1
|
Elmaidomy AH, Abdelmohsen UR, Sayed AM, Altemani FH, Algehainy NA, Soost D, Paululat T, Bringmann G, Mohamed EM. Antiplasmodial potential of phytochemicals from Citrus aurantifolia peels: a comprehensive in vitro and in silico study. BMC Chem 2024; 18:60. [PMID: 38555456 PMCID: PMC10981828 DOI: 10.1186/s13065-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Phytochemical investigation of Key lime (Citrus aurantifolia L., F. Rutaceae) peels afforded six metabolites, known as methyl isolimonate acetate (1), limonin (2), luteolin (3), 3`-hydroxygenkwanin (4), myricetin (5), and europetin (6). The structures of the isolated compounds were assigned by 1D NMR. In the case of limonin (2), further 1- and 2D NMR experiments were done to further confirm the structure of this most active metabolite. The antiplasmodial properties of the obtained compounds against the pathogenic NF54 strain of Plasmodium falciparum were assessed in vitro. According to antiplasmodial screening, only limonin (2), luteolin (3), and myricetin (5) were effective (IC50 values of 0.2, 3.4, and 5.9 µM, respectively). We explored the antiplasmodial potential of phytochemicals from C. aurantifolia peels using a stepwise in silico-based analysis. We first identified the unique proteins of P. falciparum that have no homolog in the human proteome, and then performed inverse docking, ΔGBinding calculation, and molecular dynamics simulation to predict the binding affinity and stability of the isolated compounds with these proteins. We found that limonin (2), luteolin (3), and myricetin (5) could interact with 20S a proteasome, choline kinase, and phosphocholine cytidylyltransferase, respectively, which are important enzymes for the survival and growth of the parasite. According to our findings, phytochemicals from C. aurantifolia peels can be considered as potential leads for the development of new safe and effective antiplasmodial agents.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, 62513, Egypt
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Denisa Soost
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Esraa M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, MUST, Giza, 12566, Egypt
| |
Collapse
|
2
|
Uçar K, Göktaş Z. Biological activities of naringenin: A narrative review based on in vitro and in vivo studies. Nutr Res 2023; 119:43-55. [PMID: 37738874 DOI: 10.1016/j.nutres.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Naringenin (4',5,7-trihydroxyflavonone) is a phytochemical mainly found in citrus fruits. It is a promising phytochemical for human health because of its beneficial effects. This review aims to present comprehensive information on naringenin biological activities along with its action mechanisms and explain the pharmacokinetic properties of naringenin. This study involves a comprehensive literature review of in vitro and in vivo studies examining the effects of naringenin. Naringenin has antidiabetic, anticancer, antimicrobial, antiobesity, gastroprotective, immunomodulator, cardioprotective, nephroprotective, and neuroprotective properties. These properties are primarily attributed to its antioxidant and anti-inflammatory activities. The most important antioxidant activities of naringenin including free radical scavenging and preventing lipid peroxidation. Naringenin can increase the concentration of antioxidant enzymes and inhibit metal chelation and various pro-oxidant enzymes. Anti-inflammatory activities of naringenin are associated with decreased mitogen-activated protein kinase activities and nuclear factor kappa B by modulating the expression and release of proinflammatory cytokine and enzymes. In vitro and in vivo studies show that naringenin has promising biological activities for a variety of diseases. More research must be conducted on the bioactivities of naringenin, and to determine its optimum dose. In addition, the efficiency of naringenin must be examined with enhanced bioavailability methods to be able to increase its therapeutic effect.
Collapse
Affiliation(s)
- Kübra Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
3
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 276] [Impact Index Per Article: 276.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
4
|
Elnawasany S, Haggag YA, Shalaby SM, Soliman NA, EL Saadany AA, Ibrahim MAA, Badria F. Anti-cancer effect of nano-encapsulated boswellic acids, curcumin and naringenin against HepG-2 cell line. BMC Complement Med Ther 2023; 23:270. [PMID: 37516826 PMCID: PMC10386659 DOI: 10.1186/s12906-023-04096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND liver cancer is one of the most common cancers in the world. So far, there is no gold standard treatment for hepatocellular carcinoma. We conducted this in vitro study to assess the effect of three natural products: Boswellic acids, curcumin and naringin versus corresponding nanoparticles (NPs) on Hep G2 cells proliferation. METHODS Boswellic acid, curcumin, naringin-loaded NPs were prepared using nanoprecipitation method. Human liver (HepG2) cell line was cultured in Dulbecco's modified Eagle's medium (DMEM). The cell growth inhibition and cytotoxicity were evaluated by MTT assay. RESULTS Boswellic acid, curcumin, naringin were able to inhibit HepG2 cells proliferation. IC50 at 24 h, 48 h showed significant lower values in NPs versus Free herbs. IC50 values of free Boswellic acids and NPs at 24 h were (24.60 ± 1.89 and 7.78 ± 0.54, P < 0.001), at 48 h were (22.45 ± 1.13 and 5.58 ± 0.27, P < 0.001) respectively. IC50 values of free curcumin and NPs at 24 h were (5.89 ± 0.8 and 3.46 ± 0.23, P < 0.05), at 48 h were (5.57 ± 0.94 and 2.51 ± 0.11, P < 0.05), respectively. For free and naringenin NPs, IC50 values at 24 h were (14.57 ± 1.78 and 7.25 ± 0.17, P < 0.01), at 48 h were (11.37 ± 1.45 and 5.21 ± 0.18, P < 0.01) respectively. CONCLUSION Boswellic acid, curcumin, naringin and their nanoprecipitation prepared nanoparticles suppressed Hep G2 cells proliferation.
Collapse
Affiliation(s)
- Sally Elnawasany
- Tropical Medicine Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, 31111 Egypt
| | - Yusuf A. Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Shahinaz M. Shalaby
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Nema A. Soliman
- Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Amira A. EL Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Marwa A. A. Ibrahim
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt
| | - Farid Badria
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Miatmoko A, Faradisa AA, Jauhari AA, Hariawan BS, Cahyani DM, Plumeriastuti H, Sari R, Hendradi E. The effectiveness of ursolic acid niosomes with chitosan coating for prevention of liver damage in mice induced by n-nitrosodiethylamine. Sci Rep 2022; 12:21397. [PMID: 36496469 PMCID: PMC9741648 DOI: 10.1038/s41598-022-26085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpene carboxylic acid which produces various effects, including anti-cancer, hepatoprotective, antioxidant and anti-inflammatory. However, UA demonstrates poor water solubility and permeability. Niosomes have been reported to improve the bioavailability of low water-soluble drugs. This study aimed to investigate the protective action of UA-niosomes with chitosan layers against liver damage induced by N-Nitrosodiethylamine (NDEA). UA niosomes were prepared using a thin layer hydration method, with chitosan being added by vortexing the mixtures. For the induction of liver damage, the mice were administered NDEA intraperitoneally (25 mg/kgBW). They were given niosomes orally (11 mg UA/kgBW) seven and three days prior to NDEA induction and subsequently once a week with NDEA induction for four weeks. The results showed that chitosan layers increased the particle sizes, PDI, and ζ-potentials of UA niosomes. UA niosomes with chitosan coating reduced the SGOT and SGPT level. The histopathological evaluation of liver tissue showed an improvement with reduced bile duct inflammation and decreasing pleomorphism and enlargement of hepatocyte cell nuclei in UA niosomes with the chitosan coating treated group. It can be concluded that UA niosomes with chitosan coating improved the efficacy of preventive UA therapy in liver-damaged mice induced with NDEA.
Collapse
Affiliation(s)
- Andang Miatmoko
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia ,grid.440745.60000 0001 0152 762XStem Cell Research and Development Center, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Amelia Anneke Faradisa
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Achmad Aziz Jauhari
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Berlian Sarasitha Hariawan
- grid.440745.60000 0001 0152 762XMaster Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Devy Maulidya Cahyani
- grid.440745.60000 0001 0152 762XMaster Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Hani Plumeriastuti
- grid.440745.60000 0001 0152 762XDepartment of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Retno Sari
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| | - Esti Hendradi
- grid.440745.60000 0001 0152 762XDepartment of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115 Indonesia
| |
Collapse
|
6
|
Rauf A, Shariati MA, Imran M, Bashir K, Khan SA, Mitra S, Emran TB, Badalova K, Uddin MS, Mubarak MS, Aljohani ASM, Alhumaydhi FA, Derkho M, Korpayev S, Zengin G. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31025-31041. [PMID: 35119637 DOI: 10.1007/s11356-022-18754-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Though the incidence of several cancers in Western societies is regulated wisely, some cancers such as breast, lung, and colorectal cancer are currently rising in many low- and middle-income countries due to increased risk factors triggered by societal and development problems. Surgery, chemotherapy, hormone, radiation, and targeted therapies are examples of traditional cancer treatment approaches. However, multiple short- and long-term adverse effects may also significantly affect patient prognosis depending on treatment-associated clinical factors. More and more research has been carried out to find new therapeutic agents in natural products, among which the bioactive compounds derived from plants have been increasingly studied. Naringin and naringenin are abundantly found in citrus fruits, such as oranges and grapefruits. A variety of cell signaling pathways mediates their anti-carcinogenic properties. Naringin and naringenin were also documented to overcome multidrug resistance, one of the major challenges to clinical practice due to multiple defense mechanisms in cancer. The effective parameters underlying the anticancer effects of naringenin and naringin include GSK3β inactivation, suppression of the gene and protein activation of NF-kB and COX-2, JAK2/STAT3 downregulation, downregulation of intracellular adhesion molecules-1, upregulation of Notch1 and tyrocite-specific genes, and activation of p38/MAPK and caspase-3. Thus, this review outlines the potential of naringin and naringenin in managing different types of cancers.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management, The First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russia
| | - Muhammad Imran
- Department of food science and technology, University of Narowal-Pakistan, Pakistan
- Food, nutrition and lifestyle Unit, King Fahed Medical Research Center, Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Kashif Bashir
- Department of Microbiology and Biotechnology, Abasyan University Peshawar, Peshawar, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kamala Badalova
- General Toxicological Chemistry Department, Azerbaijan Medical University Azerbaijan, Baku, Azerbaijan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Abdullah S M Aljohani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Marina Derkho
- Institute of Veterinary Medicine, South-Ural State Agrarian University, Chelyabinsk Region, 13 Gagarin St, Troitsk, 454700, Russian Federation
| | - Serdar Korpayev
- Biotechnology Institute, Ankara University, 06135, Ankara, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| |
Collapse
|
7
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Targeting the two-pore channel 2 in cancer progression and metastasis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:62-89. [PMID: 36046356 PMCID: PMC9400767 DOI: 10.37349/etat.2022.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
The importance of Ca2+ signaling, and particularly Ca2+ channels, in key events of cancer cell function such as proliferation, metastasis, autophagy and angiogenesis, has recently begun to be appreciated. Of particular note are two-pore channels (TPCs), a group of recently identified Ca2+-channels, located within the endolysosomal system. TPC2 has recently emerged as an intracellular ion channel of significant pathophysiological relevance, specifically in cancer, and interest in its role as an anti-cancer drug target has begun to be explored. Herein, an overview of the cancer-related functions of TPC2 and a discussion of its potential as a target for therapeutic intervention, including a summary of clinical trials examining the TPC2 inhibitors, naringenin, tetrandrine, and verapamil for the treatment of various cancers is provided.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Lisa F. Lincz
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales 2308, Australia;Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia;Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| |
Collapse
|
8
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
9
|
Wongso H. Natural product-based Radiopharmaceuticals:Focus on curcumin and its analogs, flavonoids, and marine peptides. J Pharm Anal 2021; 12:380-393. [PMID: 35811617 PMCID: PMC9257450 DOI: 10.1016/j.jpha.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Natural products provide a bountiful supply of pharmacologically relevant precursors for the development of various drug-related molecules, including radiopharmaceuticals. However, current knowledge regarding the importance of natural products in developing new radiopharmaceuticals remains limited. To date, several radionuclides, including gallium-68, technetium-99m, fluorine-18, iodine-131, and iodine-125, have been extensively studied for the synthesis of diagnostic and therapeutic radiopharmaceuticals. The availability of various radiolabeling methods allows the incorporation of these radionuclides into bioactive molecules in a practical and efficient manner. Of the radiolabeling methods, direct radioiodination, radiometal complexation, and halogenation are generally suitable for natural products owing to their simplicity and robustness. This review highlights the pharmacological benefits of curcumin and its analogs, flavonoids, and marine peptides in treating human pathologies and provides a perspective on the potential use of these bioactive compounds as molecular templates for the design and development of new radiopharmaceuticals. Additionally, this review provides insights into the current strategies for labeling natural products with various radionuclides using either direct or indirect methods. Potential use of natural products for the development of diagnostic and therapeutic radiopharmaceuticals. Profile of potential natural products as molecular templates for the synthesis of new radiopharmaceuticals: Focus on curcumin and its closely related substances, flavonoids, and marine peptides. Radiolabeling strategies, challenges, and examples of natural product-based radiopharmaceuticals under investigation.
Collapse
|
10
|
Baby J, Devan AR, Kumar AR, Gorantla JN, Nair B, Aishwarya TS, Nath LR. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J Food Biochem 2021; 45:e13761. [PMID: 34028054 DOI: 10.1111/jfbc.13761] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 02/05/2023]
Abstract
Chemopreventive approaches with food-derived phytochemicals are progressively rising as a significant aspect of tumor management and control. Herein, we have showcased the major phytoconstituents belonging to the group of flavanoid, as anti-cancer agents used for the treatment and prevention of hepatocellular carcinoma (HCC). Sorafenib is the sole drug used for the treatment of advanced HCC, but its clinical application is limited because of its severe adverse effects and drug resistance. Diet-based chemoprevention seems to be the way forward for this disease of malignant nature. As HCC is derived from a chronic inflammatory milieu, the regular incorporation of bioactive phytochemicals in the diet will confer protection and prevent progression to hepatocarcinogenesis. Many preclinical studies proved that the health benefits of flavonoids confer cytotoxic potential against various types of cancers including hepatocellular carcinoma. As flavonoids with excellent safety profile are abundantly present in common vegetables and fruits, they can be better utilized for chemoprevention and chemosensitization in such chronic condition. This review highlights the plausible role of the eight most promising flavonoids (Curcumin, Kaempferol, Resveratrol, Quercetin, Silibinin, Baicalein, Galangin and Luteolin) as key orchestrators of chemoprevention in hepatocellular carcinoma with preclinical and clinical evidence. An attempt to address the challenges in its clinical translation is also included. This review also provides an insight into the close association of HCC and metabolic disorders which may further decipher the chemopreventive effect of dietary bioactive from a proof of concept to extensive clinical translation. PRACTICAL APPLICATIONS: According to GLOBOCAN 2020 database, it is estimated that 905,677 new cases of liver cancer and approximately 830,180 deaths related to that. The cancer incidence and mortality are almost similar as it is diagnosed at an advanced stage in patients where systemic drug therapy is the sole approach. Due to the emergence of multidrug resistance and drug-related toxicities, most of the patient can not adhere to the therapy regimen. Flavonoids are known to be a potential anticancer agent with an excellent safety profile. These are found to be effective preclinically against hepatocellular carcinoma through modulation of numerous pathways in hepatocarcinogenesis. But, the bioavailability issue, lack of well designed-validated clinical evidence, the possibility of food-drug interaction etc limit its clinical utility. The research inputs mainly to overcome pharmacokinetic issues along with suitable validation of efficacy and toxicity will be a critical point for establishing flavonoids as an effective, safe, affordable therapeutics.
Collapse
Affiliation(s)
- Jasmine Baby
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | | | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Thanatharayil Sathian Aishwarya
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
11
|
Huang M, Deng M, Nie W, Zou D, Wu H, Xu D. Naringenin Inhibits Platelet Activation and Arterial Thrombosis Through Inhibition of Phosphoinositide 3-Kinase and Cyclic Nucleotide Signaling. Front Pharmacol 2021; 12:722257. [PMID: 34475824 PMCID: PMC8406801 DOI: 10.3389/fphar.2021.722257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
Citrus flavanoids intake can reduce the risk of cardiovascular diseases. Naringenin, a natural predominant flavonoid abundant in citrus fruits, possesses protective effects against atherothrombotic diseases. As platelet activation plays central roles in atherothrombogenesis, we studied the effects of naringenin on platelet activation, signaling, thrombosis and hemostasis. Naringenin dose-dependently inhibited agonist-induced platelet aggregation in vitro, and exhibited more-potent efficacy on ADP-induced platelet aggregation. It also suppressed platelet aggregation stimulated by ADP ex vivo. Naringenin inhibited ADP-induced platelet α-granule secretion, fibrinogen binding, intracellular calcium mobilization and platelet adhesion on collagen-coated surface. Naringenin also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in integrin signaling. Mechanism studies indicated that naringenin suppressed PI3K-mediated signaling and phosphodiesterase activity in platelets, in addition to increasing cGMP levels and VASP phosphorylation at Ser239. Furthermore, naringenin-induced VASP phosphorylation and inhibition of platelet aggregation were reversed by a PKA inhibitor treatment. Interestingly, naringenin inhibited thrombus formation in the (FeCl3)-induced rat carotid arterial thrombus model, but not cause a prolonged bleeding time in mice. This study suggests that naringenin may represent a potential antiplatelet agent targeting PI3K and cyclic nucleotide signaling, with a low bleeding risk.
Collapse
Affiliation(s)
- Manting Huang
- Department of Vascular Intervention, Zhongshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, China
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minzhen Deng
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqiang Nie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dezhi Zou
- Emergency Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huanlin Wu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Huanlin Wu, ; Danping Xu,
| | - Danping Xu
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Huanlin Wu, ; Danping Xu,
| |
Collapse
|
12
|
Lu W, Yu CR, Lien H, Sheu G, Cherng S. Cytotoxicity of naringenin induces Bax-mediated mitochondrial apoptosis in human lung adenocarcinoma A549 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1386-1394. [PMID: 32667124 PMCID: PMC7689782 DOI: 10.1002/tox.23003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 07/01/2020] [Indexed: 05/05/2023]
Abstract
Naringenin (NGEN), a natural flavonoid has growth inhibition and apoptosis-inducing activities in several cancer cells. However, the cytotoxicity mechanisms of NGEN in cell death of lung cancer cells have not been fully defined. In present study, treatment of human lung adenocarcinoma A549 cells with NGEN resulted in time- and dose-dependent decreases in cell viability. Moreover, NGEN significantly induced apoptosis evidenced by morphological changes, DAPI staining, TUNEL assay and sub-G1 population increase. In NGEN-treated cells, intensely upregulated Bax and down-regulated Bcl-2 proteins were detected and the Bax protein associated with the mitochondrial membrane was analyzed by subcellular fractionation. Knockdown of the Bax expression by the shRNA method dramatically protected A549 cells against NGEN-induced apoptosis. Treatment with the inhibitors of caspase-3, -8, or -9 significantly reduced NGEN-induced apoptotic deaths. Taken together, our results demonstrate that NGEN-induced apoptosis may occur via a Bax-activated mitochondrial pathway in lung adenocarcinoma A549 cells.
Collapse
Affiliation(s)
- Win‐Long Lu
- Institute of Medicine, Chung Shan Medical UniversityTaichungTaiwan
| | | | - Hsiu‐Man Lien
- Department of BiotechnologyHung Kuang UniversityTaichung cityTaiwan
| | - Gwo‐Tarng Sheu
- Institute of Medicine, Chung Shan Medical UniversityTaichungTaiwan
- Department of Medical Oncology and Chest MedicineChung Shan Medical University HospitalTaichungTaiwan
| | | |
Collapse
|
13
|
Akintunde JK, Abioye JB, Ebinama ON. Potential Protective Effects of Naringin on Oculo-Pulmonary Injury Induced by PM 10 (Wood Smoke) Exposure by Modulation of Oxidative Damage and Acetylcholine Esterase Activity in a Rat Model. CURRENT THERAPEUTIC RESEARCH 2020; 92:100586. [PMID: 32419878 PMCID: PMC7214769 DOI: 10.1016/j.curtheres.2020.100586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Millions of households in the world depend on wood and biomass for cooking and heating. This dependence leads to undesirable toxic effects, such as ocular and pulmonary toxicity. OBJECTIVES The present study examined the potential oculoprotective and pulmonary protective activity of naringin (NRG), a naturally occurring flavonoid, against wood smoke (WS)-induced toxicity in a rat model. METHODS Forty-eight adult male albino rats were randomly distributed into six (n=8) groups. All rats were fed, given water, and observed for 21 days, Group I (control) received only distilled water and no WS exposure, Group II was exposed to WS, Group III was exposed to WS and given 50 mg/kg/d α-tocopherol (vitamin E), Group IV was exposed to WS and given 80 mg/kg/day NRG, Group V was administered only 80 mg/kg/d NRG only, and Group VI was administered only 50 mg/kg/d vitamin E. WS exposure was for 20 min/d. The effect of NRG treatment on acetylcholinesterase activity, nitric oxide radical production, malondialdehyde level, and antioxidant enzymes (ie, superoxide dismustase and catalase) in WS-exposed rats was examined. RESULTS Subchronic (21 day) exposure to WS induced ocular and pulmonary toxicity manifested by the infiltration of parenchyma, atrophy, and inflammation of the cells, which was correlated with alterations in antioxidant enzyme concentrations. Cell damage was associated with an increase in acetylcholinesterase activity and nitric oxide radical concentrations. The toxicity triggered by WS was modulated by the coadministration of NRG. CONCLUSION These results suggest that NRG treatment may be useful to reduce WS-induced oxidative stress and related ocular and pulmonary damage in rats. (Curr Ther Res Clin Exp. 2012; 73:XXX-XXX).
Collapse
Affiliation(s)
- Jacob K. Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture,Abeokuta, Ogun State, Nigeria
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Joseph B. Abioye
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Owen N. Ebinama
- Toxicology and Safety Unit, Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| |
Collapse
|
14
|
Antioxidant, Antimicrobial, Antidiabetic and Cytotoxic Activity of Crocus sativus L. Petals. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041519] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this research is to examine in vitro antioxidant, antimicrobial, antidiabetic and cytotoxic efficacy of different extracts of Crocus sativus L. petals. Antioxidant activity of extracts was assessed by DPPH and ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) assay. Among all extracts, ethanol (SPE) had the maximum radical scavenging activity with IC50 values 86.63 ± 7.53 μg/mL. The antimicrobial activity was determined by the evaluation of the minimum inhibitory concentration using the agar well plate procedure. The most effective extract was SPE with a minimum inhibitory concentration varying between 500 µg/mL, 250 µg/mL, 125 µg/mL, 62.5 µg/mL, 31.25 µg/mL, 15.63 µg/mL. Cytotoxic activity was tested against MDA-MB-231 cell lines using the MTT method whereas, antidiabetic activity was evaluated using an alpha-glucosidase inhibition assay. All extracts were found to have significant antidiabetic activity.
Collapse
|
15
|
Singh P, Bansal S, Kuhad A, Kumar A, Chopra K. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels. Food Funct 2020; 11:4548-4560. [DOI: 10.1039/c9fo00881k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a serious debilitating epidemic affecting all social strata, imposing huge health, social and economic burdens.
Collapse
Affiliation(s)
- Pratishtha Singh
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| | - Seema Bansal
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
16
|
Khare N, Chandra S. Stevioside mediated chemosensitization studies and cytotoxicity assay on breast cancer cell lines MDA-MB-231 and SKBR3. Saudi J Biol Sci 2019; 26:1596-1601. [PMID: 31762632 PMCID: PMC6864384 DOI: 10.1016/j.sjbs.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/19/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the most impacting life-threatening disease for the human populace. Hence, over the years we have seen a consistent interest to study and investigate new treatments to cure and prevent this disease. Medicinal plants have played a progressive part in treatment since many years. In this research study, we have explored the cytotoxicity effect of purified bioactive compound isolated from Stevia rebaudiana leaves and the key mechanism responsible for apoptosis in human breast cancer cells. The anticancer properties of Stevia rebaudiana leaves has been suggested in earlier literature. Hence, the aim of this study was to investigate the cytotoxicity of purified stevioside in human breast cancer cell lines MDA-MB-231 and SKBR3. Results showed that purified stevioside inhibited the growth of cancerous cell lines. The IC50 obtained after treatment with stevioside on cancer cells MDA-MB-231 and SKBR3 are 55 µM and 66 µM respectively. This shows purified stevioside is capable of inducing apoptosis indicating its promising anticancer activity. However, so far chemosensitization effects of stevioside on breast cancer have not been fully explained by other studies. Hence, additionally, this study also evaluates the chemosensitization potential of stevioside in combination with 5-FU. This research study shows the importance of Stevia rebaudiana as a good source of bioactive compounds with high anti-cancer property.
Collapse
|
17
|
Ahmed OM, Ahmed AA, Fahim HI, Zaky MY. Quercetin and naringenin abate diethylnitrosamine/acetylaminofluorene-induced hepatocarcinogenesis in Wistar rats: the roles of oxidative stress, inflammation and cell apoptosis. Drug Chem Toxicol 2019; 45:262-273. [PMID: 31665932 DOI: 10.1080/01480545.2019.1683187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study was designed to assess the preventive effects and to suggest the probable mechanisms of action of quercetin and naringein in diethylnitrosamine (DEN)/2-acetylaminofluorene (2AAF)-induced hepatocarcinogenesis in Wistar male rats. The chemical-induction of hepatocarcinogenesis was performed by injection of DEN intraperitoneally at 150 mg/kg body weight (b.w.) twice/week for two weeks, followed by oral administration of 2AAF at 20 mg/kg body weight (b.w.) 4 times/week for 3 weeks. The DEN/2AAF-administered rats were co-treated with quercetin and naringenin at dose level of 10 mg/kg b. w. by oral gavage for 20 weeks. The treatment of DEN/2AAF-administered rats with quercetin and naringenin significantly prevented the elevations in serum levels of liver function indicators (ALT, AST, ALP, γ-GT, total bilirubin and albumin) and liver tumor biomarkers including AFP, CEA and CA19.9. The cancerous histological lesions and inflammatory cells infiltration in liver of DEN/2AAF-administered rats were remarkably suppressed by treatments with quercetin and naringenin. The hepatic oxidative stress markers including NO level and lipid peroxidation significantly decreased while the SOD, GPx and CAT activities and GSH content significantly increased in DEN/2AAF-administered rats treated with quercetin and naringenin when compared to DEN/2AFF-administered control rats. Furthermore, the lowered mRNA expression of liver IL-4, P53 and Bcl-2 in of DEN/2AAF-administered rats were significantly counteracted by treatment with quercetin and naringenin. Taken together, our results demonstrate that quercetin and naringenin may abate hepatocarcinogenesis via enhancement of anti-inflammatory, anti-oxidant and apoptotic actions.
Collapse
Affiliation(s)
- Osama M Ahmed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel A Ahmed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hanaa I Fahim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.,Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Antioxidant and Hepatoprotective Effect of Cajanus cajan in N-Nitrosodiethylamine-Induced Liver Damage. Sci Pharm 2019. [DOI: 10.3390/scipharm87030024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
N-Nitrosodiethylamine (NDEA) is a nitrosamine derivative with carcinogenic and mutagenic properties which can be found in tobacco smoke, meat and various food products. This study examined the antioxidant and hepatoprotective potential of Cajanus cajan (C. cajan) with respect to hepatotoxicity in male Wistar rats. Administration of NDEA induced hepatotoxicity at 200 mg/kg while C. cajan was administered (200, 400 and 800 mg/kg) for 28 days. NDEA-induced hepatotoxicity significantly (p ≤ 0.05) increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and malondialdehyde (MDA) and significantly (p ≤ 0.05) decreased reduced glutathione (GSH), albumin (ALB), glutathione S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD). C. cajan-treated groups were seen to have significantly (p ≤ 0.05) decreased ALT and AST and significantly (p < 0.05) increased ALB, GST, GSH, SOD and CAT. The NDEA-treated group also showed a marginal increase in body weight and a significant (p ≤ 0.05) increase in liver weight. The C. cajan treated groups showed a significant (p ≤ 0.05) increase and decrease respectively in body and liver weights. Histopathological changes also substantiated NDEA-induced hepatotoxicity and the hepatoprotective effect of C. cajan on the liver. The results indicate that C. cajan has the potential to ameliorate NDEA-induced hepatotoxicity.
Collapse
|
19
|
Kumar R, Bhan Tiku A. Naringenin Suppresses Chemically Induced Skin Cancer in Two-Stage Skin Carcinogenesis Mouse Model. Nutr Cancer 2019; 72:976-983. [PMID: 31474152 DOI: 10.1080/01635581.2019.1656756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Naringenin, a flavonoid present in citrus fruits has many health promoting activities. It has been reported to protect skin from UV radiation, thermal damage and atopic allergies. Despite many skin protective effects, in vivo effect of naringenin on skin cancer has not been reported so far.Objective: The present work was designed to study the chemo preventive effect of naringenin on chemically induced skin cancer in mice.Methods: Two stage model of skin papillomagenesis, using DMBA plus croton oil, was used to study the effect of naringenin in Swiss albino mice. The chemo preventive effect was evaluated using morphological, histopathological and biochemical features.Results: Oral administration of naringenin reduced the skin papilloma in both pre-treatment as well as post-treatment groups of mice. The number as well as size of papilloma was significantly reduced in the treated groups. Histopathological studies showed that naringenin treatment suppressed papillomagenesis. Biochemical studies further revealed decrease in the activity of glyoxalase-1 enzyme and an increase in carbonyl content. The effect was more pronounced in ant-initiation group.Conclusion: Naringenin exhibited anti-tumor effect in two stage carcinogenesis mouse skin tumor model. This study revealed that consumption of citrus fruits and the naringenin therein may be helpful in suppression of skin cancer.
Collapse
Affiliation(s)
- Raj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashu Bhan Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Boniface PK, Elizabeth FI. Flavonoid-derived Privileged Scaffolds in anti-Trypanosoma brucei Drug Discovery. Curr Drug Targets 2019; 20:1295-1314. [PMID: 31215385 DOI: 10.2174/1389450120666190618114857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human African Trypanosomiasis (HAT), also known as sleeping sickness is one of the 20 neglected tropical diseases listed by the World Health Organization, which lead to death if left untreated. This disease is caused by Trypanosoma brucei gambiense, which is the chronic form of the disease present in western and central Africa, and by T. brucei rhodesiense, which is the acute form of the disease located in eastern and southern Africa. Many reports have highlighted the effectiveness of flavonoid-based compounds against T. brucei. OBJECTIVE The present review summarizes the current standings and perspectives for the use of flavonoids as lead compounds for the potential treatment of HAT. METHODS A literature search was conducted for naturally occurring and synthetic anti-T brucei flavonoids by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, Springer, among others) from their inception until February 2019. RESULTS Flavonoids isolated from different parts of plants and species were reported to exhibit moderate to high in vitro antitrypanosomal activity against T. brucei. In addition, synthetic flavonoids revealed anti-T. brucei activity. Molecular interactions of bioactive flavonoids with T. brucei protein targets showed promising results. CONCLUSION According to in vitro anti-T brucei studies, there is evidence that flavonoids might be lead compounds for the potential treatment of HAT. However, toxicological studies, as well as the mechanism of action of the in vitro active flavonoids are needed to support their use as potential leads for the treatment of HAT.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira Igne Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
Sadeeshkumar V, Duraikannu A, Aishwarya T, Jayaram P, Ravichandran S, Ganeshamurthy R. Radioprotective efficacy of dieckol against gamma radiation-induced cellular damage in hepatocyte cells. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1031-1041. [PMID: 31028451 DOI: 10.1007/s00210-019-01652-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/09/2019] [Indexed: 12/29/2022]
Abstract
Naturally occurring antioxidants prevent or delay the harmful effect of free radical formation and radioprotection. The present study aimed to investigate the radioprotective effect of dieckol, a naturally occurring marine bioactive phenolic compound on lipid peroxidation and antioxidant status, DNA damage, and inflammation in gamma-radiation-induced rat primary hepatocytes. Isolated hepatocyte cells exposed to gamma-radiation showed an increased level of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) accompanied with the decrease in the activities of enzymatic (SOD, CAT, and GPx) and non-enzymatic (vitamin C, vitamin E, and GSH) antioxidants associated with increased DNA damage coupled with upregulation of inflammatory proteins (NF-κB and COX-2) compared to control. Treatment of dieckol (5, 10, 20 μM) reduces the γ-radiation-induced toxicity and the associated pro-oxidant and antioxidant imbalance as well as decreasing the DNA damage (tail length, tail moment, %DNA in a tail and olive tail moment) and inflammation in hepatocyte cells. These findings indicate that treatment of dieckol offers protection against γ-radiation-induced cellular damage in the liver cells.
Collapse
Affiliation(s)
- Velayutham Sadeeshkumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India. .,Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, 608 002, India.
| | - Arul Duraikannu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, 608 002, India.,Division of Neurology, Department of Medicine & Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Thiyagarajan Aishwarya
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Killikulam, Vallanadu, Tamil Nadu, 628 252, India
| | - Prithi Jayaram
- Pondicherry Institute of Medical Sciences, Ganapathichettikulam, Kalapet, Puducherry, 605 014, India
| | - Samuthrapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| | - Raghunathan Ganeshamurthy
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, 608 502, India
| |
Collapse
|
22
|
RethnaPriya E, Ravichandran S, Gobinath T, Tilvi S, Devi SP. Functional characterization of anti-cancer sphingolipids from the marine crab Dromia dehanni. Chem Phys Lipids 2019; 221:73-82. [PMID: 30922836 DOI: 10.1016/j.chemphyslip.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
Sphingolipids have been considered for many years only as structural components of membranes. It is now acknowledged that they are also involved in controlling cellular processes such as proliferation.The present work was designed to find the anticancer activity of the crab Dromia dehanni hemolymph in in-vivo and in vitro with special reference to the anticancer compound sphingolipids isolation and characterization. The active fraction of the purified hemolymph was subjected to NMR and ESI-MS/MS analysis. The ESI-MS/MS spectrum exhibited intense signals for sodiated molecular ions [M + Na]+ of sphingomyelins (SM) identified as N-2-O-Acetyl-12 pentadecenoyl sphingosine phosphorylcholine, N-9-eicosenoyl- sphinganine phosphocholine and the corresponding dehydro sphingomyelin, N-9-eicosenoyl- dehydro- sphinganine phosphocholine along with the ions at m/z 147, 184 characteristic of phosphocholine. The present study revealed D. dehaani might be a great source for the novel anti-cancer compounds which can be used for human benefits.
Collapse
Affiliation(s)
- Elangovan RethnaPriya
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Samuthirapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India.
| | - Thilagar Gobinath
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Supriya Tilvi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| | - S Prabha Devi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| |
Collapse
|
23
|
Cui W, He Z, Zhang Y, Fan Q, Feng N. Naringenin Cocrystals Prepared by Solution Crystallization Method for Improving Bioavailability and Anti-hyperlipidemia Effects. AAPS PharmSciTech 2019; 20:115. [PMID: 30771018 DOI: 10.1208/s12249-019-1324-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Naringenin exerts anti-inflammatory, hypolipidemic, and hepatoprotective effects; however, it shows low oral bioavailability because of poor water solubility. In this work, cocrystals of naringenin were formed to address these issues. Using the solution crystallization method, various naringenin cocrystals were prepared with different cocrystal coformers, including naringenin-nicotinamide, naringenin-isonicotinamide, naringenin-caffeine, naringenin-betaine, and naringenin-L-proline. The formation of these cocrystals was assayed by using DSC, XRD, and FT-IR spectroscopy. The stoichiometric ratio of naringenin and the CCFs in the corresponding cocrystals was investigated by NMR. The solubility of naringenin, as well as its dissolution rate, was markedly improved by forming cocrystals. The oral bioavailability of naringenin administered as naringenin-L-proline and naringenin-betaine cocrystals was achieved significantly greater than that of pure naringenin (p < 0.05). In particular, the Cmax of naringenin-L-proline and naringenin-betaine cocrystals were 2.00-fold and 3.35-fold higher, and the AUC of naringenin-L-proline and naringenin-betaine cocrystals were 2.39-fold and 4.91-fold, respectively, higher than pure naringenin in rats. With the naringenin-betaine cocrystals for oral delivery, the drug distribution in the liver was significantly increased compared to pure naringenin. Accordingly, the naringenin-betaine cocrystals showed improved anti-hyperlipidemia effects on the C57 BL/6J PNPLA3 I148M transgenic mouse hyperlipidemia model. Collectively, cocrystal formation is a promising way to increase the bioavailability of naringenin for treating hyperlipidemia.
Collapse
|
24
|
Abstract
OBJECTIVES A number of studies have suggested that acrolein-induced lung injury and pulmonary diseases are associated with the depletion of antioxidants and the production of reactive oxygen species. Therefore, compounds that scavenge reactive oxygen species may exert protective effects against acrolein-induced apoptosis. Because hesperetin, a natural flavonoid, has been reported to have an antioxidant activity, we investigated the effect of hesperitin against acrolein-induced apoptosis of lung cells. METHODS We evaluated the protective role of hesperetin in acrolein-induced lung injury using Lewis lung carcinoma (LLC) cells and mice. RESULTS Upon exposure of LLC cells and mice to acrolein, hesperetin ameliorated the lung inbjury through attenuation of oxidative stress. CONCLUSION In the present report, we demonstrate that hesperetin exhibits a protective effect against acrolein-induced apoptosis of lung cells in both in vitro and in vivo models. Our study provides a useful model to investigate the potential application of hesperetin for the prevention of lung diseases associated with acrolein toxicity.
Collapse
Affiliation(s)
- Jung Hyun Park
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Taegu , Korea.,b Department of Food and Biotechnology , Korea University , Sejong , Korea
| | - Hyeong Jun Ku
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Taegu , Korea
| | - Jeen-Woo Park
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Taegu , Korea
| |
Collapse
|
25
|
Joshi R, Kulkarni YA, Wairkar S. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update. Life Sci 2018; 215:43-56. [PMID: 30391464 DOI: 10.1016/j.lfs.2018.10.066] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 01/23/2023]
Abstract
Phenolic compounds constitute one of the important classes of secondary metabolites in the plants. Flavonoids are primary phenolic compounds found in natural drugs. Naringenin is a flavanone, aglycone of Naringin, predominantly found in citrus fruits with various pharmacological activities. Large number of scientific papers has been published on Naringenin describing its structure, physicochemical properties and its therapeutic use in different diseases. This review provides highlights of Naringenin with respect to its distribution, pharmacokinetic and its use in conditions like oxidative stress, inflammation, cancer, diabetes, cardiovascular diseases and neurological disorders. Furthermore, the review also focuses on molecular level mechanisms of Naringenin for its therapeutic effect. Various attempts have been made to formulate advanced dosage forms to address issue of solubility of Naringenin. Systematic review of data published on formulation aspects of Naringenin has also been presented in the article.
Collapse
Affiliation(s)
- Ruthvika Joshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
26
|
Zaidun NH, Thent ZC, Latiff AA. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci 2018; 208:111-122. [DOI: 10.1016/j.lfs.2018.07.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
|
27
|
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24:1679-1707. [PMID: 29713125 PMCID: PMC5922990 DOI: 10.3748/wjg.v24.i16.1679] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are caused by different etiological agents, mainly alcohol consumption, viruses, drug intoxication or malnutrition. Frequently, liver diseases are initiated by oxidative stress and inflammation that lead to the excessive production of extracellular matrix (ECM), followed by a progression to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that some natural products display hepatoprotective properties. Naringenin is a flavonoid with antioxidant, antifibrogenic, anti-inflammatory and anticancer properties that is capable of preventing liver damage caused by different agents. The main protective effects of naringenin in liver diseases are the inhibition of oxidative stress, transforming growth factor (TGF-β) pathway and the prevention of the transdifferentiation of hepatic stellate cells (HSC), leading to decreased collagen synthesis. Other effects include the inhibition of the mitogen activated protein kinase (MAPK), toll-like receptor (TLR) and TGF-β non-canonical pathways, the inhibition of which further results in a strong reduction in ECM synthesis and deposition. In addition, naringenin has shown beneficial effects on nonalcoholic fatty liver disease (NAFLD) through the regulation of lipid metabolism, modulating the synthesis and oxidation of lipids and cholesterol. Moreover, naringenin protects from HCC, since it inhibits growth factors such as TGF-β and vascular endothelial growth factor (VEGF), inducing apoptosis and regulating MAPK pathways. Naringenin is safe and acts by targeting multiple proteins. However, it possesses low bioavailability and high intestinal metabolism. In this regard, formulations, such as nanoparticles or liposomes, have been developed to improve naringenin bioavailability. We conclude that naringenin should be considered in the future as an important candidate in the treatment of different liver diseases.
Collapse
Affiliation(s)
- Erika Hernández-Aquino
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| | - Pablo Muriel
- Laboratory of Experimental Hepatology, Department of Pharmacology, Cinvestav-IPN, Mexico City 07000, Mexico
| |
Collapse
|
28
|
Unal Y, Tuncal S, Kosmaz K, Kucuk B, Kismet K, Cavusoglu T, Celepli P, Senes M, Yildiz S, Hucumenoglu S. The Effect of Calcium Dobesilate on Liver Damage in Experimental Obstructive Jaundice. J INVEST SURG 2018; 32:238-244. [PMID: 29589984 DOI: 10.1080/08941939.2018.1451936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose/Aim of the study: Inflammation and oxidative stress are two significant factors affecting the degree of liver damage in obstructive jaundice. The aim of this study was to evaluate the effect of calcium dobesilate (CaDob), an effective antioxidant and anti-inflammatory drug, on damage to liver caused by experimental obstructive jaundice. MATERIALS AND METHODS 30 rats in total were randomly placed into three groups, each group consisting of 10 rats. The sham group (Group 1) only received solely laparotomy. In the control group (Group 2), ligation was applied to the biliary tract and no treatment was implemented. In the CaDob group (Group 3), following ligation of the biliary tract, 100 mg/kg/day CaDob was implemented via an orogastric tube for a 10-day period. Liver tissue and blood samples were taken for histopathological and biochemical examination. RESULTS The CaDob group had significantly lower test values for serum liver functions when compared to the control group. Statistically lower levels of tissue malondialdehyde (MDA) and fluorescent oxidation products (FOP) were detected in the CaDob group, and the CaDob group had significantly higher levels of sulfydryl (SH) than the control group. Histopathological scores in the CaDob group were found out to be statistically less than the scores the control group received (p < 0.05). CONCLUSIONS CaDob treatment repaired the histpatological changes induced by bile duct ligation. The hepatoprotective effects of CaDob can be associated with its antioxidant properties of the drug.
Collapse
Affiliation(s)
- Yilmaz Unal
- a Department of General Surgery , Ankara Education and Research Hospital , Ankara , Turkey
| | - Salih Tuncal
- a Department of General Surgery , Ankara Education and Research Hospital , Ankara , Turkey
| | - Koray Kosmaz
- a Department of General Surgery , Ankara Education and Research Hospital , Ankara , Turkey
| | - Berkay Kucuk
- a Department of General Surgery , Ankara Education and Research Hospital , Ankara , Turkey
| | - Kemal Kismet
- a Department of General Surgery , Ankara Education and Research Hospital , Ankara , Turkey
| | - Turgut Cavusoglu
- a Department of General Surgery , Ankara Education and Research Hospital , Ankara , Turkey
| | - Pinar Celepli
- b Department of Pathology , Ankara Education and Research Hospital , Ankara , Turkey
| | - Mehmet Senes
- c Department of Biochemistry , Ankara Education and Research Hospital , Ankara , Turkey
| | - Selin Yildiz
- c Department of Biochemistry , Ankara Education and Research Hospital , Ankara , Turkey
| | - Sema Hucumenoglu
- b Department of Pathology , Ankara Education and Research Hospital , Ankara , Turkey
| |
Collapse
|
29
|
Zhao W, Liu L, Xu S. Intakes of citrus fruit and risk of esophageal cancer: A meta-analysis. Medicine (Baltimore) 2018; 97:e0018. [PMID: 29595629 PMCID: PMC5895383 DOI: 10.1097/md.0000000000010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/24/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Esophageal cancer (EC) is the eighth most common cancer and the sixth most frequent cause of cancer death in the whole world. Many studies have investigated the association between citrus fruit intake and the risk of EC, but the results are inconsistent and not analyzed by category. We aimed to perform a meta-analysis of studies to evaluate the incidence between citrus fruit consumption and subtypes of esophageal cancer and derive a more precise estimation.Through searches of PubMed, OVID, and Web of Science we updated 1988 systematic review up to April 2016. Based on an inclusion and exclusion criteria, conventional meta-analysis according to DerSimonian and Laird method was used for the pooling of the results. Random-effect models were used to calculate subgroups.Twenty-five English articles (20 case-control studies and 5 cohort studies) comprising totally 5730 patients of esophageal cancer would be suitable for use in this study. The result indicated the inverse associations between intakes of citrus fruit and EC (relative risk [RR] = 0.65, 95% confidence interval [CI] 0.56-0.75, I = 51.1%, P = .001), Esophageal squamous cell carcinoma (ESCC) (RR = 0.59, 95% CI 0.47-0.76, I = 60.7%, P = .002), no significant relationship between citrus fruit and esophageal adenocarcinoma (EAC) (RR = 0.86, 95% CI 0.74-1.01, I = 0.0%, P = .598).This meta-analysis indicates that intakes of citrus fruit significantly reduce the risk of ESCC and is no obvious relationship with EAC. Further studies about constituents in citrus fruit and its mechanism are warranted.
Collapse
Affiliation(s)
- Wenyue Zhao
- Department of Thoracic Surgery of the First Affiliated Hospital
| | - Lu Liu
- Department of Breast Surgery of the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shun Xu
- Department of Thoracic Surgery of the First Affiliated Hospital
| |
Collapse
|
30
|
Matloub AA, Salama AH, Aglan HA, AbouSamra MM, ElSouda SSM, Ahmed HH. Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma. Drug Dev Ind Pharm 2017; 44:523-534. [PMID: 29115890 DOI: 10.1080/03639045.2017.1402922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bile salts containing vesicles (bilosomes) represent a portentous vesicular carrier that showed prosperous results in delivering active moieties in the gastrointestinal tract (GIT). In this study, bilosomes were exploited to deliver sulfated polysaccharide-protein complexes of Enteromorpha intestinalis (EHEM) and enhance its activity against hepatocellular carcinoma as well as resist harsh GIT conditions. Bilosomes were prepared using the sodium salt of three different bile acids (cholic, deoxycholic, taurodeoxycholic) and two different nonionic surfactants (Span 40 and 65). The effects of experimental variables were thoroughly studied to obtain an optimum formulation loading EHEM. The selected formulation (EH-Bilo-2) prepared with sodium cholate and Span 65 displayed nano-sized (181.1 ± 16.80 nm) spherical vesicles with reasonable entrapment efficiency (71.60 ± 0.25%) and controlled release properties; and thus was investigated as anti-hepatocarcinogenic candidate for in vivo studies. Treatment of hepatocellular carcinoma (HCC) bearing rats with EH-Bilo-2 experienced significant decrease in serum α-fetoprotein, endoglin, lipocalin-2, and heat shock protein 70 levels vs. the untreated counterparts. Furthermore, the photomicrographs of their liver tissue sections showed focal area of degenerated pleomorphic hepatocytes with fine fibrosis originating from the portal area. Thus, the optimized bilosomal formulation is a promising delegate for tackling hepatocellular carcinoma owing to its powerful anti-cancer and anti-angiogenic activity.
Collapse
Affiliation(s)
| | - Alaa Hamed Salama
- b Department of Pharmaceutical Technology , National Research Centre , Cairo , Egypt
| | | | | | | | | |
Collapse
|
31
|
Chaurasia S, Patel RR, Vure P, Mishra B. Potential of Cationic-Polymeric Nanoparticles for Oral Delivery of Naringenin: In Vitro and In Vivo Investigations. J Pharm Sci 2017; 107:706-716. [PMID: 29031951 DOI: 10.1016/j.xphs.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 02/02/2023]
Abstract
The objective of the study was to improve the bioavailability and anticancer potential of naringenin (NRG) by developing a drug-loaded polymeric nanodelivery system. NRG-loaded eudragit E100 nanoparticle (NRG-EE100-NPs) system was developed and physicochemically characterized. In vivo pharmacokinetic and in vitro cytotoxicity abilities of the NRG-EE100-NPs were investigated. In vivo anticancer activity was evaluated in murine BALB/c mice-bearing colorectal tumor. The NRG-EE100-NPs had an optimum mean particle size (430.42 ± 5.78 nm), polydispersity index (0.283 ± 0.089) with percent entrapment efficiency (68.83 ± 3.45%). The NRG-EE100-NPs demonstrated significant higher bioavailability (∼96-fold; p <0.05) as well as cytotoxicity (∼16-fold; p <0.001) as compared to free NRG. Furthermore, NRG-EE100-NPs indicated significant tumor suppression (p <0.01) subsequently improvement in survival rate compared to free NRG in vivo. Thus, the physicochemical properties and colorectal cancer efficacy of NRG were improved by successful encapsulating in cationic-polymeric nanoparticle system.
Collapse
Affiliation(s)
- Sundeep Chaurasia
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, Uttar Pradesh, India; Formulation Research and Development, Complex Generics Division, Virchow Biotech Pvt. Ltd., Survey No. 172 Part, Gagillapur (V), Quthbullapur (M), Ranga Reddy (Dist.), Hyderabad 500 043, Telangana, India
| | - Ravi R Patel
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, Uttar Pradesh, India
| | - Prasad Vure
- Formulation Research and Development, Complex Generics Division, Virchow Biotech Pvt. Ltd., Survey No. 172 Part, Gagillapur (V), Quthbullapur (M), Ranga Reddy (Dist.), Hyderabad 500 043, Telangana, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, Uttar Pradesh, India.
| |
Collapse
|
32
|
Savdan M, Çakır M, Vatansev H, Küçükkartallar T, Tekin A, Tavlı Ş. Preventing oxygen free radical damage by proanthocyanidin in obstructive jaundice. Turk J Surg 2017; 33:62-68. [PMID: 28740952 DOI: 10.5152/turkjsurg.2017.3337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Tissue damage and endotoxemia in obstructive jaundice are attributed to the increase in oxygen free-radicals. We aimed at evaluating the possible protective effect of grape seed proanthocyanidin extract (GSPE), which is a potent exogenous free-radical scavenger and antioxidant. MATERIAL AND METHODS The study was performed at the Necmettin Erbakan University Meram School of Medicine Research and Application Center for Experimental Medicine Laboratory with ethical approval. 30 Wistar-Albino rats were used and were divided into 3 groups. The common bile duct was identified and only dissected in the first group (sham). Following dissection of the common bile duct it was ligated with 4/0 silk just above the pancreas in the second group (control). After ligation of the common bile duct, 100mg/kg/day GSPE was administered via orogastric lavage for 10 days in the third group. RESULTS Biochemical values revealed a statistically significant difference between Group I and the others. There was no difference between Group II and III regarding biochemical values. There was a statistically significant difference, however, between Group II and III with regards to nitric oxide levels. There was a statistically significant difference between Group I and the other groups concerning hepatic and pulmonary tissue damage on histopathologic evaluation. There was no difference among the groups with regards to renal tubular damage. CONCLUSION Proanthocyanidin is an effective natural antioxidant in decreasing the level of tissue damage caused by oxygen free-radicals.
Collapse
Affiliation(s)
- Mervan Savdan
- Department of General Surgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Murat Çakır
- Department of General Surgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Hüsamettin Vatansev
- Department of Biochemistry, Selçuk University School of Medicine, Konya, Turkey
| | - Tevfik Küçükkartallar
- Department of General Surgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Ahmet Tekin
- Department of General Surgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Şakir Tavlı
- Department of General Surgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| |
Collapse
|
33
|
Hernández-Aquino E, Zarco N, Casas-Grajales S, Ramos-Tovar E, Flores-Beltrán RE, Arauz J, Shibayama M, Favari L, Tsutsumi V, Segovia J, Muriel P. Naringenin prevents experimental liver fibrosis by blocking TGFβ-Smad3 and JNK-Smad3 pathways. World J Gastroenterol 2017; 23:4354-4368. [PMID: 28706418 PMCID: PMC5487499 DOI: 10.3748/wjg.v23.i24.4354] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/22/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the molecular mechanisms involved in the hepatoprotective effects of naringenin (NAR) on carbon tetrachloride (CCl4)-induced liver fibrosis.
METHODS Thirty-two male Wistar rats (120-150 g) were randomly divided into four groups: (1) a control group (n = 8) that received 0.7% carboxy methyl-cellulose (NAR vehicle) 1 mL/daily p.o.; (2) a CCl4 group (n = 8) that received 400 mg of CCl4/kg body weight i.p. 3 times a week for 8 wk; (3) a CCl4 + NAR (n = 8) group that received 400 mg of CCl4/kg body weight i.p. 3 times a week for 8 wk and 100 mg of NAR/kg body weight daily for 8 wk p.o.; and (4) an NAR group (n = 8) that received 100 mg of NAR/kg body weight daily for 8 wk p.o. After the experimental period, animals were sacrificed under ketamine and xylazine anesthesia. Liver damage markers such as alanine aminotransferase (ALT), alkaline phosphatase (AP), γ-glutamyl transpeptidase (γ-GTP), reduced glutathione (GSH), glycogen content, lipid peroxidation (LPO) and collagen content were measured. The enzymatic activity of glutathione peroxidase (GPx) was assessed. Liver histopathology was performed utilizing Masson’s trichrome and hematoxylin-eosin stains. Zymography assays for MMP-9 and MMP-2 were carried out. Hepatic TGF-β, α-SMA, CTGF, Col-I, MMP-13, NF-κB, IL-1, IL-10, Smad7, Smad3, pSmad3 and pJNK proteins were detected via western blot.
RESULTS NAR administration prevented increases in ALT, AP, γ-GTP, and GPx enzymatic activity; depletion of GSH and glycogen; and increases in LPO and collagen produced by chronic CCl4 intoxication (P < 0.05). Liver histopathology showed a decrease in collagen deposition when rats received NAR in addition to CCl4. Although zymography assays showed that CCl4 produced an increase in MMP-9 and MMP-2 gelatinase activity; interestingly, NAR administration was associated with normal MMP-9 and MMP-2 activity (P < 0.05). The anti-inflammatory, antinecrotic and antifibrotic effects of NAR may be attributed to its ability to prevent NF-κB activation and the subsequent production of IL-1 and IL-10 (P < 0.05). NAR completely prevented the increase in TGF-β, α-SMA, CTGF, Col-1, and MMP-13 proteins compared with the CCl4-treated group (P < 0.05). NAR prevented Smad3 phosphorylation in the linker region by JNK since this flavonoid blocked this kinase (P < 0.05).
CONCLUSION NAR prevents CCl4 induced liver inflammation, necrosis and fibrosis, due to its antioxidant capacity as a free radical inhibitor and by inhibiting the NF-κB, TGF-β-Smad3 and JNK-Smad3 pathways.
Collapse
|
34
|
Sadeeshkumar V, Duraikannu A, Ravichandran S, Kodisundaram P, Fredrick WS, Gobalakrishnan R. Modulatory efficacy of dieckol on xenobiotic-metabolizing enzymes, cell proliferation, apoptosis, invasion and angiogenesis during NDEA-induced rat hepatocarcinogenesis. Mol Cell Biochem 2017; 433:195-204. [PMID: 28397013 DOI: 10.1007/s11010-017-3027-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/01/2017] [Indexed: 12/25/2022]
Abstract
Dieckol (DEK) is a major polyphenol of marine brown seaweed Ecklonia cava which is a potential candidate for cancer therapy. However, the underlying mechanism of DEK as an anticancer drug remains to be elucidated. In this study, we evaluated the molecular mechanisms involved in the chemopreventive efficacy of DEK in N-nitrosodiethylamine (NDEA)-induced hepatocarcinogenesis rats by analyzing markers of xenobiotic-metabolizing enzymes (XMEs), apoptosis, invasion, and angiogenesis. Rats administered NDEA developed hepatocarcinogenesis that displayed apoptosis avoidance coupled to upregulation of pro-inflammatory, invasion, and angiogenesis markers. Treatment of DEK effectively suppressed the NDEA-initiated hepatocarcinogenesis by modulation of XMEs, inducing of apoptosis via the mitochondrial pathway as revealed by modulating the Bcl-2 family proteins, cytochrome C, caspases, and inhibiting invasion, and angiogenesis as evidenced by changes in the activities of MMPs (MMP2/9) and the expression of VEGF. In addition, DEK exerts its anticancer effects via inhibition of pro-inflammatory transcription factor NF-κB (nuclear factor κB) and COX2 in NDEA-induced hepatocarcinogenesis. Taken together, this study demonstrates that DEK modulates the expression of key molecules that regulate apoptosis, inflammation, invasion, and angiogenesis. These results strongly indicate that DEK from E. cava is an attractive candidate for chemoprevention.
Collapse
Affiliation(s)
- Velayutham Sadeeshkumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Chidambaram, Tamil Nadu, 608 502, India.
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, 608 002, India.
| | - Arul Duraikannu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, 608 002, India
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Samuthrapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Chidambaram, Tamil Nadu, 608 502, India
| | - Paulrasu Kodisundaram
- Department of Chemistry, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, 608 002, India
| | - Wilson Sylvester Fredrick
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Chidambaram, Tamil Nadu, 608 502, India
| | - Rajagopal Gobalakrishnan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Chidambaram, Tamil Nadu, 608 502, India
| |
Collapse
|
35
|
Wu JC, Lai CS, Tsai ML, Ho CT, Wang YJ, Pan MH. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity. J Food Drug Anal 2016; 25:176-186. [PMID: 28911535 PMCID: PMC9333419 DOI: 10.1016/j.jfda.2016.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/08/2023] Open
Abstract
Contaminants (or pollutants) that affect human health have become an important issue, spawning a myriad of studies on how to prevent harmful contaminant-induced effects. Recently, a variety of biological functions of natural dietary compounds derived from consumed foods and plants have been demonstrated in a number of studies. Natural dietary compounds exhibited several beneficial effects for the prevention of disease and the inhibition of chemically-induced carcinogenesis. Contaminant-induced toxicity and carcinogenesis are mostly attributed to the mutagenic activity of reactive metabolites and the disruption of normal biological functions. Therefore, the metabolic regulation of hazardous chemicals is key to reducing contaminant-induced adverse health effects. Moreover, promoting contaminant excretion from the body through Phase I and II metabolizing enzymes is also a useful strategy for reducing contaminant-induced toxicity. This review focuses on summarizing the natural dietary compounds derived from common dietary foods and plants and their possible mechanisms of action in the prevention/suppression of contaminant-induced toxicity.
Collapse
Affiliation(s)
- Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Biomedical Informatics, Asia University, Taichung, Taiwan; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Min-Hsiung Pan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Protective effects of dieckol on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biomed Pharmacother 2016; 84:1810-1819. [DOI: 10.1016/j.biopha.2016.10.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/03/2016] [Accepted: 10/30/2016] [Indexed: 01/11/2023] Open
|
37
|
Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S, Navarra M. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives? Nutrients 2016; 8:E698. [PMID: 27827912 PMCID: PMC5133085 DOI: 10.3390/nu8110698] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Giovanni E Lombardo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro I-88100, Italy.
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina I-98125, Italy.
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina I-98125, Italy.
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Pozzuoli I-80078, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| |
Collapse
|
38
|
Inhibition of human and rat CYP1A1 enzyme by grapefruit juice compounds. Toxicol Lett 2016; 258:267-275. [DOI: 10.1016/j.toxlet.2016.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 12/27/2022]
|
39
|
Kujawska M, Ewertowska M, Adamska T, Ignatowicz E, Gramza-Michałowska A, Jodynis-Liebert J. Protective effect of yellow tea extract on N-nitrosodiethylamine-induced liver carcinogenesis. PHARMACEUTICAL BIOLOGY 2016; 54:1891-1900. [PMID: 26839940 DOI: 10.3109/13880209.2015.1137600] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/26/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
Context Yellow tea containing the same catechins as other types of tea but in different proportions has been suggested to possess potent anticancer activities. Objective This study investigates the chemopreventive effect of yellow tea aqueous extract against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis in rats by employing histological and biochemical methods. Materials and methods Wistar rats were divided randomly into four groups: control (I), yellow tea (II), NDEA (III), and yellow tea + NDEA (IV). Groups II and IV were exposed via a diet to yellow tea extract in a concentration of 10 g/kg feed; groups III and IV received 0.01% NDEA in drinking water. The experiment lasted for 13 weeks. Results Daily intake of yellow tea in an average dose of 800 mg/kg b.w. alleviated the carcinogenic effect of NDEA as evidenced by reversed histopathological changes towards normal hepatocellular architecture and decreased lipid peroxidation, protein carbonyl formation, and DNA degradation by 64%, 37% and 15%, respectively, as compared with values obtained in NDEA alone-treated rats. Treatment with yellow tea extract caused protection of superoxide dismutase (SOD) and catalase (CAT); their activity was recovered by 47% and 12%, respectively, as compared with the NDEA-treated rats. Moreover, the extract normalized the NDEA-induced activity of paraoxonase 1 (PON1) and glutathione peroxidase (GPx), while a further increase in the level of reduced glutathione (GSH) was noticed. Conclusions On the basis of these findings, it can be concluded that treatment with yellow tea partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and that its antioxidant activity contributed to this effect.
Collapse
MESH Headings
- Animals
- Anticarcinogenic Agents/isolation & purification
- Anticarcinogenic Agents/pharmacology
- Antioxidants/isolation & purification
- Antioxidants/pharmacology
- Biomarkers/blood
- Camellia sinensis/chemistry
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- DNA Damage/drug effects
- Diethylnitrosamine
- Lipid Peroxidation/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms, Experimental/blood
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Male
- Oxidative Stress/drug effects
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Protein Carbonylation/drug effects
- Rats, Wistar
Collapse
Affiliation(s)
- Małgorzata Kujawska
- a Department of Toxicology , Poznan University of Medical Sciences , Poznań , Poland
| | - Małgorzata Ewertowska
- a Department of Toxicology , Poznan University of Medical Sciences , Poznań , Poland
| | - Teresa Adamska
- a Department of Toxicology , Poznan University of Medical Sciences , Poznań , Poland
| | - Ewa Ignatowicz
- b Department of Pharmaceutical Biochemistry , Poznan University of Medical Sciences , Poznań , Poland
| | - Anna Gramza-Michałowska
- c Faculty of Food Science and Nutrition , Poznań University of Life Sciences , Poznań , Poland
| | | |
Collapse
|
40
|
Abstract
Citrus aurantifolia (family: Rutaceae) is mainly used in daily consumption, in many cultural cuisines, and in juice production. It is widely used because of its antibacterial, anticancer, antidiabetic, antifungal, anti-hypertensive, anti-inflammation, anti-lipidemia, and antioxidant properties; moreover, it can protect heart, liver, bone, and prevent urinary diseases. Its secondary metabolites are alkaloids, carotenoids, coumarins, essential oils, flavonoids, phenolic acids, and triterpenoids. The other important constituents are apigenin, hesperetin, kaempferol, limonoids, quercetin, naringenin, nobiletin, and rutin, all of these contribute to its remedial properties. The scientific searching platforms were used for publications from 1990 to present. The abstracts and titles were screened, and the full-text articles were selected. The present review is up-to-date of the phytochemical property of C. aurantifolia to provide a reference for further study.
Collapse
Affiliation(s)
- Nithithep Narang
- Mahidol University International College, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Wannee Jiraungkoorskul
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
41
|
Ali F, Rahul, Jyoti S, Fatima A, Khanam S, Naz F, Siddique YH. Protective Role of Curcumin against N-Nitrosodiethylamine (NDEA)-Induced Toxicity in Rats. Sci Pharm 2016; 84:361-77. [PMID: 27222610 PMCID: PMC4871187 DOI: 10.3797/scipharm.1506-06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/26/2015] [Indexed: 11/22/2022] Open
Abstract
The present investigation was aimed at studying the possible role of curcumin against N-nitrosodiethylamine (NDEA)-induced toxicity in albino rats. Administration of NDEA to rats at a concentration of 0.1 mg/ml in drinking water ad libitum for 21 days produced toxicity in them, which was evident from histopathological changes in the rat livers, and increased levels of blood serum enzyme markers, i.e. aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase. In addition, the levels of oxidative stress markers like lipid peroxidation (LPO), protein carbonyl (PCC), and glutathione-S-transferase (GST) activity were elevated and the total glutathione (GSH) content was reduced in the livers. The administration of curcumin to rats at concentrations of 10, 20, and 40 mg/ml in drinking water along with 0.1 mg/ml of NDEA for 21 days effectively suppressed NDEA-induced toxicity and also resulted in a dose-dependent reduction in the levels of blood serum enzyme markers (AST, ALT, ALP, and LDH). Moreover, LPO, PCC, and GST activity were reduced and the GSH level was increased upon the administration of curcumin along with NDEA. The results obtained for the comet assay in rat hepatocytes and blood lymphocytes showed a significant dose-dependent decrease in the mean tail length. The micronucleus assay performed on rat hepatocytes also showed a dose-dependent reduction in the frequency of micronucleated cells along with curcumin administration. These results suggest that curcumin has a protective role against NDEA-induced toxicity in albino rats.
Collapse
Affiliation(s)
- Fahad Ali
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Rahul
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Smita Jyoti
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saba Khanam
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Falaq Naz
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
42
|
Bose Mazumdar A, Chattopadhyay S. Sequencing, De novo Assembly, Functional Annotation and Analysis of Phyllanthus amarus Leaf Transcriptome Using the Illumina Platform. FRONTIERS IN PLANT SCIENCE 2016; 6:1199. [PMID: 26858723 PMCID: PMC4729934 DOI: 10.3389/fpls.2015.01199] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/14/2015] [Indexed: 05/23/2023]
Abstract
Phyllanthus amarus Schum. and Thonn., a widely distributed annual medicinal herb has a long history of use in the traditional system of medicine for over 2000 years. However, the lack of genomic data for P. amarus, a non-model organism hinders research at the molecular level. In the present study, high-throughput sequencing technology has been employed to enhance better understanding of this herb and provide comprehensive genomic information for future work. Here P. amarus leaf transcriptome was sequenced using the Illumina Miseq platform. We assembled 85,927 non-redundant (nr) "unitranscript" sequences with an average length of 1548 bp, from 18,060,997 raw reads. Sequence similarity analyses and annotation of these unitranscripts were performed against databases like green plants nr protein database, Gene Ontology (GO), Clusters of Orthologous Groups (COG), PlnTFDB, KEGG databases. As a result, 69,394 GO terms, 583 enzyme codes (EC), 134 KEGG maps, and 59 Transcription Factor (TF) families were generated. Functional and comparative analyses of assembled unitranscripts were also performed with the most closely related species like Populus trichocarpa and Ricinus communis using TRAPID. KEGG analysis showed that a number of assembled unitranscripts were involved in secondary metabolites, mainly phenylpropanoid, flavonoid, terpenoids, alkaloids, and lignan biosynthetic pathways that have significant medicinal attributes. Further, Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values of the identified secondary metabolite pathway genes were determined and Reverse Transcription PCR (RT-PCR) of a few of these genes were performed to validate the de novo assembled leaf transcriptome dataset. In addition 65,273 simple sequence repeats (SSRs) were also identified. To the best of our knowledge, this is the first transcriptomic dataset of P. amarus till date. Our study provides the largest genetic resource that will lead to drug development and pave the way in deciphering various secondary metabolite biosynthetic pathways in P. amarus, especially those conferring the medicinal attributes of this potent herb.
Collapse
|
43
|
Lv X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, Xiao C, Lu C, Liu Y. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J 2015; 9:68. [PMID: 26705419 PMCID: PMC4690266 DOI: 10.1186/s13065-015-0145-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
Citrus fruits, which are cultivated worldwide, have been recognized as some of the most high-consumption fruits in terms of energy, nutrients and health supplements. What is more, a number of these
fruits have been used as traditional medicinal herbs to cure diseases in several Asian countries. Numerous studies have focused on Citrus secondary metabolites as well as bioactivities and have been intended to develop new chemotherapeutic or complementary medicine in recent decades. Citrus-derived secondary metabolites, including flavonoids, alkaloids, limonoids, coumarins, carotenoids, phenolic acids and essential oils, are of vital importance to human health due to their active properties. These characteristics include anti-oxidative, anti-inflammatory, anti-cancer, as well as cardiovascular protective effects, neuroprotective effects, etc. This review summarizes the global distribution and taxonomy, numerous secondary metabolites and bioactivities of Citrus fruits to provide a reference for further study. Flavonoids as characteristic bioactive metabolites in Citrus fruits are mainly introduced.
Collapse
Affiliation(s)
- Xinmiao Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Siyu Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Zhangchi Ning
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Honglian Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yisong Shu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Ou Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, 100029 China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700 China ; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, 999077 China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
44
|
Bingül İ, Başaran-Küçükgergin C, Aydın AF, Soluk-Tekkeşin M, Olgaç V, Doğru-Abbasoğlu S, Uysal M. Blueberry treatment attenuated cirrhotic and preneoplastic lesions and oxidative stress in the liver of diethylnitrosamine-treated rats. Int J Immunopathol Pharmacol 2015; 29:426-37. [PMID: 26684621 DOI: 10.1177/0394632015621319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/06/2015] [Indexed: 01/10/2023] Open
Abstract
Diethylnitrosamine (DEN)-induced liver cancer normally develops in stages that progress from cirrhosis and carcinoma. Increased oxidative stress is suggested to play a role in DEN-induced carcinogenicity. Blueberries (BB) contain high antioxidant capacity. We investigated the effect of BB supplementation on development of DEN-induced cirrhosis and neoplastic lesions in the liver. Rats were injected with DEN (200 mg/kg; i.p.) three times with an interval of 15 days at 4, 6, and 8 weeks and sacrificed 8 weeks after the last DEN injection. They were also fed on 8% BB (w/w) containing chow for 16 weeks. Hepatic damage markers in serum were determined together with hepatic histopathological examinations. Hydroxyproline (HYP), malondialdehyde (MDA), diene conjugate (DC), protein carbonyl (PC), and glutathione (GSH) levels, and CuZn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, and their mRNA expressions were measured. Protein and mRNA expressions of glutathione transferase-pi (GST-pi) were evaluated as a marker of preneoplastic lesions. BB supplementation decreased hepatic damage markers in serum and hepatic MDA, DC, and PC levels, but SOD, CAT, and GSH-Px activities and their mRNA expressions remained unchanged in DEN-treated rats. BB attenuated cirrhotic changes and decreased hepatic HYP levels and GST-pi expressions. Our results indicate that BB is effective in decreasing development of DEN-induced hepatic cirrhosis and preneoplastic lesions by acting as an antioxidant (radical scavenger) itself without affecting activities and mRNA expressions of antioxidant enzymes.
Collapse
Affiliation(s)
- İlknur Bingül
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | | | - A Fatih Aydın
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | - Merva Soluk-Tekkeşin
- Department of Pathology, Oncology Institute, Istanbul University, Çapa, Istanbul, Turkey
| | - Vakur Olgaç
- Department of Pathology, Oncology Institute, Istanbul University, Çapa, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | - Müjdat Uysal
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| |
Collapse
|
45
|
Korobkova EA. Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases. Chem Res Toxicol 2015; 28:1359-90. [PMID: 26042469 DOI: 10.1021/acs.chemrestox.5b00121] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytochromes P450 (CYPs) are a large group of hemeproteins located on mitochondrial membranes or the endoplasmic reticulum. They play a crucial role in the metabolism of endogenous and exogenous molecules. The activity of CYP is associated with a number of factors including redox potential, protein conformation, the accessibility of the active site by substrates, and others. This activity may be potentially modulated by a variety of small molecules. Extensive experimental data collected over the past decade point at the active role of natural polyphenols in modulating the catalytic activity of CYP. Polyphenols are widespread micronutrients present in human diets of plant origin and in medicinal herbs. These compounds may alter the activity of CYP either via direct interactions with the enzymes or by affecting CYP gene expression. The polyphenol-CYP interactions may significantly alter the pharmacokinetics of drugs and thus influence the effectiveness of chemical therapies used in the treatment of different types of cancers, diabetes, obesity, and cardiovascular diseases (CVD). CYPs are involved in the oxidation and activation of external carcinogenic agents, in which case the inhibition of the CYP activity is beneficial for health. CYPs also support detoxification processes. In this case, it is the upregulation of CYP genes that would be favorable for the organism. A CYP enzyme aromatase catalyzes the formation of estrone and estradiol from their precursors. CYPs also catalyze multiple reactions leading to the oxidation of estrogen. Estrogen signaling and oxidative metabolism of estrogen are associated with the development of cancer. Thus, polyphenol-mediated modulation of the CYP's activity also plays a vital role in estrogen carcinogenesis. The aim of the present review is to summarize the data collected over the last five to six years on the following topics: (1) the mechanisms of the interactions of CYP with food constituents that occur via the direct binding of polyphenols to the enzymes and (2) the mechanisms of the regulation of CYP gene expression mediated by polyphenols. The structure-activity relationship relevant to the ability of polyphenols to affect the activity of CYP is analyzed. The application of polyphenol-CYP interactions to diseases is discussed.
Collapse
Affiliation(s)
- Ekaterina A Korobkova
- John Jay College of Criminal Justice, The Department of Sciences, City University of New York, 524 W 59th Street, New York, New York 10019, United States
| |
Collapse
|
46
|
Abaza MSI, Orabi KY, Al-Quattan E, Al-Attiyah RJ. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int 2015; 15:46. [PMID: 26074733 PMCID: PMC4464250 DOI: 10.1186/s12935-015-0194-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 04/06/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Natural products with diverse bioactivities are becoming an important source of novel agents with medicinal potential. Cancer is a devastating disease that causes the death of millions of people each year. Thus, intense research has been conducted on several natural products to develop novel anticancer drugs. METHODS Chromatographic and spectral techniques were used for the isolation and identification of naringenin (Nar). MTT, flow cytometry, western blotting, Real Time PCR were used to test anticancer and chemosensitizing effects of Nar, cell cycle, apoptosis, and expression of cell cycle, apoptosis, pro-survival and anti-survival-related genes. RESULTS In the present study, Thymus vulgaris ethanol extract was purified repeatedly to produce several compounds including the known flavanone, Nar which was identified using different spectral techniques. Nar was shown to inhibit both human colorectal and breast cancer cell growth in a dose- and time-dependent manner through cell cycle arrest at S- and G2/M-phases accompanied by an increase in apoptotic cell death. Additionally, Nar altered the expression of apoptosis and cell-cycle regulatory genes by down-regulating Cdk4, Cdk6, Cdk7, Bcl2, x-IAP and c-IAP-2 and up-regulating p18, p19, p21, caspases 3, 7, 8 and 9, Bak, AIF and Bax in both colorectal and breast cancer cells. Conversely, it diminished the expression levels of the cell survival factors PI3K, pAkt, pIκBα and NFκBp65. Moreover, Nar enhanced the sensitivity of colorectal and breast cancer cells to DNA-acting drugs. DISCUSSION These findings provide evidence that Nar's pro-apoptotic and chemo-sensitizing effects are mediated by perturbation of cell cycle, upregulation of pro-apoptotic genes and down-regulation of anti-apoptotic genes and inhibition of pro-survival signaling pathways. CONCLUSION In conclusion, Nar might be a promising candidate for chemoprevention and/or chemotherapy of human cancers. However, further studies exploring this therapeutic strategy are necessary.
Collapse
Affiliation(s)
- Mohamed Salah I Abaza
- Molecular Biology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, 13060 Kuwait
| | - Khaled Y Orabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, 13110 Kuwait
| | - Ebtehal Al-Quattan
- Molecular Biology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, 13060 Kuwait
| | - Raja'a J Al-Attiyah
- Department of Microbiology and Immunology, Faculty of Medicine, Kuwait University, Safat, 13110 Kuwait
| |
Collapse
|
47
|
Li RF, Feng YQ, Chen JH, Ge LT, Xiao SY, Zuo XL. Naringenin suppresses K562 human leukemia cell proliferation and ameliorates Adriamycin-induced oxidative damage in polymorphonuclear leukocytes. Exp Ther Med 2015; 9:697-706. [PMID: 25667616 PMCID: PMC4316947 DOI: 10.3892/etm.2015.2185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 12/04/2014] [Indexed: 12/13/2022] Open
Abstract
Treatments for leukemia remain unsatisfactory. Conventional chemotherapy agents that aim to kill tumor cells may also damage normal cells and thus result in severe side-effects. Naringenin, a natural polyphenolic compound with antioxidant effects, has been revealed to have significant antitumor effects with low toxicity in preliminary studies. Thus, it is considered as one of the most promising flavonoids in the treatment of leukemia. In the present study, the effects of naringenin on the K562 human leukemia cell line and the underlying mechanisms were explored in vitro. In addition, human peripheral blood polymorphonuclear leukocytes (PMNs) were used as a normal control in order to evaluate the effects of naringenin on normal granulocytes and in the mediation of Adriamycin (ADM)-induced oxidative damage. The results revealed that K562 proliferation was significantly inhibited by naringenin in a time- and concentration-dependent manner; however, minimal cytotoxic effects were observed in PMNs when naringenin was used at concentrations <400 μmol/l. Morphological changes indicative of apoptosis were observed in naringenin-treated K562 cells. Flow cytometric analysis indicated that the K562 cells were arrested in the G0/G1 phase of the cell cycle with a significantly upregulated rate of apoptosis. Furthermore, in the naringenin-treated K562 cells, the labeling index of proliferating cell nuclear antigen was observed to be increased by immunochemical staining, the mRNA and protein expression levels of p21/WAF1 were strongly upregulated in reverse transcription-polymerase chain reaction and western blot analyses, whereas p53 gene expression was not significantly changed. In PMNs to which naringenin (50~80 μmol/l) was added 1 h subsequent to ADM, the cell damage induced by ADM was significantly reduced, coincident with reductions in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increases in the activity of superoxide dismutase and glutathione peroxidase. However, the cytotoxic effect of ADM in K562 cells was not significantly altered by naringenin, and the oxidative stress indices in K562 cells remained stable. In conclusion, the present study revealed the promising value of naringenin in leukemia treatment. Naringenin demonstrated a significant inhibitory effect on the growth of K562 cells but not on normal PMNs. Furthermore, naringenin protected PMNs from ADM-induced oxidative damage at low concentrations. Cell cycle arrest and apoptosis-inducing effects, achieved through p53-independent p21/WAF1 upregulation, are likely to be the mechanism of the antileukemic effects of naringenin, and the protective effect against ADM chemotherapy-induced damage in PMNs may be due to the antioxidant capability of this agent at low concentrations.
Collapse
Affiliation(s)
- Rui-Fang Li
- Department of Neurology, Hubei Zhongshan Hospital, Wuhan, Hubei 430033, P.R. China ; Department of Pathology, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| | - Ying-Qian Feng
- Department of Endocrinology, Weapon Industry 521 Hospital, Xi'an, Shaanxi 710065, P.R. China
| | - Jun-Hui Chen
- Department of Science and Education, Hubei Zhongshan Hospital, Wuhan, Hubei 430033, P.R. China
| | - Lin-Tong Ge
- Department of Neurology, Hubei Zhongshan Hospital, Wuhan, Hubei 430033, P.R. China
| | - Shu-Yuan Xiao
- Department of Pathology, Biological Sciences Division, The University of Chicago, Chicago, IL 60637, USA
| | - Xue-Lan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
48
|
Filho JCC, Sarria ALF, Becceneri AB, Fuzer AM, Batalhão JR, da Silva CMP, Carlos RM, Vieira PC, Fernandes JB, Cominetti MR. Copper (II) and 2,2'-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PLoS One 2014; 9:e107058. [PMID: 25192075 PMCID: PMC4156406 DOI: 10.1371/journal.pone.0107058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022] Open
Abstract
Cancer is the second leading cause of death worldwide and there is epidemiological evidence that demonstrates this tendency is emerging. Naringenin (NGEN) is a trihydroxyflavanone that shows various biological effects such as antioxidant, anticancer, anti-inflammatory, and antiviral activities. It belongs to flavanone class, which represents flavonoids with a C6-C3-C6 skeleton. Flavonoids do not exhibit sufficient activity to be used for chemotherapy, however they can be chemically modified by complexation with metals such as copper (Cu) (II) for instance, in order to be applied for adjuvant therapy. This study investigated the effects of Cu(II) and 2,2′-bipyridine complexation with naringenin on MDA-MB-231 cells. We demonstrated that naringenin complexed with Cu(II) and 2,2′-bipyridine (NGENCuB) was more efficient inhibiting colony formation, proliferation and migration of MDA-MB-231 tumor cells, than naringenin (NGEN) itself. Furthermore, we verified that NGENCuB was more effective than NGEN inhibiting pro-MMP9 activity by zymography assays. Finally, through flow cytometry, we showed that NGENCuB is more efficient than NGEN inducing apoptosis in MDA-MB-231 cells. These results were confirmed by gene expression analysis in real time PCR. We observed that NGENCuB upregulated the expression of pro-apoptotic gene caspase-9, but did not change the expression of caspase-8 or anti-apoptotic gene Bcl-2. There are only few works investigating the effects of Cu(II) complexation with naringenin on tumor cells. To the best of our knowledge, this is the first work describing the effects of Cu(II) complexation of a flavonoid on MDA-MB-231 breast tumor cells.
Collapse
Affiliation(s)
| | | | | | - Angelina Maria Fuzer
- Departamento de Gerontologia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | - Rose Maria Carlos
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Paulo Cezar Vieira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - Márcia Regina Cominetti
- Departamento de Gerontologia, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- * E-mail:
| |
Collapse
|
49
|
Fouad AA, Albuali WH, Zahran A, Gomaa W. Protective effect of naringenin against gentamicin-induced nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:420-429. [PMID: 25128772 DOI: 10.1016/j.etap.2014.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
The protective effect of naringenin, a flavonoid compound isolated from citrus fruits, was investigated against nephrotoxicity induced by gentamicin (80mgkg(-1)/day, i.p., for eight days) in rats. Naringenin treatment (50mgkg(-1)/day, p.o.) was administered for eight days, starting on the same day of gentamicin administration. Gentamicin caused significant elevations of serum creatinine, and kidney tissue levels of malondialdehyde, nitric oxide, and interleukin-8, and a significant decrease in renal glutathione peroxidase activity. Naringenin treatment significantly ameliorated the changes in the measured biochemical parameters resulted from gentamicin administration. Also, naringenin markedly attenuated the histopathological renal tissue injury observed with gentamicin. Immunohistochemical examinations showed that naringenin significantly reduced the gentamicin-induced expression of kidney injury molecule-1, vascular endothelial growth factor, inducible nitric oxide synthase, and caspase-9, and increased survivin expression in the kidney tissue. It was concluded that naringenin, through its antioxidant and anti-inflammatory effects, may represent a therapeutic option to protect against gentamicin nephrotoxicity.
Collapse
Affiliation(s)
- Amr A Fouad
- Department of Biomedical Sciences, Pharmacology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Waleed H Albuali
- Department of Pediatrics, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ahmed Zahran
- Department of Internal Medicine, Nephrology Division, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Wafaey Gomaa
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Wang K, Liu T, Lin R, Liu B, Yang G, Bu X, Wang W, Zhang P, Zhou L, Zhang J. Preparation and in vitro release of buccal tablets of naringenin-loaded MPEG-PCL nanoparticles. RSC Adv 2014. [DOI: 10.1039/c4ra04920a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|