1
|
Mwandira W, Mavroulidou M, Joshi S, Gunn MJ. Fruit and vegetable waste used as bacterial growth media for the biocementation of two geomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174489. [PMID: 38986689 DOI: 10.1016/j.scitotenv.2024.174489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
This paper investigates the feasibility of using randomly collected fruit and vegetable (FV) waste as a cheap growing medium of bacteria for biocementation applications. Biocementation has been proposed in the literature as an environmentally-friendly ground improvement method to increase the stability of geomaterials, prevent erosion and encapsulate waste, but currently suffers from the high costs involved, such as bacteria cultivation costs. After analysis of FV waste of varied composition in terms of sugar and protein content, diluted FV waste was used to grow ureolytic (S. pasteurii, and B.licheniformis) and also an autochthonous heterotrophic carbonic anhydase (CA)-producing B.licheniformis strain, whose growth in FV media had not been attempted before. Bacterial growth and enzymatic activity in FV were of appropriate levels, although reduced compared to commercial media. Namely, the CA-producing B.licheniformis had a maximum OD600 of 1.799 and a CA activity of 0.817 U/mL in FV media. For the ureolytic pathway, B. licheniformis reached a maximum OD600 of 0.986 and a maximum urease activity of 0.675 mM urea/min, and S. pasteurii a maximum OD600 = 0.999 and a maximum urease activity of 0.756 mM urea/min. Biocementation of a clay and locomotive ash, a geomaterial specific to UK railway embankments, using precultured bacteria in FV was then proven, based on recorded unconfined compressive strengths of 1-3 MPa and calcite content increases of up to 4.02 and 8.62 % for the clay and ash respectively. Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDS), attested the formation of bioprecipitates with characteristic morphologies and elementary composition of calcite crystals. These findings suggest the potential of employing FV to biocement these problematic geomaterials and are of wider relevance for environmental and geoenvironmental applications involving bioaugmentation. Such applications that require substrates in very large quantities can help tackle the management of the very voluminous fruit and vegetable waste produced worldwide.
Collapse
|
2
|
Li J, Zhu F, Wu F, Chen Y, Richards J, Li T, Li P, Shang D, Yu J, Viles H, Guo Q. Impact of soil density on biomineralization using EICP and MICP techniques for earthen sites consolidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121410. [PMID: 38850919 DOI: 10.1016/j.jenvman.2024.121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Enzyme-induced calcium carbonate precipitation (EICP) and microbially-induced calcium carbonate precipitation (MICP) techniques represent emerging trends in soil stabilization. However, the impact of soil density on biomineralization, particularly in historical earthen sites, remains unclear. This study compares the consolidation effects of EICP and MICP on cylindrical samples (10 cm × 5 cm) with three densities (1.5 g/cm3, 1.6 g/cm3, and 1.7 g/cm3) derived from the soil near the UNESCO World Cultural Heritage Site of Suoyang Ancient City, Gansu Province, China. Results showed that calcium carbonate production increased across all densities through bio-cementation, with higher densities producing more calcium carbonate. MICP-treated specimens exhibited larger increases in calcium carbonate production compared to those treated with EICP. Specimens with a density of 1.7 g/cm³ showed a wave velocity increase of 3.26% (EICP) and 7.13% (MICP), and an unconfined compressive strength increase of 8% (EICP) and 26% (MICP). These strength increases correlated with the generation of calcium carbonate. The findings suggest that biomineralization can be effectively utilized for in situ consolidation of earthen sites, emphasizing the importance of considering soil density in biologically-based conservation technologies. Furthermore, MICP shows potential advantages over EICP in providing stronger, compatible and more sustainable soil reinforcement.
Collapse
Affiliation(s)
- Jie Li
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| | - Feiqing Zhu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| | - Yuxin Chen
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Jenny Richards
- School of Geography and the Environment, Oxford University, Oxford, OX1 3QY, UK
| | - Tianxiao Li
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China
| | - Ping Li
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Dongjuan Shang
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Jing Yu
- Cultural Heritage Conservation and Design Consulting Co., Ltd. of Mogao Grottoes, Dunhuang, 736200, Gansu, PR China
| | - Heather Viles
- School of Geography and the Environment, Oxford University, Oxford, OX1 3QY, UK
| | - Qinglin Guo
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, 736200, Gansu, PR China; Gansu Provincial Research Center for Conservation of Cultural Heritage, Dunhuang, 736200, PR China; Key Scientific Research Base of Conversation for Ancient Wall Paintings of National Cultural Heritage Administration, Dunhuang, 736200, Gansu, PR China.
| |
Collapse
|
3
|
Lapierre FM, Huber R. Feeding strategies for Sporosarcina pasteurii cultivation unlock more efficient production of ureolytic biomass for MICP. Biotechnol J 2024; 19:e2300466. [PMID: 38581094 DOI: 10.1002/biot.202300466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 04/08/2024]
Abstract
The bacterium Sporosarcina pasteurii is the most commonly used microorganism for Microbial Induced Calcite Precipitation (MICP) due to its high urease activity. To date, no proper fed-batch cultivation protocol for S. pasteurii has been published, even though this cultivation method has a high potential for reducing costs of producing microbial ureolytic biomass. This study focusses on fed-batch cultivation of S. pasteurii DSM33. The study distinguishes between limited fed-batch cultivation and extended batch cultivation. Simply feeding glucose to a S. pasteurii culture does not seem beneficial. However, it was exploited that S. pasteurii is auxotrophic for two vitamins and amino acids. Limited fed-batch cultivation was accomplished by feeding the necessary vitamins or amino acids to a culture lacking them. Feeding nicotinic acid to a nicotinic acid deprived culture resulted in a 24% increase of the specific urease activity compared to a fed culture without nicotinic acid limitation. Also, extended batch cultivation was explored. Feeding a mixture of glucose and yeast extract results in OD600 of ≈70 at the end of cultivation, which is the highest value published in literature so far. These results have the potential to make MICP applications economically viable.
Collapse
Affiliation(s)
- Frédéric M Lapierre
- Department of Engineering and Management, Munich University of Applied Sciences, Munich, Germany
| | - Robert Huber
- Department of Engineering and Management, Munich University of Applied Sciences, Munich, Germany
| |
Collapse
|
4
|
Salam MA, Alsultany FH, Al-Bermany E, Sabri MM, Abdali K, Ahmed NM. Impact of graphene oxide nanosheets and polymethyl methacrylate on nano/hybrid-based restoration dental filler composites: ultrasound behavior and antibacterial activity. J Ultrasound 2024:10.1007/s40477-023-00855-8. [PMID: 38324099 DOI: 10.1007/s40477-023-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/03/2023] [Indexed: 02/08/2024] Open
Abstract
PURPOSE Graphene-polymer nanocomposites significantly impact dental filler and antibacterial applications. The study aims to overcome some problems dental filers present and improve their properties and antibacterial activity. Synthesis graphene oxide (GO) and poly (methyl methacrylate) (PMMA) were used to reinforce two types of commercial hybrid/nano-dental fillings. METHODS Developed acoustic-solution-sonication-casting methods were applied to fabricate the new graphene-polymer-dental filler nanocomposites. The structure, morphology, rheological and mechanical properties, and antibacterial of the newly fabricated filling-PMMA/ GO nanocomposites were investigated. RESULTS Fourier transform infrared (FTIR) showed a significant interaction between the filling and the additional materials. The X-ray diffraction (XRD) analysis revealed a considerable change in crystalline behavior. Optical microscope (OM) with field emission scanning electron microscopy (FESEM) pictures demonstrated a substantial change in the morphology of the samples with a homogeneous and fine dispersion of the nanomaterials in the filler matrix. Multi-frequency ultrasound mechanical properties measured the ultrasonic velocity, absorption coefficient, compressibility, bulk modulus, and other mechanical properties that notably enhanced after GO contributed up to 325% of the ultrasonic absorption coefficient compared with hybrid/nano-fillers. Rheological properties were measured as viscosity, absorption coefficient, and specific viscosity, which significantly improved after adding PMMA and incorporating GO up to 57% of the viscosity, compared with hybrid/nano-fillers. The inhibition zone of moth bacteria, such as Enterococcus faecalis and E. staph bacteria, improved after the contribution of GO nanosheets up to 46%. CONCLUSION Nanofillers nanocomposites presented better properties and inhabitances zone diameter of antibacterial.
Collapse
Affiliation(s)
- Mohanad Abdul Salam
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq
- Ministry of Education, Baghdad, Iraq
| | - Forat H Alsultany
- Medical Physics Department, Al-Mustaqbal University, Babil, 51001, Iraq
| | - Ehssan Al-Bermany
- Department of Physics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq.
| | - Mohammed M Sabri
- Department of Physics, Faculty of Science and Health, Koya University, Koya, Kurdistan Region, KOY45, Iraq
| | | | - Naser Mahmoud Ahmed
- School of Physics, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
| |
Collapse
|
5
|
Raj N, Selvakumar S, Soundara B, Kulanthaivel P. Sustainable utilization of biopolymers as green adhesive in soil improvement: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118117-118132. [PMID: 37930565 DOI: 10.1007/s11356-023-30642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Throughout history, soil improvement has relied on various additives, from ancient practices using lime and other traditional compounds to modern methods employing geosynthetics and microbial treatments. However, conventional soil admixtures, while effective, often carry significant environmental drawbacks, especially in the case of additives like cement. In response to these environmental concerns, there has been a growing interest in the use of biopolymers as a sustainable alternative for ground improvement. This literature review centers on the properties and performance of biopolymers, addressing their increasing adoption in soil enhancement endeavors. It explores the historical context of soil improvement practices, highlights the contemporary environmental challenges posed by traditional additives, and underscores the emerging trend toward biopolymers as a green adhesive solution. The review further probes into specific biopolymers, examining their characteristics and elucidating how biopolymer-treated soils achieve the desired improvements. In essence, this review provides a comprehensive understanding of the historical evolution of soil improvement practices, the current environmental imperatives, and the promising role that biopolymers play in achieving sustainable soil enhancement. It serves as a valuable resource for researchers and practitioners seeking environmentally friendly alternatives in geotechnical engineering.
Collapse
Affiliation(s)
- Neha Raj
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, 600062, India
| | - Subburaj Selvakumar
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, 600062, India.
| | - Balu Soundara
- Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Ponnusamy Kulanthaivel
- Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, 638060, India
| |
Collapse
|
6
|
Jareonsin S, Mahanil K, Phinyo K, Srinuanpan S, Pekkoh J, Kameya M, Arai H, Ishii M, Chundet R, Sattayawat P, Pumas C. Unlocking microalgal host-exploring dark-growing microalgae transformation for sustainable high-value phytochemical production. Front Bioeng Biotechnol 2023; 11:1296216. [PMID: 38026874 PMCID: PMC10666632 DOI: 10.3389/fbioe.2023.1296216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Microalgae have emerged as a promising, next-generation sustainable resource with versatile applications, particularly as expression platforms and green cell factories. They possess the ability to overcome the limitations of terrestrial plants, such non-arable land, water scarcity, time-intensive growth, and seasonal changes. However, the heterologous expression of interested genes in microalgae under heterotrophic cultivation (dark mode) remains a niche area within the field of engineering technologies. In this study, the green microalga, Chlorella sorokiniana AARL G015 was chosen as a potential candidate due to its remarkable capacity for rapid growth in complete darkness, its ability to utilize diverse carbon sources, and its potential for wastewater treatment in a circular bioeconomy model. The aims of this study were to advance microalgal genetic engineering via dark cultivation, thereby positioning the strain as promising dark-host for expressing heterologous genes to produce high-value phytochemicals and ingredients for food and feed. To facilitate comprehensive screening based on resistance, eleven common antibiotics were tested under heterotrophic condition. As the most effective selectable markers for this strain, G418, hygromycin, and streptomycin exhibited growth inhibition rates of 98%, 93%, and 92%, respectively, ensuring robust long-term transgenic growth. Successful transformation was achieved through microalgal cell cocultivation with Agrobacterium under complete darkness verified through the expression of green fluorescence protein and β-glucuronidase. In summary, this study pioneers an alternative dark-host microalgal platform, using, Chlorella, under dark mode, presenting an easy protocol for heterologous gene transformation for microalgal host, devoid of the need for expensive equipment and light for industrial production. Furthermore, the developed genetic transformation methodology presents a sustainable way for production of high-value nutrients, dietary supplements, nutraceuticals, proteins and pharmaceuticals using heterotrophic microalgae as an innovative host system.
Collapse
Affiliation(s)
- Surumpa Jareonsin
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Applied Microbiology (International Program) in Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kanjana Mahanil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kittiya Phinyo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Masafumi Kameya
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ruttaporn Chundet
- Division of Biotechnology, Faculty of Science, Maejo University, Chiangmai, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Centre, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Lim T, Cheng H, Hu J, Lee Y, Kim S, Kim J, Jung W. Development of 3D-Printed Self-Healing Capsules with a Separate Membrane and Investigation of Mechanical Properties for Improving Fracture Strength. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5687. [PMID: 37629978 PMCID: PMC10456626 DOI: 10.3390/ma16165687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Studies on self-healing capsules embedded in cement composites to heal such cracks have recently been actively researched in order to improve the dimensional stability of concrete structures. In particular, capsule studies were mainly conducted to separately inject reactive healing solutions into different capsules. However, with this method, there is an important limitation in that the probability of self-healing is greatly reduced because the two healing solutions must meet and react. Therefore, we propose three-dimensional (3D) printer-based self-healing capsules with a membrane structure that allows two healing solutions to be injected into one capsule. Among many 3D printing methods, we used the fusion deposition modeling (FDM) to design, analyze, and produce new self-healing capsules, which are widely used due to their low cost, precise manufacturing, and high-speed. However, polylactic lactic acid (PLA) extruded in the FDM has low adhesion energy between stacked layers, which causes different fracture strengths depending on the direction of the applied load and the subsequent performance degradation of the capsule. Therefore, the isotropic fracture characteristics of the newly proposed four types of separated membrane capsules were analyzed using finite element method analysis. Additionally, capsules were produced using the FDM method, and the compression test was conducted by applying force in the x, y, and z directions. The isotropic fracture strength was also analyzed using the relative standard deviation (RSD) parameter. As a result, the proposed separated membrane capsule showed that the RSD of isotropic fracture strength over all directions fell to about 18% compared to other capsules.
Collapse
Affiliation(s)
- Taeuk Lim
- School of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hao Cheng
- School of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jie Hu
- School of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yeongjun Lee
- School of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangyou Kim
- School of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jangheon Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Daejeon 34141, Republic of Korea
| | - Wonsuk Jung
- School of Mechanical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
8
|
Manzano-Gómez LA, Rincón-Rosales R, Flores-Felix JD, Gen-Jimenez A, Ruíz-Valdiviezo VM, Ventura-Canseco LMC, Rincón-Molina FA, Villalobos-Maldonado JJ, Rincón-Molina CI. Cost-Effective Cultivation of Native PGPB Sinorhizobium Strains in a Homemade Bioreactor for Enhanced Plant Growth. Bioengineering (Basel) 2023; 10:960. [PMID: 37627845 PMCID: PMC10451550 DOI: 10.3390/bioengineering10080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The implementation of bioreactor systems for the production of bacterial inoculants as biofertilizers has become very important in recent decades. However, it is essential to know the bacterial growth optimal conditions to optimize the production and efficiency of bioinoculants. The aim of this work was to identify the best nutriment and mixing conditions to improve the specific cell growth rates (µ) of two PGPB (plant growth-promoting bacteria) rhizobial strains at the bioreactor level. For this purpose, the strains Sinorhizobium mexicanum ITTG-R7T and Sinorhizobium chiapanecum ITTG-S70T were previously reactivated in a PY-Ca2+ (peptone casein, yeast extract, and calcium) culture medium. Afterward, a master cell bank (MCB) was made in order to maintain the viability and quality of the strains. The kinetic characterization of each bacterial strain was carried out in s shaken flask. Then, the effect of the carbon and nitrogen sources and mechanical agitation was evaluated through a factorial design and response surface methodology (RSM) for cell growth optimization, where µ was considered a response variable. The efficiency of biomass production was determined in a homemade bioreactor, taking into account the optimal conditions obtained during the experiment conducted at the shaken flask stage. In order to evaluate the biological quality of the product obtained in the bioreactor, the bacterial strains were inoculated in common bean (Phaseolus vulgaris var. Jamapa) plants under bioclimatic chamber conditions. The maximum cell growth rate in both PGPB strains was obtained using a Y-Ca2+ (yeast extract and calcium) medium and stirred at 200 and 300 rpm. Under these growth conditions, the Sinorhizobium strains exhibited a high nitrogen-fixing capacity, which had a significant (p < 0.05) impact on the growth of the test plants. The bioreactor system was found to be an efficient alternative for the large-scale production of PGPB rhizobial bacteria, which are intended for use as biofertilizers in agriculture.
Collapse
Affiliation(s)
- Luis Alberto Manzano-Gómez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, Tuxtla Gutiérrez 29000, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | | | - Adriana Gen-Jimenez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Lucia María Cristina Ventura-Canseco
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Juan José Villalobos-Maldonado
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| | - Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (L.A.M.-G.); (R.R.-R.); (A.G.-J.); (V.M.R.-V.); (L.M.C.V.-C.); (F.A.R.-M.); (J.J.V.-M.)
| |
Collapse
|
9
|
Aliyu AD, Mustafa M, Abd Aziz NA, Hadi NS. A Study on Bio-Stabilisation of Sub-Standard Soil by Indigenous Soil Urease-Producing Bacteria. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023; 31:2389-2412. [DOI: 10.47836/pjst.31.5.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Sub-standard soils are of great concern worldwide due to diverse economic losses and the possibility of severe environmental hazards ranging from catastrophic landslides, building collapse, and erosion to loss of lives and properties. This study explored the potential of urease-producing bacteria, <i>Bacillus cereus</i> and <i>Bacillus paramycoides</i>, to stabilise sub-standard soil bio-stabilisation. The maximum urease activity measured by <i>B. cereus</i> and <i>B. paramycoides</i> was 665 U/mL and 620 U/mL, respectively. <i>B. cereus</i> and <i>B. paramycoides</i> precipitated 943 ± 57 mg/L and 793 ± 51 mg/L of CaCO<sub>3</sub> at an optical density (425 nm) of 1.01 and 1.09 and pH 8.83 and 8.59, respectively, after 96 hours of incubation. SEM microstructural analysis of the precipitated CaCO<sub>3</sub> revealed crystals of various sizes (2.0–23.0 µm) with different morphologies. XRD analysis confirmed that the precipitated CaCO<sub>3</sub> comprised calcite and aragonite crystals. SEM analysis of the microstructure of organic and sandy clay soils treated with <i>B. cereus</i> and <i>B. paramycoides</i> showed the formation of bio-precipitated calcium carbonate deposits on the soil particles (biocementing soil grains), with <i>B. cereus</i> precipitating more CaCO<sub>3</sub> crystals with a better biocementing effect compared to <i>B. paramycoides</i>. Overall, the experimental results attributed CaCO<sub>3</sub> formation to bacterial-associated processes, suggesting that soil ureolytic bacteria are potentially useful to stabilise sub-standard soil.
Collapse
|
10
|
Pacheco VL, Bragagnolo L, Dalla Rosa F, Thomé A. Optimization of biocementation responses by artificial neural network and random forest in comparison to response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61863-61887. [PMID: 36934187 DOI: 10.1007/s11356-023-26362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/05/2023] [Indexed: 05/10/2023]
Abstract
In this article, the optimization of the specific urease activity (SUA) and the calcium carbonate (CaCO3) using microbially induced calcite precipitation (MICP) was compared to optimization using three algorithms based on machine learning: random forest regressor, artificial neural networks (ANNs), and multivariate linear regression. This study applied the techniques in two existing response surface method (RSM) experiments involving MICP technique. Random forest-based models and artificial neural network-based models were submitted through the optimization of hyperparameters via cross-validation technique and grid search, to select the best-optimized model. For this study, the random forest-based algorithm is aimed at having the best performance of 0.9381 and 0.9463 in comparison to the original r2 of 0.9021 and 0.8530, respectively. This study is aimed at exploring the capability of using machine learning-based models in small datasets for the purpose of optimization of experimental variables in MICP technique and the meaningfulness of the models by their specificities in the small experimental datasets applied to experimental designs. This study is aimed at exploring the capability of using machine learning-based models in small datasets for experimental variable optimization in MICP technique. The use of these techniques can create prerogatives to scale and mitigate costs in future experiments associated to the field.
Collapse
Affiliation(s)
- Vinicius Luiz Pacheco
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, Km 171, BR 285, Passo Fundo, Rio Grande Do Sul, CEP: 99001-970, Brazil.
| | - Lucimara Bragagnolo
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, Km 171, BR 285, Passo Fundo, Rio Grande Do Sul, CEP: 99001-970, Brazil
| | - Francisco Dalla Rosa
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, Km 171, BR 285, Passo Fundo, Rio Grande Do Sul, CEP: 99001-970, Brazil
| | - Antonio Thomé
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo (UPF), Campus I, Km 171, BR 285, Passo Fundo, Rio Grande Do Sul, CEP: 99001-970, Brazil
| |
Collapse
|
11
|
Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World J Microbiol Biotechnol 2023; 39:61. [PMID: 36576609 PMCID: PMC9797461 DOI: 10.1007/s11274-022-03499-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Microbiologically induced calcium carbonate precipitation (MICP) is a technique that has received a lot of attention in the field of geotechnology in the last decade. It has the potential to provide a sustainable and ecological alternative to conventional consolidation of minerals, for example by the use of cement. From a variety of microbiological metabolic pathways that can induce calcium carbonate (CaCO3) precipitation, ureolysis has been established as the most commonly used method. To better understand the mechanisms of MICP and to develop new processes and optimize existing ones based on this understanding, ureolytic MICP is the subject of intensive research. The interplay of biological and civil engineering aspects shows how interdisciplinary research needs to be to advance the potential of this technology. This paper describes and critically discusses, based on current literature, the key influencing factors involved in the cementation of sand by ureolytic MICP. Due to the complexity of MICP, these factors often influence each other, making it essential for researchers from all disciplines to be aware of these factors and its interactions. Furthermore, this paper discusses the opportunities and challenges for future research in this area to provide impetus for studies that can further advance the understanding of MICP.
Collapse
|
12
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
13
|
Optimizing compressive strength of sand treated with MICP using response surface methodology. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AbstractIn the present study, the optimization of the microbiologically induced calcium carbonate precipitation (MICP) to produce biosandstone regarding the compressive strength is shown. For the biosandstone production, quartz sand was treated sequentially with the ureolytic microorganism Sporosarcina pasteurii (ATCC 11859) and a reagent containing urea and calcium chloride. Response surface methodology (RSM) was applied to investigate the influence of urea concentration, calcium chloride concentration and the volume of cell suspension on the compressive strength of produced biosandstone. A central composite design (CCD) was employed, and the resulting experimental data applied to a quadratic model. The statistical significance of the model was verified by experimental data (R2 = 0.9305). Optimized values for the concentration of urea and calcium chloride were 1492 mM and 1391 mM. For the volume of cell suspension during treatment 7.47 mL was determined as the optimum. Specimen treated under these conditions achieved a compressive strength of 1877 ± 240 kPa. This is an improvement of 144% over specimen treated with a reagent that is commonly used in literature (1000 mM urea/1000 mM CaCl2). This protocol allows for a more efficient production of biosandstone in future research regarding MICP.
Collapse
|
14
|
Kulanthaivel P, Soundara B, Selvakumar S, Das A. Application of waste eggshell as a source of calcium in bacterial bio-cementation to enhance the engineering characteristics of sand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66450-66461. [PMID: 35501449 DOI: 10.1007/s11356-022-20484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
A technique to produce bio-cementation in sandy soil using the microbially induced calcium carbonate precipitation (MICP) process and calcium ions generated from eggshell is presented in this research. This research also focused on the application of S. pasteurii bacteria and L. fusiformis bacteria along with eggshell and calcium chloride cementing chemicals on the strength properties of sand. The experimental variables maintained in this research are bacteria type (S. pasteurii and L. fusiformis), cementing chemical type (eggshell and calcium chloride) and molarity of the cementing chemical (0.25, 0.50, 0.75 and 1.0). The engineering behaviour of bacteria treated sand was estimated by executing the unconfined compression test and permeability test in the laboratory. From the experimental findings, it is identified that the unconfined compressive strength of sand is enhanced and the value is in the range of 650 kPa. In addition to that, the permeability of sand is minimized in the order of two from 6.3 × E-3 to 3.2 × E-5 cm/s. The best improvement of Young's modulus and calcium carbonate content estimated in this research are 28.9 MPa and 17.9% when the sand is treated with S. pasteurii along 0.50 molarity of eggshell cementing chemical. The experimental findings are validated with the help of microstructural studies of scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). This research showed that bio-cementation technology in the form of S. pasteurii and eggshell can be effectively adopted to enhance the engineering characteristics of sand.
Collapse
Affiliation(s)
- Ponnusamy Kulanthaivel
- Department of Civil Engineering, Kongu Engineering College, Tamil Nadu, Perundurai, Erode, 638060, India
| | - Balu Soundara
- Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Tamil Nadu, Chennai, 602105, India
| | - Subburaj Selvakumar
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Tamil Nadu, Avadi, Chennai, 600062, India.
| | - Arunava Das
- Faculty of Life Sciences, Mandsaur University, Madhya Pradesh, Mandsaur, 458001, India
| |
Collapse
|
15
|
Eryürük K. Effect of cell density on decrease in hydraulic conductivity by microbial calcite precipitation. AMB Express 2022; 12:104. [PMID: 35939240 PMCID: PMC9360383 DOI: 10.1186/s13568-022-01448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
The effect of number of cells deposited on decrease in hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii (ATCC 11,859) was examined in columns packed with glass beads in the range of 0.25 mm and 3 mm in diameter. After resting Sporosarcina pasteurii cells were introduced into the columns, a precipitation solution, which consisted of 500 mM CaCl2 and 500 mM urea, was introduced under continuous flow conditions. It was shown that hydraulic conductivity was decreased by formation of microbially induced CaCO3 precipitation from between 8.37 * 10−1 and 6.73 * 10−2 cm/s to between 3.69 * 10−1 and 1.01 * 10−2 cm/s. The lowest hydraulic conductivity was achieved in porous medium consisting of the smallest glass beads (0.25 mm in diameter) using the highest density of cell suspension (OD600 2.25). The number of the deposited cells differed depending on the glass bead size of the columns. According to the experiments, 7 * 10−9 g CaCO3 was produced by a single resting cell. The urease activity, which led CaCO3 precipitation, depended on presence of high number of cells deposited in the column because the nutrients were not included in the precipitation solution and consequently, the amount of CaCO3 precipitated was proportional with the cell number in the column. A mathematical model was also developed to investigate the experimental results, and statistical analysis was also performed. Sporosarcina pasteurii, which is an ecologically friendly bacterium for environmental biotechnology, produces urease to form CaCO3 precipitation CaCO3 precipitation decreases the hydraulic conductivity of porous media The urease activity depends on the presence of high number of Sporosarcina pasteurii
Collapse
Affiliation(s)
- Kağan Eryürük
- Graduate School of Science, Department of Civil Engineering, Necmettin Erbakan University, Konya, Türkiye.
| |
Collapse
|
16
|
Influence of Surface Roughness and Particle Characteristics on Soil–Structure Interactions: A State-of-the-Art Review. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12040145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of soil–structure interface behavior contributes to the fundamental understanding of engineering performance and foundation design optimization. Previous research studies the effect of soil characteristics and surface roughness property on the soil–material interface mechanism via interface shear test. The reviews utilizing past established laboratory studies and more recent tests based on state-of-the-art technologies reveal that surface roughness significantly affects interface shear performances in the studies of soil–structure interactions, especially in peak shear strength development. A preliminary but original investigative study by the authors was also carried out using a sophisticated portable surface roughness gauge to define the material surface roughness properties in order to study the interface behavior parametrically. Additionally, using the authors’ own original research findings as a proof-of-concept innovation, particle image velocimetry (PIV) technology is applied using a digital single-lens reflex (DSLR) camera to capture sequential images of particle interactions in a custom-built transparent shear box, which validate the well-established four-stage soil shearing model. The authors also envisaged that machine learning, e.g., artificial neural network (ANN) and Bayesian inference method, amongst others, as well as numerical modeling, e.g., discrete element method (DEM), have the potential to also promote research advances on interface shear mechanisms, which will assist in developing a greater understanding in the complex study of soil–structure interactions.
Collapse
|
17
|
Maleki-Kakelar M, Azarhoosh MJ, Golmohammadi Senji S, Aghaeinejad-Meybodi A. Urease production using corn steep liquor as a low-cost nutrient source by Sporosarcina pasteurii: biocementation and process optimization via artificial intelligence approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13767-13781. [PMID: 34599437 DOI: 10.1007/s11356-021-16568-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
To commercialize the biocementation through microbial induced carbonate precipitation (MICP), the current study aimed at replacing the costly standard nutrient medium with corn steep liquor (CSL), an inexpensive bio-industrial by-product, on the production of urease enzyme by Sporosarcina pasteurii (PTC 1845). Multiple linear regression (MLR) in linear and quadratic forms, adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) were used for modeling of process based on the experimental data for improving the urease activity (UA). In these models, CSL concentration, urea concentration, nickel supplementation, and incubation time as independent variables and UA as target function were considered. The results of modeling showed that the GP model had the best performance to predict the extent of urease, compared to other ones. The GP model had higher R2 as well as lower RSME in comparison with the models derived from ANFIS and MLR. Under the optimum conditions optimized by GP method, the maximum UA value of 3.6 Mm min-1 was also obtained for 5%v/v CSL concentration, 4.5 g L-1 urea concentration, 0 μM nickel supplementation, and 60 h incubation time. A good agreement between the outputs of GP model for the optimal UA and experimental result was obtained. Finally, a series of laboratory experiments were undertaken to evaluate the influence of biological cementation on the strengthening behavior of treated soil. The maximum shear stress improvement between bio-treated and untreated samples was 292% under normal stress of 55.5 kN as a result of an increase in interparticle cohesion parameters.
Collapse
|
18
|
Omoregie AI, Muda K, Ngu LH. Dairy manure pellets and palm oil mill effluent as alternative nutrient sources in cultivating Sporosarcina pasteurii for calcium carbonate bioprecipitation. Lett Appl Microbiol 2022; 74:671-683. [PMID: 35032053 DOI: 10.1111/lam.13652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/30/2022]
Abstract
Microbially induced carbonate precipitation (MICP) is a process that hydrolysis urea by microbial urease to fill the pore spaces of soil with induced calcium carbonate (CaCO3 ) precipitates, which eventually results in improved or solidified soil. This research explored the possibility of using dairy manure pellets (DMP) and palm oil mill effluent (POME) as alternative nutrient sources for Sporosarcina pasteurii cultivation and CaCO3 bioprecipitation. Different concentrations (20 to 80 g l-1 ) of DMP and POME were used to propagate the cells of Sporosarcina pasteurii under laboratory conditions. The measured CaCO3 contents for MICP soil specimens that were treated with bacterial cultures grown in DMP medium (60%, w/v) was 15.30 ±0.04g ml-1 and POME medium (40%, v/v) was 15.49 ±0.05g ml-1 after 21 days curing. The scanning electron microscopy showed that soil treated with DMP had rhombohedral structure-like crystals with smooth surfaces, while that of POME entailed ring-like cubical formation with rough surfaces Electron dispersive X-ray analysis was able to identify a high mass percentage of chemical element compositions (Ca, C, and O), while spectrum from Fourier-transform infrared spectroscopy confirmed the vibration peak intensities for CaCO3 . Atomic force microscopy further showed clear topographical differences on the crystal surface structures that were formed around the MICP treated soil samples. These nutrient sources (DMP and POME) showed encouraging potential cultivation mediums to address high costs related to bacterial cultivation and biocementation treatment.
Collapse
Affiliation(s)
- Armstrong Ighodalo Omoregie
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.,School of Chemical Engineering and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Khalida Muda
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lock Hei Ngu
- School of Chemical Engineering and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| |
Collapse
|
19
|
Ekprasert J, Pongtharangkul T, Chainakun P, Fongkaew I, Khanthasombat K, Kamngam R, Boonsuan W, Ditta ZM, Seemakram W, Boonlue S. Kinetic model of a newly-isolated Lysinibacillus sp. strain YL and elastic properties of its biogenic CaCO 3 towards biocement application. Biotechnol J 2021; 17:e2100124. [PMID: 34592060 DOI: 10.1002/biot.202100124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Biocement, calcifying bacteria-incorporated cement, offers an environmentally-friendly way to increase the cement lifespan. This work aimed to investigate the potential use of Lysinibacillus sp. strain YL towards biocement application in both theoretical and experimental ways. METHODS AND RESULTS Strain YL was grown using calcium acetate (Ca(C2 H3 O2 )2 ), calcium chloride (CaCl2 ) and calcium nitrate (Ca(NO3 )2 ). Maximum bacterial growth of ~0.09 hr-1 and the highest amount of CaCO3 precipitation of ~8.0 g/L were obtained when using Ca(C2 H3 O2 )2 . The SEM and XRD results confirmed that biogenic CaCO3 were calcites. The bulk, Young's and shear moduli of biogenic CaCO3 calculated via the VRH approximation were ~1.5-2.3 times larger than those of ordinary Portland cement. The Poisson's ratio was 0.382 and negative in some directions, suggesting its ductility and auxetic behaviors. The new model was developed to explain the growth kinetic of strain YL in the presence of Ca(C2 H3 O2 )2 , whose concentration was optimized for biocement experiments. Strain YL could increase the compressive strength of cement up to ~50% higher than that of the uninoculated cement. CONCLUSION Strain YL is a promising candidate for biocement applications. This work represents the trials of experiments and models allowing quantitatively comparison with large-scale production in the future.
Collapse
Affiliation(s)
- Jindarat Ekprasert
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Poemwai Chainakun
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ittipon Fongkaew
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Center of Excellence in Advanced Functional Materials, School of Physics, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kamonwan Khanthasombat
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Rungtiwa Kamngam
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wachiraya Boonsuan
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Zerlinda Mara Ditta
- Biological Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wasan Seemakram
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sophon Boonlue
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
20
|
Reinforcement of Recycled Aggregate by Microbial-Induced Mineralization and Deposition of Calcium Carbonate—Influencing Factors, Mechanism and Effect of Reinforcement. CRYSTALS 2021. [DOI: 10.3390/cryst11080887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recycled aggregate is aggregate prepared from construction waste. With the development of a global economy and people’s attention to sustainable development, recycled aggregate has shown advantages in replacing natural aggregate in the production of concrete due to its environmental friendliness, low energy consumption, and low cost. Recycled aggregate exhibits high water absorption and a multi-interface transition zone, which limits its application scope. Researchers have used various methods to improve the properties of recycled aggregate, such as microbially induced calcium carbonate precipitation (MICP) technology. In this paper, the results of recent studies on the reinforcement of recycled aggregate by MICP technology are synthesized, and the factors affecting the strengthening effect of recycled aggregate are reviewed. Moreover, the strengthening mechanism, advantages and disadvantages of MICP technology are summarized. After the modified treatment, the aggregate performance is significantly improved. Regardless of whether the aggregate was used in mortar or concrete, the mechanical properties of the specimens were clearly improved. However, there are some issues regarding the application of MICP technology, such as the use of an expensive culture medium, a long modification cycle, and untargeted mineralization deposition. These difficulties need to be overcome in the future for the industrialization of regenerated aggregate materials via MICP technology.
Collapse
|
21
|
Strength and Microstructural Assessment of Reconstituted and Stabilised Soft Soils with Varying Silt Contents. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11080302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of the strength of reconstituted and stabilised soft soils is very important in geotechnical engineering. The soil particles, such as clay, sand, and silt play important roles in determining the behaviour of soils. The behaviour of clay and sand particles are unique; however, the behaviour of silt particles lie in a transitional form between sand and clay. Therefore, this paper seeks to investigate (a) the effect of silt contents on the strength of soft soils; (b) the effect of silt content on the strength of cement-stabilised soft soils; and (c) the microstructure of the soft soil specimens stabilised by cement with varying particle size distribution. A series of tests consisting in consolidated, isotropic undrained (CIU) triaxial tests, unconfined compressive strength (UCS) tests, and scanning electron microscope (SEM) images were conducted in this study to achieve these objectives. In conclusion, the relationship between the silt content and critical state behaviour of soft soils (both clay and silt particles) are proposed. For the cement-stabilised specimens, the unconfined compressive strength increases with the increase in silt content when the cement content is 10%. However, the UCS decreases with the increase in silt content when cement content is 30%. With cement content ranging from 15–25%, the UCS increases at first with the increase of silt content but decreases once the silt content reaches a ‘saturation’ point.
Collapse
|
22
|
Biopolymers as Green Binders for Soil Improvement in Geotechnical Applications: A Review. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11070291] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil improvement using biopolymers has attracted considerable attention in recent years, with the aim to reduce the harmful environmental effects of traditional materials, such as cement. This paper aims to provide a review on the environmental assessment of using biopolymers as binders in soil improvement, biopolymer-treated soil characteristics, as well as the most important factors affecting the behavior of the treated soil. In more detail, environmental benefits and concerns about the use of biopolymers in soil improvement as well as biopolymer–soil interaction are discussed. Various geotechnical properties are evaluated and compared, including the unconfined compressive strength, shear strength, erosion resistance, physical properties, and durability of biopolymer-treated soils. The influential factors and soil and environmental conditions affecting various geotechnical characteristics of biopolymer-treated soils are also discussed. These factors include biopolymer concentration in the biopolymer–soil mixture, moisture condition, temperature, and dehydration time. Potential opportunities for biopolymers in geotechnical engineering and the challenges are also presented.
Collapse
|
23
|
Mkwata HM, Omoregie AI, Nissom PM. Lytic bacteriophages isolated from limestone caves for biocontrol of Pseudomonas aeruginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Comparison of Microbially Induced Healing Solutions for Crack Repairs of Cement-Based Infrastructure. SUSTAINABILITY 2021. [DOI: 10.3390/su13084287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reinforced concrete crack repair and maintenance costs are around 84% to 125% higher than construction costs, which emphasises the need to increase the infrastructure service life. Prolongation of the designed service life of concrete structures can have significant economic and ecological benefits by minimising the maintenance actions and related increase of carbon and energy expenditure, making it more sustainable. Different mechanisms such as diffusion, permeation and capillary action are responsible for the transport of fluids inside the concrete, which can impact on the structure service life. This paper presents data on microbially induced repair and self-healing solutions for cementitious materials available in the contemporary literature and compares results of compressive strength test and capillary water absorption test, which are relevant to their sealing and mechanical characteristics. The results of the repair and self-healing solutions (relative to unassisted recovery processes) were “normalized.” Externally applied bacteria-based solutions can improve the compressive strength of cementitious materials from 13% to 27%. The internal solution based solely on bacterial suspension had 19% improvement efficacy. Results also show that “hybrid” solutions, based on both bio-based and non-bio-based components, whether externally or internally applied, have the potential for best repair results, synergistically combining their benefits.
Collapse
|
25
|
Hu L, Wang H, Xu P, Zhang Y. Biomineralization of hypersaline produced water using microbially induced calcite precipitation. WATER RESEARCH 2021; 190:116753. [PMID: 33360619 DOI: 10.1016/j.watres.2020.116753] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Reusing produced water (PW) as the subsequent hydraulic fracturing fluid is currently the most economical and dominant practice in the shale oil and gas industry. However, high Ca2+ present in PW needs to be removed prior to reuse to minimize the potential for well clogging and formation damage. In this study, the microbially induced calcite precipitation (MICP), as an emerging biomineralization technique mediated by ureolytic bacteria, was employed to remove Ca2+ and toxic contaminants from hypersaline PW for the first time. Batch and continuous studies demonstrated the feasibility of MICP for Ca2+ removal from hypersaline PW under low urea and nutrient conditions. Throughout the continuous biofiltration operation with biochar as the media, high removal efficiencies of Ca2+ (~96%), organic contaminants (~100%), and heavy metals (~100% for As, Cd, Mn and Ni, 92.2% for Ba, 94.2% for Sr) were achieved when PW co-treated with synthetic domestic wastewater (SDW) under the condition of PW:SDW = 1:1 & urea 4 g/L. Metagenomic sequencing analysis showed that a stable ureolytic bacterial consortium (containing Sporosarcina and Arthrobacter at the genus level) was constructed in the continuous biofiltration system under hypersaline conditions, which may play a crucial role during the biomineralization process. Moreover, the combination of the MICP and ammonium recovery could significantly reduce the acute toxicity of PW towards Vibrio fischeri by 72%. This research provides a novel insight into the biomineralization of Ca2+ and heavy metals from hypersaline PW through the MICP technique. Considering the low cost and excellent treatment performance, the proposed process has the potential to be used for both hydraulic fracturing reuse and desalination pretreatment on a large scale.
Collapse
Affiliation(s)
- Lei Hu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States.
| |
Collapse
|
26
|
Yin T, Lin H, Dong Y, Li B, He Y, Liu C, Chen X. A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123269. [PMID: 32623308 DOI: 10.1016/j.jhazmat.2020.123269] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
A stable, urease-producing consortium (UPC) was constructed for high-efficiency cadmium (Cd) ion mineralization via a short-term and efficient acclimation process (five acclimation transfers). 16S rRNA gene high-throughput sequencing and quantitative polymerase chain reaction (qPCR) analyses of the urease subunit C (ureC) gene suggested that the three functional genera, all belonging to the phylum Firmicutes, rapidly increased during the process and finally composed the UPC (70.22-75.41 % of Sporosarcina, 13.83-20.66 % of norank_f_Bacillaceae, and 5.91-13.69 % of unclassified_f_Bacillaceae). The UPC exhibited good adaptability to a wide range of environmental conditions (a pH range of 4.0-11.0, temperature range of 10-45 °C, and Cd concentration range of 0-200 mg L-1). After 8 h of incubation, 92.87 % of Cd at an initial concentration of 100 mg L-1 was mineralized by UPC, exhibiting a great improvement as compared to the first acclimated consortium (C-1). Furthermore, although the acclimated consortium had been successively transferred 21 times, the Cd biomineralization efficiency remained stable, and this was consistent with the observed stable microbial community structure. X-ray diffraction (XRD) spectra revealed that Cd was mineralized in a (Ca0.67, Cd0.33)CO3 phase. This research obtained a promising microbial resource for the biomineralization of Cd or other hazardous heavy metal contaminants.
Collapse
Affiliation(s)
- Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
27
|
Lapierre FM, Schmid J, Ederer B, Ihling N, Büchs J, Huber R. Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Sci Rep 2020; 10:22448. [PMID: 33384450 PMCID: PMC7775470 DOI: 10.1038/s41598-020-79904-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
Microbial induced calcite precipitation (MICP) based on ureolysis has a high potential for many applications, e.g. restoration of construction materials. The gram-positive bacterium Sporosarcina pasteurii is the most commonly used microorganism for MICP due to its high ureolytic activity. However, Sporosarcina pasteurii is so far cultivated almost exclusively in complex media, which only results in moderate biomass concentrations at the best. Cultivation of Sporosarcina pasteurii must be strongly improved in order to make technological application of MICP economically feasible. The growth of Sporosarcina pasteurii DSM 33 was boosted by detecting auxotrophic deficiencies (L-methionine, L-cysteine, thiamine, nicotinic acid), nutritional requirements (phosphate, trace elements) and useful carbon sources (glucose, maltose, lactose, fructose, sucrose, acetate, L-proline, L-alanine). These were determined by microplate cultivations with online monitoring of biomass in a chemically defined medium and systematically omitting or substituting medium components. Persisting growth limitations were also detected, allowing further improvement of the chemically defined medium by the addition of glutamate group amino acids. Common complex media based on peptone and yeast extract were supplemented based on these findings. Optical density at the end of each cultivation of the improved peptone and yeast extract media roughly increased fivefold respectively. A maximum OD600 of 26.6 ± 0.7 (CDW: 17.1 ± 0.5 g/L) was reached with the improved yeast extract medium. Finally, culture performance and media improvement was analysed by measuring the oxygen transfer rate as well as the backscatter during shake flask cultivation.
Collapse
Affiliation(s)
| | - Jakob Schmid
- Munich University of Applied Sciences, 80335, Munich, Germany
| | - Benjamin Ederer
- Munich University of Applied Sciences, 80335, Munich, Germany
| | - Nina Ihling
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074, Aachen, Germany
| | - Robert Huber
- Munich University of Applied Sciences, 80335, Munich, Germany
| |
Collapse
|
28
|
Ekprasert J, Fongkaew I, Chainakun P, Kamngam R, Boonsuan W. Investigating mechanical properties and biocement application of CaCO 3 precipitated by a newly-isolated Lysinibacillus sp. WH using artificial neural networks. Sci Rep 2020; 10:16137. [PMID: 32999379 PMCID: PMC7527966 DOI: 10.1038/s41598-020-73217-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022] Open
Abstract
A newly-isolated Lysinibacillus sp. strain WH could precipitate CaCO3 using calcium acetate (Ca(C2H3O2)2), calcium chloride (CaCl2) and calcium nitrate (Ca(NO3)2) via non-ureolytic processes. We developed an algorithm to determine CaCO3 crystal structures by fitting the simulated XRD spectra to the experimental data using the artificial neural networks (ANNs). The biogenic CaCO3 crystals when using CaCl2 and Ca(NO3)2 are trigonal calcites with space group R3c, while those when using Ca(C2H3O2)2 are hexagonal vaterites with space group P6522. Their elastic properties are derived from the Voigt–Reuss–Hill (VRH) approximation. The bulk, Young's, and shear moduli of biogenic calcite are 77.812, 88.197, and 33.645 GPa, respectively, while those of vaterite are 67.082, 68.644, 25.818 GPa, respectively. Their Poisson’s ratios are ~ 0.3–0.33, suggesting the ductility behavior of our crystals. These elastic values are comparable to those found in limestone cement, but are significantly larger than those of Portland cement. Based on the biocement experiment, the maximum increase in the compressive strength of Portland cement (27.4%) was found when Ca(NO3)2 was used. An increased strength of 26.1% was also found when Ca(C2H3O2)2 was used, implying the transformation of less-durable vaterite to higher-durable calcite. CaCO3 produced by strain WH has a potential to strengthen Portland cement-based materials.
Collapse
Affiliation(s)
- Jindarat Ekprasert
- Department of Microbiology, Faculty of Science, Khon Kaen University, 123 Mitraparp Road, Muang, Khon Kaen, 40002, Thailand.
| | - Ittipon Fongkaew
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Poemwai Chainakun
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Rungtiwa Kamngam
- Department of Microbiology, Faculty of Science, Khon Kaen University, 123 Mitraparp Road, Muang, Khon Kaen, 40002, Thailand
| | - Wachiraya Boonsuan
- Department of Microbiology, Faculty of Science, Khon Kaen University, 123 Mitraparp Road, Muang, Khon Kaen, 40002, Thailand
| |
Collapse
|
29
|
Imran MA, Gowthaman S, Nakashima K, Kawasaki S. The Influence of the Addition of Plant-Based Natural Fibers (Jute) on Biocemented Sand Using MICP Method. MATERIALS 2020; 13:ma13184198. [PMID: 32967316 PMCID: PMC7560478 DOI: 10.3390/ma13184198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
The microbial-induced carbonate precipitation (MICP) method has gained intense attention in recent years as a safe and sustainable alternative for soil improvement and for use in construction materials. In this study, the effects of the addition of plant-based natural jute fibers to MICP-treated sand and the corresponding microstructures were measured to investigate their subsequent impacts on the MICP-treated biocemented sand. The fibers used were at 0%, 0.5%, 1.5%, 3%, 5%, 10%, and 20% by weight of the sand, while the fiber lengths were 5, 15, and 25 mm. The microbial interactions with the fibers, the CaCO3 precipitation trend, and the biocemented specimen (microstructure) were also evaluated based on the unconfined compressive strength (UCS) values, scanning electron microscopy (SEM), and fluorescence microscopy. The results of this study showed that the added jute fibers improved the engineering properties (ductility, toughness, and brittleness behavior) of the biocemented sand using MICP method. Furthermore, the fiber content more significantly affected the engineering properties of the MICP-treated sand than the fiber length. In this study, the optimal fiber content was 3%, whereas the optimal fiber length was s 15 mm. The SEM results indicated that the fiber facilitated the MICP process by bridging the pores in the calcareous sand, reduced the brittleness of the treated samples, and increased the mechanical properties of the biocemented sand. The results of this study could significantly contribute to further improvement of fiber-reinforced biocemented sand in geotechnical engineering field applications.
Collapse
Affiliation(s)
- Md Al Imran
- Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan;
- Correspondence: ; Tel.: +81-8011-706-6318
| | - Sivakumar Gowthaman
- Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan;
| | - Kazunori Nakashima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (K.N.); (S.K.)
| | - Satoru Kawasaki
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; (K.N.); (S.K.)
| |
Collapse
|
30
|
State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. SUSTAINABILITY 2020. [DOI: 10.3390/su12156281] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbial-induced calcite precipitation (MICP) is a promising new technology in the area of Civil Engineering with potential to become a cost-effective, environmentally friendly and sustainable solution to many problems such as ground improvement, liquefaction remediation, enhancing properties of concrete and so forth. This paper reviews the research and developments over the past 25 years since the first reported application of MICP in 1995. Historical developments in the area, the biological processes involved, the behaviour of improved soils, developments in modelling the behaviour of treated soil and the challenges associated are discussed with a focus on the geotechnical aspects of the problem. The paper also presents an assessment of cost and environmental benefits tied with three application scenarios in pavement construction. It is understood for some applications that at this stage, MICP may not be a cost-effective or even environmentally friendly solution; however, following the latest developments, MICP has the potential to become one.
Collapse
|
31
|
A feasible scale-up production of Sporosarcina pasteurii using custom-built stirred tank reactor for in-situ soil biocementation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Feasibility Study of Native Ureolytic Bacteria for Biocementation Towards Coastal Erosion Protection by MICP Method. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, traditional material for coastal erosion protection has become very expensive and not sustainable and eco-friendly for the long term. As an alternative countermeasure, this study focused on a sustainable biological ground improvement technique that can be utilized as an option for improving the mechanical and geotechnical engineering properties of soil by the microbially induced carbonate precipitation (MICP) technique considering native ureolytic bacteria. To protect coastal erosion, an innovative and sustainable strategy was proposed in this study by means of combing geotube and the MICP method. For a successful sand solidification, the urease activity, environmental factors, urease distribution, and calcite precipitation trend, among others, have been investigated using the isolated native strains. Our results revealed that urease activity of the identified strains denoted as G1 (Micrococcus sp.), G2 (Pseudoalteromonas sp.), and G3 (Virgibacillus sp.) relied on environment-specific parameters and, additionally, urease was not discharged in the culture solution but would discharge in and/or on the bacterial cell, and the fluid of the cells showed urease activity. Moreover, we successfully obtained solidified sand bearing UCS (Unconfined Compressive Strength) up to 1.8 MPa. We also proposed a novel sustainable approach for field implementation in a combination of geotube and MICP for coastal erosion protection that is cheaper, energy-saving, eco-friendly, and sustainable for Mediterranean countries, as well as for bio-mediated soil improvement.
Collapse
|