1
|
Hassib L, Kanashiro A, Pedrazzi JFC, Vercesi BF, Higa S, Arruda Í, Soares Y, de Jesus de Souza A, Jordão AA, Guimarães FS, Ferreira FR. Should we consider microbiota-based interventions as a novel therapeutic strategy for schizophrenia? A systematic review and meta-analysis. Brain Behav Immun Health 2025; 43:100923. [DOI: 10.1016/j.bbih.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
2
|
Cocean AM, Vodnar DC. Exploring the gut-brain Axis: Potential therapeutic impact of Psychobiotics on mental health. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111073. [PMID: 38914414 DOI: 10.1016/j.pnpbp.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
One of the most challenging and controversial issues in microbiome research is related to gut microbial metabolism and neuropsychological disorders. Psychobiotics affect human behavior and central nervous system processes via the gut-brain axis, involving neuronal, immune, and metabolic pathways. They have therapeutic potential in the treatment of several neurodegenerative and neurodevelopmental disorders such as depression, anxiety, autism, attention deficit hyperactivity disorder, Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, anorexia nervosa, and multiple sclerosis. However, the mechanisms underlying the interaction between psychobiotics and the abovementioned diseases need further exploration. This review focuses on the relationship between gut microbiota and its impact on neurological and neurodegenerative disorders, examining the potential of psychobiotics as a preventive and therapeutic approach, summarising recent research on the gut-brain axis and the potential beneficial effects of psychobiotics, highlighting the need for further research and investigation in this area.
Collapse
Affiliation(s)
- Ana-Maria Cocean
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| |
Collapse
|
3
|
Ling Z, Lan Z, Cheng Y, Liu X, Li Z, Yu Y, Wang Y, Shao L, Zhu Z, Gao J, Lei W, Ding W, Liao R. Altered gut microbiota and systemic immunity in Chinese patients with schizophrenia comorbid with metabolic syndrome. J Transl Med 2024; 22:729. [PMID: 39103909 PMCID: PMC11302365 DOI: 10.1186/s12967-024-05533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is highly prevalent in individuals with schizophrenia (SZ), leading to negative consequences like premature mortality. Gut dysbiosis, which refers to an imbalance of the microbiota, and chronic inflammation are associated with both SZ and MetS. However, the relationship between gut dysbiosis, host immunological dysfunction, and SZ comorbid with MetS (SZ-MetS) remains unclear. This study aims to explore alterations in gut microbiota and their correlation with immune dysfunction in SZ-MetS, offering new insights into its pathogenesis. METHODS AND RESULTS We enrolled 114 Chinese patients with SZ-MetS and 111 age-matched healthy controls from Zhejiang, China, to investigate fecal microbiota using Illumina MiSeq sequencing targeting 16 S rRNA gene V3-V4 hypervariable regions. Host immune responses were assessed using the Bio-Plex Pro Human Cytokine 27-Plex Assay to examine cytokine profiles. In SZ-MetS, we observed decreased bacterial α-diversity and significant differences in β-diversity. LEfSe analysis identified enriched acetate-producing genera (Megamonas and Lactobacillus), and decreased butyrate-producing bacteria (Subdoligranulum, and Faecalibacterium) in SZ-MetS. These altered genera correlated with body mass index, the severity of symptoms (as measured by the Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms), and triglyceride levels. Altered bacterial metabolic pathways related to lipopolysaccharide biosynthesis, lipid metabolism, and various amino acid metabolism were also found. Additionally, SZ-MetS exhibited immunological dysfunction with increased pro-inflammatory cytokines, which correlated with the differential genera. CONCLUSION These findings suggested that gut microbiota dysbiosis and immune dysfunction play a vital role in SZ-MetS development, highlighting potential therapeutic approaches targeting the gut microbiota. While these therapies show promise, further mechanistic studies are needed to fully understand their efficacy and safety before clinical implementation.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China.
| | - Zhiyong Lan
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhimeng Li
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Ying Yu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Yuwei Wang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China
| | - Li Shao
- School of Clinical Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, China
- Department of Basic Medicine, Shandong First Medical University, Jinan, Shandong, 250000, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Rongxian Liao
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, Zhejiang, 324003, China.
| |
Collapse
|
4
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
5
|
Chen Y, Yu H, Xue F, Bai J, Guo L, Peng Z. 16S rRNA gene sequencing reveals altered gut microbiota in young adults with schizophrenia and prominent negative symptoms. Brain Behav 2024; 14:e3579. [PMID: 38841824 PMCID: PMC11154826 DOI: 10.1002/brb3.3579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Gut dysbiosis has been established as a characteristic of schizophrenia (SCH). However, the signatures regarding SCH patients with prominent negative symptoms (SCH-N) in young adults have been poorly elucidated. METHODS Stool samples were obtained from 30 young adults with SCH-N, 32 SCH patients with prominent positive symptoms (SCH-P) along with 36 healthy controls (HCs). Microbial diversity and composition were analyzed by 16S rRNA gene sequencing. Meanwhile, psychiatric symptoms were assessed by the positive and negative syndrome scale (PANSS). RESULTS There is a significant difference in β-diversity but not α-diversity indexes among the three groups. Moreover, we found a higher abundance of Fusobacteria and Proteobacteria phyla and a lower abundance of Firmicutes phyla in SCH-N when compared with HC. Besides, we identified a diagnostic potential panel comprising six genera (Coprococcus, Monoglobus, Prevotellaceae_NK3B31_group, Escherichia-Shigella, Dorea, and Butyricicoccus) that can distinguish SCH-N from HC (area under the curve = 0.939). However, the difference in microbial composition between the SCH-N and SCH-P is much less than that between SCH-N and the HC, and SCH-N and SCH-P cannot be effectively distinguished by gut microbiota. CONCLUSION The composition of gut microbiota was changed in the patients with SCH-N, which may help in further understanding of pathogenesis in young adults with SCH-N.
Collapse
Affiliation(s)
- Yi‐Huan Chen
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Huan Yu
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Fen Xue
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jie Bai
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
- Department of PsychiatryGaoxin HospitalXi'anChina
| | - Li Guo
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| | - Zheng‐Wu Peng
- Department of PsychiatryXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
6
|
Liang L, Li S, Huang Y, Zhou J, Xiong D, Li S, Li H, Zhu B, Li X, Ning Y, Hou X, Wu F, Wu K. Relationships among the gut microbiome, brain networks, and symptom severity in schizophrenia patients: A mediation analysis. Neuroimage Clin 2024; 41:103567. [PMID: 38271852 PMCID: PMC10835015 DOI: 10.1016/j.nicl.2024.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
The microbiome-gut-brain axis (MGBA) plays a critical role in schizophrenia (SZ). However, the underlying mechanisms of the interactions among the gut microbiome, brain networks, and symptom severity in SZ patients remain largely unknown. Fecal samples, structural and functional magnetic resonance imaging (MRI) data, and Positive and Negative Syndrome Scale (PANSS) scores were collected from 38 SZ patients and 38 normal controls, respectively. The data of 16S rRNA gene sequencing were used to analyze the abundance of gut microbiome and the analysis of human brain networks was applied to compute the nodal properties of 90 brain regions. A total of 1,691,280 mediation models were constructed based on 261 gut bacterial, 810 nodal properties, and 4 PANSS scores in SZ patients. A strong correlation between the gut microbiome and brain networks (r = 0.89, false discovery rate (FDR) -corrected p < 0.05) was identified. Importantly, the PANSS scores were linearly correlated with both the gut microbiome (r = 0.5, FDR-corrected p < 0.05) and brain networks (r = 0.59, FDR-corrected p < 0.05). The abundance of genus Sellimonas significantly affected the PANSS negative scores of SZ patients via the betweenness centrality of white matter networks in the inferior frontal gyrus and amygdala. Moreover, 19 significant mediation models demonstrated that the nodal properties of 7 brain regions, predominately from the systems of visual, language, and control of action, showed significant mediating effects on the PANSS scores with the gut microbiome as mediators. Together, our findings indicated the tripartite relationships among the gut microbiome, brain networks, and PANSS scores and suggested their potential role in the neuropathology of SZ.
Collapse
Affiliation(s)
- Liqin Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Shijia Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Jing Zhou
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Dongsheng Xiong
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Shaochuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Realmeta Technology (Guangzhou) Co., Ltd, Guangzhou 510535, China
| | - Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Baoyuan Zhu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Xiaohui Hou
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China.
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|
7
|
Li R, Fu R, Cui ZQ, Guo L, Chen YH, Bai J, Yang JB, Tan QR, Peng ZW. Effects of low-frequency rTMS combined with risperidone on the gut microbiome in hospitalized patients with chronic schizophrenia. Brain Res 2023; 1819:148539. [PMID: 37598899 DOI: 10.1016/j.brainres.2023.148539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been widely used in treating schizophrenia (SCH). However, the effects of the low frequency of rTMS combined with antipsychotics on the gut microbiome in chronic SCH have been poorly investigated. In the present study, psychiatric symptoms were assessed and the stool samples obtained from 33 adult patients with chronic SCH (at baselinephase), 27 after 2 weeks of treatment (rTMS combined with risperidone, SCH-2W), and 37 healthy controls (HC) were analyzed by 16S rRNA gene sequencing. We found that the reduction of phylum Proteobacteria, family Enterobacteriaceae and genera Escherichia-Shigella as well as the increase of genera norank_f_Lachnospiraceae might be related to the antipsychotic effect of rTMS combined with risperidone. These findings indicate that the brain-gut-microbiota axis might be involved in the therapeutic effect of rTMS combined with antipsychotic drugs.
Collapse
Affiliation(s)
- Rui Li
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Rui Fu
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Zhi-Quan Cui
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Lin Guo
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Yi-Huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Jie Bai
- Department of Psychiatry, Gaoxin Hospital, Xi'an 710077, China
| | - Jia-Bin Yang
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Qing-Rong Tan
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China; Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
8
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
9
|
Murray N, Al Khalaf S, Bastiaanssen TFS, Kaulmann D, Lonergan E, Cryan JF, Clarke G, Khashan AS, O’Connor K. Compositional and Functional Alterations in Intestinal Microbiota in Patients with Psychosis or Schizophrenia: A Systematic Review and Meta-analysis. Schizophr Bull 2023; 49:1239-1255. [PMID: 37210594 PMCID: PMC10483467 DOI: 10.1093/schbul/sbad049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND HYPOTHESIS Intestinal microbiota is intrinsically linked to human health. Evidence suggests that the composition and function of the microbiome differs in those with schizophrenia compared with controls. It is not clear how these alterations functionally impact people with schizophrenia. We performed a systematic review and meta-analysis to combine and evaluate data on compositional and functional alterations in microbiota in patients with psychosis or schizophrenia. STUDY DESIGN Original studies involving humans and animals were included. The electronic databases PsycINFO, EMBASE, Web of Science, PubMed/MEDLINE, and Cochrane were systematically searched and quantitative analysis performed. STUDY RESULTS Sixteen original studies met inclusion criteria (1376 participants: 748 cases and 628 controls). Ten were included in the meta-analysis. Although observed species and Chao 1 show a decrease in diversity in people with schizophrenia compared with controls (SMD = -0.14 and -0.66 respectively), that did not reach statistical significance. We did not find evidence for variations in richness or evenness of microbiota between patients and controls overall. Differences in beta diversity and consistent patterns in microbial taxa were noted across studies. We found increases in Bifidobacterium, Lactobacillus, and Megasphaera in schizophrenia groups. Variations in brain structure, metabolic pathways, and symptom severity may be associated with compositional alterations in the microbiome. The heterogeneous design of studies complicates a similar evaluation of functional readouts. CONCLUSIONS The microbiome may play a role in the etiology and symptomatology of schizophrenia. Understanding how the implications of alterations in microbial genes for symptomatic expression and clinical outcomes may contribute to the development of microbiome targeted interventions for psychosis.
Collapse
Affiliation(s)
- Nuala Murray
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Sukainah Al Khalaf
- School of Public Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Kaulmann
- School of Public Health, University College Cork, Cork, Ireland
| | - Edgar Lonergan
- RISE, Early Intervention in Psychosis Service, South Lee Mental Health Services, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Karen O’Connor
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- RISE, Early Intervention in Psychosis Service, South Lee Mental Health Services, Cork, Ireland
| |
Collapse
|
10
|
Gulrandhe P, Acharya S, Shukla S, Patel M. Neuropsychiatric and Neurological Diseases in Relation to the Microbiota-Gut-Brain Axis: From Research to Clinical Care. Cureus 2023; 15:e44819. [PMID: 37809229 PMCID: PMC10559079 DOI: 10.7759/cureus.44819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Neurological disease is on the upswing, the second leading cause of mortality and a significant cause of disability. The term gut-brain axis emphasizes a dynamic two-way communication between the central nervous system and the gastrointestinal system. The microbiome is being linked to more and more clinical and preclinical studies as a major risk factor for neurological diseases. Overall, 288 studies were identified initially. After screening, data extraction, and applying the inclusion and exclusion criteria, 37 articles were included in the study. Changes in the gut microbial population composition have been correlated to many neurological and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Purva Gulrandhe
- Department of Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Samarth Shukla
- Department of Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Maharshi Patel
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Ağagündüz D, Çelik E, Cemali Ö, Bingöl FG, Özenir Ç, Özoğul F, Capasso R. Probiotics, Live Biotherapeutic Products (LBPs), and Gut-Brain Axis Related Psychological Conditions: Implications for Research and Dietetics. Probiotics Antimicrob Proteins 2023; 15:1014-1031. [PMID: 37222849 DOI: 10.1007/s12602-023-10092-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
It is well-known that probiotics have key roles in the crosstalk between the gut and brain in terms of nutrition and health. However, when investigating their role in nutrition and health, it can be important to discriminate probiotics used as foods, food supplements, or drugs. For clarification of this terminology, the Food and Drug Administration (FDA) has established a new "live biotherapeutic products" (LBP) category, expressing pharmaceutical expectations and to reduce confusion in the literature. Growing evidence advises that the community of microorganisms found in the gut microbiota is associated with psychological conditions. Hence, it is thought that LBPs may positively affect depression, anxiety, bipolar disorder, and schizophrenia by reducing inflammation, improving gut microbiota, and balancing gut neurometabolites. This review focuses on the specific position of probiotics as LBPs in psychological conditions. Condition-specific potential pathways and mechanisms of LBPs and the prominent strains are discussed in the light of novel studies for future research, dietetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey.
| | - Elif Çelik
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey
| | - Özge Cemali
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey
| | - Feray Gençer Bingöl
- Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, İstiklal Yerleşkesi, Burdur, 15030, Turkey
| | - Çiler Özenir
- Department of Nutrition and Dietetics, Kırıkkale University, Merkez, Kırıkkale, 71100, Turkey
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana, 01330, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, 01330, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, NA, Italy
| |
Collapse
|
12
|
Cheng X, Xie Y, Wang A, Zhu C, Yan F, Pei W, Zhang X. Correlation between elevated serum interleukin-1β, interleukin-16 levels and psychiatric symptoms in patients with schizophrenia at different stages. BMC Psychiatry 2023; 23:396. [PMID: 37270510 DOI: 10.1186/s12888-023-04896-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND There is increasing evidence that immune dysfunction plays an important role in the pathogenesis of schizophrenia. Meso Scale Discovery (MSD) is bioanalytical method, which can detect serum inflammatory factors in patients. MSD has higher sensitivities, capturing a narrower range of proteins compared to other methods typically used in similar studies. The present study was aimed to explore the correlation between the levels of serum inflammatory factors and psychiatric symptoms in patients with schizophrenia at different stages and investigate a wide panel of inflammatory factors as independent factors for the pathogenesis of schizophrenia. METHODS We recruited 116 participants, including patients with first-episode schizophrenia (FEG, n = 40), recurrence patients (REG, n = 40) with relapse-episode schizophrenia, and a control group (healthy people, HP, n = 36). Patients are diagnosed according to the DSM -V. The plasma levels of IFN-γ, IL-10, IL-1β, IL-2, IL-6, TNF-α, CRP, VEGF, IL-15, and IL-16 were tested by the MSD technique. Patient-related data was collected, including sociodemographic data, positive and negative symptom scale (PANSS), and brief psychiatric rating scale (BPRS) and subscale scores. The independent sample T test, χ2 test, Analysis of covariance (ANCOVA), the least significant difference method (LSD), Spearman's correlation test, binary logistic regression analysis and ROC curve analysis were used in this study. RESULTS There were significant differences in serum IL-1β (F = 2.37, P = 0.014) and IL-16 (F = 4.40, P < 0.001) levels among the three groups. The level of serum IL-1β in the first-episode group was significantly higher than in the recurrence group (F = 0.87, P = 0.021) and control group (F = 2.03, P = 0.013), but there was no significant difference between the recurrence group and control group (F = 1.65, P = 0.806). The serum IL-16 levels in the first-episode group (F = 1.18, P < 0.001) and the recurrence group (F = 0.83, P < 0.001) were significantly higher than in the control group, and there was no significant difference between the first-episode group and the recurrence group (F = 1.65, P = 0.61). Serum IL-1β was negatively correlated with the general psychopathological score (GPS) of PANSS (R=-0.353, P = 0.026). In the recurrence group, serum IL-16 was positively correlated with the negative score (NEG) of the PANSS scale (R = 0.335, P = 0.035) and negatively correlated with the composite score (COM) (R=-0.329, P = 0.038). In the study, IL-16 levels were an independent variable of the onset of schizophrenia both in the first-episode (OR = 1.034, P = 0.002) and recurrence groups (OR = 1.049, P = 0.003). ROC curve analysis showed that the areas under IL-16(FEG) and IL-16(REG) curves were 0.883 (95%CI:0.794-0.942) and 0.887 (95%CI:0.801-0.950). CONCLUSIONS Serum IL-1β and IL-16 levels were different between patients with schizophrenia and healthy people. Serum IL-1β levels in first-episode schizophrenia and serum IL-16 levels in relapsing schizophrenia were correlated with the parts of psychiatric symptoms. The IL-16 level may be an independent factor associating with the onset of schizophrenia.
Collapse
Affiliation(s)
- Xialong Cheng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yu Xie
- Department of Psychology, School of Educational Science, Anhui Normal University, Wuhu, China
| | - Anzhen Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Cuizhen Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Fanfan Yan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Wenzhi Pei
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Anhui Mental Health Center, Hefei, China
- Hefei Fourth People's Hospital, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
- Anhui Mental Health Center, Hefei, China.
- Hefei Fourth People's Hospital, Hefei, China.
- Anhui Clinical Research Center for Mental Disorders, Hefei, China.
| |
Collapse
|
13
|
Zhai Z, Su PW, Ma LY, Yang H, Wang T, Fei ZG, Zhang YN, Wang Y, Ma K, Han BB, Wu ZC, Yu HY, Zhao HJ. Progress on traditional Chinese medicine in treatment of ischemic stroke via the gut-brain axis. Biomed Pharmacother 2023; 157:114056. [PMID: 36446240 DOI: 10.1016/j.biopha.2022.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke is a common issue that severely affects the human health. Between the central nervous system and the enteric system, the " Gut-Brain " axis, the bidirectional connection involved in the neuro-immuno-endocrine network, is crucial for the occurrence and development of ischemic stroke. Ischemic stroke can lead to change in the gut microbiota and gastrointestinal hormones, which will then reversely affect the disease development. Traditional Chinese Medicine (TCM) has unique advantages with reference to the treatment for ischemic stroke. The latest research revealed that a significant portion of medicines and prescriptions of TCM exert their therapeutic effects by improving the gut microbiota and regulating the secretion of gastrointestinal hormones. The present review summarized the Chinese medicines that play a therapeutic role in cerebral ischemia through regulating the "Gut-Brain" axis and described the corresponding mechanisms. This study attempts to provide reference for clinical selection of Chinese medicines and helps better understand the relevant mechanisms of action.
Collapse
Affiliation(s)
- Zhe Zhai
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pei-Wei Su
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lan-Ying Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zheng-Gen Fei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya-Nan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing-Bing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi-Chun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hua-Yun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Jun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
14
|
Experiences and Perspectives of GC-MS Application for the Search of Low Molecular Weight Discriminants of Schizophrenia. Molecules 2022; 28:molecules28010324. [PMID: 36615518 PMCID: PMC9822242 DOI: 10.3390/molecules28010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is one of the most severe chronic mental disorders that is currently diagnosed and categorized through subjective clinical assessment of complex symptoms. At present, there is a recognized need for an objective, unbiased clinical test for schizophrenia diagnosis at an early stage and categorization of the disease. This can be achieved by assaying low-molecular-weight biomarkers of the disease. Here we give an overview of previously conducted research on the discovery of biomarkers of schizophrenia and focus on the studies implemented with the use of GC-MS and the least invasiveness of biological samples acquisition. The presented data demonstrate that GC-MS is a powerful instrumental platform for investigating dysregulated biochemical pathways implicated in schizophrenia pathogenesis. With this platform, different research groups suggested a number of low molecular weight biomarkers of schizophrenia. However, we recognize an inconsistency between the biomarkers or biomarkers patterns revealed by different groups even in the same matrix. Moreover, despite the importance of the problem, the number of relevant studies is limited. The intensification of the research, as well as the harmonization of the analytical procedures to overcome the observed inconsistencies, can be indicated as future directions in the schizophrenia bio-markers quest.
Collapse
|
15
|
Asbjornsdottir B, Miranda-Ribera A, Fiorentino M, Konno T, Cetinbas M, Lan J, Sadreyev RI, Gudmundsson LS, Gottfredsson M, Lauth B, Birgisdottir BE, Fasano A. Prophylactic Effect of Bovine Colostrum on Intestinal Microbiota and Behavior in Wild-Type and Zonulin Transgenic Mice. Biomedicines 2022; 11:biomedicines11010091. [PMID: 36672598 PMCID: PMC9855927 DOI: 10.3390/biomedicines11010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) involves bidirectional communication between intestinal microbiota and the gastrointestinal (GI) tract, central nervous system (CNS), neuroendocrine/neuroimmune systems, hypothalamic-pituitary-adrenal (HPA) axis, and enteric nervous system (ENS). The intestinal microbiota can influence host physiology and pathology. Dysbiosis involves the loss of beneficial microbial input or signal, diversity, and expansion of pathobionts, which can lead to loss of barrier function and increased intestinal permeability (IP). Colostrum, the first milk from mammals after birth, is a natural source of nutrients and is rich in oligosaccharides, immunoglobulins, growth factors, and anti-microbial components. The aim of this study was to investigate if bovine colostrum (BC) administration might modulate intestinal microbiota and, in turn, behavior in two mouse models, wild-type (WT) and Zonulin transgenic (Ztm)-the latter of which is characterized by dysbiotic microbiota, increased intestinal permeability, and mild hyperactivity-and to compare with control mice. Bioinformatics analysis of the microbiome showed that consumption of BC was associated with increased taxonomy abundance (p = 0.001) and diversity (p = 0.004) of potentially beneficial species in WT mice and shifted dysbiotic microbial community towards eubiosis in Ztm mice (p = 0.001). BC induced an anxiolytic effect in WT female mice compared with WT female control mice (p = 0.0003), and it reduced anxiogenic behavior in Ztm female mice compared with WT female control mice (p = 0.001), as well as in Ztm male mice compared with WT BC male mice (p = 0.03). As evidenced in MGBA interactions, BC supplementation may well be applied for prophylactic approaches in the future. Further research is needed to explore human interdependencies between intestinal microbiota, including eubiosis and pathobionts, and neuroinflammation, and the potential value of BC for human use. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Unit for Nutrition Research, Landspitali University Hospital and Faculty of Food Science and Nutrition, University of Iceland, 101 Reykjavik, Iceland
- Correspondence:
| | - Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Takumi Konno
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Murat Cetinbas
- Department of Molecular Biology and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology and Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Larus S. Gudmundsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, 101 Reykjavik, Iceland
| | - Magnus Gottfredsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Scientific Affairs, Landspitali University Hospital, 101 Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, 101 Reykjavik, Iceland
| | - Bertrand Lauth
- School of Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, 105 Reykjavik, Iceland
| | - Bryndis Eva Birgisdottir
- Unit for Nutrition Research, Landspitali University Hospital and Faculty of Food Science and Nutrition, University of Iceland, 101 Reykjavik, Iceland
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02152, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02114, USA
| |
Collapse
|
16
|
Gao Y, Liu X, Pan M, Zeng D, Zhou X, Tsunoda M, Zhang Y, Xie X, Wang R, Hu W, Li L, Yang H, Song Y. Integrated untargeted fecal metabolomics and gut microbiota strategy for screening potential biomarkers associated with schizophrenia. J Psychiatr Res 2022; 156:628-638. [PMID: 36375230 DOI: 10.1016/j.jpsychires.2022.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia (SZ) is a serious neurodevelopmental disorder. As the etiology of SZ is complex and the pathogenesis is not thoroughly understood, the diagnosis of different subtypes still depends on the subjective judgment of doctors. Therefore, there is an urgent need to develop early objective laboratory diagnostic biomarkers to screen different subtypes of patients as early as possible, and to implement targeted prevention and precision medicine to reduce the risk of SZ and improve patients' quality of life. In this study, untargeted metabolomics and 16S rDNA sequencing were used to analyze the differences in metabolites and gut microflora among 28 patients with two types of schizophrenia and 11 healthy subjects. The results showed that the metabolome and sequencing data could effectively discriminate among paranoid schizophrenia patients, undifferentiated schizophrenia patients and healthy controls. We obtained 65 metabolites and 76 microorganisms with significant changes, and fecal metabolite composition was significantly correlated with the differential genera (|r|>0.5), indicating that there was a regulatory relationship between the gut microbiota and the host metabolites. The gut microbiome, as an objective and measurable index, showed good diagnostic value for distinguishing schizophrenia patients from healthy people, especially with a combination of several differential microorganisms, which had the best diagnostic effect (AUC>0.9). Our results are conducive to understanding the complicated metabolic changes in SZ patients and providing valuable information for the clinical diagnosis of SZ.
Collapse
Affiliation(s)
- Yuhang Gao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xianglai Liu
- Hainan Provincial Anning Hospital, Haikou, 571100, China
| | - Mingyu Pan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Debin Zeng
- Hainan Provincial Anning Hospital, Haikou, 571100, China
| | - Xiying Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Makoto Tsunoda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Lushuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Haimei Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
17
|
Rantala MJ, Luoto S, Borráz-León JI, Krams I. Schizophrenia: the new etiological synthesis. Neurosci Biobehav Rev 2022; 142:104894. [PMID: 36181926 DOI: 10.1016/j.neubiorev.2022.104894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 10/31/2022]
Abstract
Schizophrenia has been an evolutionary paradox: it has high heritability, but it is associated with decreased reproductive success. The causal genetic variants underlying schizophrenia are thought to be under weak negative selection. To unravel this paradox, many evolutionary explanations have been suggested for schizophrenia. We critically discuss the constellation of evolutionary hypotheses for schizophrenia, highlighting the lack of empirical support for most existing evolutionary hypotheses-with the exception of the relatively well supported evolutionary mismatch hypothesis. It posits that evolutionarily novel features of contemporary environments, such as chronic stress, low-grade systemic inflammation, and gut dysbiosis, increase susceptibility to schizophrenia. Environmental factors such as microbial infections (e.g., Toxoplasma gondii) can better predict the onset of schizophrenia than polygenic risk scores. However, researchers have not been able to explain why only a small minority of infected people develop schizophrenia. The new etiological synthesis of schizophrenia indicates that an interaction between host genotype, microbe infection, and chronic stress causes schizophrenia, with neuroinflammation and gut dysbiosis mediating this etiological pathway. Instead of just alleviating symptoms with drugs, the parasite x genotype x stress model emphasizes that schizophrenia treatment should focus on detecting and treating possible underlying microbial infection(s), neuroinflammation, gut dysbiosis, and chronic stress.
Collapse
Affiliation(s)
- Markus J Rantala
- Department of Biology, University of Turku, FIN-20014 Turku, Finland.
| | - Severi Luoto
- School of Population Health, University of Auckland, 1023 Auckland, New Zealand
| | | | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia; Department of Zoology and Animal Ecology, Faculty of Biology, University of Latvia, 1004, Rīga, Latvia
| |
Collapse
|
18
|
Eicher TP, Mohajeri MH. Overlapping Mechanisms of Action of Brain-Active Bacteria and Bacterial Metabolites in the Pathogenesis of Common Brain Diseases. Nutrients 2022; 14:2661. [PMID: 35807841 PMCID: PMC9267981 DOI: 10.3390/nu14132661] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
The involvement of the gut microbiota and the metabolites of colon-residing bacteria in brain disease pathogenesis has been covered in a growing number of studies, but comparative literature is scarce. To fill this gap, we explored the contribution of the microbiota-gut-brain axis to the pathophysiology of seven brain-related diseases (attention deficit hyperactivity disorder, autism spectrum disorder, schizophrenia, Alzheimer's disease, Parkinson's disease, major depressive disorder, and bipolar disorder). In this article, we discussed changes in bacterial abundance and the metabolic implications of these changes on disease development and progression. Our central findings indicate that, mechanistically, all seven diseases are associated with a leaky gut, neuroinflammation, and over-activated microglial cells, to which gut-residing bacteria and their metabolites are important contributors. Patients show a pro-inflammatory shift in their colon microbiota, harbouring more Gram-negative bacteria containing immune-triggering lipopolysaccharides (LPS) in their cell walls. In addition, bacteria with pro-inflammatory properties (Alistipes, Eggerthella, Flavonifractor) are found in higher abundances, whereas lower abundances of anti-inflammatory bacteria (Bifidobacterium, Coprococcus, Eucbacterium, Eubacterium rectale, Faecalibacterium, Faecalibacterium prasunitzii, Lactobacillus, Prevotella, Roseburia) are reported, when compared to healthy controls. On the metabolite level, aberrant levels of short-chain fatty acids (SCFAs) are involved in disease pathogenesis and are mostly found in lower quantities. Moreover, bacterial metabolites such as neurotransmitters (acetylcholine, dopamine, noradrenaline, GABA, glutamate, serotonin) or amino acids (phenylalanine, tryptophan) also play an important role. In the future, defined aberrations in the abundance of bacteria strains and altered bacterial metabolite levels could likely be possible markers for disease diagnostics and follow-ups. Moreover, they could help to identify novel treatment options, underlining the necessity for a deeper understanding of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
| | - M. Hasan Mohajeri
- Department of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| |
Collapse
|
19
|
Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune System Abnormalities in Schizophrenia: An Integrative View and Translational Perspectives. Front Psychiatry 2022; 13:880568. [PMID: 35546942 PMCID: PMC9082498 DOI: 10.3389/fpsyt.2022.880568] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system is generally known to be the primary defense mechanism against pathogens. Any pathological conditions are reflected in anomalies in the immune system parameters. Increasing evidence suggests the involvement of immune dysregulation and neuroinflammation in the pathogenesis of schizophrenia. In this systematic review, we summarized the available evidence of abnormalities in the immune system in schizophrenia. We analyzed impairments in all immune system components and assessed the level of bias in the available evidence. It has been shown that schizophrenia is associated with abnormalities in all immune system components: from innate to adaptive immunity and from humoral to cellular immunity. Abnormalities in the immune organs have also been observed in schizophrenia. Evidence of increased C-reactive protein, dysregulation of cytokines and chemokines, elevated levels of neutrophils and autoantibodies, and microbiota dysregulation in schizophrenia have the lowest risk of bias. Peripheral immune abnormalities contribute to neuroinflammation, which is associated with cognitive and neuroanatomical alterations and contributes to the pathogenesis of schizophrenia. However, signs of severe inflammation are observed in only about 1/3 of patients with schizophrenia. Immunological parameters may help identify subgroups of individuals with signs of inflammation who well respond to anti-inflammatory therapy. Our integrative approach also identified gaps in knowledge about immune abnormalities in schizophrenia, and new horizons for the research are proposed.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mark M. Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N. Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
20
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
21
|
Liang L, Ren X, Xu J, Ma Y, Xue Y, Zhuang T, Zhang G. Effect of Co-Treatment of Olanzapine with SEP-363856 in Mice Models of Schizophrenia. Molecules 2022; 27:molecules27082550. [PMID: 35458749 PMCID: PMC9024832 DOI: 10.3390/molecules27082550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Olanzapine is a commonly used drug in the treatment of schizophrenia, but its clinical application has been restricted by metabolic-related side effects. In order to mitigate the weight gain side effects caused by olanzapine, other drugs with different targets were selected for combined use and evaluated in animal models of schizophrenia. SEP-363856 is a novel psychotropic agent which is under phase III clinical trials for schizophrenia treatment. The aim of the research was to evaluate whether co-administration of olanzapine and SEP-363856 exerts synergistic anti-schizophrenic effects in the apomorphine (APO)-induced climbing test, the MK-801-induced hyperactivity test, and the Morris water maze test, and therefore reduces the weight gain side effects induced by olanzapine. Through isobolographic analysis, the results showed a synergistic interaction in the climbing test; the experimental ED30 (3 mg/kg) was significantly smaller (p < 0.05) than the theoretical ED30 (5 mg/kg). Additionally, such potentiating effects appeared additive in the MK-801 challenge experiment. Co-treatment with an effective dose of olanzapine and a low dose of SEP-363856 reversed MK-801-induced cognitive impairment symptoms in mice. Moreover, combination treatment with olanzapine and SEP-363856 controls sustained weight gain in mice with chronic exposure to olanzapine. These results support further clinical trials to test the effectiveness of co-treatment of olanzapine and SEP-363856 for controlling symptoms and weight gain in patients with schizophrenia during antipsychotic treatments.
Collapse
Affiliation(s)
- Lingzhi Liang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Xia Ren
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Junyi Xu
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Yurong Ma
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Yunlin Xue
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
| | - Tao Zhuang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-8779-2235 (G.Z.)
| | - Guisen Zhang
- Department of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (L.L.); (X.R.); (J.X.); (Y.M.); (Y.X.)
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (T.Z.); (G.Z.); Tel.: +86-27-8779-2235 (G.Z.)
| |
Collapse
|
22
|
Gokulakrishnan K, Nikhil J, VS S, Holla B, Thirumoorthy C, Sandhya N, Nichenametla S, Pathak H, Shivakumar V, Debnath M, Venkatasubramanian G, Varambally S. Altered Intestinal Permeability Biomarkers in Schizophrenia: A Possible Link with Subclinical Inflammation. Ann Neurosci 2022; 29:151-158. [PMID: 36419512 PMCID: PMC9676334 DOI: 10.1177/09727531221108849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 09/12/2023] Open
Abstract
Background and Purpose Emerging studies have shown that gut-derived endotoxins might play a role in intestinal and systemic inflammation. Although the significance of intestinal permeability in modulating the pathogenesis of Schizophrenia (SCZ) is recognized, not much data on the specific role of intestinal permeability biomarkers, viz., zonulin, lipopolysaccharide-binding protein (LBP), and intestinal alkaline phosphatase (IAP) in SCZ is available. Therefore, we measured the plasma levels of zonulin, LBP, and IAP and its correlation with neutrophil-to-lymphocyte ratio (NLR); a marker of systemic inflammation in patients with SCZ. Methods We recruited 60 individuals, patients with SCZ (n = 40) and healthy controls (n = 20), from a large tertiary neuropsychiatry center. Plasma levels of zonulin, IAP, and LBP were quantified by enzyme-linked immunosorbent assay. Results Plasma levels of both LBP and zonulin were significantly increased (P <0.05), whereas the IAP levels (P <0.05) were significantly decreased in patients with SCZ compared to healthy controls. Pearson correlation analysis revealed that zonulin and LBP had a significant positive correlation with NLR, and IAP negatively correlated with NLR. Individuals with SCZ had higher independent odds of zonulin [odds ratio (OR): 10.32, 95% CI: 1.85-57.12], LBP [OR: 1.039, 95% CI: 1.02-1.07], and IAP [OR: 0.643, 95% CI: 0.471-0.879], even after adjusting for potential confounders. Conclusion Our study demonstrates an association of zonulin, LBP, and IAP in Asian Indian SCZ patients and correlates with NLR. Our results indicate that low-grade inflammation induced by metabolic endotoxemia might be implicated in the pathoetiology of SCZ.
Collapse
Affiliation(s)
- Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Joyappa Nikhil
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sreeraj VS
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Chinnasamy Thirumoorthy
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Narasimhan Sandhya
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sonika Nichenametla
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Harsh Pathak
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
23
|
Yan X, Han W, Jin X, Sun Y, Gao J, Yu X, Guo J. Study on the effect of koumiss on the intestinal microbiota of mice infected with Toxoplasma gondii. Sci Rep 2022; 12:1271. [PMID: 35075239 PMCID: PMC8786867 DOI: 10.1038/s41598-022-05454-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is a worldwide food-borne parasite that can infect almost all warm-blooded animals, including humans. To date, there are no effective drugs to prevent or eradicate T. gondii infection. Recent studies have shown that probiotics could influence the relationship between the microbiota and parasites in the host. Koumiss has been used to treat many diseases based on its probiotic diversity. Therefore, we explored the effect of koumiss on T. gondii infection via its effect on the host intestinal microbiota. BALB/c mice were infected with T. gondii and treated with PBS, koumiss and mares' milk. Brain cysts were counted, and long-term changes in the microbiota and the effect of koumiss on gut microbiota were investigated with high-throughput sequencing technology. The results suggested that koumiss treatment significantly decreased the cyst counts in the brain (P < 0.05). Moreover, T. gondii infection changed the microbiota composition, and koumiss treatment increased the relative abundance of Lachnospiraceae and Akkermansia muciniphila, which were associated with preventing T. gondii infection. Moreover, koumiss could inhibit or ameliorate T. gondii infection by increasing the abundance of certain bacteria that control unique metabolic pathways. The study not only established a close interaction among the host, intracellular pathogens and intestinal microbiota but also provided a novel focus for drug development to prevent and eradicate T. gondii infection.
Collapse
Affiliation(s)
- Xinlei Yan
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Wenying Han
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xindong Jin
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yufei Sun
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jialu Gao
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiuli Yu
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jun Guo
- Food Science and Engineering College of Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
24
|
Jiang Y, Wan Y, Li J, Zhao Y, Ma Y, Yu J, Yuan D, Xiang S, Du F, Wu X, Li M, Chen Y, Xiao Z, Wen Q, Hu W, Shen J. Alterations in Intestinal Microbiota Composition in Mice Treated With Vitamin D3 or Cathelicidin. Front Oncol 2022; 11:700038. [PMID: 35004267 PMCID: PMC8732771 DOI: 10.3389/fonc.2021.700038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/19/2021] [Indexed: 02/02/2023] Open
Abstract
Gut microbiota is a complex aggregation of microbial organisms, which offers diverse protective benefits to the host. Dysbiosis of intestinal microbiota is frequently associated with many diseases. Vitamin D3 (VD), which was originally associated with bone health, also possesses antimicrobial activities and can act through antimicrobial peptide. Cathelicidin is a type of antimicrobial peptide in host to maintain the balance of gut microbiome. Our current study sought to evaluate the protective effect of VD and cathelicidin in mice intestines by administration of VD or mCRAMP-encoding L. lactis. We herein provided a comprehensive profile of the impact of VD and mCRAMP on gut microbiota using 16S rRNA sequencing, followed by bioinformatics and statistical analysis. Our results revealed an increased richness of bacterial community in mice intestines due to VD administration. Moreover, we showed a beneficial effect of VD and mCRAMP by enhancing the colonization of bacterial taxa that are associated with protective effects to the host but repressing the propagation of bacterial taxa that are associated with harmful effects to the host. Various metabolic pathways related to amino acid and lipid metabolism were affected in this process. We further established a bacterial panel as a reliable biomarker to evaluate the efficacy of remodeling the mice gut microbiota by VD and mCRAMP administration. The uncovered effects will deepen the comprehension about the antibacterial mechanisms of VD and mCRAMP and provide new insights for therapeutic implication of them.
Collapse
Affiliation(s)
- Yu Jiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yue Wan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yongshun Ma
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Yu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Donghong Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Personalised Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Uniyal A, Tiwari V, Rani M, Tiwari V. Immune-microbiome interplay and its implications in neurodegenerative disorders. Metab Brain Dis 2022; 37:17-37. [PMID: 34357554 DOI: 10.1007/s11011-021-00807-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/22/2021] [Indexed: 12/28/2022]
Abstract
The neurodegeneration and its related CNS pathologies need an urgent toolbox to minimize the global mental health burden. The neuroimmune system critically regulates the brain maturation and survival of neurons across the nervous system. The chronic manipulated immunological drive can accelerate the neuronal pathology hence promoting the burden of neurodegenerative disorders. The gut is home for trillions of microorganisms having a mutual relationship with the host system. The gut-brain axis is a unique biochemical pathway through which the gut residing microbes connects with the brain cells and regulates various physiological and pathological cascades. The gut microbiota and CNS communicate using a common language that synchronizes the tuning of immune cells. The intestinal gut microbial community has a profound role in the maturation of the immune system as well as the development of the nervous system. We have critically summarised the clinical and preclinical reports from the past a decade emphasising that the significant changes in gut microbiota can enhance the host susceptibility towards neurodegenerative disorders. In this review, we have discussed how the gut microbiota-mediated immune response inclines the host physiology towards neurodegeneration and indicated the gut microbiota as a potential future candidate for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Uniyal
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vineeta Tiwari
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Mousmi Rani
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Neuroscience and Pain Research Laboratory, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
26
|
Guan F, Ni T, Zhu W, Williams LK, Cui LB, Li M, Tubbs J, Sham PC, Gui H. Integrative omics of schizophrenia: from genetic determinants to clinical classification and risk prediction. Mol Psychiatry 2022; 27:113-126. [PMID: 34193973 PMCID: PMC11018294 DOI: 10.1038/s41380-021-01201-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SCZ) is a debilitating neuropsychiatric disorder with high heritability and complex inheritance. In the past decade, successful identification of numerous susceptibility loci has provided useful insights into the molecular etiology of SCZ. However, applications of these findings to clinical classification and diagnosis, risk prediction, or intervention for SCZ have been limited, and elucidating the underlying genomic and molecular mechanisms of SCZ is still challenging. More recently, multiple Omics technologies - genomics, transcriptomics, epigenomics, proteomics, metabolomics, connectomics, and gut microbiomics - have all been applied to examine different aspects of SCZ pathogenesis. Integration of multi-Omics data has thus emerged as an approach to provide a more comprehensive view of biological complexity, which is vital to enable translation into assessments and interventions of clinical benefit to individuals with SCZ. In this review, we provide a broad survey of the single-omics studies of SCZ, summarize the advantages and challenges of different Omics technologies, and then focus on studies in which multiple omics data are integrated to unravel the complex pathophysiology of SCZ. We believe that integration of multi-Omics technologies would provide a roadmap to create a more comprehensive picture of interactions involved in the complex pathogenesis of SCZ, constitute a rich resource for elucidating the potential molecular mechanisms of the illness, and eventually improve clinical assessments and interventions of SCZ to address clinical translational questions from bench to bedside.
Collapse
Affiliation(s)
- Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tong Ni
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Weili Zhu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Justin Tubbs
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Pak-Chung Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA.
- Behavioral Health Services, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
27
|
Faruqui NA, Prium DH, Mowna SA, Ullah MA, Araf Y, Sarkar B, Zohora US, Rahman MS. Gut microorganisms and neurological disease perspectives. FUTURE NEUROLOGY 2021. [DOI: 10.2217/fnl-2020-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of every healthy human consists of a unique set of gut microbiota that collectively harbors a diverse and complex community of over 100 trillion microorganisms, including bacteria, viruses, archaea, protozoa and fungi. Gut microbes have a symbiotic relationship with our body. The composition of the microbiota is shaped early in life by gut maturation, which is influenced by several factors. Intestinal bacteria are crucial in maintaining immune and metabolic homeostasis and protecting against pathogens. Dysbiosis of gut microbiota is associated not only with intestinal disorders but also with extraintestinal diseases such as metabolic and neurological disorders. In this review, the authors examine different studies that have revealed the possible hypotheses and links in the development of neurological disorders associated with the gut microbiome.
Collapse
Affiliation(s)
- Nairita Ahsan Faruqui
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Durdana Hossain Prium
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Sadrina Afrin Mowna
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering & Biotechnology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Shahedur Rahman
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
28
|
Yousefi B, Kokhaei P, Mehranfar F, Bahar A, Abdolshahi A, Emadi A, Eslami M. The role of the host microbiome in autism and neurodegenerative disorders and effect of epigenetic procedures in the brain functions. Neurosci Biobehav Rev 2021; 132:998-1009. [PMID: 34742725 DOI: 10.1016/j.neubiorev.2021.10.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a severe neurological/neurodegenerative syndrome that results in cognitive and communication disorders. The degree of dysbiosis is related to the severity of ASD signs. The gut is conferred with a variety of sensory receptors that cooperate with effector systems including the endocrine, nervous and gut immune systems of the intestine. Gut dysbiosis causes amplified inflammation, the launch of the HPA axis, changed levels of neurotransmitters and bacterial metabolites; these may donate to abnormal signaling throughout the Vagus nerve in ASD. Decreased integrity of the gastrointestinal barrier led to extreme leakage of substances as of the intestine in early life and inflammation followed by disruption of BBB integrity maybe increase the risk of ASD. Microbiota, by controlling the barrier permeability, regulate the quantity and types of bioactive materials that are transferred from the intestine to the brain. Exposure to metabolites and microbial products regulate significant procedures in the CNS, including glial cell role, myelination, synaptic pruning, and play a role in neurobehavioral, neurodegenerative, psychiatric, and metabolic syndrome.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parviz Kokhaei
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran; Immune and Gene Therapy Lab, Cancer Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Fatemeh Mehranfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Aisa Bahar
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Anna Abdolshahi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Emadi
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
29
|
Marazziti D, Buccianelli B, Palermo S, Parra E, Arone A, Beatino MF, Massa L, Carpita B, Barberi FM, Mucci F, Dell’Osso L. The Microbiota/Microbiome and the Gut-Brain Axis: How Much Do They Matter in Psychiatry? Life (Basel) 2021; 11:life11080760. [PMID: 34440503 PMCID: PMC8401073 DOI: 10.3390/life11080760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The functioning of the central nervous system (CNS) is the result of the constant integration of bidirectional messages between the brain and peripheral organs, together with their connections with the environment. Despite the anatomical separation, gut microbiota, i.e., the microorganisms colonising the gastrointestinal tract, is highly related to the CNS through the so-called "gut-brain axis". The aim of this paper was to review and comment on the current literature on the role of the intestinal microbiota and the gut-brain axis in some common neuropsychiatric conditions. The recent literature indicates that the gut microbiota may affect brain functions through endocrine and metabolic pathways, antibody production and the enteric network while supporting its possible role in the onset and maintenance of several neuropsychiatric disorders, neurodevelopment and neurodegenerative disorders. Alterations in the gut microbiota composition were observed in mood disorders and autism spectrum disorders and, apparently to a lesser extent, even in obsessive-compulsive disorder (OCD) and related conditions, as well as in schizophrenia. Therefore, gut microbiota might represent an interesting field of research for a better understanding of the pathophysiology of common neuropsychiatric disorders and possibly as a target for the development of innovative treatments that some authors have already labelled "psychobiotics".
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
- Unicamillus—Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
- Correspondence:
| | - Beatrice Buccianelli
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Elisabetta Parra
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Maria Francesca Beatino
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Lucia Massa
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Filippo M. Barberi
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| | - Federico Mucci
- Dipartimento di Biochimica e Biologia Molecolare, University of Siena, 53100 Siena, Italy;
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine Section of Psychiatry, University of Pisa, 56100 Pisa, Italy; (B.B.); (S.P.); (E.P.); (A.A.); (M.F.B.); (L.M.); (B.C.); (F.M.B.); (L.D.)
| |
Collapse
|
30
|
Ke PF, Xiong DS, Li JH, Pan ZL, Zhou J, Li SJ, Song J, Chen XY, Li GX, Chen J, Li XB, Ning YP, Wu FC, Wu K. An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data. Sci Rep 2021; 11:14636. [PMID: 34282208 PMCID: PMC8290033 DOI: 10.1038/s41598-021-94007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.
Collapse
Affiliation(s)
- Peng-Fei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Dong-Sheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jia-Hui Li
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhi-Lin Pan
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Shi-Jia Li
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jie Song
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiao-Yi Chen
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Gui-Xiang Li
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, 510500, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, 510500, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Xiao-Bo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, 510370, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Feng-Chun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, 510370, Guangdong, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China. .,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, 510370, Guangdong, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China. .,Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, 510500, China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China. .,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China. .,National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China. .,Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
31
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
32
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
33
|
Guo L, Xiao P, Zhang X, Yang Y, Yang M, Wang T, Lu H, Tian H, Wang H, Liu J. Inulin ameliorates schizophrenia via modulation of the gut microbiota and anti-inflammation in mice. Food Funct 2021; 12:1156-1175. [PMID: 33432310 DOI: 10.1039/d0fo02778b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microbiome-gut-brain (MGB) axis, which regulates neurological and cognitive functions, plays an essential role in schizophrenia (SCZ) progression. Dietary inulin could be a novel strategy for the treatment of SCZ due to its modulating effects on the gut microbiota. In this study, the effects of inulin on mice with SCZ were studied. As indicated by the behavioural tests, expression of neurotransmitters, inflammatory indicators, and brain morphology, inulin administration ameliorated aberrant behaviours (locomotor hypoactivity, anxiety disorders and depressive behaviours, and impaired learning and spatial recognition memory) and effectively reduced neuroinflammation and neuronal damage. In addition, inulin improved intestinal integrity and permeability, as indicated by the elevated expression of tight junction proteins (p < 0.05). The results of 16S rRNA sequencing and analysis showed that inulin increased the abundance of Lactobacillus and Bifidobacterium, which were negatively correlated with 5-hydroxytryptamine and inflammatory cytokines and positively correlated with brain-derived neurotrophic factor (BDNF). Inulin caused a reduction in Akkermansia that was positively correlated with inflammatory cytokines and negatively correlated with BDNF. These results suggested that dietary inulin modulated the gut microbiota and exerted anti-inflammatory effects in mice though the MGB axis, which further ameliorated SCZ. Therefore, the results of this study provide a potential explanation for inulin intervention in the treatment of SCZ.
Collapse
Affiliation(s)
- Li Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Peilun Xiao
- Department of Anatomy, Weifang Medical University, Weifang 261042, Shandong, China.
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yang Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Miao Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Haixia Lu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hongyan Tian
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
34
|
Zhu C, Zheng M, Ali U, Xia Q, Wang Z, Chenlong, Yao L, Chen Y, Yan J, Wang K, Chen J, Zhang X. Association Between Abundance of Haemophilus in the Gut Microbiota and Negative Symptoms of Schizophrenia. Front Psychiatry 2021; 12:685910. [PMID: 34393849 PMCID: PMC8362742 DOI: 10.3389/fpsyt.2021.685910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence indicates an interaction between dysbiosis of the microbiota and the pathogenesis of schizophrenia. However, limited information is available on the specific microbial communities associated with symptoms of schizophrenia. Therefore, this study aimed to investigate gut microbiota dysbiosis and its relationship with psychopathologies in schizophrenia. We recruited 126 participants and divided them into three groups according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria-acute group (patients with acute schizophrenia), remission group (patients with schizophrenia in remission), and control group (healthy controls). Psychotic symptoms were evaluated using the Positive and Negative Syndrome Scale. Microbiota compositions, diversity and community structure were evaluated using 16S rRNA sequencing. Pearson's correlation analysis was used to evaluate the association between bacterial taxa and psychotic symptoms. The beta-diversity of microbiota composition in the acute group was distinct from that in the remission and control groups (PC1 = 21.11% vs. PC2 = 12.86%, P = 0.021). Furthermore, Pearson's correlation analysis revealed that abundance of Haemophilus was positively correlated with negative psychiatric symptoms (r = 0.303, P = 0.021), while abundance of Coprococcus was negatively correlated with negative psychiatric symptoms (r = -0.285, P = 0.025). Moreover, abundance of Haemophilus was positively correlated with cognition (r = 0.428, P = 0.009), excitement (r = 0.266, P = 0.037), and depression (r = 0.295, P = 0.020). The study findings suggest that alterations in certain gut microbiota may interfere with psychological symptoms in schizophrenia. Our results provide evidence that may help in the development of therapeutic strategies using microbial-based targets. The data that support the findings of this study have been deposited in the NCBI (https://submit.ncbi.nlm.nih.gov/) with accession number SUB9453991.
Collapse
Affiliation(s)
- Cuizhen Zhu
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Mingming Zheng
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Usman Ali
- Shanghai key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingrong Xia
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Zhongxian Wang
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Chenlong
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Lihui Yao
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Yuanyuan Chen
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Junwei Yan
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Keming Wang
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Jinghong Chen
- Shanghai key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xulai Zhang
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| |
Collapse
|
35
|
Sun Z, Zhao L, Bo Q, Mao Z, He Y, Jiang T, Li Y, Wang C, Li R. Brain-Specific Oxysterols and Risk of Schizophrenia in Clinical High-Risk Subjects and Patients With Schizophrenia. Front Psychiatry 2021; 12:711734. [PMID: 34408685 PMCID: PMC8367079 DOI: 10.3389/fpsyt.2021.711734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/19/2023] Open
Abstract
Accumulating evidence from clinical, genetic, and epidemiologic studies suggest that schizophrenia might be a neuronal development disorder. While oxysterols are important factors in neurodevelopment, it is unknown whether oxysterols might be involved in development of schizophrenia. The present study investigated the relationship between tissue-specifically originated oxysterols and risk of schizophrenia. A total of 216 individuals were recruited in this study, including 76 schizophrenia patients, 39 clinical high-risk (CHR) subjects, and 101 healthy controls (HC). We investigated the circulating levels of brain-specific oxysterol 24(S)-hydroxycholesterol (24OHC) and peripheral oxysterol 27-hydroxycholesterol (27OHC) in all participants and analyzed the potential links between the oxysterols and specific clinical symptoms in schizophrenic patients and CHR. Our data showed an elevation of 24OHC in both schizophrenia patients and CHR than that in HC, while a lower level of 27OHC in the schizophrenia group only. The ratio of 24OHC to 27OHC was only increased in the schizophrenic group compared with CHR and HC. For the schizophrenic patients, the circulating 24OHC levels are significantly associated with disease duration, positively correlated with the positive and negative syndrome total scores, while the 27OHC levels were inversely correlated with the positive symptom scores. Together, our data demonstrated the disruption of tissue-specifically originated cholesterol metabolism in schizophrenia and CHR, suggesting the circulating 24OHC or 24OHC/27OHC ratio might not only be a potential indicator for risk for schizophrenia but also be biomarkers for functional abnormalities in neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zhen Mao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuhong Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Rena Li
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Couper RTL, Day AS. Paediatric gastroenterology: The doors of perception. J Paediatr Child Health 2020; 56:1667-1668. [PMID: 33197973 DOI: 10.1111/jpc.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Richard T L Couper
- Department of Gastroenterology, Women's and Children's Hospital, Adelaide, South Australia, Australia.,University Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew S Day
- Department of Paediatrics, Christchurch Public Hospital, Christchurch, New Zealand.,Department of Paediatrics, University of Otago, Otago, New Zealand
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Probiotics are living bacteria, which when ingested in adequate amounts, confer health benefits. Gut microbes are suggested to play a role in many psychiatric disorders and could be a potential therapeutic target. Between the gut and the brain, there is a bi-directional communication pathway called the microbiota-gut-brain axis. The purpose of this review is to examine data from recent interventional studies focusing on probiotics and the gut-brain axis for the treatment of depression, anxiety and schizophrenia. RECENT FINDINGS Probiotics are likely to improve depression but not schizophrenia. Regarding anxiety, there is only one trial which showed an effect of a multispecies probiotic. However, determinants like the duration of treatment, dosage and interactions have not been thoroughly investigated and deserve more scientific attention. Microbiome-based therapies such as probiotics could be cautiously recommended for depression to enhance beneficial bacteria in the gut and to improve mood through the gut-brain axis.
Collapse
Affiliation(s)
- Sabrina Mörkl
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria.
| | - Mary I Butler
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Anna Holl
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Li S, Zhuo M, Huang X, Huang Y, Zhou J, Xiong D, Li J, Liu Y, Pan Z, Li H, Chen J, Li X, Xiang Z, Wu F, Wu K. Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ 2020; 8:e9574. [PMID: 32821537 PMCID: PMC7395597 DOI: 10.7717/peerj.9574] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The gut microbiome and microbiome-gut-brain (MGB) axis have been receiving increasing attention for their role in the regulation of mental behavior and possible biological basis of psychiatric disorders. With the advance of next-generation sequencing technology, characterization of the gut microbiota in schizophrenia (SZ) patients can provide rich clues for the diagnosis and prevention of SZ. METHODS In this study, we compared the differences in the fecal microbiota between 82 SZ patients and 80 demographically matched normal controls (NCs) by 16S rRNA sequencing and analyzed the correlations between altered gut microbiota and symptom severity. RESULTS The alpha diversity showed no significant differences between the NC and SZ groups, but the beta diversity revealed significant community-level separation in microbiome composition between the two groups (pseudo-F =3.337, p < 0.001, uncorrected). At the phylum level, relatively more Actinobacteria and less Firmicutes (p < 0.05, FDR corrected) were found in the SZ group. At the genus level, the relative abundances of Collinsella, Lactobacillus, Succinivibrio, Mogibacterium, Corynebacterium, undefined Ruminococcus and undefined Eubacterium were significantly increased, whereas the abundances of Adlercreutzia, Anaerostipes, Ruminococcus and Faecalibacterium were decreased in the SZ group compared to the NC group (p < 0.05, FDR corrected). We performed PICRUSt analysis and found that several metabolic pathways differed significantly between the two groups, including the Polyketide sugar unit biosynthesis, Valine, Leucine and Isoleucine biosynthesis, Pantothenate and CoA biosynthesis, C5-Branched dibasic acid metabolism, Phenylpropanoid biosynthesis, Ascorbate and aldarate metabolism, Nucleotide metabolism and Propanoate metabolism pathways (p < 0.05, FDR corrected). Among the SZ group, the abundance of Succinivibrio was positively correlated with the total Positive and Negative Syndrome Scale (PANSS) scores (r = 0.24, p < 0.05, uncorrected) as well as the general PANSS scores (r = 0.22, p < 0.05, uncorrected); Corynebacterium was negatively related to the negative scores of PANSS (r = 0.22, p < 0.05, uncorrected). CONCLUSIONS Our findings provided evidence of altered gut microbial composition in SZ group. In addition, we found that Succinvibrio and Corynebacterium were associated with the severity of symptoms for the first time, which may provide some new biomarkers for the diagnosis of SZ.
Collapse
Affiliation(s)
- Shijia Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Yuanyuan Huang
- The Affifiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Jiahui Li
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Ya Liu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Zhilin Pan
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Hehua Li
- The Affifiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, Guangdong, China
| | - Xiaobo Li
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NY, United States
| | - Zhiming Xiang
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, Guangdong, China
- Department of Radiology, Panyu Central Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Fengchun Wu
- The Affifiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
- The Affifiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, Guangdong, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
- Department of Nuclear Medicine and Radiology/Institute of Development/Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
39
|
Zhao Z, Wang B, Mu L, Wang H, Luo J, Yang Y, Yang H, Li M, Zhou L, Tao C. Long-Term Exposure to Ceftriaxone Sodium Induces Alteration of Gut Microbiota Accompanied by Abnormal Behaviors in Mice. Front Cell Infect Microbiol 2020; 10:258. [PMID: 32714875 PMCID: PMC7344183 DOI: 10.3389/fcimb.2020.00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Growing evidence points out that a disturbance of gut microbiota may also disturb the gut–brain communication. However, it is not clear to what extent the alteration of microbiota composition can modulate brain function, affecting host behaviors. Here, we investigated the effects of gut microbiota depletion on emotional behaviors. Methods: Mice in the experimental group were orally administered ceftriaxone sodium solution (250 mg/ml, 0.2 ml/d) for 11 weeks. The open-field test and tail-suspension test were employed for the neurobehavioral assessment of the mice. Fecal samples were collected for 16s rDNA sequencing. The serum levels of cytokines and corticosterone were quantified using enzyme-linked immunosorbent assays. The immunohistochemistry method was used for the detection of brain-derived neurotrophic factor (BDNF) and c-Fos protein. Results: The gut microbiota for antibiotic-treated mice showed lower richness and diversity compared with normal controls. This effect was accompanied by increased anxiety-like, depression-like, and aggressive behaviors. We found these changes to be possibly associated with a dysregulation of the immune system, abnormal activity of the hypothalamic-pituitary-adrenal axis, and an alteration of neurochemistry. Conclusions: The findings demonstrate the indispensable role of microbiota in the gut–brain communication and suggest that the absence of conventional gut microbiota could affect the nervous system, influencing brain function.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liyuan Mu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongren Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingjing Luo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hui Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Zhou
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Teasdale S, Mörkl S, Müller-Stierlin AS. Nutritional psychiatry in the treatment of psychotic disorders: Current hypotheses and research challenges. Brain Behav Immun Health 2020; 5:100070. [PMID: 34589852 PMCID: PMC8474162 DOI: 10.1016/j.bbih.2020.100070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
|
41
|
Eltokhi A, Janmaat IE, Genedi M, Haarman BCM, Sommer IEC. Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. J Neurosci Res 2020; 98:1335-1369. [PMID: 32239720 DOI: 10.1002/jnr.24616] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The prenatal and early postnatal stages represent a critical time window for human brain development. Interestingly, this window partly overlaps with the maturation of the intestinal flora (microbiota) that play a critical role in the bidirectional communication between the central and the enteric nervous systems (microbiota-gut-brain axis). The microbial composition has important influences on general health and the development of several organ systems, such as the gastrointestinal tract, the immune system, and also the brain. Clinical studies have shown that microbiota alterations are associated with a wide range of neuropsychiatric disorders including autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, and bipolar disorder. In this review, we dissect the link between these neuropsychiatric disorders and the intestinal microbiota by focusing on their effect on synaptic pruning, a vital process in the maturation and establishing efficient functioning of the brain. We discuss in detail how synaptic pruning is dysregulated differently in the aforementioned neuropsychiatric disorders and how it can be influenced by dysbiosis and/or changes in the intestinal microbiota composition. We also review that the improvement in the intestinal microbiota composition by a change in diet, probiotics, prebiotics, or fecal microbiota transplantation may play a role in improving neuropsychiatric functioning, which can be at least partly explained via the optimization of synaptic pruning and neuronal connections. Altogether, the demonstration of the microbiota's influence on brain function via microglial-induced synaptic pruning addresses the possibility that the manipulation of microbiota-immune crosstalk represents a promising strategy for treating neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tubingen, Tubingen, Germany
| | - Isabel E Janmaat
- Department of Biomedical Sciences, Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Mohamed Genedi
- Department of Biomedical Sciences, Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Cells & Systems, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
42
|
Cerdó T, Diéguez E, Campoy C. Impact of gut microbiota on neurogenesis and neurological diseases during infancy. Curr Opin Pharmacol 2019; 50:33-37. [PMID: 31864102 DOI: 10.1016/j.coph.2019.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
The first years of life constitute a crucial period for neurodevelopment and a window of opportunity to develop new strategies to prevent neurological and mental diseases. Different studies have shown the influence of gut bacteria in neurogenesis and a functional relationship between gut microbiota and the brain, known as 'gut-brain axis', in which the intestinal microbiota is proposed to play a key role in neurophysiological processes. It has been observed that certain microbiome metabolites could be related to the development of neurological disorders through mechanisms still unknown. Then, more studies are needed to broaden the knowledge regarding the relationship between the Central Nervous System and the gastrointestinal tract, which could help to develop new preventive and treatment protocols.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Paediatrics, School of Medicine, University of Granada, Avda. De la Investigación 11, 18016 Granada, Spain; EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; BioHealth Research Institute (Ibs), Granada, Health Sciences Technological Park, 18016 Granada, Spain; Neurosciences Institute, Biomedical Research Centre, University of Granada, Spain
| | - Estefanía Diéguez
- Department of Paediatrics, School of Medicine, University of Granada, Avda. De la Investigación 11, 18016 Granada, Spain; EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Avda. De la Investigación 11, 18016 Granada, Spain; EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain; BioHealth Research Institute (Ibs), Granada, Health Sciences Technological Park, 18016 Granada, Spain; Neurosciences Institute, Biomedical Research Centre, University of Granada, Spain; Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's node, Carlos III Health Institute of Health Carlos III, 28029 Madrid, Spain; Brain, Behavior and Health Excellence Research Unit, (SC2), University of Granada, Granada, Spain.
| |
Collapse
|
43
|
Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients 2019; 11:nu11051076. [PMID: 31096592 PMCID: PMC6566411 DOI: 10.3390/nu11051076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The gut-microbiome-brain axis is now recognized as an essential part in the regulation of systemic metabolism and homeostasis. Accumulating evidence has demonstrated that dietary patterns can influence the development of metabolic alterations and inflammation through the effects of nutrients on a multitude of variables, including microbiome composition, release of microbial products, gastrointestinal signaling molecules, and neurotransmitters. These signaling molecules are, in turn, implicated in the regulation of the immune system, either promoting or inhibiting the production of pro-inflammatory cytokines and the expansion of specific leukocyte subpopulations, such as Th17 and Treg cells, which are relevant in the development of neuroinflammatory and neurodegenerative conditions. Metabolic diseases, like obesity and type 2 diabetes mellitus, are related to inadequate dietary patterns and promote variations in the aforementioned signaling pathways in patients with these conditions, which have been linked to alterations in neurological functions and mental health. Thus, maintenance of adequate dietary patterns should be an essential component of any strategy aiming to prevent neurological pathologies derived from systemic metabolic alterations. The present review summarizes current knowledge on the role of nutrition in the modulation of the immune system and its impact in the development of neuroinflammation and neurological disease.
Collapse
|