, Clark BJ. Moderate prenatal alcohol exposure impairs performance by adult male rats in an object-place paired-associate task. Behav Brain Res 2018; 360:228-234. [PMID: 30529401 DOI: 10.1016/j.bbr.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022]
Abstract
Memory impairments, including spatial and object processing, are often observed in individuals with Fetal Alcohol Spectrum Disorders. The neurobiological basis of memory deficits after prenatal alcohol exposure (PAE) is often linked to structural and functional alterations in the medial temporal lobe, including the hippocampus. Recent evidence suggests that the medial temporal lobe plays a critical role in processing high-order sensory stimuli such as complex objects and their associated locations in space. In the first experiment, we tested male rat offspring with moderate PAE in a medial temporal-dependent object-place paired-associate (OPPA) task. The OPPA task requires a conditional discrimination between an identical pair of objects presented at two spatial locations 180° opposite arms of a radial arm maze. Food reinforcement is contingent upon selecting the correct object of the pair for a given spatial location. Adult rats were given a total of 10 trials per day over 14 consecutive days of training. PAE male rats made significantly more errors than male saccharin (SACC) control rats during acquisition of the OPPA task. In Experiment 2, rats performed an object-discrimination task in which a pair of objects were presented in a single arm of the maze. Moderate PAE and SACC control rats exhibited comparable performance. The results suggest that moderate PAE rats can learn to discriminate objects, but are impaired when required to discriminate between objects on the basis of spatial location in the environment.
Collapse
Affiliation(s)
- Lilliana M Sanchez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jonathan Goss
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Jennifer Wagner
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
32
|
Travaglia A, Steinmetz AB, Miranda JM, Alberini CM. Mechanisms of critical period in the hippocampus underlie object location learning and memory in infant rats. Learn Mem 2018; 25:176-182. [PMID: 29545389 PMCID: PMC5855526 DOI: 10.1101/lm.046946.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022]
Abstract
Episodic memories in early childhood are rapidly forgotten, a phenomenon that is associated with "infantile amnesia," the inability of adults to remember early-life experiences. We recently showed that early aversive contextual memory in infant rats, which is in fact rapidly forgotten, is actually not lost, as reminders presented later in life reinstate a long-lasting and context-specific memory. We also showed that the formation of this infantile memory recruits in the hippocampus mechanisms typical of developmental critical periods. Here, we tested whether similar mechanisms apply to a nonaversive, hippocampal type of learning. We report that novel object location (nOL) learned at postnatal day 17 (PN17) undergoes the typical rapid forgetting of infantile learning. However, a later reminder reinstates memory expression. Furthermore, as for aversive experiences, nOL learning at PN17 engages critical period mechanisms in the dorsal hippocampus: it induces a switch in the GluN2A/2B-NMDA receptor ratio, and brain-derived neurotrophic factor injected bilaterally into the dorsal hippocampus immediately after training results in long-lasting memory expression. We conclude that in infancy the hippocampus plays a necessary role in processing episodic and contextual memories, including nonaversive ones, and matures through a developmental critical period.
Collapse
Affiliation(s)
- Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Adam B Steinmetz
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Janelle M Miranda
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, New York 10016, USA
| |
Collapse
|
33
|
Perez-Garcia G, Gama Sosa MA, De Gasperi R, Lashof-Sullivan M, Maudlin-Jeronimo E, Stone JR, Haghighi F, Ahlers ST, Elder GA. Chronic post-traumatic stress disorder-related traits in a rat model of low-level blast exposure. Behav Brain Res 2018; 340:117-125. [PMID: 27693852 PMCID: PMC11181290 DOI: 10.1016/j.bbr.2016.09.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023]
Abstract
The postconcussion syndrome following mild traumatic brain injuries (mTBI) has been regarded as a mostly benign syndrome that typically resolves in the immediate months following injury. However, in some individuals, symptoms become chronic and persistent. This has been a striking feature of the mostly blast-related mTBIs that have been seen in veterans returning from the recent conflicts in Iraq and Afghanistan. In these veterans a chronic syndrome with features of both the postconcussion syndrome and post-traumatic stress disorder has been prominent. Animal modeling of blast-related TBI has developed rapidly over the last decade leading to advances in the understanding of blast pathophysiology. However, most studies have focused on acute to subacute effects of blast on the nervous system and have typically studied higher intensity blast exposures with energies more comparable to that involved in human moderate to severe TBI. Fewer animal studies have addressed the chronic effects of lower level blast exposures that are more comparable to those involved in human mTBI or subclinical blast. Here we describe a rat model of repetitive low-level blast exposure that induces a variety of anxiety and PTSD-related behavioral traits including exaggerated fear responses that were present when animals were tested between 28 and 35 weeks after the last blast exposure. These animals provide a model to study the chronic and persistent behavioral effects of blast including the relationship of PTSD to mTBI in dual diagnosis veterans.
Collapse
Affiliation(s)
- Georgina Perez-Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Margaret Lashof-Sullivan
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Eric Maudlin-Jeronimo
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA; Department of Neurosurgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Fatemeh Haghighi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, 10029, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| |
Collapse
|
34
|
Matin N, Fisher C, Jackson WF, Diaz-Otero JM, Dorrance AM. Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles. Am J Physiol Heart Circ Physiol 2017; 314:H122-H130. [PMID: 28842441 DOI: 10.1152/ajpheart.00638.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypertension is a leading risk factor for vascular cognitive impairment and is strongly associated with carotid artery stenosis. In normotensive rats, chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS) leads to cognitive impairment that is associated with impaired endothelium-dependent dilation in parenchymal arterioles (PAs). The aim of this study was to assess the effects of BCAS on PA function and structure in stroke-prone spontaneously hypertensive rats, a model of human essential hypertension. Understanding the effects of hypoperfusion on PAs in a hypertensive model could lead to the identification of therapeutic targets for cognitive decline in a model that reflects the at-risk population. We hypothesized that BCAS would impair endothelium-dependent dilation in PAs and induce artery remodeling compared with sham rats. PAs from BCAS rats had endothelial dysfunction, as assessed using pressure myography. Inhibition of nitric oxide and prostaglandin production had no effect on PA dilation in sham or BCAS rats. Surprisingly, inhibition of epoxyeicosatrienoic acid production increased dilation in PAs from BCAS rats but not from sham rats. Similar results were observed in the presence of inhibitors for all three dilatory pathways, suggesting that epoxygenase inhibition may have restored a nitric oxide/prostaglandin-independent dilatory pathway in PAs from BCAS rats. PAs from BCAS rats underwent remodeling with a reduced wall thickness. These data suggest that marked endothelial dysfunction in PAs from stroke-prone spontaneously hypertensive rats with BCAS may be associated with the development of vascular cognitive impairment. NEW & NOTEWORTHY The present study assessed the structure and function of parenchymal arterioles in a model of chronic cerebral hypoperfusion and hypertension, both of which are risk factors for cognitive impairment. We observed that impaired dilation and artery remodeling in parenchymal arterioles and abolished cerebrovascular reserve capacity may mediate cognitive deficits.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Janice M Diaz-Otero
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
35
|
Cognitive impairment and gene expression alterations in a rodent model of binge eating disorder. Physiol Behav 2017; 180:78-90. [PMID: 28821448 DOI: 10.1016/j.physbeh.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
Binge eating disorder (BED) is defined as recurrent, distressing over-consumption of palatable food (PF) in a short time period. Clinical studies suggest that individuals with BED may have impairments in cognitive processes, executive functioning, impulse control, and decision-making, which may play a role in sustaining binge eating behavior. These clinical reports, however, are limited and often conflicting. In this study, we used a limited access rat model of binge-like behavior in order to further explore the effects of binge eating on cognition. In binge eating prone (BEP) rats, we found novel object recognition (NOR) as well as Barnes maze reversal learning (BM-RL) deficits. Aberrant gene expression of brain derived neurotrophic factor (Bdnf) and tropomyosin receptor kinase B (TrkB) in the hippocampus (HPC)-prefrontal cortex (PFC) network was observed in BEP rats. Additionally, the NOR deficits were correlated with reductions in the expression of TrkB and insulin receptor (Ir) in the CA3 region of the hippocampus. Furthermore, up-regulation of serotonin-2C (5-HT2C) receptors in the orbitoprefrontal cortex (OFC) was associated with BM-RL deficit. Finally, in the nucleus accumbens (NAc), we found decreased dopamine receptor 2 (Drd2) expression among BEP rats. Taken together, these data suggest that binge eating vegetable shortening may induce contextual and reversal learning deficits which may be mediated, at least in part, by the altered expression of genes in the CA3-OFC-NAc neural network.
Collapse
|
36
|
Bath KG, Nitenson AS, Lichtman E, Lopez C, Chen W, Gallo M, Goodwill H, Manzano-Nieves G. Early life stress leads to developmental and sex selective effects on performance in a novel object placement task. Neurobiol Stress 2017; 7:57-67. [PMID: 28462362 PMCID: PMC5408156 DOI: 10.1016/j.ynstr.2017.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Disruptions in early life care, including neglect, extreme poverty, and trauma, influence neural development and increase the risk for and severity of pathology. Significant sex disparities have been identified for affective pathology, with females having an increased risk of developing anxiety and depressive disorder. However, the effects of early life stress (ELS) on cognitive development have not been as well characterized, especially in reference to sex specific impacts of ELS on cognitive abilities over development. In mice, fragmented maternal care resulting from maternal bedding restriction, was used to induce ELS. The development of spatial abilities were tracked using a novel object placement (NOP) task at several different ages across early development (P21, P28, P38, P50, and P75). Male mice exposed to ELS showed significant impairments in the NOP task compared with control reared mice at all ages tested. In female mice, ELS led to impaired NOP performance immediately following weaning (P21) and during peri-adolescence (P38), but these effects did not persist into early adulthood. Prior work has implicated impaired hippocampus neurogenesis as a possible mediator of negative outcomes in ELS males. In the hippocampus of behaviorally naïve animals there was a significant decrease in expression of Ki-67 (proliferative marker) and doublecortin (DCX-immature cell marker) as mice aged, and a more rapid developmental decline in these markers in ELS reared mice. However, the effect of ELS dissipated by P28 and no main effect of sex were observed. Together these results indicate that ELS impacts the development of spatial abilities in both male and female mice and that these effects are more profound and lasting in males. ELS leads to sex differences in spatial memory abilities in mice. Female mice show impaired performance that resolve prior to adolescence. Male mice show persistent impairments across early life. Effects are restricted to spatial abilities and not other task dimensions. Effects are not related to markers of proliferation and differentiation in hippocampus.
Collapse
Affiliation(s)
- Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | | | - Ezra Lichtman
- Yale School of Medicine, New Haven, CT 06510, United States
| | - Chelsea Lopez
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Whitney Chen
- Department of Neuroscience, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Meghan Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Haley Goodwill
- Department of Neuroscience, Brown University, Providence, RI 02912, United States
| | | |
Collapse
|
37
|
Diaz J, Abiola S, Kim N, Avaritt O, Flock D, Yu J, Northington FJ, Chavez-Valdez R. Therapeutic Hypothermia Provides Variable Protection against Behavioral Deficits after Neonatal Hypoxia-Ischemia: A Potential Role for Brain-Derived Neurotrophic Factor. Dev Neurosci 2017; 39:257-272. [PMID: 28196356 DOI: 10.1159/000454949] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Despite treatment with therapeutic hypothermia (TH), infants who survive hypoxic ischemic (HI) encephalopathy (HIE) have persistent neurological abnormalities at school age. Protection by TH against HI brain injury is variable in both humans and animal models. Our current preclinical model of hypoxia-ischemia (HI) and TH displays this variability of outcomes in neuropathological and neuroimaging end points with some sexual dimorphism. The detailed behavioral phenotype of this model is unknown. Whether there is sexual dimorphism in certain behavioral domains is also not known. Brain-derived neurotrophic factor (BDNF) supports neuronal cell survival and repair but may also be a marker of injury. Here, we characterize the behavioral deficits after HI and TH stratified by sex, as well as late changes in BDNF and its correlation with memory impairment. METHODS HI was induced in C57BL6 mice on postnatal day 10 (p10) (modified Vannucci model). Mice were randomized to TH (31°C) or normothermia (NT, 36°C) for 4 h after HI. Controls were anesthesia-exposed, age- and sex-matched littermates. Between p16 and p39, growth was followed, and behavioral testing was performed including reflexes (air righting, forelimb grasp and negative geotaxis) and sensorimotor, learning, and memory skills (open field, balance beam, adhesive removal, Y-maze tests, and object location task [OLT]). Correlations between mature BDNF levels in the forebrain and p42 memory outcomes were studied. RESULTS Both male and female HI mice had an approximately 8-12% lower growth rate (g/day) than shams (p ≤ 0.01) by p39. TH ameliorated this growth failure in females but not in males. In female mice, HI injury prolonged the time spent at the periphery (open field) at p36 (p = 0.004), regardless of treatment. TH prevented motor impairments in the balance beam and adhesive removal tests in male and female mice, respectively (p ≤ 0.05). Male and female HI mice visited the new arm of the Y-maze 12.5% (p = 0.05) and 10% (p = 0.03) less often than shams, respectively. Male HI mice also had 35% lower exploratory preference score than sham (p ≤ 0.001) in the OLT. TH did not prevent memory impairments found with Y-maze testing or OLT in either sex (p ≤ 0.01) at p26. At p42, BDNF levels in the forebrain ipsilateral to the HI insult were 1.7- to 2-fold higher than BDNF levels in the sham forebrain, and TH did not prevent this increase. Higher BDNF levels in the forebrain ipsilateral to the insult correlated with worse performance in the Y-maze in both sexes and in OLT in male mice (p = 0.01). CONCLUSIONS TH provides benefit in specific domains of behavior following neonatal HI. In general, these benefits accrued to both males and females, but not in all areas. In some domains, such as memory, no benefit of TH was found. Late differences in individual BDNF levels may explain some of these findings.
Collapse
Affiliation(s)
- Johana Diaz
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
MacIlvane NM, Pochiro JM, Hurwitz NR, Goodfellow MJ, Lindquist DH. Recognition memory is selectively impaired in adult rats exposed to binge-like doses of ethanol during early postnatal life. Alcohol 2016; 57:55-63. [PMID: 28340966 DOI: 10.1016/j.alcohol.2016.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/02/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022]
Abstract
Exposure to alcohol in utero can induce a variety of physical and mental impairments, collectively known as fetal alcohol spectrum disorders (FASD). This study explores the persistent cognitive consequences of ethanol administration in rat pups over postnatal days (PD) 4-9, modeling human third trimester consumption. Between PD65-70, ethanol-exposed (5E) and control rats were evaluated in two variants of recognition memory, the spontaneous novel object recognition (NOR) task, using 20 and 240 min sample-to-test delays, and the associative object-in-context (OIC) task, using a 20 min delay. No treatment group differences were observed in object exploration during the sample session for any task. In the 20 min NOR test session the 5E rats explored the novel object significantly less than controls, relative to the total time exploring both objects. Postnatal ethanol exposure is hypothesized to impede object memory consolidation in the perirhinal cortex of 5E rats, hindering their ability to discriminate between familiar and novel objects at short delays. The 5E rats performed as well or better than control rats in the 240 min NOR and the 20 min OIC tasks, indicating developmental ethanol exposure selectively impairs the retention and expression of recognition memories in young adult rats.
Collapse
|
39
|
Goepfrich AA, Friemel CM, Pauen S, Schneider M. Ontogeny of sensorimotor gating and short-term memory processing throughout the adolescent period in rats. Dev Cogn Neurosci 2016; 25:167-175. [PMID: 27908562 PMCID: PMC6987840 DOI: 10.1016/j.dcn.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022] Open
Abstract
Adolescence and puberty are highly susceptible developmental periods during which the neuronal organization and maturation of the brain is completed. The endocannabinoid (eCB) system, which is well known to modulate cognitive processing, undergoes profound and transient developmental changes during adolescence. With the present study we were aiming to examine the ontogeny of cognitive skills throughout adolescence in male rats and clarify the potential modulatory role of CB1 receptor signalling. Cognitive skills were assessed repeatedly every 10th day in rats throughout adolescence. All animals were tested for object recognition memory and prepulse inhibition of the acoustic startle reflex. Although cognitive performance in short-term memory as well as sensorimotor gating abilities were decreased during puberty compared to adulthood, both tasks were found to show different developmental trajectories throughout adolescence. A low dose of the CB1 receptor antagonist/inverse agonist SR141716 was found to improve recognition memory specifically in pubertal animals while not affecting behavioral performance at other ages tested. The present findings demonstrate that the developmental trajectory of cognitive abilities does not occur linearly for all cognitive processes and is strongly influenced by pubertal maturation. Developmental alterations within the eCB system at puberty onset may be involved in these changes in cognitive processing.
Collapse
Affiliation(s)
- Anja A Goepfrich
- Research Group Developmental Neuropsychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chris M Friemel
- Research Group Developmental Neuropsychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Sabina Pauen
- Department of Psychology, University of Heidelberg, Germany
| | | |
Collapse
|
40
|
Ramsaran AI, Sanders HR, Stanton ME. Determinants of object-in-context and object-place-context recognition in the developing rat. Dev Psychobiol 2016; 58:883-895. [DOI: 10.1002/dev.21432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Adam I. Ramsaran
- Department of Psychological and Brain Sciences; University of Delaware; Newark Delaware
| | - Hollie R. Sanders
- Department of Psychological and Brain Sciences; University of Delaware; Newark Delaware
| | - Mark E. Stanton
- Department of Psychological and Brain Sciences; University of Delaware; Newark Delaware
| |
Collapse
|
41
|
Gainey SJ, Kwakwa KA, Bray JK, Pillote MM, Tir VL, Towers AE, Freund GG. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide. Front Behav Neurosci 2016; 10:156. [PMID: 27563288 PMCID: PMC4980396 DOI: 10.3389/fnbeh.2016.00156] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023] Open
Abstract
Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies.
Collapse
Affiliation(s)
- Stephen J Gainey
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA
| | - Kristin A Kwakwa
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Julie K Bray
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Melissa M Pillote
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Vincent L Tir
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Albert E Towers
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA; Department of Nutritional Sciences, University of IllinoisUrbana, IL, USA
| | - Gregory G Freund
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA; Department of Nutritional Sciences, University of IllinoisUrbana, IL, USA
| |
Collapse
|
42
|
Matin N, Fisher C, Jackson WF, Dorrance AM. Bilateral common carotid artery stenosis in normotensive rats impairs endothelium-dependent dilation of parenchymal arterioles. Am J Physiol Heart Circ Physiol 2016; 310:H1321-9. [PMID: 26968546 DOI: 10.1152/ajpheart.00890.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/03/2016] [Indexed: 02/06/2023]
Abstract
Chronic cerebral hypoperfusion is a risk factor for cognitive impairment. Reduced blood flow through the common carotid arteries induced by bilateral carotid artery stenosis (BCAS) is a physiologically relevant model of chronic cerebral hypoperfusion. We hypothesized that BCAS in 20-wk-old Wistar-Kyoto (WKY) rats would impair cognitive function and lead to reduced endothelium-dependent dilation and outward remodeling in the parenchymal arterioles (PAs). After 8 wk of BCAS, both short-term memory and spatial discrimination abilities were impaired. In vivo assessment of cerebrovascular reserve capacity showed a severe impairment after BCAS. PA endothelial function and structure were assessed by pressure myography. BCAS impaired endothelial function in PAs, as evidenced by reduced dilation to carbachol. Addition of nitric oxide synthase and cyclooxygenase inhibitors did not change carbachol-mediated dilation in either group. Inhibiting CYP epoxygenase, the enzyme that produces epoxyeicosatrienoic acid (EETs), a key determinant of endothelium-derived hyperpolarizing factor (EDHF)-mediated dilation, abolished dilation in PAs from Sham rats, but had no effect in PAs from BCAS rats. Expression of TRPV4 channels, a target for EETs, was decreased and maximal dilation to a TRPV4 agonist was attenuated after BCAS. Together these data suggest that EET-mediated dilation is impaired in PAs after BCAS. Thus impaired endothelium-dependent dilation in the PAs may be one of the contributing factors to the cognitive impairment observed after BCAS.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Courtney Fisher
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
43
|
Tong JJ, Chen GH, Wang F, Li XW, Cao L, Sui X, Tao F, Yan WW, Wei ZJ. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice. Behav Brain Res 2015; 284:138-52. [DOI: 10.1016/j.bbr.2015.01.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 12/24/2022]
|
44
|
Ramsaran AI, Westbrook SR, Stanton ME. Ontogeny of object-in-context recognition in the rat. Behav Brain Res 2015; 298:37-47. [PMID: 25892362 DOI: 10.1016/j.bbr.2015.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/27/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023]
Abstract
The object-in-context recognition (OiC) task [19] is a spontaneous exploration task that serves as an index of incidental contextual learning and memory. During the test phase, rats prefer to explore the object mismatched to the testing context based on previous object-context pairings experienced during training. The mechanisms of OiC memory have been explored in adult rats [12,35]; however, little is known about its determinants during development. Thus, the present study examined the ontogeny of the OiC task in preweanling through adolescent rats. We demonstrate that postnatal day (PD) 17, 21, 26, and 31 rats can perform the OiC task (Experiment 1) and that preference for the novel target is eliminated when rats are tested in an alternate context not encountered during training (Experiment 2). Lastly, we show that PD26 but not PD17 rats can perform the OiC task when the training contexts only differed by distal spatial cues (Experiment 3). These data demonstrate for the first time that PD17 rats can acquire and retain short-term OiC memory, which involves associative learning of object and context information. However, we also provide evidence that preweanling rats' ability to utilize certain aspects of a context (i.e., distal spatial cues) in the OiC task is not equivalent to that of their older counterparts. Implications for the development of contextual memory and its related neural substrates are discussed.
Collapse
|
45
|
Westbrook SR, Brennan LE, Stanton ME. Ontogeny of object versus location recognition in the rat: acquisition and retention effects. Dev Psychobiol 2014; 56:1492-506. [PMID: 24992011 DOI: 10.1002/dev.21232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
Novel object and location recognition tasks harness the rat's natural tendency to explore novelty (Berlyne, 1950) to study incidental learning. The present study examined the ontogenetic profile of these two tasks and retention of spatial learning between postnatal day (PD) 17 and 31. Experiment 1 showed that rats ages PD17, 21, and 26 recognize novel objects, but only PD21 and PD26 rats recognize a novel location of a familiar object. These results suggest that novel object recognition develops before PD17, while object location recognition emerges between PD17 and PD21. Experiment 2 studied the ontogenetic profile of object location memory retention in PD21, 26, and 31 rats. PD26 and PD31 rats retained the object location memory for both 10-min and 24-hr delays. PD21 rats failed to retain the object location memory for the 24-hr delay, suggesting differential development of short- versus long-term memory in the ontogeny of object location memory.
Collapse
Affiliation(s)
- Sara R Westbrook
- Department of Psychology, University of Delaware, Newark, Delaware, 19716
| | | | | |
Collapse
|
46
|
Jablonski SA, Stanton ME. Neonatal alcohol impairs the context preexposure facilitation effect in juvenile rats: dose-response and post-training consolidation effects. Alcohol 2014; 48:35-42. [PMID: 24387902 DOI: 10.1016/j.alcohol.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 02/03/2023]
Abstract
Alcohol exposure on postnatal days (PND) 4-9 in the rat adversely affects hippocampal anatomy and function and impairs performance on a variety of hippocampus-dependent tasks. Exposure during this developmental window reveals a linear relationship between alcohol dose and spatial learning impairment in the context preexposure facilitation effect (CPFE), a hippocampus-dependent variant of contextual fear conditioning. The purpose of the current report was to examine the effect of a range of alcohol doses administered during a narrower window, PND7-9, than previously reported (Experiment 1) and to begin to determine which memory processes involved in this task are impaired by developmental alcohol exposure (Experiment 2). In Experiment 1, rats pups received a single day binge alcohol dose of either 2.75, 4.00, 5.25 g/kg/day or were sham-intubated (SI) from PND7-9. Conditioned freezing during the test day was evident in all dosing groups, except for Group 5.25 g, indicating no graded dose-related behavioral deficits with alcohol exposure limited to PND7-9. In Experiment 2, rat pups were exposed to the highest effective dose from Experiment 1 (5.25 g/kg/day) or were sham intubated over PND7-9. During training, rats remained in the conditioning context for 5-min following immediate shock delivery. During this test of post-shock freezing, both SI and alcohol-exposed rats given prior exposure to the conditioning context showed comparable freezing levels. Since alcohol-exposed rats showed normal post-shock freezing, deficits by these rats on the test day likely reflect a failure to consolidate or retrieve a context-shock association, rather than a deficit in hippocampal conjunctive processes (consolidation, pattern completion) that occur prior to shock on the training day. These findings illustrate the value of the CPFE for characterizing the separable memory processes that are impaired by neonatal alcohol exposure in this task.
Collapse
Affiliation(s)
- S A Jablonski
- Psychology Department, University of Delaware, Wolf Hall 108, Newark, DE 19716, USA.
| | - M E Stanton
- Psychology Department, University of Delaware, Wolf Hall 108, Newark, DE 19716, USA
| |
Collapse
|