1
|
Zhu W, Xiong L, Oteiza PI. Structure-dependent capacity of procyanidin dimers to inhibit inflammation-induced barrier dysfunction in a cell model of intestinal epithelium. Redox Biol 2024; 75:103275. [PMID: 39059205 PMCID: PMC11327484 DOI: 10.1016/j.redox.2024.103275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Diet is of major importance in modulating intestinal inflammation, as the gastrointestinal tract is directly exposed to high concentrations of dietary components. Procyanidins are flavan-3-ol oligomers abundant in fruits and vegetables. Although with limited or no intestinal absorption, they can have GI health benefits which can promote overall health. We previously observed that epicatechin gallate (ECG) and epigallocatechin gallate (EGCG) dimers inhibit in vitro colorectal cancer cell proliferation and invasiveness. Inflammation-mediated intestinal barrier permeabilization can result in a chronic inflammatory condition and promote colorectal cancer onset/progression. Thus, this study investigated the structure-dependent capacity of ECG, EGCG and (-)-epicatechin (EC) dimers to inhibit tumor necrosis factor alpha (TNFα)-induced inflammation, oxidative stress, and loss of barrier integrity in Caco-2 cells differentiated into an intestinal epithelial cell monolayer. Cells were incubated with TNFα (10 ng/ml), in the absence/presence of ECG, EGCG and EC dimers. The three dimers inhibited TNFα-mediated Caco-2 cell monolayer permeabilization, modulating events involved in the loss of barrier function and inflammation, i.e. decreased tight junction protein levels; increased matrix metalloproteinases expression and activity; increased NADPH oxidase expression and oxidant production; activation of the NF-κB and ERK1/2 pathways and downstream events leading to tight junction opening. For some of these mechanisms, the galloylated ECG and EGCG dimers had stronger protective potency than the non-galloylated EC dimer. These differences could be due to differential membrane interactions as pointed out by molecular dynamics simulation of procyanidin dimers-cell membrane interactions and/or by differential interactions with NOX1. Results show that dimeric procyanidins, although poorly absorbed, can promote health by alleviating intestinal inflammation, oxidative stress and barrier permeabilization.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, 95618, USA
| | - Le Xiong
- Cleveland Clinic, Cleveland, OH, 44194, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, 95618, USA; Department of Environmental Toxicology, University of California, Davis, CA, 95618, USA.
| |
Collapse
|
2
|
Xie Y, Wu Z, Qian Q, Yang H, Ma J, Luan W, Shang S, Li X. Apple polyphenol extract ameliorates sugary-diet-induced depression-like behaviors in male C57BL/6 mice by inhibiting the inflammation of the gut-brain axis. Food Funct 2024; 15:2939-2959. [PMID: 38406886 DOI: 10.1039/d3fo04606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
To explore whether apple polyphenol extract (APE) ameliorates sugary-diet-induced depression-like behaviors, thirty male C57BL/6 mice (3-4 weeks old) were assigned to three groups randomly to receive different treatments for 8 consecutive weeks: (1) control group (CON), (2) S-HSD group (60% high sucrose diet feeding with 0.1 mg mL-1 sucralose solution as drinking water), and (3) S-APE group (S-HSD feeding with 500 mg per (kg bw day) APE solution gavage). The S-HSD group showed significant depression-like behaviors compared with the CON group, which was manifested by an increased number of buried marbles in the marble burying test, prolonged immobility time in both the tail suspension test and forced swimming test, and cognitive impairment based on the Morris water maze test. However, APE intervention significantly improved the depression-like behaviors by reducing serum levels of corticosterone and adrenocorticotropic hormone, and increasing the serum level of IL-10. Moreover, APE intervention inhibited the activation of the NF-κB inflammatory pathway, elevated colonic MUC-2 protein expression, and elevated the colonic and hippocampal tight junction proteins of occludin and ZO-1. Furthermore, APE intervention increased the richness and diversity of gut microbiota by regulating the composition of microbiota, with increased relative abundance of Firmicutes and Bacteroidota, decreased relative abundance of Verrucomicrobiota at the phylum level, significantly lowered relative abundance of Akkermansia at the genus level, and rebalanced abnormal relative abundance of Muribaculaceae_unclassified, Coriobacteriaceae_UCG-002, and Lachnoclostridium induced by S-HSD feeding. Thus, our study supports the potential application of APE as a dietary intervention for ameliorating depression-like behavioral disorders.
Collapse
Affiliation(s)
- Yisha Xie
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Zhengli Wu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Qingfan Qian
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Hao Yang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Jieyu Ma
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Wenxue Luan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Siyuan Shang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Xinli Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, PR China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| |
Collapse
|
3
|
Zhu X, Wang L, Zhao T, Jiang Q. Traditional uses, phytochemistry, pharmacology, and toxicity of Eriobotrya japonica leaves: A summary. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115566. [PMID: 35870687 DOI: 10.1016/j.jep.2022.115566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eriobotrya japonica Lindl. has been included in "The Plant List" (http://www.theplantlist.org) and is the most widely researched species in its genus. E. japonica is a subtropical evergreen fruit tree belonging to the Rosaceae family. Its dried leaves are widely used in traditional Chinese herbal medicine to treat coughing caused by pulmonary inflammation, dyspnea due to asthma and cough, nausea caused by stomach disorders, restlessness, and thirst. Furthermore, it is used to treat stomach ache, ulcers, chronic bronchitis, cancer, and diabetes mellitus in Japanese folk medicine. However, no systematic reports on E. japonica leaves have been published before. AIM OF THE STUDY This review summarizes the available information on the traditional uses, phytochemistry, pharmacology, toxicity, and quality control of various extracts and phytoconstituents of E. japonica leaves. MATERIALS AND METHODS Relevant publications between 1931 and 2022 were considered. Chinese and English studies on E. japonica leaves were collected from databases, including PubMed, Web of Science, Elsevier, ACS Publications, Springer, and CNKI (Chinese). The traditional uses, phytochemistry, pharmacology, toxicity, and quality control of E. japonica leaves were reviewed. RESULTS Briefly, 164 compounds, including triterpenes, flavonoids, sesquiterpene glycosides, megastigmane derivatives, phenylpropanoids, and organic acids, have been identified from E. japonica leaves, in addition to 169 volatile oils. More than half of these compounds have not yet been reported to have pharmacological activities. Triterpenes and flavonoids are the most important bioactive compounds responsible for pharmacological activities, such as antidiabetic, anti-inflammatory, and antitumor activities. Other beneficial physiological effects such as antioxidant, hepatoprotective, bronchodilatory, antitussive, and expectorant effects and tracheal smooth muscle relaxation, protection against myocardial ischemia injury, and improved cognitive activities have also been reported. High doses of E. japonica leaf extracts have been used in laboratory animals, and no side effects or toxicity-symptoms have been observed. CONCLUSIONS The pharmacological activities of E. japonica leaves support their use in traditional Chinese herbal medicine. However, several aspects, such as the bioavailability, pharmacodynamics, pharmacokinetics, mechanism of action, and structure-activity relationships of the pure compounds isolated from E. japonica leaves, have not been studied yet and warrant further studies.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Lin Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Tie Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Qinghua Jiang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
4
|
Ma J, Feng X, Shan C, Ma Y, Lu Z, Zhang D, Ma C. Quantification and purification of procyanidin B1 from food byproducts. J Food Sci 2022; 87:4905-4916. [DOI: 10.1111/1750-3841.16358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Jian‐Nan Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life ScienceInner Mongolia University Hohhot China
- Department of Traditional Chinese Medicine Resources and Development, College of PharmacyInner Mongolia Medical University Hohhot China
| | - Xu Feng
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life ScienceInner Mongolia University Hohhot China
| | - Cheng‐Bin Shan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life ScienceInner Mongolia University Hohhot China
| | - Yue Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life ScienceInner Mongolia University Hohhot China
| | - Zhan‐Yuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences Hohhot China
| | - De‐Jian Zhang
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life ScienceInner Mongolia University Hohhot China
| | - Chao‐Mei Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life ScienceInner Mongolia University Hohhot China
| |
Collapse
|
5
|
Vaillancourt K, Ben Lagha A, Grenier D. A Phenolic-rich Extract of Cocoa (Theobroma cacao L.) Beans Impairs the Pathogenic Properties of Porphyromonas gingivalis and Attenuates the Activation of Nuclear Factor Kappa B in a Monocyte Model. FRONTIERS IN ORAL HEALTH 2022; 3:867793. [PMID: 35392377 PMCID: PMC8980215 DOI: 10.3389/froh.2022.867793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Periodontitis, an inflammatory disease that affects tooth-supporting tissues, is the result of a polymicrobial infection involving mainly Gram negative anaerobic bacteria. The aim of the present study was to investigate the effects of a phenolic-rich extract of cocoa (Theobroma cacao L.) beans on the pathogenic properties of Porphyromonas gingivalis, which is well-known as a keystone pathogen in the development of periodontitis. The effect of the cocoa extract on P. gingivalis-induced activation of the nuclear factor kappa B (NF-κB) transcription factor in a monocyte model was also assessed. The cocoa extract, whose major phenolic compound was epicatechin, inhibited the growth, hemolytic activity, proteolytic activities, and adherence properties (basement membrane matrix, erythrocytes) of P. gingivalis in a dose-dependent manner. It also protected the barrier function of a keratinocyte model against the deleterious effects mediated by P. gingivalis, and attenuated reactive oxygen species (ROS) production by oral keratinocytes treated with P. gingivalis. Lastly, the cocoa extract showed an anti-inflammatory property by preventing P. gingivalis-induced NF-κB activation in monocytes. In conclusion, this in vitro study highlighted the potential value of an epicatechin-rich extract of cocoa beans for preventing and/or treating periodontal diseases.
Collapse
|
6
|
Rahmatpour A, Sajjadinezhad SM, Mirkani A, Notash B. Regioselective synthesis of di-aromatic ring-fused 2,8-dioxa/dithia bicyclo[3,3,1]nonane derivatives via recyclable polymeric Brønsted acid-catalyzed one-pot tandem formation of multiple chemical C–C/C–O and C–C/C–S bonds. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Interference of dietary polyphenols with potentially toxic amino acid metabolites derived from the colonic microbiota. Amino Acids 2021; 54:311-324. [PMID: 34235577 DOI: 10.1007/s00726-021-03034-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Each day, varying amounts of undigested or partially digested proteins reach the colon where they are metabolized by the microbiota, resulting in the formation of compounds such as ammonia, p-cresol, skatole, phenol, indole, and hydrogen sulfide (H2S). In farm animals, the excessive production of these metabolites can affect the quality of meat and milk and is a source of contaminating emissions from animal manure. In humans, their accumulation is potentially harmful, and it has been proposed that they could be involved in the development of pathologies such as colorectal cancer and ulcerative colitis, among others. This review assesses the evidence supporting the use of dietary polyphenols to reduce the production of these metabolites. Most studies have used condensed (proanthocyanidins) or hydrolyzable (ellagitannins and gallotannins) tannins, and have been carried out in farm animals. Several show that the administration of tannins in pigs, chicken, and ruminants decreases the levels of ammonia, p-cresol, skatole, and/or H2S, improving meat/milk quality and reducing manure odor. Direct application of tannins to manure also decreases ammonia emissions. Few studies were carried out in rats and humans and their results confirm, to a lesser extent, those reported in farm animals. These effects would be due to the capacity of tannins to trap ammonia and H2S, and to modify the composition of the microbiota, reducing the bacterial populations producing metabolites. In addition, PACs prevent p-cresol and H2S-induced alterations on intestinal cells in vitro. Tannins, therefore, appear as an interesting tool for improving the quality of animal products, human health, and the harmful emissions associated with breeding.
Collapse
|
8
|
Kanan T, Kanan D, Al Shardoub EJ, Durdagi S. Transcription factor NF-κB as target for SARS-CoV-2 drug discovery efforts using inflammation-based QSAR screening model. J Mol Graph Model 2021; 108:107968. [PMID: 34311260 PMCID: PMC8219481 DOI: 10.1016/j.jmgm.2021.107968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/06/2023]
Abstract
NF-κB is a central regulator of immunity and inflammation. It is suggested that the inflammatory response mediated by SARS-CoV-2 is predominated by NF-κB activation. Thus, NF-κB inhibition is considered a potential therapeutic strategy for COVID-19. The aim of this study was to identify potential anti-inflammation lead molecules that target NF-κB using a quantitative structure-activity relationships (QSAR) model of currently used and investigated anti-inflammatory drugs as the basis for screening. We applied an integrated approach by starting with the inflammation-based QSAR model to screen three libraries containing more than 220,000 drug-like molecules for the purpose of finding potential drugs that target the NF-κB/IκBα p50/p65 (RelA) complex. We also used QSAR models to rule out molecules that were predicted to be toxic. Among screening libraries, 382 molecules were selected as potentially nontoxic and were analyzed further by short and long molecular dynamics (MD) simulations and free energy calculations. We have discovered five hit ligands with highly predicted anti-inflammation activity and nearly no predicted toxicities which had strongly favorable protein-ligand interactions and conformational stability at the binding pocket compared to a known NF-κB inhibitor (procyanidin B2). We propose these hit molecules as potential NF-κB inhibitors which can be further investigated in pre-clinical studies against SARS-CoV-2 and may be used as a scaffold for chemical optimization and drug development efforts.
Collapse
Affiliation(s)
- Tarek Kanan
- School of Medicine, Bahcesehir University, Istanbul, Turkey; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Duaa Kanan
- School of Medicine, Bahcesehir University, Istanbul, Turkey; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | | | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey; Neuroscience Program, Institute of Health Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
9
|
Ben Lagha A, Maquera Huacho P, Grenier D. A cocoa (Theobroma cacao L.) extract impairs the growth, virulence properties, and inflammatory potential of Fusobacterium nucleatum and improves oral epithelial barrier function. PLoS One 2021; 16:e0252029. [PMID: 34029354 PMCID: PMC8143394 DOI: 10.1371/journal.pone.0252029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
Fusobacterium nucleatum is associated with many conditions and diseases, including periodontal diseases that affect tooth-supporting tissues. The aim of the present study was to investigate the effects of a cocoa extract (Theobroma cacao L.) on F. nucleatum with respect to growth, biofilm formation, adherence, and hydrogen sulfide (H2S) production. The anti-inflammatory properties and the effect on epithelial barrier function of the cocoa extract were also assessed. The cocoa extract, whose major phenolic compound is epicatechin, dose-dependently inhibited the growth, biofilm formation, adherence properties (basement membrane matrix, oral epithelial cells), and H2S production of F. nucleatum. It also decreased IL-6 and IL-8 production by F. nucleatum-stimulated oral epithelial cells and inhibited F. nucleatum-induced NF-κB activation in monocytes. Lastly, the cocoa extract enhanced the barrier function of an oral epithelial model by increasing the transepithelial electrical resistance. We provide evidence that the beneficial properties of an epicatechin-rich cocoa extract may be useful for preventing and/or treating periodontal diseases.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Patricia Maquera Huacho
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
- * E-mail:
| |
Collapse
|
10
|
Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021; 13:nu13030728. [PMID: 33668814 PMCID: PMC7996139 DOI: 10.3390/nu13030728] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Functional and nutraceutical foods provide an alternative way to improve immune function to aid in the management of various diseases. Traditionally, many medicinal products have been derived from natural compounds with healing properties. With the development of research into nutraceuticals, it is becoming apparent that many of the beneficial properties of these compounds are at least partly due to the presence of polyphenols. There is evidence that dietary polyphenols can influence dendritic cells, have an immunomodulatory effect on macrophages, increase proliferation of B cells, T cells and suppress Type 1 T helper (Th1), Th2, Th17 and Th9 cells. Polyphenols reduce inflammation by suppressing the pro-inflammatory cytokines in inflammatory bowel disease by inducing Treg cells in the intestine, inhibition of tumor necrosis factor-alpha (TNF-α) and induction of apoptosis, decreasing DNA damage. Polyphenols have a potential role in prevention/treatment of auto-immune diseases like type 1 diabetes, rheumatoid arthritis and multiple sclerosis by regulating signaling pathways, suppressing inflammation and limiting demyelination. In addition, polyphenols cause immunomodulatory effects against allergic reaction and autoimmune disease by inhibition of autoimmune T cell proliferation and downregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), IL-1, interferon-γ (IFN-γ)). Herein, we summarize the immunomodulatory effects of polyphenols and the underlying mechanisms involved in the stimulation of immune responses.
Collapse
|
11
|
Zhu W, Li MC, Wang FR, Mackenzie GG, Oteiza PI. The inhibitory effect of ECG and EGCG dimeric procyanidins on colorectal cancer cells growth is associated with their actions at lipid rafts and the inhibition of the epidermal growth factor receptor signaling. Biochem Pharmacol 2020; 175:113923. [PMID: 32217102 PMCID: PMC7489796 DOI: 10.1016/j.bcp.2020.113923] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Epidemiological studies indicate that consumption of fruits and vegetables containing procyanidins is associated with lower CRC risk. This study investigated the capacity of two dimeric procyanidins composed of epicatechin gallate (ECG) or epigallocatechin gallate (EGCG) isolated from persimmons, to inhibit CRC cell growth and promote apoptosis, characterizing the underlying mechanisms. ECG and EGCG dimers reduced the growth of five human CRC cell lines in a concentration (10-60 μM)- and time (24-72 h)-dependent manner, with a 72 h-IC50 value in Caco-2 cells of 10 and 30 μM, respectively. ECG and EGCG dimers inhibited Caco-2 cell proliferation by arresting the cell cycle in G2/M phase and by inducing apoptosis via the mitochondrial pathway. In addition, ECG and EGCG dimers inhibited cell migration, invasion, and adhesion, decreasing the activity of matrix metalloproteinases (MMP-2/9). Mechanistically, ECG and EGCG dimers inhibited the activation of lipid raft-associated epidermal growth factor (EGF) receptor (EGFR), without affecting its localization at lipid rafts. In particular, ECG and EGCG dimers reduced EGFR phosphorylation at Tyr1068 residue, prevented EGFR dimerization and activation upon stimulation, and induced EGFR internalization both in the absence and presence of EGF. Furthermore, ECG and EGCG dimers increased EGFR phosphorylation at Tyr1045 residue, providing a docking site for ubiquitin ligase c-Cbl and induced EGFR degradation by the proteasome. Downstream of EGFR, ECG and EGCG dimers inhibited the activation of the MEK/ERK1/2 and PI3K/AKT signaling pathways, downregulating proteins involved in the modulation of cell survival. In conclusion, ECG and EGCG dimers reduced CRC cell growth by inhibiting EGFR activation at multiple steps, including the disruption of lipid rafts integrity and promoting EGFR degradation. These results shed light on a potential molecular mechanism on how procyanidins-rich diets may lower CRC risk.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mei C Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng R Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients 2020; 12:E130. [PMID: 31906505 PMCID: PMC7019584 DOI: 10.3390/nu12010130] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
The intestinal barrier is constantly exposed to potentially harmful environmental factors, including food components and bacterial endotoxins. When intestinal barrier function and immune homeostasis are compromised (intestinal dysfunction), inflammatory conditions may develop and impact overall health. Evidence from experimental animal and cell culture studies suggests that exposure of intestinal mucosa to proanthocyanidin (PAC)-rich plant products, such as grape seeds, may contribute to maintaining the barrier function and to ameliorating the pathological inflammation present in diet-induced obesity and inflammatory bowel disease. In this review, we aim to update the current knowledge on the bioactivity of PACs in experimental models of intestinal dysfunction and in humans, and to provide insights into the underlying biochemical and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.P.); (A.A.); (X.T.)
| | | |
Collapse
|
13
|
Rahmatpour A. Regioselective condensation of hydroxyaromatic compounds with 2,5-dimethoxytetrahydrofuran: facile one-pot synthesis of new substituted diaryl-fused 2,8-dioxabicyclo[3.3.2]nonanes comprising central ketal moieties. NEW J CHEM 2020. [DOI: 10.1039/c9nj06232g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective synthesis of a series of novel diaryl- and naphthyl-fused 2,8-dioxabicyclo[3.3.2]nonanes was accomplished by a one-pot reaction of p-substituted phenols and 2-naphthol with 2,5-dimethoxytetrahydrofuran.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory
- Faculty of Chemistry
- Shahid Beheshti University
- Tehran
- Iran
| |
Collapse
|
14
|
Wen KS, Ruan X, Wang J, Yang L, Wei F, Zhao YX, Wang Q. Optimizing Nucleophilic Depolymerization of Proanthocyanidins in Grape Seeds to Dimeric Proanthocyanidin B1 or B2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5978-5988. [PMID: 31070025 DOI: 10.1021/acs.jafc.9b01188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Depolymerization of polymeric proanthocyanidins (PPCs) in grape seeds into oligomeric proanthocyanidins (OPCs), especially the dimers, has important academic significance and practical value. Reaction conditions including nucleophilic reagent/PPC mass ratio, HCl concentration, reaction time, and temperature were systematically optimized by central composite design to maximize the yield of the dimeric product B2 or B1. The yield of B2 reached 3.35 mg mL-1 under the conditions of (-)-epicatechin/PPC mass ratio 2.8, HCl concentration 0.06 mol, reaction time 16 min and temperature 36 °C, and that of B1 reached 3.64 mg mL-1 under the conditions of (+)-catechin/PPC mass ratio 2.8, HCl concentration 0.07 mol, reaction time 17 min, and temperature 34 °C. Overall, this study has provided theoretical guidance and a practical approach to improvethe reaction process and economic value of proanthocyanidins in grape seed proanthocyanidin extract.
Collapse
Affiliation(s)
- Kui-Shan Wen
- Ningbo Institute of Technology , Zhejiang University , Ningbo 315100 , People's Republic of China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , People's Republic of China
| | - Xiao Ruan
- Ningbo Institute of Technology , Zhejiang University , Ningbo 315100 , People's Republic of China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , People's Republic of China
| | - Jing Wang
- Ningbo Osaki Biotech Co., Ltd , Ningbo 315800 , People's Republic of China
| | - Li Yang
- Ningbo Institute of Technology , Zhejiang University , Ningbo 315100 , People's Republic of China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , People's Republic of China
| | - Feng Wei
- Ningbo Institute of Technology , Zhejiang University , Ningbo 315100 , People's Republic of China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , People's Republic of China
| | - Ying-Xian Zhao
- Ningbo Institute of Technology , Zhejiang University , Ningbo 315100 , People's Republic of China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , People's Republic of China
| | - Qiang Wang
- Ningbo Institute of Technology , Zhejiang University , Ningbo 315100 , People's Republic of China
- Ningbo Research Institute , Zhejiang University , Ningbo 315100 , People's Republic of China
| |
Collapse
|
15
|
Jaramillo Flores ME. Cocoa Flavanols: Natural Agents with Attenuating Effects on Metabolic Syndrome Risk Factors. Nutrients 2019; 11:nu11040751. [PMID: 30935075 PMCID: PMC6520706 DOI: 10.3390/nu11040751] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/30/2022] Open
Abstract
The interest in cacao flavanols is still growing, as bioactive compounds with potential benefits in the prevention of chronic diseases associated with inflammation, oxidative stress and metabolic disorders. Several analytical methodologies support that the flavanols in cacao-derived products can be absorbed, have bioactive properties, and thus can be responsible for their beneficial effects on human health. However, it must be considered that their biological actions and underlying molecular mechanisms will depend on the concentrations achieved in their target tissues. Based on the antioxidant properties of cacao flavanols, this review focuses on recent advances in research regarding their potential to improve metabolic syndrome risk factors. Additionally, it has included other secondary plant metabolites that have been investigated for their protective effects against metabolic syndrome. Studies using laboratory animals or human subjects represent strong available evidence for biological effects of cacao flavanols. Nevertheless, in vitro studies are also included to provide an overview of these phytochemical mechanisms of action. Further studies are needed to determine if the main cacao flavanols or their metabolites are responsible for the observed health benefits and which are their precise molecular mechanisms.
Collapse
Affiliation(s)
- Maria Eugenia Jaramillo Flores
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas-Instituto Politecnico Nacional, Wilfrido Massieu s/n esq, Manuel Stampa, Unidad Profesional Adolfo López Mateos, Alcaldía G. A. Madero, Ciudad de México CP 07738, Mexico.
| |
Collapse
|
16
|
Zhu Y, Yao Z, Xu F. Cationic-lanthanide-complex-catalyzed reaction of 2-hydroxychalcones with naphthols: Facile synthesis of 2,8-dioxabicyclo[3.3.1]nonanes. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Masuda I, Koike M, Nakashima S, Mizutani Y, Ozawa Y, Watanabe K, Sawada Y, Sugiyama H, Sugimoto A, Nojiri H, Sashihara K, Yokote K, Shimizu T. Apple procyanidins promote mitochondrial biogenesis and proteoglycan biosynthesis in chondrocytes. Sci Rep 2018; 8:7229. [PMID: 29739985 PMCID: PMC5940809 DOI: 10.1038/s41598-018-25348-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
Apples are well known to have various benefits for the human body. Procyanidins are a class of polyphenols found in apples that have demonstrated effects on the circulatory system and skeletal organs. Osteoarthritis (OA) is a locomotive syndrome that is histologically characterized by cartilage degeneration associated with the impairment of proteoglycan homeostasis in chondrocytes. However, no useful therapy for cartilage degeneration has been developed to date. In the present study, we detected beneficial effects of apple polyphenols or their procyanidins on cartilage homeostasis. An in vitro assay revealed that apple polyphenols increased the activities of mitochondrial dehydrogenases associated with an increased copy number of mitochondrial DNA as well as the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), suggesting the promotion of PGC-1α-mediated mitochondrial biogenesis. Apple procyanidins also enhanced proteoglycan biosynthesis with aggrecan upregulation in primary chondrocytes. Of note, oral treatment with apple procyanidins prevented articular cartilage degradation in OA model mice induced by mitochondrial dysfunction in chondrocytes. Our findings suggest that apple procyanidins are promising food components that inhibit OA progression by promoting mitochondrial biogenesis and proteoglycan homeostasis in chondrocytes.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Functional Materials Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., Ibaraki, Japan.,Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Products Development Department, Asahi Calpis Wellness Co., Ltd., Kanagawa, Japan
| | - Masato Koike
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shohei Nakashima
- Department of Functional Materials Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., Ibaraki, Japan.,Products Development Department, Asahi Calpis Wellness Co., Ltd., Kanagawa, Japan
| | - Yu Mizutani
- Department of Functional Materials Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., Ibaraki, Japan
| | - Yusuke Ozawa
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Watanabe
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoko Sawada
- Products Development Department, Asahi Calpis Wellness Co., Ltd., Kanagawa, Japan
| | | | - Atsushi Sugimoto
- Quality Assurance Department, Quality Assurance Headquarters, Asahi Group Foods, Ltd., Tokyo, Japan
| | - Hidetoshi Nojiri
- Department of Orthopaedics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichi Sashihara
- Department of Functional Materials Technology, Core Technology Laboratories, Asahi Group Holdings, Ltd., Ibaraki, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chiba, Japan. .,Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
18
|
Fraga CG, Oteiza PI, Galleano M. Plant bioactives and redox signaling: (-)-Epicatechin as a paradigm. Mol Aspects Med 2018; 61:31-40. [PMID: 29421170 DOI: 10.1016/j.mam.2018.01.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/31/2022]
Abstract
Polyphenols are bioactives claimed to be responsible for some of the health benefits provided by fruit and vegetables. It is currently accepted that the bioactivities of polyphenols can be mostly ascribed to their interactions with proteins and lipids. Such interactions can affect cell oxidant production and cell signaling, and explain in part the ability of polyphenols to promote health. EC can modulate redox sensitive signaling by: i) defining the extent of oxidant levels that can modify cell signaling, function, and fate, e.g. regulating enzymes that generate superoxide, hydrogen peroxide and nitric oxide; or ii) regulating the activation of transcription factors sensible to oxidants. The latter includes the regulation of the nuclear factor E2-related factor 2 (Nfr2) pathway, which in turn can promote the synthesis of antioxidant defenses, and of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway, which mediates the expression of oxidants generating enzymes, as well as proteins not involved in redox reactions. In summary, a significant amount of data vindicates the participation of EC in redox regulated signaling pathways. Progress in the understanding of the molecular mechanisms involved in EC biological actions will help to define recommendations in terms of which fruit and vegetables are healthier and the amounts necessary to provide health effects.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, USA.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
19
|
Donado-Pestana CM, Dos Santos-Donado PR, Daza LD, Belchior T, Festuccia WT, Genovese MI. Cagaita fruit (Eugenia dysenterica DC.) and obesity: Role of polyphenols on already established obesity. Food Res Int 2017; 103:40-47. [PMID: 29389630 DOI: 10.1016/j.foodres.2017.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/17/2017] [Accepted: 10/08/2017] [Indexed: 11/19/2022]
Abstract
Polyphenol-rich cagaita (Eugenia dysenterica DC.) extracts (PCE) have previously shown to prevent body weight and adiposity induced by high-fat/high-sucrose (HFS) diet. Whether PCE also exerts protective effects in already developed obesity is unknown. In order to test this hypothesis, male C57BL/6J obese mice (previously feed with a HFS diet for six weeks) were treated with PCE at two doses, 7mg gallic acid equivalent (GAE)/kg body weight (PCE I group), and 14mg GAE/kg body weight (PCE II group) or water (HFS and Chow groups) by oral gavage for eight weeks. PCE did not affect body weight and adiposity of obese mice. However, PCE did protect against dyslipidemia, fasting hyperglycemia, and glucose intolerance, and attenuated both hepatic gluconeogenesis and inflammation as observed by the expression of tumor necrosis factor-α and transcriptional factor NF-κB. These results indicate that PCE improves glucose homeostasis of obese mice by attenuating hepatic gluconeogenesis and inflammation.
Collapse
Affiliation(s)
- Carlos M Donado-Pestana
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Priscila R Dos Santos-Donado
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis Daniel Daza
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thiago Belchior
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - William T Festuccia
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Inés Genovese
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Zhu W, Khalifa I, Peng J, Li C. Position and orientation of gallated proanthocyanidins in lipid bilayer membranes: influence of polymerization degree and linkage type. J Biomol Struct Dyn 2017; 36:2862-2875. [DOI: 10.1080/07391102.2017.1369163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ibrahim Khalifa
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Lamas CDA, Cuquetto-Leite L, do Nascimento da Silva E, Thomazini BF, Cordeiro GDS, Predes FDS, Gollücke APB, Dolder H. Grape juice concentrate alleviates epididymis and sperm damage in cadmium-intoxicated rats. Int J Exp Pathol 2017; 98:86-99. [PMID: 28581201 DOI: 10.1111/iep.12227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/11/2017] [Indexed: 12/18/2022] Open
Abstract
The possibility of long-term grape juice concentrate (GJC) consumption conferring a protective effect against cadmium (Cd)-induced damage to the epididymis, completely preserving sperm profile, was evaluated here for the first time in the scientific literature. Male Wistar rats (n = 6/per group) received an intraperitoneal Cd injection (1.2 mg/Kg) at age 80 days and GJC (2 g/Kg) by gavage from 50 days until 136 days old. Groups receiving either Cd or GJC were added. An intraperitoneal injection of saline (0.9%) and water by gavage was administered in the absence of treatment with Cd or GJC. Animals were anaesthetized and exsanguinated at 136 days; the vas deferens, left testis and epididymis were removed; and perfusion continued with fixative. The right epididymis was collected for morphological analysis. Cd had a devastating effect demonstrated by reduced sperm count in testes and epididymis, sperm production and normal sperm count, besides increased epididymis sperm transit time and completely disorganized morphology. These alterations were attributed to higher Cd levels in the testes and a lipid peroxidation (LP) process. Consumption of GJC plus Cd intoxication was effective, reducing metal accumulation and LP. Consequently, we could identify a preserved sperm profile, with improvement in testis and epididymis sperm count, normal sperm structure and sperm transit time. Moreover, GJC extends its protective effect to the epididymis, allowing complete re-establishment of its morphology, ensuring successful sperm maturation process. In conclusion, our study indicates long-term GJC as a promising therapy against reproductive chemical intoxication injury damage, preserving sperm prior to ejaculation.
Collapse
Affiliation(s)
- Celina de A Lamas
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Livia Cuquetto-Leite
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | | | - Bruna F Thomazini
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Gabriel da S Cordeiro
- Department of Biological Science, State University of Paraná - Campus Paranaguá, Paranaguá, PR, Brazil
| | - Fabrícia de S Predes
- Department of Biological Science, State University of Paraná - Campus Paranaguá, Paranaguá, PR, Brazil
| | - Andrea P B Gollücke
- Department of Biosciences, Federal University of Sao Paulo, Santos, SP, Brazil
| | - Heidi Dolder
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
22
|
Suppression of CCL26 and CCL11 generation in human alveolar epithelial cells by apple extracts containing procyanidins. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
23
|
Procyanidin A2 Modulates IL-4-Induced CCL26 Production in Human Alveolar Epithelial Cells. Int J Mol Sci 2016; 17:ijms17111888. [PMID: 27845745 PMCID: PMC5133887 DOI: 10.3390/ijms17111888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is an inflammatory lung disease that is partly sustained by the chemokine eotaxin-3 (CCL26), which extends eosinophil migration into tissues long after allergen exposure. Modulation of CCL26 could represent a means to mitigate airway inflammation. Here we evaluated procyanidin A2 as a means of modulating CCL26 production and investigated interactions with the known inflammation modulator, Interferon γ (IFNγ). We used the human lung epithelial cell line A549 and optimized the conditions for inducing CCL26. Cells were exposed to a range of procyanidin A2 or IFNγ concentrations for varied lengths of time prior to an inflammatory insult of interleukin-4 (IL-4) for 24 h. An enzyme-linked immunosorbent assay was used to measure CCL26 production. Exposing cells to 5 μM procyanidin A2 (prior to IL-4) reduced CCL26 production by 35% compared with control. Greatest inhibition by procyanidin A2 was seen with a 2 h exposure prior to IL-4, whereas IFNγ inhibition was greatest at 24 h. Concomitant incubation of procyanidin A2 and IFNγ did not extend the inhibitory efficacy of procyanidin A2. These data provide evidence that procyanidin A2 can modulate IL-4-induced CCL26 production by A549 lung epithelial cells and that it does so in a manner that is different from IFNγ.
Collapse
|
24
|
Rocha BS, Nunes C, Laranjinha J. Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome. Int J Biochem Cell Biol 2016; 81:393-402. [PMID: 27989963 DOI: 10.1016/j.biocel.2016.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023]
Abstract
Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases.
Collapse
Affiliation(s)
- Bárbara S Rocha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carla Nunes
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
25
|
Campana PRV, Coleman CM, Sousa LP, Teixeira MM, Ferreira D, Braga FC. Mansoins C-F, Oligomeric Flavonoid Glucosides Isolated from Mansoa hirsuta Fruits with Potential Anti-inflammatory Activity. JOURNAL OF NATURAL PRODUCTS 2016; 79:2279-2286. [PMID: 27548746 DOI: 10.1021/acs.jnatprod.6b00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Continued investigation of the polyphenolic pool of the fruits of Mansoa hirsuta afforded four additional members of the new class of glucosylated oligomeric flavonoids comprising a flavanone core linked to 1,3-diarylpropane C6-C3-C6 units. The structures and absolute configurations of mansoins C-F (3-6) were established by analysis of NMR and electronic circular dichroism data. Mansoin C (3) was identified as a diglucosylated heterodimer, whereas mansoins D (4), E (5), and F (6) were identified as triglucosylated heterotrimers, isomeric with mansoin A (1). Mansoin F (6) inhibited TNF-α release by lipopolysaccharide-stimulated THP-1 cells (IC50 of 19.3 ± 1.3 μM) and, as with mansoin A (1), reduced the phosphorylation levels of p-65-NF-κB, when assayed at 50 μM. These results indicate that the potential anti-inflammatory properties of mansoin F (6) are probably due to inhibition of the NF-κB pathway and inhibition of TNF-α release.
Collapse
Affiliation(s)
- Priscilla R V Campana
- Pharmaceutical and Technological Development Department, Fundação Ezequiel Dias , Belo Horizonte, MG 30.510-010, Brazil
| | - Christina M Coleman
- Department of Biomolecular Sciences, Division of Pharmacognosy and the Research Institute of Pharmaceutical Sciences, University of Mississippi , University, Mississippi 38677, United States
| | | | | | - Daneel Ferreira
- Department of Biomolecular Sciences, Division of Pharmacognosy and the Research Institute of Pharmaceutical Sciences, University of Mississippi , University, Mississippi 38677, United States
| | | |
Collapse
|
26
|
Eriobotrya japonica Water Extract Characterization: An Inducer of Interferon-Gamma Production Mainly by the JAK-STAT Pathway. Molecules 2016; 21:molecules21060722. [PMID: 27271577 PMCID: PMC6273127 DOI: 10.3390/molecules21060722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/16/2023] Open
Abstract
Eriobotrya japonica (Thunb.) Lindl. (Loquat) (EJ) has been used as a medicinal plant to treat chronic bronchitis, coughs, phlegm, high fever and gastro-enteric disorders. Since the traditional use of EJ is related to modulating inflammation processes, our earlier studies on EJ leaves were performed on the water extract to investigate specific cytokines’ modulation. These earlier studies, however, have shown that EJ leaf water extract (WE) and the water phase (WP) induce cytokines’ production in in vitro and in vivo models. Therefore, the aim of this study was to specify the group(s) of compounds in EJ leaves that have this immunomodulatory activity and their mechanism of action. WE was obtained from boiling the leaves followed by butanol extraction, yielding a butanol-water phase (WP). WP was then subjected to methanol:acetone fractionation, yielding upper (MAU) and lower (MAL) phases. For further fractionation, MAU was subjected to column chromatography followed by elution with ethanol:water (EW), methanol:ethanol (ME) and, lastly, acetone:water (AW), respectively, to reveal three sub-fractions; MAU-EW, MAU-ME and MAU-AW. MAU-AW significantly increased IFN-γ production from unstimulated and stimulated mouse spleen cells, as well as CD3+ T cells and natural killer cells. Furthermore, the fold increase of IFN-γ production by MAU-AW was concentration dependent, higher than the parent extract or any of the other sub-fractions, and such an IFN-γ increase was reversed by two JAK-STAT inhibitors. In addition, MALDI-TOF-MS analysis of the extracts and sub-fractions showed compounds with molecular weights of >500 Daltons. The MAU-AW sub-fraction contained more polar compounds, such as flavonol and caffeic glycosides. In conclusion, these polar compounds in the EJ extract are responsible for inducing IFN-γ production. Further chemical elucidation is warranted to lead to a specific IFN-γ inducer and an immunomodulator in polarizing immune cells and balancing immune responses in certain diseases.
Collapse
|
27
|
Rahayu B, Baktiyani SCW, Nurdiana N. Theobroma cacao increases cells viability and reduces IL-6 and sVCAM-1 level in endothelial cells induced by plasma from preeclamptic patients. Pregnancy Hypertens 2016; 6:42-6. [DOI: 10.1016/j.preghy.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
|
28
|
Lamas CA, Gollücke APB, Dolder H. Grape juice concentrate (G8000(®) ) intake mitigates testicular morphological and ultrastructural damage following cadmium intoxication. Int J Exp Pathol 2015; 96:301-10. [PMID: 26515339 DOI: 10.1111/iep.12141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 07/20/2015] [Indexed: 10/22/2022] Open
Abstract
Cadmium is a well-known testicular toxicant, and parts of the world population are exposed chronically by inhalation or by food and water intake. Grape products have been highlighted as important sources of bioactive compounds, having anti-inflammatory, anti-oxidant and metal chelating properties. Since maintenance of tissue morphology is essential for testicular sperm development and hence male fertility, we analysed the protective effect of grape juice concentrate (GJC) (G8000(®) ) consumption on testicular morphology in rats exposed to cadmium. Thus, four groups of male Wistar rats (n = 6 per group), 50 days old, ingested either water or G8000(®) (2 g/kg/day) until they had completed one spermatogenic cycle in adult life (136 days old). Cadmium (1.2 mg / kg) was injected intraperitoneally when the animals were 80 days old into one of the water and one of the G8000 groups; intraperitoneal saline was used as a control in the other two groups. Animals anaesthetised and exsanguinated at 136 days and then perfused with Karnovsky's fixative and then the testes were collected for morphological analysis. We describe evident disruption of testicular morphology by cadmium, with alteration in tissue component proportions, reduced Leydig cells volume and initial signs of an inflammatory process. Ultrastructural analysis showed greater damage, suggesting spermatogenesis disruption. G8000(®) ingestion allowed tissue architecture to be re-established, as was corroborated by our stereological and morphometric findings. Animals from the group where G8000(®) had been administered together with cadmium revealed a significant reduction in macrophages and blood vessel volume, suggesting diminished inflammation, when compared to animals that received only cadmium. Moreover, smaller number of ultrastructural alterations was noted, revealing fewer areas of degeneration and disorganized interstitium. In conclusion, our results demonstrate that GJC consumption prevented the spermatogenic disruption promoted by cadmium, and thus could be a promising form of therapy against male infertility.
Collapse
Affiliation(s)
- Celina A Lamas
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| | - Andrea P B Gollücke
- Department of Biosciences, Federal University of Sao Paulo, Santos, SP, Brazil
| | - Heidi Dolder
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
29
|
Glynn SJ, Gaffney KJ, Sainz MA, Louie SG, Petasis NA. Molecular characterization of the boron adducts of the proteasome inhibitor bortezomib with epigallocatechin-3-gallate and related polyphenols. Org Biomol Chem 2015; 13:3887-99. [PMID: 25669488 PMCID: PMC4366333 DOI: 10.1039/c4ob02512a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The green tea polyphenol epigallocatechin-3-gallate (EGCG) was reported to effectively antagonize the ability of Bortezomib (BZM) to induce apoptosis in cancer cells. This interaction was attributed to the formation of a covalent adduct between a phenolic moiety of EGCG with the boronic acid group of Bortezomib. However, the structural details of this boron adduct and the molecular factors that contribute to its formation and its ability to inhibit Bortezomib's activity remain unclear. This paper describes the use of NMR spectroscopy and cell assays to characterize the structures and properties of the boron adducts of EGCG and related polyphenols. The observed boron adducts included both boronate and borate derivatives, and their structural characteristics were correlated with cell-based evaluation of the ability of EGCG and other phenols to antagonize the anticancer activity of Bortezomib. The enhanced stability of the BZM/EGCG adduct was attributed to electronic and steric reasons, and a newly identified intramolecular interaction of the boron atom of BZM with the adjacent amide bond. The reported approach provides a useful method for determining the potential ability of polyphenols to form undesired adducts with boron-based drugs and interfere with their actions.
Collapse
Affiliation(s)
- Stephen J Glynn
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, USA.
| | | | | | | | | |
Collapse
|
30
|
Litterio MC, Vazquez Prieto MA, Adamo AM, Elesgaray R, Oteiza PI, Galleano M, Fraga CG. (-)-Epicatechin reduces blood pressure increase in high-fructose-fed rats: effects on the determinants of nitric oxide bioavailability. J Nutr Biochem 2015; 26:745-51. [PMID: 25943039 DOI: 10.1016/j.jnutbio.2015.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/30/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022]
Abstract
This work investigated the blood pressure (BP)-lowering effect of the flavanol (-)-epicatechin in a model of metabolic syndrome. Rats were fed a regular chow diet without (Control) or with 10% (w/v) fructose in the drinking water (high fructose, HF) for 8 weeks. A subgroup of the HF-fed rats was supplemented with (-)-epicatechin 20 mg/kg body weight (HF-EC). Dietary (-)-epicatechin reverted the increase in BP caused by the fructose treatment. In aorta, superoxide anion production and the expression of the NADPH oxidase (NOX) subunits p47(phox) and p22(phox) were enhanced in the HF-fed rats. The increase was prevented by (-)-epicatechin. Similar profile was observed for NOX4 expression. The activity of aorta nitric oxide synthase (NOS) was increased in the HF group and was even higher in the HF-EC rats. These effects were paralleled by increased endothelial NOS phosphorylation at the activation site Ser1177. Among the more relevant mitogen-activated protein kinase pathways in vascular tissue, c-Jun-N-terminal kinase was shown to be activated in the aorta of the HF-fed rats, and (-)-epicatechin supplementation mitigated this activation. Thus, the results suggest that dietary (-)-epicatechin supplementation prevented hypertension in HF-fed rats, decreasing superoxide anion production and elevating NOS activity, favoring an increase in NO bioavailability.
Collapse
Affiliation(s)
- Maria C Litterio
- Physical Chemistry-Institute for Molecular Biochemistry and Molecular Medicine (IBIMOL) School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Argentina
| | - Marcela A Vazquez Prieto
- Department of Pathology, School of Medicine, National University of Cuyo and Institute of Medicine and Experimental Biology-CONICET, Mendoza, Argentina
| | - Ana M Adamo
- Department of Biological Chemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Argentina
| | - Rosana Elesgaray
- Physiology-Institute of Drug Chemistry and Metabolism (IQUIMEFA), School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA; Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Monica Galleano
- Physical Chemistry-Institute for Molecular Biochemistry and Molecular Medicine (IBIMOL) School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Argentina.
| | - Cesar G Fraga
- Physical Chemistry-Institute for Molecular Biochemistry and Molecular Medicine (IBIMOL) School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Argentina; Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
31
|
Biotransformations and biological activities of hop flavonoids. Biotechnol Adv 2015; 33:1063-90. [PMID: 25708386 DOI: 10.1016/j.biotechadv.2015.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
Abstract
Female hop cones are used extensively in the brewing industry, but there is now increasing interest in possible uses of hops for non-brewing purposes, especially in the pharmaceutical industry. Among pharmaceutically important compounds from hops are flavonoids, having proven anticarcinogenic, antioxidant, antimicrobial, anti-inflammatory and estrogenic effects. In this review we aim to present current knowledge on the biotransformation of flavonoids from hop cones with respect to products, catalysis and conversion. A list of microbial enzymatic reactions associated with gastrointestinal microbiota is presented. A comparative analysis of the biological activities of hop flavonoids and their biotransformation products is described, indicating where further research has potential for applications in the pharmaceutical industry.
Collapse
|
32
|
Mena P, Domínguez-Perles R, Gironés-Vilaplana A, Baenas N, García-Viguera C, Villaño D. Flavan-3-ols, anthocyanins, and inflammation. IUBMB Life 2014; 66:745-58. [PMID: 25504851 DOI: 10.1002/iub.1332] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022]
Abstract
The process of inflammation constitutes a reactive response of the organism to tissue damage and is an important factor making part of a number of degenerative pathologies as insulin resistance, dyslipidemia, and hypertension, all of them comprised in the metabolic syndrome. There is an increasing interest in plant products rich in flavan-3-ols and anthocyanins because of their potential beneficial effects observed in epidemiological studies against inflammatory-related diseases. Their anti-inflammatory effects are exerted by modulation of cell redox status and inhibition of signaling pathways as NF-κB activation. The effects depend on their concentrations in target tissues and hence the bioavailability pathways followed by each particular compound. In this sense, in vitro studies performed with parental compounds at doses exceeding to those found in vivo may be drawing erroneous conclusions about their real efficacy. Contradictory results have been observed in human intervention trials, which may be ascribed to the type of population studied, length of study, source of flavan-3-ol/anthocyanin, and dose provided. Human studies are required to confirm the positive effects found in vitro and in animal models. Future research should be focused on the understanding of dose/flavonoid intake-response relationship with pharmacokinetic studies, evaluating proper biomarkers of intake. Long-term dietary interventions are necessary to observe effects on markers of late activation as well as the possible preventive effects of these compounds on long-term inflammation-related diseases.
Collapse
Affiliation(s)
- Pedro Mena
- Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Martinez-Micaelo N, González-Abuín N, Pinent M, Ardévol A, Blay M. Procyanidin B2 inhibits inflammasome-mediated IL-1β production in lipopolysaccharide-stimulated macrophages. Mol Nutr Food Res 2014; 59:262-9. [PMID: 25379992 DOI: 10.1002/mnfr.201400370] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/25/2022]
Abstract
SCOPE Macrophage stimulation with bacterial LPS triggers inflammasome activation, resulting in pro-inflammatory IL-1β cytokine maturation and secretion. IL-1β underlies the pathologies of many diseases, including type-2 diabetes. Thus, the modulation of the inflammatory response through bioactive food compounds, such as procyanidins, is a powerful tool to promote homeostasis. METHODS AND RESULTS To determine the role of procyanidin B2 in inflammasome activation, LPS-primed THP-1-macrophages were supplemented with or without procyanidin B2 . Western blot analysis of COX2 , iNOS, p65, NLRP3 and IL-1β was performed followed by p65 supershift assay, in vivo caspase-1 activation assay and NO, IL-1β and IL-6 determination. Procyanidin B2 mediated inhibition of inflammasome activation includes the inactivation of the NF-κB signalling pathway, the first stage required for the transcription of inflammasome precursors, through the inhibition of p65 nuclear expression and DNA binding, resulting in the transcriptional repression of target genes, such as COX2 , iNOS and production of IL-6 and NO. Furthermore, procyanidin B2 decreases NLRP3 and pro-IL-1β cytoplasmic pools, limiting components of inflammasome activation and impeding inflammasome assembly and caspase-1 activation, and finally secretion of active IL-1β. CONCLUSION This study provides the first evidence that procyanidin B2 inhibits inflammasome activation and IL-1β secretion during LPS-induced acute inflammation in human macrophages.
Collapse
Affiliation(s)
- Neus Martinez-Micaelo
- Mobiofood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | |
Collapse
|
34
|
Verstraeten SV, Fraga CG, Oteiza PI. Interactions of flavan-3-ols and procyanidins with membranes: mechanisms and the physiological relevance. Food Funct 2014; 6:32-41. [PMID: 25418533 DOI: 10.1039/c4fo00647j] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavonoids are a type of phenolic compound widely present in edible plants. A great number of health benefits have been ascribed to flavonoid consumption in the human population. However, the molecular mechanisms involved in such effects remain to be identified. The flavan-3-ols (-)-epicatechin and (+)-catechin, and their related oligomers (procyanidins) have been thoroughly studied because of their capacity to interact with cell membranes. Starting with these interactions, procyanidins could modulate multiple biochemical processes, such as enzyme activities, receptor-ligand binding, membrane-initiated cell signaling, and molecule transport across membranes. This review focuses on molecular aspects of procyanidin interactions with membrane lipid components, and the resulting protection of the membranes against mechanical and/or oxidative damage, resulting in the maintenance of cell functions.
Collapse
Affiliation(s)
- Sandra V Verstraeten
- Department of Biological Chemistry and IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
35
|
Choy YY, Quifer-Rada P, Holstege DM, Frese SA, Calvert CC, Mills DA, Lamuela-Raventos RM, Waterhouse AL. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proanthocyanidins. Food Funct 2014; 5:2298-308. [PMID: 25066634 PMCID: PMC4744461 DOI: 10.1039/c4fo00325j] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proanthocyanidin (PAC) consumption has been linked to better colonic health, but PACs are poorly absorbed, making them a target for colonic metabolism. The resulting metabolites are low molecular weight and could potentially be absorbed. To understand the effects of dietary PACs it would be important to resolve the metabolic issue and link these changes to microbial population changes in a suitable model for human digestion. Here, six crossbred female pigs were fed a diet containing 1% (w/w) of MegaNatural® Gold grape seed extract (GSE) daily for 6 days. Fecal samples were analyzed by normal phase LC coupled to fluorescence detection and LC-MS/ToF. DNA was extracted from pig fecal samples and the V3/V4 region of the 16S rRNA gene was sequenced using an Illumina MiSeq. Intact parent PACs (dimer-pentamer) were observed in the feces on days 3 and 6 at similar high levels (∼400 mg kg(-1) total) during ingestion of GSE but were absent 48 h post-feeding. The major phenolic metabolites were 4-hydroxyphenylvaleric acid and 3-hydroxybenzoic acid which increased by ∼30 and 3 mg kg(-1) respectively. The GSE diet also caused an ecological shift in the microbiome, dramatically increasing Lachnospiraceae, Clostridales, Lactobacillus and Ruminococcacceae. The relationship between dietary PACs and colon health may be attributable to the altered bacterial populations or phenolic compounds in the colon.
Collapse
Affiliation(s)
- Ying Yng Choy
- Department of Viticulture & Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616-8749, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
(D,L)-10-Camphorsulfonic-Acid-Catalysed Synthesis of Diaryl-Fused 2,8-Dioxabicyclo[3.3.1]nonanes from 2-Hydroxychalcones and Naphthol Derivatives. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Mari A, Eletto D, Pizza C, Montoro P, Piacente S. Integrated mass spectrometry approach to profile proanthocyanidins occurring in food supplements: analysis of Potentilla erecta L. rhizomes. Food Chem 2013; 141:4171-8. [PMID: 23993602 DOI: 10.1016/j.foodchem.2013.06.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/17/2022]
Abstract
Potentilla erecta (L.) is known for the high concentration of proanthocyanidin oligomers (PAs) in its underground parts. The use of its preparations as food supplements and the lack of chemical-analytical studies concerning with an efficient chromatographic separation procedure for these compounds led us to develop a strategy to profile PAs occurring in this species. Their presence has been rationalised on the basis of mass spectrometric profiles. Direct flow injection/electrospray ionisation (ESI)/ion trap (IT) mass spectrometry was used to investigate the hydroalcoholic extract of P. erecta. To achieve deeper structural information and to focus the analysis on PAs with high polimerisation degree (DP), matrix assisted laser desorption ionisation (MALDI)-time of flight (TOF)-mass spectrometry, was used. Finally, liquid chromatography tandem mass spectrometry (LC-MS(2)) analyses were executed by using a diol stationary phase to detect PAs from DP1 to DP10. Results suggested that all of them were B-type procyanidins with 4→8 linkages.
Collapse
Affiliation(s)
- Angela Mari
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy
| | | | | | | | | |
Collapse
|
38
|
Li CM, Zhang Y, Yang J, Zou B, Dong XQ, Hagerman AE. The interaction of a polymeric persimmon proanthocyanidin fraction with Chinese cobra PLA2 and BSA. Toxicon 2013; 67:71-9. [DOI: 10.1016/j.toxicon.2013.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
|
39
|
Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem Toxicol 2013; 56:336-51. [DOI: 10.1016/j.fct.2013.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/20/2022]
|
40
|
Nunes C, Ferreira E, Freitas V, Almeida L, Barbosa RM, Laranjinha J. Intestinal anti-inflammatory activity of red wine extract: unveiling the mechanisms in colonic epithelial cells. Food Funct 2012; 4:373-83. [PMID: 23233037 DOI: 10.1039/c2fo30233k] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of new therapeutic approaches, combining efficacy and safety against intestinal inflammation, notably inflammatory bowel disease (IBD), has emerged as an important goal due to the significant side effects and the lack of effectiveness of standard current therapies. Recently, several studies described the health-promoting effects of red wine, including anti-inflammatory properties, but the molecular mechanisms underlying its beneficial role remain largely unknown. Red wine is rich in phenolic compounds and it has been suggested that the positive effect of red wine intake might be attributed not only to the antioxidant properties of these compounds but also to the modulation of signalling cascades in connection with physiological and pathophysiological conditions such as inflammatory processes. This study assesses the potential anti-inflammatory action of a red wine extract (RWE) enriched in polyphenols in a cellular model of intestinal inflammation using cytokines-stimulated HT-29 colon epithelial cells. RWE suppressed cytokines-induced IκB degradation and interleukin-8 production in a dose-dependent manner. Coherently, key inflammatory mediators downstream NF-κB activation; notably cyclooxygenase-2 and inducible nitric oxide synthase were maintained at low levels by RWE in the presence of the cytokines. Additionally, RWE inhibited both the increase of nitric oxide derived from iNOS and of protein tyrosine nitration, a biomarker of nitrosative stress that typically requires the reaction of nitric oxide with the superoxide radical. Taken together, the anti-inflammatory action of RWE, mechanistically supported by the modulation of cascades orchestrated by NF-κB and involving nitric oxide, suggests that RWE (a readily straightforward preparation when compared with the purification of specific compounds) may represent a simple and inexpensive therapeutic strategy in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Carla Nunes
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
41
|
Litterio MC, Jaggers G, Sagdicoglu Celep G, Adamo AM, Costa MA, Oteiza PI, Fraga CG, Galleano M. Blood pressure-lowering effect of dietary (-)-epicatechin administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radic Biol Med 2012; 53:1894-902. [PMID: 22985936 DOI: 10.1016/j.freeradbiomed.2012.08.585] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022]
Abstract
Epidemiological and intervention studies have shown that the intake of certain chocolates or cocoa products decreases blood pressure (BP) in humans. (-)-Epicatechin is the most abundant flavanol present in cocoa seeds and its derived foods. This work investigates the effects of dietary (-)-epicatechin on BP in rats that received N(ω)-nitro-l-arginine methyl ester (L-NAME) for 4 days. (-)-Epicatechin administration prevented the 42mm Hg increase in BP associated with the inhibition of NO production in a dose-dependent manner (0.2-4.0g/kg diet). This BP effect was associated with a reduction in L-NAME-mediated increase in the indexes of oxidative stress (plasma TBARS and GSSG/GSH(2) ratio) and with a restoration of the NO concentration. At the vascular level, none of the treatments modified NOS expression, but (-)-epicatechin administration avoided the L-NAME-mediated decrease in eNOS activity and increase in both superoxide anion production and NOX subunit p47(phox) expression. In summary, (-)-epicatechin was able to prevent the increase in BP and in oxidative stress and restored NO bioavailability. The fact that (-)-epicatechin is present in several plants usually consumed by humans gives the possibility of developing diets rich in those plants or pharmacological strategies using that flavonoid to diminish BP in hypertensive subjects.
Collapse
Affiliation(s)
- Maria C Litterio
- Physical Chemistry-IBIMOL, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Vazquez-Prieto MA, Bettaieb A, Haj FG, Fraga CG, Oteiza PI. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch Biochem Biophys 2012; 527:113-8. [PMID: 22425757 PMCID: PMC3992864 DOI: 10.1016/j.abb.2012.02.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/15/2012] [Accepted: 02/28/2012] [Indexed: 12/25/2022]
Abstract
Obesity is major public health concern worldwide and obese individuals exhibit a higher risk of chronic diseases such as type 2 diabetes. Inflammation plays a significant role in metabolic regulation and mounting evidence highlight the contribution of adipose tissue to systemic inflammatory state. Food extracts with a high content of (-)-epicatechin have been found to exert systemic anti-inflammatory actions, however the anti-inflammatory actions of (-)-epicatechin on adipose tissue remain to be determined. The aim of this study was to investigate the capacity of (-)-epicatechin to prevent tumor necrosis alpha (TNFα)-induced activation of cell signals involved in inflammation and insulin resistance (NF-κB, mitogen-activated protein kinases (MAPKs), AP-1, and peroxisome proliferator activated receptor γ (PPARγ)) in differentiated white adipocytes (3T3-L1). TNFα triggered the activation of transcription factors NF-κB and AP-1, and MAPKs ERK1/2, JNK, and p38. (-)-Epicatechin caused a dose (0.5-10 μM)-dependent decrease in TNFα-mediated JNK, ERK1/2, and p-38 phosphorylation, and nuclear AP-1-DNA binding. (-)-Epicatechin also inhibited TNFα-triggered activation of the NF-κB signaling cascade, preventing TNFα-mediated p65 nuclear transport and nuclear NF-κB-DNA binding. (-)-Epicatechin also attenuated the TNFα-mediated downregulation of PPARγ expression and decreased nuclear DNA binding. Accordingly, (-)-epicatechin inhibited TNFα-mediated altered transcription of genes (MCP-1, interleukin-6, TNFα, resistin, and protein-tyrosine phosphatase 1B) involved in inflammation and insulin signaling. In conclusion, (-)-epicatechin can attenuate TNFα-mediated triggering of signaling cascades involved in inflammation and insulin resistance. These findings could be of relevance in the dietary management of obesity and metabolic syndrome.
Collapse
|
43
|
Andre CM, Greenwood JM, Walker EG, Rassam M, Sullivan M, Evers D, Perry NB, Laing WA. Anti-inflammatory procyanidins and triterpenes in 109 apple varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10546-54. [PMID: 23013475 DOI: 10.1021/jf302809k] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We evaluated the potential of apple to reduce inflammation. Phenolic compounds and triterpenes were analyzed in 109 apple cultivars. Total phenolics ranged from 29 to 7882 μg g(-1) of fresh weight (FW) in the flesh and from 733 to 4868 μg g(-1) FW in the skin, with flavanols including epicatechin and procyanidins as major components. Ursolic (44.7 to 3522 μg g(-1) FW) and oleanolic (47.2 to 838 μg g(-1) FW) acids dominated the skin triterpene profile. Five chemically contrasting cultivars were fractionated and their immune-modulating activity measured using two cell-based assays targeting key points in the inflammation process. Cultivars exhibiting high contents of procyanidins were the most potent at inhibiting NF-κB while triterpene-rich fractions reduced the promoter activity of the gene of TNFα. This study provides new insights into how apple genetic diversity could be used to alleviate inflammation.
Collapse
Affiliation(s)
- Christelle M Andre
- New Zealand Institute for Plant & Food Research Limited, Mt. Albert Research Centre, Private Bag 92 169, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Martinez-Micaelo N, González-Abuín N, Ardèvol A, Pinent M, Blay MT. Procyanidins and inflammation: molecular targets and health implications. Biofactors 2012; 38:257-65. [PMID: 22505223 DOI: 10.1002/biof.1019] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/14/2012] [Indexed: 12/31/2022]
Abstract
The inflammatory response has been implicated in the pathogenesis of many chronic diseases. Thus, the modulation of the inflammatory response by the consumption of bioactive food compounds, such as procyanidins, is a powerful tool to promote health. Procyanidin-mediated anti-inflammatory molecular mechanisms include, among others, the modulation of the arachidonic acid pathway, the inhibition of the gene transcription, protein expression and enzymatic activity of eicosanoid generating enzymes, the production and secretion of inflammatory mediators (such as cytokines and nitric oxide), the inhibition of mitogen-activated protein kinase (MAPK) pathway activation, and the modulation of the nuclear factor-κB (NF-κB) pathway. The NF-κB pathway can be regulated by procyanidins at several levels. During early events in NF-κB signaling, procyanidins modulate Iκκ activity, and the cytoplasmic retention of p65:p50 NF-κB by the inhibition of IκB phosphorylation and proteasomal degradation, while at late stages, they affect the nuclear translocation of pro/anti-inflammatory NF-κB homo/hetero dimers and their subsequent binding to the promoter regions of target genes. To identify and understand the value of procyanidins in the modulation of the inflammatory response, the molecular mechanisms underlying the anti-inflammatory activities and prohomeostatic effects of procyanidins need to be investigated further.
Collapse
Affiliation(s)
- Neus Martinez-Micaelo
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | | |
Collapse
|
45
|
Dai J, Wang G, Li W, Zhang L, Yang J, Zhao X, Chen X, Xu Y, Li K. High-throughput screening for anti-influenza A virus drugs and study of the mechanism of procyanidin on influenza A virus-induced autophagy. JOURNAL OF BIOMOLECULAR SCREENING 2012; 17:605-17. [PMID: 22286278 DOI: 10.1177/1087057111435236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this research, we have established a high-throughput screening (HTS) platform based on the influenza A virus (IAV) vRNA promoter. Using this HTS platform, we selected 35 medicinal plants out of 83 examples of traditional Chinese medicine and found that 7 examples had not been reported. After examining many previous reports, we found that Vaccinium angustifolium Ait., Vitis vinifera L, and Cinnamomum cassia Presl had a common active compound, procyanidin, and then determined the anti-IAV effect of procyanidin and explored its mechanism of action. With a plaque inhibition assay and a time-of-addition experiment, we found that procyanidin could inhibit the IAV replication at several stages of the life cycle. In the Western blot and EGFP-LC3 localization assays, we found that procyanidin could inhibit the accumulation of LC3II and the dot-like aggregation of EGFP-LC3. In the RT-PCR and Western blot assays, we found procyanidin could inhibit the expression of Atg7, Atg5, and Atg12. Finally, by the bimolecular fluorescence complementation-fluorescence resonance energy transfer and co-immunoprecipitation assays, we found that procyanidin could inhibit the formation of the Atg5-Atg12/Atg16 heterotrimer and the dissociation of the beclin1/bcl2 heterodimer. In conclusion, we have established an HTS platform and identified procyanidin as a novel and promising anti-IAV agent.
Collapse
Affiliation(s)
- Jianping Dai
- Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Additive, antagonistic, and synergistic effects of procyanidins and polyunsaturated fatty acids over inflammation in RAW 264.7 macrophages activated by lipopolysaccharide. Nutrition 2012; 28:447-57. [DOI: 10.1016/j.nut.2011.07.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/11/2011] [Accepted: 07/29/2011] [Indexed: 11/21/2022]
|
47
|
Da Silva M, Jaggers GK, Verstraeten SV, Erlejman AG, Fraga CG, Oteiza PI. Large procyanidins prevent bile-acid-induced oxidant production and membrane-initiated ERK1/2, p38, and Akt activation in Caco-2 cells. Free Radic Biol Med 2012; 52:151-9. [PMID: 22074817 DOI: 10.1016/j.freeradbiomed.2011.10.436] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 09/30/2011] [Accepted: 10/07/2011] [Indexed: 11/24/2022]
Abstract
Procyanidins are oligomers of flavanol subunits present in large amounts in fruits and vegetables. Their consumption is associated with health benefits against colonic inflammation and colorectal cancer (CRC). Large procyanidins (with more than three subunits) are not absorbed by intestinal epithelial cells but could exert biological actions through their interactions with the cell membrane. This study investigated the capacity of hexameric procyanidins (Hex) to prevent oncogenic events initiated by deoxycholic acid (DCA), a secondary bile acid linked to the promotion of CRC. Hex interacted with Caco-2 cell membranes preferentially at the water-lipid interface. Hex (2.5-20 μM) inhibited DCA-triggered increase in cellular calcium, NADPH oxidase activation, and oxidant production. DCA promoted the activation of protein kinase B (Akt), of the mitogen-activated protein kinases ERK1/2 and p38, and of the downstream transcription factor AP-1. This activation was not triggered by calcium or oxidant increases. Hex caused a dose-dependent inhibition of DCA-mediated activation of all these signals. DCA also triggered alterations in the cell monolayer morphology and apoptotic cell death, events that were delayed by Hex. The capacity of large procyanidins to interact with the cell membrane and prevent those cell membrane-associated events can in part explain the beneficial effects of procyanidins on CRC.
Collapse
Affiliation(s)
- Mathieu Da Silva
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
48
|
Fraga CG, Oteiza PI. Dietary flavonoids: Role of (-)-epicatechin and related procyanidins in cell signaling. Free Radic Biol Med 2011; 51:813-23. [PMID: 21699974 DOI: 10.1016/j.freeradbiomed.2011.06.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 05/07/2011] [Accepted: 06/02/2011] [Indexed: 02/07/2023]
Abstract
Plant polyphenols are among the most abundant phytochemicals present in human diets. Increasing evidence supports the health-promoting effects of certain polyphenols, including flavonoids. This review discusses current knowledge of the capacity of monomeric flavanols, i.e., (-)-epicatechin and (+)-catechin, and their derived procyanidins to modulate cell signaling and the associations of these actions with better health. Flavanols and procyanidins can regulate cell signaling through different mechanisms of action. Monomers and dimeric procyanidins can be transported inside cells and directly interact and modulate the activity of signaling proteins and/or prevent oxidation. Larger and nonabsorbable procyanidins can regulate cell signaling by interacting with cell membrane proteins and lipids, inducing changes in membrane biophysics, and by modulating oxidant production. All these actions would be limited by the bioavailability of flavanols at the target tissue. The protection from cardiac and vascular disease and from cancer that is associated with a high consumption of fruit and vegetables could be in part explained by the capacity of flavanols and related procyanidins to modulate proinflammatory and oncogenic signals.
Collapse
Affiliation(s)
- Cesar G Fraga
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina.
| | | |
Collapse
|
49
|
Terra X, Palozza P, Fernandez-Larrea J, Ardevol A, Blade C, Pujadas G, Salvado J, Arola L, Blay MT. Procyanidin dimer B1 and trimer C1 impair inflammatory response signalling in human monocytes. Free Radic Res 2011; 45:611-9. [PMID: 21405989 DOI: 10.3109/10715762.2011.564165] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The way specific procyanidins exert their anti-inflammatory effects is not fully understood. This study has investigated the capacity of different procyanidins to modulate lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) production in THP1 human monocytes and their effects on the redox regulated protein kinases activity: IkB kinase beta (IKKb) and the extracellular signal-regulated kinase (ERK). LPS-triggered increase of ROS was prevented by cell pre-incubation with procyanidins. LPS induced ERK1/2 activation through phosphorylation, which was inhibited by all the compounds tested, the most active being epigallocatechin (EG), followed by epigallocatechin gallate (EGCG) and C1. Procyanidins inhibited IKKb activity in vitro. C1 and procyanidin extract (PE) exerted the maximal IKKb inhibition, followed by EGCG and dimer B1. Catechin exerted a slight but significant IKKb inhibition, in contrast to epicatechin, which was ineffective. In conclusion, procyanidins reduce the LPS-induced production of ROS and they exert their anti-inflammatory effects by inhibiting ERK1/2 and IKKb activity.
Collapse
Affiliation(s)
- X Terra
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Rovira iVirgili University, 43007, Tarragona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schmidt CA, Murillo R, Heinzmann B, Laufer S, Wray V, Merfort I. Structural and conformational analysis of proanthocyanidins from Parapiptadenia rigida and their wound-healing properties. JOURNAL OF NATURAL PRODUCTS 2011; 74:1427-1436. [PMID: 21553897 DOI: 10.1021/np200158g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Structure elucidation and conformation analysis of four proanthocyanidins isolated from the bark of Parapiptadenia rigida were performed by two-dimensional NMR spectroscopy, HRESIMS, CD, and molecular mechanics (MM+) force field calculations. The known prodelphinidin, epigallocatechin-(4β→8)-epigallocatechin-3-O-gallate (1) was accompanied by the new epigallocatechin-(4β→8)-4'-O-methylgallocatechin (2), epicatechin-(4β→8)-4'-O-methylgallocatechin (3), and (4α→8)-bis-4'-O-methylgallocatechin (4). Compound 4 was previously published but the earlier structure must presumably be revised to 4'-O-methylgallocatechin-(4α→8)-4'-O-methylepigallocatechin. Conformational studies showed the compact rotamer with B and E rings in quasi-equatorial orientations as the preferred conformation for compounds 1-3, whereas 4 consists of two stable rotamers, each with a quasi-equatorial orientation of ring B and E, respectively. The isolated compounds were studied for their wound-healing effects in a scratch assay and showed promising results.
Collapse
Affiliation(s)
- Cleber A Schmidt
- Department of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|