1
|
Kueh MTW, Chong MC, Miras AD, le Roux CW. Oxyntomodulin physiology and its therapeutic development in obesity and associated complications. J Physiol 2024. [PMID: 39495024 DOI: 10.1113/jp287407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Incretins, such as glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP), have advanced the treatment landscape of obesity to a new pinnacle. As opposed to singular incretin effects, oxyntomodulin (OXM) activates glucagon receptors (GCGR) and glucagon-like peptide-1 receptors (GLP1R), demonstrating a more dynamic range of effects that are more likely to align with evolving 'health gains' goals in obesity care. Here, we will review the molecular insights from their inception to recent developments and challenges. This review will discuss the physiological actions of OXM, primarily appetite regulation, energy expenditure, and glucose homeostasis. Finally, we will shed light on the development of OXM-based therapies for obesity and associated complications, and outline important considerations for more translational efforts.
Collapse
Affiliation(s)
- Martin T W Kueh
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Royal College of Surgeons in Ireland and University College Dublin Malaysia Campus, Malaysia
| | | | | | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Ireland
| |
Collapse
|
2
|
Zhihong Y, Chen W, Qianqian Z, Lidan S, Qiang Z, Jing H, Wenxi W, Bhawal R. Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides 2023; 162:170955. [PMID: 36669563 DOI: 10.1016/j.peptides.2023.170955] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Oxyntomodulin (OXM) is an endogenous peptide hormone secreted from the intestines following nutrient ingestion that activates both glucagon-like peptide-1 (GLP-1) and glucagon receptors. OXM is known to exert various effects, including improvement in glucose tolerance, promotion of energy expenditure, acceleration of liver lipolysis, inhibition of food intake, delay of gastric emptying, neuroprotection, and pain relief. The antidiabetic and antiobesity properties have led to the development of biologically active and enzymatically stable OXM-based analogs with proposed therapeutic promise for metabolic diseases. Structural modification of OXM was ongoing to enhance its potency and prolong half-life, and several GLP-1/glucagon dual receptor agonist-based therapies are being explored in clinical trials for the treatment of type 2 diabetes mellitus and its complications. In the present article, we provide a brief overview of the physiology of OXM, focusing on its structural-activity relationship and ongoing clinical development.
Collapse
Affiliation(s)
- Yao Zhihong
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Wang Chen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Zhu Qianqian
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Sun Lidan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wang Wenxi
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Palani A, Nawrocki AR, Orvieto F, Bianchi E, Mandić E, Pessi A, Huang C, Deng Q, Toussaint N, Walsh E, Reddy V, Ashley E, He H, Mumick S, Hawes B, Marsh D, Erion M, Nargund R, Carrington PE. Discovery of MK-1462: GLP-1 and Glucagon Receptor Dual Agonist for the Treatment of Obesity and Diabetes. ACS Med Chem Lett 2022; 13:1248-1254. [PMID: 35978682 PMCID: PMC9377002 DOI: 10.1021/acsmedchemlett.2c00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Peptide-based analogues of the gut-derived incretin hormone, glucagon-like peptide 1 (GLP1), stimulate insulin secretion in a glucose-dependent manner. Currently marketed GLP1 receptor (GLP1R) agonists are safe and effective in the management of Type 2 diabetes but often offer only modest weight loss. This has prompted the search for safe and effective alternatives to enhance the weight loss component of these treatments. We have demonstrated that concomitant activation GLP1R and the glucagon receptor (GCGR) can improve glucose metabolism and provide superior weight loss when compared to selective GLP1R agonism in preclinical species. This paper will highlight chemistry structure-activity relationship optimization and summarize in vivo efficacy studies toward the discovery of a once daily balanced dual agonist 12 (MK-1462), which was advanced into clinical trials.
Collapse
Affiliation(s)
- Anandan Palani
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Andrea R. Nawrocki
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Federica Orvieto
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM SpA, Via Pontina, Km 30.600, 00071 Roma, Italy
| | - Elisabetta Bianchi
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM SpA, Via Pontina, Km 30.600, 00071 Roma, Italy
| | - Emanuela Mandić
- Peptide
Chemistry Unit, Peptides and Small Molecules R&D, IRBM SpA, Via Pontina, Km 30.600, 00071 Roma, Italy
| | | | - Chunhui Huang
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Qiaolin Deng
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Nathalie Toussaint
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Erika Walsh
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Vijay Reddy
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Eric Ashley
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Huaibing He
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Sheena Mumick
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Brian Hawes
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Donald Marsh
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Mark Erion
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Ravi Nargund
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Paul E. Carrington
- Merck
& Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| |
Collapse
|
4
|
Simonsen L, Lau J, Kruse T, Guo T, McGuire J, Jeppesen JF, Niss K, Sauerberg P, Raun K, Dornonville de la Cour C. Preclinical evaluation of a protracted GLP-1/glucagon receptor co-agonist: Translational difficulties and pitfalls. PLoS One 2022; 17:e0264974. [PMID: 35245328 PMCID: PMC8896685 DOI: 10.1371/journal.pone.0264974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
During recent years combining GLP-1 and glucagon receptor agonism with the purpose of achieving superior weight loss and metabolic control compared to GLP-1 alone has received much attention. The superior efficacy has been shown by several in preclinical models but has been difficult to reproduce in humans. In this paper, we present the pre-clinical evaluation of NN1177, a long-acting GLP-1/glucagon receptor co-agonist previously tested in clinical trials. To further investigate the contribution from the respective receptors, two other co-agonists (NN1151, NN1359) with different GLP-1-to-glucagon receptor ratios were evaluated in parallel. In the process of characterizing NN1177, species differences and pitfalls in traditional pre-clinical evaluation methods were identified, highlighting the translational challenges in predicting the optimal receptor balance in humans. In diet-induced obese (DIO) mice, NN1177 induced a dose-dependent body weight loss, primarily due to loss of fat mass, and improvement in glucose tolerance. In DIO rats, NN1177 induced a comparable total body weight reduction, which was in contrast mainly caused by loss of lean mass, and glucose tolerance was impaired. Furthermore, despite long half-lives of the three co-agonists, glucose control during steady state was seen to depend on compound exposure at time of evaluation. When evaluated at higher compound exposure, glucose tolerance was similarly improved for all three co-agonists, independent of receptor balance. However, at lower compound exposure, glucose tolerance was gradually impaired with higher glucagon receptor preference. In addition, glucose tolerance was found to depend on study duration where the effect of glucagon on glucose control became more evident with time. To conclude, the pharmacodynamic effects at a given GLP-1-to-glucagon ratio differs between species, depends on compound exposure and study length, complicating the identification of an optimally balanced clinical candidate. The present findings could partly explain the low number of clinical successes for this dual agonism.
Collapse
Affiliation(s)
- Lotte Simonsen
- Global Obesity & Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | - Jesper Lau
- Research Chemistry, Novo Nordisk A/S, Måløv, Denmark
| | - Thomas Kruse
- Research Chemistry, Novo Nordisk A/S, Måløv, Denmark
| | - Tingqing Guo
- Discovery Biology, Novo Nordisk Research Centre, Beijing, China
| | - Jim McGuire
- Incretin Biology, Novo Nordisk A/S, Måløv, Denmark
| | | | - Kristoffer Niss
- Bioinformatics & Data Mining, Novo Nordisk A/S, Måløv, Denmark
| | - Per Sauerberg
- Project and Alliance Management, Novo Nordisk A/S, Måløv, Denmark
| | - Kirsten Raun
- Global Obesity & Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark
| | | |
Collapse
|
5
|
Hope DCD, Vincent ML, Tan TMM. Striking the Balance: GLP-1/Glucagon Co-Agonism as a Treatment Strategy for Obesity. Front Endocrinol (Lausanne) 2021; 12:735019. [PMID: 34566894 PMCID: PMC8457634 DOI: 10.3389/fendo.2021.735019] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity and Type 2 diabetes represent global health challenges, and there is an unmet need for long-lasting and effective pharmacotherapies. Although long-acting glucagon-like peptide-1 (GLP-1) analogues are now in routine use for diabetes and are now being utilised for obesity per se, the need for ever better treatments has driven the development of co-agonists, with the theoretical advantages of improved efficacy by targeting multiple pathways and reduced adverse effects. In this review, we highlight the past and present progress in our understanding and development of treatments based on GLP-1/glucagon co-agonism. We also reflect on the divergent effects of varying the GLP-1:glucagon activity and ratio in the context of pre-clinical and human clinical trial findings. In particular, the multiple metabolic actions of glucagon highlight the importance of understanding the contributions of individual hormone action to inform the safe, effective and tailored use of GLP-1/glucagon co-agonists to target weight loss and metabolic disease in the future.
Collapse
Affiliation(s)
| | | | - Tricia M. M. Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-Derived Peptides as Therapeutics. Front Endocrinol (Lausanne) 2021; 12:689678. [PMID: 34093449 PMCID: PMC8171296 DOI: 10.3389/fendo.2021.689678] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Initially discovered as an impurity in insulin preparations, our understanding of the hyperglycaemic hormone glucagon has evolved markedly over subsequent decades. With description of the precursor proglucagon, we now appreciate that glucagon was just the first proglucagon-derived peptide (PGDP) to be characterised. Other bioactive members of the PGDP family include glucagon-like peptides -1 and -2 (GLP-1 and GLP-2), oxyntomodulin (OXM), glicentin and glicentin-related pancreatic peptide (GRPP), with these being produced via tissue-specific processing of proglucagon by the prohormone convertase (PC) enzymes, PC1/3 and PC2. PGDP peptides exert unique physiological effects that influence metabolism and energy regulation, which has witnessed several of them exploited in the form of long-acting, enzymatically resistant analogues for treatment of various pathologies. As such, intramuscular glucagon is well established in rescue of hypoglycaemia, while GLP-2 analogues are indicated in the management of short bowel syndrome. Furthermore, since approval of the first GLP-1 mimetic for the management of Type 2 diabetes mellitus (T2DM) in 2005, GLP-1 therapeutics have become a mainstay of T2DM management due to multifaceted and sustainable improvements in glycaemia, appetite control and weight loss. More recently, longer-acting PGDP therapeutics have been developed, while newfound benefits on cardioprotection, bone health, renal and liver function and cognition have been uncovered. In the present article, we discuss the physiology of PGDP peptides and their therapeutic applications, with a focus on successful design of analogues including dual and triple PGDP receptor agonists currently in clinical development.
Collapse
Affiliation(s)
| | | | | | - Victor A. Gault
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | | |
Collapse
|
7
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Guimarães M, Pereira SS, Monteiro MP. From Entero-Endocrine Cell Biology to Surgical Interventional Therapies for Type 2 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:273-297. [PMID: 32016913 DOI: 10.1007/5584_2020_480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The physiological roles of the enteroendocrine system in relation to energy and glucose homeostasis regulation have been extensively studied in the past few decades. Considerable advances were made that enabled to disclose the potential use of gastro-intestinal (GI) hormones to target obesity and type 2 diabetes (T2D). The recognition of the clinical relevance of these discoveries has led the pharmaceutical industry to design several hormone analogues to either to mitigate physiological defects or target pharmacologically T2D.Amongst several advances, a major breakthrough in the field was the unexpected observation that enteroendocrine system modulation to T2D target could be achieved by surgically induced anatomical rearrangement of the GI tract. These findings resulted from the widespread use of bariatric surgery procedures for obesity treatment, which despite initially devised to induce weight loss by limiting the systemic availably of nutrients, are now well recognized to influence GI hormone dynamics in a manner that is highly dependent on the type of anatomical rearrangement produced.This chapter will focus on enteroendocrine system related mechanisms leading to improved glycemic control in T2D after bariatric surgery interventions.
Collapse
Affiliation(s)
- Marta Guimarães
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Department of General Surgery, Centro Hospitalar de Entre o Douro e Vouga, Santa Maria da Feira, Portugal
| | - Sofia S Pereira
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal. .,Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Design of novel Xenopus GLP-1-based dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists. Eur J Med Chem 2020; 212:113118. [PMID: 33422984 DOI: 10.1016/j.ejmech.2020.113118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Dual activation of the glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP-1R) has the potential to lead to an effective therapy for the treatment of diabetes and obesity. Here, we report the discovery of a series of peptides with dual activity on GLP-1R and GCGR that were discovered by rational design. Structural elements of oxyntomodulin (OXM), glucagon or exendin-4 were engineered into the selective GLP-1R agonist Xenopus GLP-1 (xGLP-1) on the basis of sequence analysis, resulting in hybrid peptides with potent dual activity at GLP-1R and GCGR. Further modifications with fatty acid resulted in a novel metabolically stable peptide (xGLP/GCG-15) with enhanced and balanced GLP-1R and GCGR activations. This lead peptide was further explored pharmacologically in both db/db and diet-induced obesity (DIO) rodent models. Chronic administration of xGLP/GCG-15 significantly induced hypoglycemic effects and body weight loss, improved glucose tolerance, and normalized lipid metabolism, adiposity, and liver steatosis in relevant rodent models. These preclinical studies suggest that xGLP/GCG-15 has potential for development as a novel anti-obesity and/or anti-diabetic candidate. Considering the equal effects of xGLP/GCG-15 and the clinical candidate MEDI0382 on reverse hepatic steatosis, it may also be explored as a new therapy for nonalcoholic steatohepatitis (NASH) in the future.
Collapse
|
10
|
Yang PY, Zou H, Amso Z, Lee C, Huang D, Woods AK, Nguyen-Tran VTB, Schultz PG, Shen W. New Generation Oxyntomodulin Peptides with Improved Pharmacokinetic Profiles Exhibit Weight Reducing and Anti-Steatotic Properties in Mice. Bioconjug Chem 2020; 31:1167-1176. [DOI: 10.1021/acs.bioconjchem.0c00093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Peng-Yu Yang
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Huafei Zou
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zaid Amso
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Candy Lee
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - David Huang
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ashley K. Woods
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Peter G. Schultz
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Weijun Shen
- Calibr at The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Wang L, Zhao J, Wang C, Hou X, Ning N, Sun C, Guo S, Yuan Y, Li L, Hölscher C, Wang X. D-Ser2-oxyntomodulin ameliorated Aβ31-35-induced circadian rhythm disorder in mice. CNS Neurosci Ther 2020; 26:343-354. [PMID: 31411808 PMCID: PMC7053239 DOI: 10.1111/cns.13211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION The occurrence of circadian rhythm disorder in patients with Alzheimer's disease (AD) is closely related to the abnormal deposition of amyloid-β (Aβ), and d-Ser2-oxyntomodulin (Oxy) is a protease-resistant oxyntomodulin analogue that has been shown to exert neuroprotective effects. AIMS This study aimed to explore whether Oxy, a new GLP-1R/GCGR dual receptor agonist, can improve the Aβ-induced disrupted circadian rhythm and the role of GLP-1R. METHODS A mouse wheel-running experiment was performed to explore the circadian rhythm, and western blotting and real-time PCR were performed to assess the expression of the circadian clock genes Bmal1 and Per2. Furthermore, a lentivirus encoding an shGLP-1R-GFP-PURO was used to interfere with GLP-1R gene expression and so explore the role of GLP-1R. RESULTS The present study has confirmed that Oxy could restore Aβ31-35-induced circadian rhythm disorders and improve the abnormal expression of Bmal1 and Per2. After interfering the GLP-1R gene, we found that Oxy could not improve the Aβ31-35-induced circadian rhythm disorder and abnormal expression of clock genes. CONCLUSION This study demonstrated that Oxy could improve Aβ31-35-induced circadian rhythm disorders, and GLP-1R plays a critical role. This study thus describes a novel target that may be potentially used in the treatment of AD.
Collapse
Affiliation(s)
- Li Wang
- Department of PathologyShanxi Medical UniversityTaiyuanChina
| | - Jin Zhao
- Department of PathologyShanxi Medical UniversityTaiyuanChina
| | - Chang‐Tu Wang
- Department of PathologyShanxi Medical UniversityTaiyuanChina
- Laboratory of ChronobiologyShanxi Medical UniversityTaiyuanChina
| | - Xiao‐Hong Hou
- Department of PathologyShanxi Medical UniversityTaiyuanChina
| | - Na Ning
- Department of PathologyShanxi Medical UniversityTaiyuanChina
| | - Cong Sun
- Department of PathologyShanxi Medical UniversityTaiyuanChina
| | - Shuai Guo
- Department of PathologyShanxi Medical UniversityTaiyuanChina
| | - Yuan Yuan
- Laboratory of Morphology, Department of Basic Medical SciencesShanxi Medical UniversityTaiyuanChina
| | - Lin Li
- Key Laboratory of Cellular PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Christian Hölscher
- Second HospitalShanxi Medical UniversityTaiyuanChina
- Biomedical and Life Science, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Xiao‐Hui Wang
- Department of PathologyShanxi Medical UniversityTaiyuanChina
- Laboratory of ChronobiologyShanxi Medical UniversityTaiyuanChina
- Laboratory of Morphology, Department of Basic Medical SciencesShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
12
|
Wang ZJ, Han YF, Zhao F, Yang GZ, Yuan L, Cai HY, Yang JT, Holscher C, Qi JS, Wu MN. A dual GLP-1 and Gcg receptor agonist rescues spatial memory and synaptic plasticity in APP/PS1 transgenic mice. Horm Behav 2020; 118:104640. [PMID: 31765661 DOI: 10.1016/j.yhbeh.2019.104640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that severely affects the health and lifespan of the elderly worldwide. Recently, the correlation between AD and type 2 diabetes mellitus (T2DM) has received intensive attention, and a promising new anti-AD strategy is the use of anti-diabetic drugs. Oxyntomodulin (Oxm) is a peptide hormone and growth factor that acts on neurons in the hypothalamus. OXM activates glucagon-like peptide 1 (GLP-1) and glucagon (Gcg) receptors, facilitates insulin signaling and has neuroprotective effects against Aβ1-42-induced cytotoxicity in primary hippocampal neurons. Here, we tested the effects of the protease-resistant analogue (D-Ser2)Oxm on spatial memory and synaptic plasticity and the underlying molecular mechanisms in the APP/PS1 transgenic mouse model of AD. The results showed that (D-Ser2)Oxm not only alleviated the impairments of working memory and long-term spatial memory, but also reduced the number of Aβ plaques in the hippocampus, and reversed the suppression of hippocampal synaptic long-term potentiation (LTP). Moreover, (D-Ser2)Oxm administration significantly increased p-PI3K/p-AKT1 expression and decreased p-GSK3β levels in the hippocampus. These results are the first to show an in vivo neuroprotective role of (D-Ser2)Oxm in APP/PS1 mice, and this role involves the improvement of synaptic plasticity, clearance of Aβ and normalization of PI3K/AKT/GSK3β cell signaling in the hippocampus. This study suggests that (D-Ser2)Oxm holds promise for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Yu-Fei Han
- Guangzhou Kingmed Diagnostics, Guangzhou, PR China
| | - Fang Zhao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Guang-Zhao Yang
- Department of Cardiovascular Medicine, The First Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Li Yuan
- Department of Physiology, Changzhi Medical College, Changzhi, PR China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, PR China
| | - Jun-Ting Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Christian Holscher
- Neuroscience research group, Henan university of Chinese medicine, Zhengzhou, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
13
|
Zhao L, Wang B, Wang L, Zhao X, Chen Z, Sun L. Design, screening and biological evaluation of novel fatty acid chain-modified oxyntomodulin-based derivatives with prolonged glucose-lowering ability and potent anti-obesity effects. Org Biomol Chem 2019; 17:7760-7771. [PMID: 31389463 DOI: 10.1039/c9ob01132c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schematic diagram of the discovery, design, screening and evaluation of a fully novel OXM derivative.
Collapse
Affiliation(s)
- Lei Zhao
- North China University of Science and Technology Affiliated Hospital
- Tangshan
- P.R. China
| | - Baohua Wang
- North China University of Science and Technology Affiliated Hospital
- Tangshan
- P.R. China
| | - Limin Wang
- North China University of Science and Technology Affiliated Hospital
- Tangshan
- P.R. China
| | - Xie Zhao
- Peking University
- College of Pharmaceutical Sciences
- Beijing
- P.R. China
| | - Zhe Chen
- North China University of Science and Technology
- Tangshan
- P.R. China
| | - Lixia Sun
- North China University of Science and Technology Affiliated Hospital
- Tangshan
- P.R. China
| |
Collapse
|
14
|
Elvert R, Herling AW, Bossart M, Weiss T, Zhang B, Wenski P, Wandschneider J, Kleutsch S, Butty U, Kannt A, Wagner M, Haack T, Evers A, Dudda A, Lorenz M, Keil S, Larsen PJ. Running on mixed fuel-dual agonistic approach of GLP-1 and GCG receptors leads to beneficial impact on body weight and blood glucose control: A comparative study between mice and non-human primates. Diabetes Obes Metab 2018; 20:1836-1851. [PMID: 29938884 PMCID: PMC6055720 DOI: 10.1111/dom.13212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/11/2017] [Accepted: 12/25/2017] [Indexed: 12/17/2022]
Abstract
AIM We performed acute and chronic studies in healthy and diet-induced obese animals using mouse-specific or monkey-specific dual GLP-1R/GCGR agonists to investigate their effects on food intake, body weight, blood glucose control and insulin secretion. The selective GLP-1R agonist liraglutide was used as comparator. METHODS The mouse-specific dual agonist and liraglutide were tested in lean wild type, GLP-1R knockout and diet-induced obese mice at different doses. A chronic study was performed in DIO mice to investigate the effect on body weight, food consumption and total energy expenditure (TEE) in obese and diabetic monkeys with a focus on body weight and energy intake. RESULTS The mouse-specific dual agonist and liraglutide similarly affected glycaemic control. A higher loss in body weight was measured in dual agonist-treated obese mice. The dual agonist significantly enhanced plasma glucose excursion in overnight fed GLP-1R-/- mice, probably reflecting a potent GCGR agonist activity. It increased TEE and enhanced fat and carbohydrate oxidation, while liraglutide produced no effect on TEE. In obese and diabetic monkeys, treatment with the monkey-specific dual agonist reduced total energy intake to 60%-70% of baseline TEI during chronic treatment. A decrease in body weight and significant improvement in glucose tolerance was observed. CONCLUSIONS In DIO mice and non-human primates, dual agonists elicited robust glycaemic control, similar to the marketed GLP-1R agonist, while eliciting greater effects on body weight. Results from DIO mice suggest that the increase in TEE is caused not only by increased fat oxidation but also by an increase in carbohydrate oxidation.
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Appetite Depressants/administration & dosage
- Appetite Depressants/adverse effects
- Appetite Depressants/therapeutic use
- Body Weight/drug effects
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Dose-Response Relationship, Drug
- Drug Therapy, Combination/adverse effects
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Female
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/genetics
- Glucagon-Like Peptide-1 Receptor/metabolism
- Hyperglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/therapeutic use
- Insulin Secretion/drug effects
- Macaca fascicularis
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/blood
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Random Allocation
- Receptors, Glucagon/agonists
- Receptors, Glucagon/metabolism
Collapse
Affiliation(s)
- Ralf Elvert
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | | | | | - Tilo Weiss
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | | | | | | | | | - Uwe Butty
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
| | - Aimo Kannt
- Sanofi‐Aventis Deutschland GmbHFrankfurtGermany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Globally, 13% of the world's adult population is obese, and more than 400 million people suffer from diabetes. These conditions are both associated with significant morbidity, mortality and financial cost. Therefore, finding new pharmacological treatments is an imperative. Relative hyperglucagonaemia is seen in all types of diabetes, and has been implicated in its pathogenesis. Consequently, clinical trials are underway using drugs which block glucagon activity to treat type 2 diabetes. Conversely, exogenous glucagon can increase energy expenditure. Therefore, researchers are designing peptides that combine activation of the glucagon receptor with further incretin properties, which will treat obesity while mitigating the hyperglycaemic effects of glucagon. This review will discuss these conflicting physiological properties of glucagon, and the attempts to harness these effects pharmacologically.
Collapse
Affiliation(s)
- R V Scott
- Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, London, W12 0NN, United Kingdom.
| | - S R Bloom
- Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, London, W12 0NN, United Kingdom.
| |
Collapse
|
16
|
Polypharmacy through Phage Display: Selection of Glucagon and GLP-1 Receptor Co-agonists from a Phage-Displayed Peptide Library. Sci Rep 2018; 8:585. [PMID: 29330364 PMCID: PMC5766609 DOI: 10.1038/s41598-017-18494-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
A promising emerging area for the treatment of obesity and diabetes is combinatorial hormone therapy, where single-molecule peptides are rationally designed to integrate the complementary actions of multiple endogenous metabolically-related hormones. We describe here a proof-of-concept study on developing unimolecular polypharmacy agents through the use of selection methods based on phage-displayed peptide libraries (PDL). Co-agonists of the glucagon (GCG) and GLP-1 receptors were identified from a PDL sequentially selected on GCGR- and GLP1R-overexpressing cells. After two or three rounds of selection, 7.5% of randomly picked clones were GLP1R/GCGR co-agonists, and a further 1.53% were agonists of a single receptor. The phages were sequenced and 35 corresponding peptides were synthesized. 18 peptides were potent co-agonists, 8 of whom showed EC50 ≤ 30 pM on each receptor, comparable to the best rationally designed co-agonists reported in the literature. Based on literature examples, two sequences were engineered to stabilize against dipeptidyl peptidase IV cleavage and prolong the in vivo half-life: the engineered peptides were comparably potent to the parent peptides on both receptors, highlighting the potential use of phage-derived peptides as therapeutic agents. The strategy described here appears of general value for the discovery of optimized polypharmacology paradigms across several metabolically-related hormones.
Collapse
|
17
|
Li Y, Li L, Hölscher C. Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases. Rev Neurosci 2018; 27:689-711. [PMID: 27276528 DOI: 10.1515/revneuro-2016-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/02/2016] [Indexed: 12/13/2022]
Abstract
Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer's disease (AD) and Parkinson's disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.
Collapse
|
18
|
Sánchez-Garrido MA, Brandt SJ, Clemmensen C, Müller TD, DiMarchi RD, Tschöp MH. GLP-1/glucagon receptor co-agonism for treatment of obesity. Diabetologia 2017; 60:1851-1861. [PMID: 28733905 PMCID: PMC6448809 DOI: 10.1007/s00125-017-4354-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/28/2017] [Indexed: 12/25/2022]
Abstract
Over a relatively short period, obesity and type 2 diabetes have come to represent a large medical and economic burden to global societies. The epidemic rise in the prevalence of obesity has metabolic consequences and is paralleled by an increased occurrence of other diseases, such as diabetes, cancer and cardiovascular complications. Together, obesity and type 2 diabetes constitute one of the more preventable causes of premature death and the identification of novel, safe and effective anti-obesity drugs is of utmost importance. Pharmacological attempts to treat obesity have had limited success, with notable adverse effects, rendering bariatric surgery as the only current therapy for substantially improving body weight. Novel unimolecular, multifunctional peptides have emerged as one of the most promising medicinal approaches to enhance metabolic efficacy and restore normal body weight. In this review, we will mainly focus on the discovery and translational relevance of dual agonists that pharmacologically function at the receptors for glucagon and glucagon-like peptide-1. Such peptides have advanced to clinical evaluation and inspired the pursuit of multiple related approaches to achieving polypharmacy within single molecules.
Collapse
Affiliation(s)
- Miguel A Sánchez-Garrido
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748, Garching, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sara J Brandt
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748, Garching, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748, Garching, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748, Garching, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN, 47405, USA.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Business Campus Garching, Parkring 13, 85748, Garching, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
19
|
Evers A, Haack T, Lorenz M, Bossart M, Elvert R, Henkel B, Stengelin S, Kurz M, Glien M, Dudda A, Lorenz K, Kadereit D, Wagner M. Design of Novel Exendin-Based Dual Glucagon-like Peptide 1 (GLP-1)/Glucagon Receptor Agonists. J Med Chem 2017; 60:4293-4303. [DOI: 10.1021/acs.jmedchem.7b00174] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Evers
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Torsten Haack
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Martin Lorenz
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Martin Bossart
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Ralf Elvert
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Bernd Henkel
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Siegfried Stengelin
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Michael Kurz
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Maike Glien
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Angela Dudda
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Katrin Lorenz
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Dieter Kadereit
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Michael Wagner
- R&D, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Valsamakis G, Konstantakou P, Mastorakos G. New Targets for Drug Treatment of Obesity. Annu Rev Pharmacol Toxicol 2017; 57:585-605. [DOI: 10.1146/annurev-pharmtox-010716-104735] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Georgios Valsamakis
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio University Hospital, Athens Medical School, Athens 11528, Greece; , ,
| | - Panagiota Konstantakou
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio University Hospital, Athens Medical School, Athens 11528, Greece; , ,
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieio University Hospital, Athens Medical School, Athens 11528, Greece; , ,
| |
Collapse
|
21
|
O'Harte FPM, Ng MT, Lynch AM, Conlon JM, Flatt PR. Dogfish glucagon analogues counter hyperglycaemia and enhance both insulin secretion and action in diet-induced obese diabetic mice. Diabetes Obes Metab 2016; 18:1013-24. [PMID: 27357054 DOI: 10.1111/dom.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
AIMS To investigate the antidiabetic actions of three dogfish glucagon peptide analogues [known glucagon-like peptide-1 and glucagon receptor co-agonists] after chronic administration in diet-induced high-fat-diet-fed diabetic mice. MATERIALS AND METHODS National Institutes of Health Swiss mice were pre-conditioned to a high-fat diet (45% fat) for 100 days, and control mice were fed a normal diet (10% fat). Normal diet control and high-fat-fed control mice received twice-daily intraperitoneal (i.p.) saline injections, while the high-fat-fed treatment groups (n = 8) received twice-daily injections of exendin-4(1-39), [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39) or [S2a]dogfish glucagon-Lys(30) -γ-glutamyl-PAL (25 nmol/kg body weight) for 51 days. RESULTS After dogfish glucagon analogue treatment, there was a rapid and sustained decrease in non-fasting blood glucose and an associated insulinotropic effect (analysis of variance, p < .05 to <.001) compared with saline-treated high-fat-fed controls. All peptide treatments significantly improved i.p. and oral glucose tolerance with concomitant increased insulin secretion compared with saline-treated high-fat-fed controls (p <.05 to <.001). After chronic treatment, no receptor desensitization was observed but insulin sensitivity was enhanced for all peptide-treated groups (p < .01 to <.001) except [S2a]dogfish glucagon. Both exendin-4 and [S2a]dogfish glucagon exendin-4(31-39) significantly reduced plasma triglyceride concentrations compared with those found in lean controls (p = .0105 and p = .0048, respectively). Pancreatic insulin content was not affected by peptide treatments but [S2a]dogfish glucagon and [S2a]dogfish glucagon exendin-4(31-39) decreased pancreatic glucagon by 28%-34% (p = .0221 and p = .0075, respectively). The percentage of β-cell area within islets was increased by exendin-4 and peptide analogue treatment groups compared with high-fat-fed controls and the β-cell area decreased (p < .05 to <.01). CONCLUSIONS Overall, dogfish glucagon co-agonist analogues had several beneficial metabolic effects, showing therapeutic potential for type 2 diabetes.
Collapse
Affiliation(s)
- F P M O'Harte
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK.
| | - M T Ng
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - A M Lynch
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - J M Conlon
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - P R Flatt
- School of Biomedical Sciences, Saad Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| |
Collapse
|
22
|
Green AD, Vasu S, Moffett RC, Flatt PR. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins. Biochimie 2016; 125:119-25. [DOI: 10.1016/j.biochi.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
|
23
|
Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA) 1. Surg Obes Relat Dis 2016; 12:468-495. [DOI: 10.1016/j.soard.2016.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
|
24
|
Muppidi A, Zou H, Yang PY, Chao E, Sherwood L, Nunez V, Woods A, Schultz PG, Lin Q, Shen W. Design of Potent and Proteolytically Stable Oxyntomodulin Analogs. ACS Chem Biol 2016; 11:324-8. [PMID: 26727558 PMCID: PMC4861236 DOI: 10.1021/acschembio.5b00787] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Incretin-based peptides are effective therapeutics for treating type 2 diabetes mellitus (T2DM). Oxyntomodulin (OXM), a dual agonist of GLP-1R and GCGR, has shown superior weight loss and glucose lowering effects, compared to single GLP-1R agonists. To overcome the short half-life and rapid renal clearance of OXM, which limit its therapeutic potential, both lipid and PEG modified OXM analogs have been reported. However, these approaches often result in reduced potency or PEG-associated toxicity. Herein, we report a new class of cross-linked OXM analogs that show increased plasma stability and higher potency in activating both GLP-1R and GCGR. Moreover, the extended in vivo half-life results in superior antihyperglycemic activity in mice compared to the wild-type OXM.
Collapse
Affiliation(s)
- Avinash Muppidi
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Huafei Zou
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Yu Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United states
| | - Elizabeth Chao
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lance Sherwood
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vanessa Nunez
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ashley Woods
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter G Schultz
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United states
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Weijun Shen
- California Institute for Biomedical Research (Calibr), 11119 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
25
|
Irwin N, Flatt PR. New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World J Diabetes 2015; 6:1285-1295. [PMID: 26557956 PMCID: PMC4635139 DOI: 10.4239/wjd.v6.i15.1285] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
The applicability of stable gut hormones for the treatment of obesity-related diabetes is now undisputable. This is based predominantly on prominent and sustained glucose-lowering actions, plus evidence that these peptides can augment insulin secretion and pancreatic islet function over time. This review highlights the therapeutic potential of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), oxyntomodulin (OXM) and cholecystokinin (CCK) for obesity-related diabetes. Stable GLP-1 mimetics have already been successfully adopted into the diabetic clinic, whereas GIP, CCK and OXM molecules offer promise as potential new classes of antidiabetic drugs. Moreover, recent studies have shown improved therapeutic effects following simultaneous modulation of multiple receptor signalling pathways by combination therapy or use of dual/triple agonist peptides. However, timing and composition of injections may be important to permit interludes of beta-cell rest. The review also addresses the possible perils of incretin based drugs for treatment of prediabetes. Finally, the unanticipated utility of stable gut peptides as effective treatments for complications of diabetes, bone disorders, cognitive impairment and cardiovascular dysfunction is considered.
Collapse
|
26
|
Price SL, Minnion JS, Bloom SR. Investigating the Glucagon Receptor and Glucagon-Like Peptide 1 Receptor Activity of Oxyntomodulin-Like Analogues in Male Wistar Rats. Curr Ther Res Clin Exp 2015; 77:111-5. [PMID: 26843896 PMCID: PMC4701715 DOI: 10.1016/j.curtheres.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2015] [Indexed: 11/11/2022] Open
Abstract
Aims To investigate the effect of Glu-3 OXM-like analogues on food intake and bodyweight in male rats. Background Oxyntomodulin (OXM) is a natural agonist at both the glucagon receptor (GCGr) and the glucagon-like peptide 1 receptor (GLP-1r), and peripheral administration reduces food intake and increases energy expenditure in rodents and humans. Substituting the native glutamine (Gln) at amino acid position 3 of OXM for glutamate (Glu) has previously been shown to diminish GCGr activity without affecting GLP-1r activity. The effects of Glu-3 OXM analogues have not been investigated in rats. Methods The effect of 2 Glu-3-substituted OXM-like analogues (eg, OXM14E3 and OXM15E3) on food intake and body weight was investigated in male Wistar rats during 6 days of daily subcutaneous (SC) administration. The effects of Glu-3 substitution on analogue binding and activity at the rat GCGr and rat GLP-1 receptor were investigated in vitro using Chinese hamster ovary or Chinese hamster lung cells. Results We report the novel finding that 2 5-nmol/kg Glu-3 OXM-like analogues (OXM14E3 and OXM15E3) significantly increased rat body weight by up to 4% compared with the equivalent non-Glu-3 analogues (OXM14 and OXM15), without affecting food intake. The effect of OXM15E3 on body weight was dose–dependent. Glu-3 analogues, including Glu-3 OXM, decreased glucagon-mediated cyclic adenosine monophosphate accumulation in Chinese hamster ovary cells expressing the rat GCGr, suggesting they may be acting as antagonists. Conclusions The results indicate Glu-3 OXM-like analogues might not be suitable tools to investigate the mechanism of OXM analogue action in a rat model because they significantly increase body weight independent of food intake. Glu-3 OXM analogues are partial agonists at the rat GCGr and may also act as antagonists, possibly resulting in the observed increase in body weight.
Collapse
Affiliation(s)
- Samantha L Price
- Department of Investigative Medicine, Imperial College London, London, United Kingdom
| | - James S Minnion
- Department of Investigative Medicine, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Department of Investigative Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Price SL, Minnion JS, Bloom SR. Increased food intake with oxyntomodulin analogues. Peptides 2015; 73:95-100. [PMID: 26431789 PMCID: PMC4645461 DOI: 10.1016/j.peptides.2015.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/07/2015] [Accepted: 09/14/2015] [Indexed: 01/02/2023]
Abstract
Oxyntomodulin analogues offer a novel treatment for obesity. However during analogue screening in a rat model increased food intake was consistently observed. To further investigate this finding, a series of representative analogues (OXM14 and OXM15) and their Glu-3 equivalents (OXM14E3 and OXM15E3) were administered to rats for 7 days and food intake and bodyweight measurements taken. To investigate the role of glucagon receptor activation glutamate (Glu/E) was substituted at amino acid position 3. GLP-1 and glucagon receptor efficacy of the oxyntomodulin analogues and their Glu-3 counterparts were measured at the rat receptors in vitro. Doses of 25 nmol/kg of OXM14 and OXM15 increased food intake by up to 20%. Bodyweight was not significantly increased. Food intake was not increased with the Glu-3 peptides, indicating that a glucagon receptor mechanism may be responsible for the increase in food intake.
Collapse
Affiliation(s)
- Samantha L Price
- Department of Investigative Medicine, Imperial College, London W12 0NN, United Kingdom
| | - James S Minnion
- Department of Investigative Medicine, Imperial College, London W12 0NN, United Kingdom
| | - Stephen R Bloom
- Department of Investigative Medicine, Imperial College, London W12 0NN, United Kingdom.
| |
Collapse
|
28
|
Liu W, Li Y, Jalewa J, Saunders-Wood T, Li L, Hölscher C. Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson's disease. Eur J Pharmacol 2015; 765:284-90. [DOI: 10.1016/j.ejphar.2015.08.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/26/2022]
|
29
|
Pathak NM, Pathak V, Lynch AM, Irwin N, Gault VA, Flatt PR. Stable oxyntomodulin analogues exert positive effects on hippocampal neurogenesis and gene expression as well as improving glucose homeostasis in high fat fed mice. Mol Cell Endocrinol 2015; 412:95-103. [PMID: 26048772 DOI: 10.1016/j.mce.2015.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023]
Abstract
The weight-lowering and gluco-regulatory actions of oxyntomodulin (Oxm) have been well-documented however potential actions of this peptide in brain regions associated with learning and memory have not yet been evaluated. The present study examined the long-term actions of a stable acylated analogue of Oxm, (dS(2))Oxm(K-γ-glu-Pal), together with parent (dS(2))Oxm peptide, on hippocampal neurogenesis, gene expression and metabolic control in high fat (HF) mice. Groups of HF mice (n = 12) received twice-daily injections of Oxm analogues (both at 25 nmol/kg body weight) or saline vehicle (0.9% wt/vol) over 28 days. Hippocampal gene expression and histology were assessed together with evaluation of energy intake, body weight, non-fasting glucose and insulin, glucose tolerance, insulin sensitivity and lipids. Oxm analogues significantly reduced body weight, improved glucose tolerance, glucose-mediated insulin secretion, insulin sensitivity, islet architecture and lipid profile. Analysis of brain histology revealed significant reduction in hippocampal oxidative damage (8-oxoguanine), enhanced hippocampal neurogenesis (doublecortin) and improved hippocampal and cortical synaptogenesis (synaptophysin) following treatment. Furthermore, Oxm analogues up-regulated hippocampal mRNA expression of MASH1, Synaptophysin, SIRT1, GLUT4 and IRS1, and down-regulated expression of LDL-R and GSK3β. These data demonstrate potential of stable Oxm analogues, and particularly (dS(2))Oxm(K-γ-glu-Pal) to improve metabolic function and enhance neurogenesis, synaptic plasticity, insulin signalling and exert protective effects against oxidative damage in hippocampus and cortex brain regions in HF mice.
Collapse
Affiliation(s)
- N M Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - V Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - A M Lynch
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - N Irwin
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - V A Gault
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK.
| | - P R Flatt
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| |
Collapse
|
30
|
Irwin N, Pathak V, Pathak NM, Gault VA, Flatt PR. Sustained treatment with a stable long-acting oxyntomodulin analogue improves metabolic control and islet morphology in an experimental model of type 1 diabetes. Diabetes Obes Metab 2015; 17:887-95. [PMID: 26095087 DOI: 10.1111/dom.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/26/2015] [Accepted: 06/05/2015] [Indexed: 01/11/2023]
Abstract
AIM To assess the therapeutic benefits of regulatory peptides other than insulin, which have to date received limited consideration in the context of type 1 diabetes. METHODS We assessed the effects of subchronic administration of the stable, oxyntomodulin (Oxm) analogue, (d-Ser(2) )Oxm[Lys(38) -γ-glu-PAL], for 28 days in streptozotocin (STZ)-induced insulin-deficient diabetic mice. RESULTS Twice-daily injection with (d-Ser(2) )Oxm[Lys(38) -γ-glu-PAL] significantly countered the excessive food and fluid intake in STZ-induced diabetic mice, and maintained normal body weight. Lean body mass was normalized, whilst fat mass was significantly increased compared with control STZ-induced diabetic mice. In addition, circulating glucose was significantly reduced by the Oxm analogue, whilst plasma and pancreatic insulin concentrations were increased and glucagon decreased by day 28. Plasma lipid profile was normalized by (d-Ser(2) )Oxm[Lys(38) -γ-glu-PAL] administration and circulating amylase was not significantly altered by induction of diabetes or Oxm analogue therapy. This was associated with significantly improved glucose tolerance and insulin secretion. Peripheral insulin sensitivity was also significantly improved by Oxm analogue treatment. Histological examination of pancreata showed beneficial elevations of total islet and β-cell area, associated with an increase in the number of smaller-sized islets. Further analysis revealed enhanced islet cell proliferation relative to apoptosis in Oxm analogue-treated mice. CONCLUSION These studies emphasize the potential of stable Oxm-based peptides, such as (d-Ser(2) )Oxm[Lys(38) -γ-glu-PAL], as therapeutic agents for insulin-deficient type 1 diabetes.
Collapse
Affiliation(s)
- N Irwin
- Biomedical Sciences Research Institute, SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - V Pathak
- Biomedical Sciences Research Institute, SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - N M Pathak
- Biomedical Sciences Research Institute, SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - V A Gault
- Biomedical Sciences Research Institute, SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| | - P R Flatt
- Biomedical Sciences Research Institute, SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, UK
| |
Collapse
|
31
|
Abstract
After many years of research, obesity is still a disease with an unmet medical need. Very few compounds have been approved, acting mainly on neuromediators; researches, in recent years, pointed toward compounds potentially safer than first-generation antiobesity drugs, able to interact with one or more (multitarget therapy) receptors for substances produced by the gut, adipose tissue and other targets outside CNS. Other holistic approaches, such as those involving gut microbiota and plant extracts, appeared recently in the literature, and undoubtedly will contribute to the discovery of a valuable therapy for this disease. This review deals with the positive results and the pitfalls obtained following these approaches, with a view on their clinical trial studies.
Collapse
|
32
|
Comparison of stability, cellular, glucose-lowering and appetite supressing effects of oxyntomodulin analogues modified at the N-terminus. Eur J Pharmacol 2014; 743:69-78. [PMID: 25246014 DOI: 10.1016/j.ejphar.2014.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Oxyntomodulin (Oxm) possesses beneficial biological actions for the potential treatment of obesity-diabetes. However, rapid inactivation by dipeptidyl peptidase-4 (DPP-4) results in a short half-life, hindering therapeutic applicability. In the present study, six Oxm analogues namely, (Thr(2))Oxm, (Asp(3))Oxm, (Aib(2))Oxm, (d-Ser(2))Oxm, (N-acetyl)Oxm and (d-Ser(2))Oxm-Lys-γ-glutamyl-PAL were synthesised and tested for DPP-4 stability and biological activity. Native Oxm, (Thr(2))Oxm and (Asp(3))Oxm were rapidly degraded by DPP-4, while (Aib(2))Oxm, (d-Ser(2))Oxm, (N-acetyl)Oxm and (d-Ser(2))Oxm-Lys-γ-glutamyl-PAL were resistant to degradation. All peptides stimulated cAMP production (P<0.01 to P<0.001) in GLP-1-R, but not in GIP-R, transfected cells. In glucagon-R transfected cells, all peptides except (N-acetyl)Oxm and (Thr(2))Oxm evoked significant cAMP generation. Similarly, all analogues, except (N-acetyl)Oxm, exhibited prominent (P<0.05 to P<0.001) insulinotropic activity in BRIN BD11 cells. When administered in conjunction with glucose to normal mice only native Oxm, (Aib(2))Oxm and (d-Ser(2))Oxm significantly (P<0.05 to P<0.01) increased overall plasma insulin levels. The corresponding glycaemic excursion was significantly (P<0.05 to P<0.001) lowered by all Oxm peptides, barring (N-acetyl)Oxm. Further investigations revealed persistent glucose-lowering and insulin-releasing actions of (d-Ser(2))Oxm-Lys-γ-glutamyl-PAL. Studies in GIP- and GLP-1-receptor KO mice with (Aib(2))Oxm, (d-Ser(2))Oxm, and (d-Ser(2))Oxm-Lys-γ-glutamyl-PAL highlighted the importance of GLP-1 receptor signalling for the beneficial glucose homoeostatic actions of these analogues. All peptides, except (N-acetyl)Oxm, possessed significant appetite suppressive effects in mice. These data highlight the significant therapeutic promise of enzymatically stable Oxm-based peptides, particularly with position 2 modifications, for the treatment of obesity-diabetes.
Collapse
|
33
|
Lynch AM, Pathak N, Pathak V, O'Harte FPM, Flatt PR, Irwin N, Gault VA. A novel DPP IV-resistant C-terminally extended glucagon analogue exhibits weight-lowering and diabetes-protective effects in high-fat-fed mice mediated through glucagon and GLP-1 receptor activation. Diabetologia 2014; 57:1927-36. [PMID: 24962667 DOI: 10.1007/s00125-014-3296-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/27/2014] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Modification of the structure of glucagon could provide useful compounds for the potential treatment of obesity-related diabetes. METHODS This study evaluated N-acetyl-glucagon, (D-Ser(2))glucagon and an analogue of (D-Ser(2))glucagon with the addition of nine amino acids from the C-terminal of exendin(1-39), namely (D-Ser(2))glucagon-exe. RESULTS All analogues were resistant to dipeptidyl peptidase IV degradation. N-Acetyl-glucagon lacked acute insulinotropic effects in BRIN BD11 cells, whereas (D-Ser(2))glucagon and (D-Ser(2))glucagon-exe evoked significant (p < 0.001) insulin release. (D-Ser(2))glucagon-exe stimulated cAMP production (p < 0.001) in glucagon- and GLP-1-receptor (GLP-1R)-transfected cells but not in glucose-dependent insulinotropic polypeptide-receptor-transfected cells. In normal mice, N-acetyl-glucagon and (D-Ser(2))glucagon retained glucagon-like effects of increasing (p < 0.001) plasma glucose and insulin levels. (D-Ser(2))glucagon-exe was devoid of hyperglycaemic actions but substantially (p < 0.001) increased plasma insulin levels. (D-Ser(2))glucagon-exe reduced the glycaemic excursion (p < 0.01) and increased the insulin secretory (p < 0.01) response following a glucose challenge 12 h after administration. Studies in GLP-1R knockout mice confirmed involvement of the GLP-1R pathway in the biological actions of (D-Ser(2))glucagon-exe. Twice-daily administration of (D-Ser(2))glucagon-exe to high-fat-fed mice for 28 days significantly (p < 0.05 to p < 0.001) reduced body weight, energy intake and non-fasting glucose levels, as well as increasing insulin concentrations. Glucose tolerance and insulin sensitivity were significantly (p < 0.01) improved and energy expenditure, O2 consumption and locomotor activity were (p < 0.05 to p < 0.001) augmented. The metabolic benefits were accompanied by increases in pancreatic islet number (p < 0.001) and area (p < 0.05), as well as beta cell area (p < 0.05). Beneficial effects were largely retained for 14 days following cessation of treatment. CONCLUSIONS/INTERPRETATION This study emphasises the potential of (D-Ser(2))glucagon-exe for the treatment of obesity-related diabetes.
Collapse
Affiliation(s)
- Aisling M Lynch
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Valsamakis G, Lois K, Kumar S, Mastorakos G. New molecular targets in the pathophysiology of obesity and available treatment options under investigation. Clin Obes 2014; 4:209-19. [PMID: 25826792 DOI: 10.1111/cob.12064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/22/2022]
Abstract
The pharmacotherapy of obesity has historically recorded an overall poor safety and efficacy profile largely because of the complex mechanisms involved in the pathophysiology of obesity. It is hoped that a better understanding of the regulation of body weight will lead us to the development of effective and safer drugs. Recent advances in our understanding of the regulation of energy homeostasis has allowed the design of novel anti-obesity drugs targeting specific molecules crucial for the modulation of energy balance, including drugs that induce satiety, modulate nutrient absorption or influence metabolism or lipogenesis. Almost a decade after the Food and Drug Administration approved the first weight loss medication, it recently approved two novel anti-obesity drugs Belviq (lorcaserin) and Qsymia (topiramate and phentermine), thus signalling the beginning of a new era in the pharmacotherapy of obesity. It is believed that the next generation of weight-loss drugs will be based on combination treatments with gut hormones in a manner that mimics the changes underlying surgically induced weight loss thus introducing the so called 'bariatric pharmacotherapy'. An in-depth understanding of the interrelated physiological and behavioural effects of these new molecules together with the development of new treatment paradigms is needed so that future disappointments in the field of obesity pharmacotherapy may be avoided.
Collapse
Affiliation(s)
- G Valsamakis
- Endocrine Unit, 2nd Department of Obs and Gynae, Areteeion University Hospital, Athens Medical School National and Kapodistrian University of Athens, Athens, Greece; WISDEM Centre for Diabetes, Endocrinology and Metabolism, Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
35
|
Abstract
Oxyntomodulin (OXM) is a peptide hormone released from the gut in post-prandial state that activates both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) resulting in superior body weight lowering to selective GLP1R agonists. OXM reduces food intake and increases energy expenditure in humans. While activation of the GCGR increases glucose production posing a hyperglycemic risk, the simultaneous activation of the GLP1R counteracts this effect. Acute OXM infusion improves glucose tolerance in T2DM patients making dual agonists of the GCGR and GLP1R new promising treatments for diabetes and obesity with the potential for weight loss and glucose lowering superior to that of GLP1R agonists.
Collapse
Affiliation(s)
- Alessandro Pocai
- Janssen Research and Devolopment, Cardiovascular and Metabolic Disease, 1516 Welsh and McKean Roads, Spring House, PA 19477, USA
| |
Collapse
|
36
|
Irwin N, Flatt PR. Enteroendocrine hormone mimetics for the treatment of obesity and diabetes. Curr Opin Pharmacol 2013; 13:989-95. [DOI: 10.1016/j.coph.2013.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 12/13/2022]
|
37
|
Heard KR, Wu W, Li Y, Zhao P, Woznica I, Lai JH, Beinborn M, Sanford DG, Dimare MT, Chiluwal AK, Peters DE, Whicher D, Sudmeier JL, Bachovchin WW. A General Method for Making Peptide Therapeutics Resistant to Serine Protease Degradation: Application to Dipeptidyl Peptidase IV Substrates. J Med Chem 2013; 56:8339-51. [DOI: 10.1021/jm400423p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kathryn R. Heard
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Wengen Wu
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Youhua Li
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Peng Zhao
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Iwona Woznica
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Jack H. Lai
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Martin Beinborn
- Molecular Pharmacology
Research Center, Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, Massachusetts 02111, United States
| | - David G. Sanford
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Matthew T. Dimare
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Amrita K. Chiluwal
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Diane E. Peters
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Danielle Whicher
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - James L. Sudmeier
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - William W. Bachovchin
- Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| |
Collapse
|
38
|
Bianchi E, Carrington PE, Ingallinella P, Finotto M, Santoprete A, Petrov A, Eiermann G, Kosinski J, Marsh DJ, Pocai A, SinhaRoy R, Pessi A. A PEGylated analog of the gut hormone oxyntomodulin with long-lasting antihyperglycemic, insulinotropic and anorexigenic activity. Bioorg Med Chem 2013; 21:7064-73. [PMID: 24094437 DOI: 10.1016/j.bmc.2013.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 01/31/2023]
Abstract
Peptide agonists of the glucagon-like peptide 1 (GLP-1) receptor (GLP1R) are rapidly gaining favor as antidiabetic agents, since in addition to increasing glucose-dependent insulin secretion, they also cause weight loss. Oxyntomodulin (OXM), a natural peptide with sequence homology to both glucagon and GLP-1, has glucose-lowering activity in rodents and anorectic activity in rodents and humans, but its clinical utility is limited by a short circulatory half-life due to rapid renal clearance and degradation by dipeptidyl peptidase IV (DPP-IV). Here, we describe the development of a novel DPP-IV-resistant, long-acting GLP1R agonist, based on derivatization of a suitably chosen OXM analog with high molecular weight polyethylene glycol (PEG) ('PEGylation'). PEG-OXM exerts an anti-hyperglycemic effect in diet-induced obese (DIO) mice in a glucose-dependent manner, with a maximally efficacious dose of 0.1mg/kg, and reduces food intake and body weight with a minimally efficacious dose of 1mg/kg. If this pharmacology is recapitulated in patients with type 2 diabetes, these results indicate PEG-OXM as a potential novel once-weekly GLP-1 mimetic with both glucose-lowering activity and weight loss efficacy.
Collapse
|
39
|
Bhat VK, Kerr BD, Vasu S, Flatt PR, Gault VA. A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice. Diabetologia 2013; 56:1417-24. [PMID: 23503814 DOI: 10.1007/s00125-013-2892-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/01/2013] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS We designed a chemically modified, enzyme-resistant peptide with triple-acting properties based on human glucagon with amino acid substitutions aligned to strategic positions in the sequence of glucose-dependent insulinotropic polypeptide (GIP). METHODS Y(1)-dA(2)-I(12)-N(17)-V(18)-I(27)-G(28,29)-glucagon (termed YAG-glucagon) was incubated with dipeptidylpeptidase IV (DPP-IV) to assess stability, BRIN-BD11 cells to evaluate insulin secretion, and receptor-transfected cells to examine cAMP production. Acute glucose-lowering and insulinotropic properties of YAG-glucagon were assessed in National Institutes of Health (NIH) Swiss mice, while longer-term actions on glucose homeostasis, insulin secretion, food intake and body weight were examined in high-fat-fed mice. RESULTS YAG-glucagon was resistant to DPP-IV, increased in vitro insulin secretion (1.5-3-fold; p < 0.001) and stimulated cAMP production in GIP receptor-, glucagon-like peptide-1 (GLP-1) receptor- and glucagon receptor-transfected cells. Plasma glucose levels were significantly reduced (by 51%; p < 0.01) and insulin concentrations increased (1.2-fold; p < 0.01) after acute injection of YAG-glucagon in NIH Swiss mice. Acute actions were countered by established GIP, GLP-1 and glucagon antagonists. In high-fat-fed mice, twice-daily administration of YAG-glucagon for 14 days reduced plasma glucose (40% reduction; p < 0.01) and increased plasma insulin concentrations (1.8-fold; p < 0.05). Glycaemic responses were markedly improved (19-48% reduction; p < 0.05) and insulin secretion enhanced (1.5-fold; p < 0.05) after a glucose load, which were independent of changes in insulin sensitivity, food intake and body weight. CONCLUSIONS/INTERPRETATION YAG-glucagon is a DPP-IV-resistant triple agonist of GIP, GLP-1 and glucagon receptors and exhibits beneficial biological properties suggesting that it may hold promise for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- V K Bhat
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
40
|
A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties. Biochem Pharmacol 2013; 85:1655-62. [DOI: 10.1016/j.bcp.2013.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 12/13/2022]
|
41
|
Abstract
Obesity is a major worldwide health problem. The treatment options are severely limited. The development of novel anti-obesity drugs is fraught with efficacy and safety issues. Consequently, several investigational anti-obesity drugs have failed to gain marketing approval in recent years. Anorectic gut hormones offer a potentially safe and viable option for the treatment of obesity. The prospective utility of gut hormones has improved drastically in recent years with the development of longer acting analogues. Additionally, specific combinations of gut hormones have been demonstrated to have additive anorectic effects. This article reviews the current stage of anti-obesity drugs in development, focusing on gut hormone-based therapies.
Collapse
Affiliation(s)
- Anne K McGavigan
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | |
Collapse
|
42
|
Irwin N, Frizelle P, O'Harte FPM, Flatt PR. (pGlu-Gln)-CCK-8[mPEG]: a novel, long-acting, mini-PEGylated cholecystokinin (CCK) agonist that improves metabolic status in dietary-induced diabetes. Biochim Biophys Acta Gen Subj 2013; 1830:4009-16. [PMID: 23583730 DOI: 10.1016/j.bbagen.2013.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cholecystokinin (CCK) is a gastrointestinal hormone that has been proposed as a potential therapeutic option for obesity-diabetes. As such, (pGlu-Gln)-CCK-8 is an N-terminally modified CCK-8 analogue with improved biological effectiveness over the native peptide. METHODS The current study has examined the in vitro stability, biological activity and in vivo therapeutic applicability of a novel second generation mini-PEGylated form of (pGlu-Gln)-CCK-8, (pGlu-Gln)-CCK-8[mPEG]. RESULTS (pGlu-Gln)-CCK-8[mPEG] was completely resistant to enzymatic degradation and in addition displayed similar insulinotropic (p<0.05 to p<0.001) and satiating effects (p<0.01 to p<0.001) as (pGlu-Gln)-CCK-8. This confirmed the capability of (pGlu-Gln)-CCK-8[mPEG] to bind to and activate the CCK receptor. Sub-chronic twice daily injection of (pGlu-Gln)-CCK-8[mPEG] in high fat fed mice for 35days significantly decreased body weight gain (p<0.05), food intake (p<0.01 to p<0.001) and triacylglycerol deposition in liver (p<0.001) and muscle (p<0.001). Furthermore, (pGlu-Gln)-CCK-8[mPEG] markedly improved intraperitoneal glucose tolerance (p<0.05) and insulin sensitivity (p<0.001). Despite this therapeutic profile, once daily injection of (pGlu-Gln)-CCK-8[mPEG] in high fat fed mice for 33days, at the same dose, was not associated with alterations in food intake and body weight. In addition, metabolic responses to exogenous glucose and insulin injection were similar to saline treated controls. CONCLUSION These studies emphasise the therapeutic potential of (pGlu-Gln)-CCK-8[mPEG] and similar molecules. GENERAL SIGNIFICANCE A more detailed analysis of the dose and administration schedule employed for (pGlu-Gln)-CCK-8[mPEG] could provide a novel and effective compound to treat obesity-diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | | | | | | |
Collapse
|
43
|
Li B, Zhou X, Wu J, Zhou H. From gut changes to type 2 diabetes remission after gastric bypass surgeries. Front Med 2013; 7:191-200. [PMID: 23553469 DOI: 10.1007/s11684-013-0258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Increasing evidence suggests that the gut may influence the host's metabolism and ultimately change the outcomes of type 2 diabetes mellitus (T2DM). We review the evidence on the relationship between the gut and T2DM remission after gastric bypass surgery, and discuss the potential mechanisms underlying the above relationship: gut anatomical rearrangement, microbial composition changes, altered gut cells, and gut hormone modulation. However, the exact changes and their relative importance in the metabolic improvements after gastric bypass surgery remain to be further clarified. Elucidating the precise metabolic mechanisms of T2DM resolution after bypass surgery will help to reveal the molecular mechanisms of pathogenesis, and facilitate the development of novel diagnoses and preventative interventions for this common disease.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, CAS, Shanghai, China
| | | | | | | |
Collapse
|
44
|
Irwin N, Franklin ZJ, O'Harte FPM. desHis¹Glu⁹-glucagon-[mPEG] and desHis¹Glu⁹(Lys³⁰PAL)-glucagon: long-acting peptide-based PEGylated and acylated glucagon receptor antagonists with potential antidiabetic activity. Eur J Pharmacol 2013; 709:43-51. [PMID: 23562625 DOI: 10.1016/j.ejphar.2013.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/19/2013] [Accepted: 03/24/2013] [Indexed: 12/13/2022]
Abstract
Glucagon is hormone secreted from the pancreatic alpha-cells that is involved in blood glucose regulation. As such, antagonism of glucagon receptor signalling represents an exciting approach for treating diabetes. To harness these beneficial metabolic effects, two novel glucagon analogues, desHis¹Glu⁹-glucagon-[mPEG] and desHis¹Glu⁹(Lys³⁰PAL)-glucagon, has been evaluated for potential glucagon receptor antagonistic properties. Both novel peptides were completely resistant to enzymatic breakdown and significantly (P<0.05 to P<0.001) inhibited glucagon-mediated elevations of cAMP production in glucagon receptor transfected cells. Similarly, desHis¹Glu⁹-glucagon-[mPEG] and desHis¹Glu⁹(Lys³⁰PAL)-glucagon effectively antagonised glucagon-induced increases of insulin secretion from BRIN BD11 cells. When administered acutely to normal, high fat fed or ob/ob mice, both analogues had no significant effects on overall blood glucose or plasma insulin levels when compared to saline treated controls. However, desHis¹Glu⁹-glucagon-[mPEG] significantly (P<0.05) annulled glucagon-induced increases in blood glucose and plasma insulin levels in normal mice and had similar non-significant tendencies in high fat and ob/ob mice. In addition, desHis¹Glu⁹(Lys³⁰PAL)-glucagon effectively (P<0.05 to P<0.001) antagonised glucagon-mediated elevations of blood glucose levels in high fat fed and ob/ob mice, but was less efficacious in normal mice. Further studies confirmed the significant persistent glucagon receptor antagonistic properties of both novel enzyme-resistant analogues 4h post administration in normal mice. These studies emphasise the potential of longer-acting peptide-based glucagon receptor antagonists, and particularly acylated versions, for the treatment of diabetes.
Collapse
Affiliation(s)
- Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
45
|
Vorobiev I, Matskevich V, Kovnir S, Orlova N, Knorre V, Jain S, Genkin D, Gabibov A, Miroshnikov A. Chemical polysialylation: Design of conjugated human oxyntomodulin with a prolonged anorexic effect in vivo. Biochimie 2013; 95:264-70. [DOI: 10.1016/j.biochi.2012.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022]
|
46
|
Dong CX, Brubaker PL. Ghrelin, the proglucagon-derived peptides and peptide YY in nutrient homeostasis. Nat Rev Gastroenterol Hepatol 2012; 9:705-15. [PMID: 23026903 DOI: 10.1038/nrgastro.2012.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulation of nutrient homeostasis is implicated in the current epidemics of obesity and type 2 diabetes mellitus. The maintenance of homeostasis in the setting of repeated cycles of feeding and fasting occurs through complex interactions between metabolic, hormonal and neural factors. Although pancreatic islets, the liver, muscle, adipocytes and the central nervous system are all key players in this network, the gastrointestinal tract is the first tissue exposed to ingested nutrients and thus has an important role. This Review focuses on several of the endocrine hormones released by the gastrointestinal tract prior to or during nutrient ingestion that have key roles in maintaining energy balance. These hormones include the gastric orexigenic hormone, ghrelin, and the distal L cell anorexigenic and metabolic hormones, glucagon-like peptide (GLP)-1, GLP-2, oxyntomodulin and peptide YY. Each of these hormones exerts a distinct set of biological actions to maintain nutrient homeostasis, the properties of which are currently, or might soon be, exploited in the clinic for the treatment of obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Charlotte X Dong
- Department of Physiology, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|
47
|
Abstract
Oxyntomodulin (OXM) is a peptide secreted from the L cells of the gut following nutrient ingestion. OXM is a dual agonist of the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR) combining the effects of GLP1 and glucagon to act as a potentially more effective treatment for obesity than GLP1R agonists. Injections of OXM in humans cause a significant reduction in weight and appetite, as well as an increase in energy expenditure. Activation of GCGR is classically associated with an elevation in glucose levels, which would be deleterious in patients with T2DM, but the antidiabetic properties of GLP1R agonism would be expected to counteract this effect. Indeed, OXM administration improved glucose tolerance in diet-induced obese mice. Thus, dual agonists of the GCGR and GLP1R represent a new therapeutic approach for diabetes and obesity with the potential for enhanced weight loss and improvement in glycemic control beyond those of GLP1R agonists.
Collapse
Affiliation(s)
- Alessandro Pocai
- Diabetes and Endocrinology, Merck Research Laboratories, Merck Sharp and Dohme Corp., Rahway, New Jersey 07065, USA.
| |
Collapse
|