1
|
Luca T, Pezzino S, Puleo S, Castorina S. Lesson on obesity and anatomy of adipose tissue: new models of study in the era of clinical and translational research. J Transl Med 2024; 22:764. [PMID: 39143643 PMCID: PMC11323604 DOI: 10.1186/s12967-024-05547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Obesity is a serious global illness that is frequently associated with metabolic syndrome. Adipocytes are the typical cells of adipose organ, which is composed of at least two different tissues, white and brown adipose tissue. They functionally cooperate, interconverting each other under physiological conditions, but differ in their anatomy, physiology, and endocrine functions. Different cellular models have been proposed to study adipose tissue in vitro. They are also useful for elucidating the mechanisms that are responsible for a pathological condition, such as obesity, and for testing therapeutic strategies. Each cell model has its own characteristics, culture conditions, advantages and disadvantages. The choice of one model rather than another depends on the specific study the researcher is conducting. In recent decades, three-dimensional cultures, such as adipose spheroids, have become very attractive because they more closely resemble the phenotype of freshly isolated cells. The use of such models has developed in parallel with the evolution of translational research, an interdisciplinary branch of the biomedical field, which aims to learn a scientific translational approach to improve human health and longevity. The focus of the present review is on the growing body of data linking the use of new cell models and the spread of translational research. Also, we discuss the possibility, for the future, to employ new three-dimensional adipose tissue cell models to promote the transition from benchside to bedsite and vice versa, allowing translational research to become routine, with the final goal of obtaining clinical benefits in the prevention and treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy.
| | | | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
2
|
Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, Colleluori G, Di Vincenzo A, Jørgensen AM, Dashti H, Stefek A, McGonagle E, Strobel S, Laber S, Agrawal S, Westcott GP, Kar A, Veregge ML, Gulko A, Srinivasan H, Kramer Z, De Filippis E, Merkel E, Ducie J, Boyd CG, Gourash W, Courcoulas A, Lin SJ, Lee BT, Morris D, Tobias A, Khera AV, Claussnitzer M, Pers TH, Giordano A, Ashenberg O, Regev A, Tsai LT, Rosen ED. A single-cell atlas of human and mouse white adipose tissue. Nature 2022; 603:926-933. [PMID: 35296864 PMCID: PMC9504827 DOI: 10.1038/s41586-022-04518-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Essene
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepti Pant
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Danielle Tenen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Angelica Di Vincenzo
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Anja M Jørgensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Hesam Dashti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Stefek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | - Saaket Agrawal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory P Westcott
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amrita Kar
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Molly L Veregge
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Harini Srinivasan
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary Kramer
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eleanna De Filippis
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic Scottsdale, AZ, USA
| | - Erin Merkel
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jennifer Ducie
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher G Boyd
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - William Gourash
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anita Courcoulas
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Samuel J Lin
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bernard T Lee
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Donald Morris
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Adam Tobias
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amit V Khera
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Plastic Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Doulberis M, Papaefthymiou A, Polyzos SA, Katsinelos P, Grigoriadis N, Srivastava DS, Kountouras J. Rodent models of obesity. MINERVA ENDOCRINOL 2019; 45:243-263. [PMID: 31738033 DOI: 10.23736/s0391-1977.19.03058-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obese or overweight people exceed one-third of the global population and obesity along with diabetes mellitus consist basic components of metabolic syndrome, both of which are known cardio-cerebrovascular risk factors with detrimental consequences. These data signify the pandemic character of obesity and the necessity for effective treatments. Substantial advances have been accomplished in preclinical research of obesity by using animal models, which mimic the human disease. In particular, rodent models have been widely used for many decades with success for the elucidation of the pathophysiology of obesity, since they share physiological and genetic components with humans and appear advantageous in their husbandry. The most representative rodents include the laboratory mouse and rat. Within this review, we attempted to consolidate the most widely used mice and rat models of obesity and highlight their strengths as well as weaknesses in a critical way. Our aim was to bridge the gap between laboratory facilities and patient's bed and help the researcher find the appropriate animal model for his/her obesity research. This tactful selection of the appropriate model of obesity may offer more translational derived results. In this regard, we included, the main diet induced models, the chemical/mechanical ones, as well as a selection of monogenic or polygenic models.
Collapse
Affiliation(s)
- Michael Doulberis
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland - .,Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece -
| | | | | | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - David S Srivastava
- Second Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
New Insights into the Liver-Visceral Adipose Axis During Hepatic Resection and Liver Transplantation. Cells 2019; 8:cells8091100. [PMID: 31540413 PMCID: PMC6769706 DOI: 10.3390/cells8091100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
In the last decade, adipose tissue has emerged as an endocrine organ with a key role in energy homeostasis. In addition, there is close crosstalk between the adipose tissue and the liver, since pro- and anti-inflammatory substances produced at the visceral adipose tissue level directly target the liver through the portal vein. During surgical procedures, including hepatic resection and liver transplantation, ischemia–reperfusion injury induces damage and regenerative failure. It has been suggested that adipose tissue is associated with both pathological or, on the contrary, with protective effects on damage and regenerative response after liver surgery. The present review aims to summarize the current knowledge on the crosstalk between the adipose tissue and the liver during liver surgery. Therapeutic strategies as well as the clinical and scientific controversies in this field are discussed. The different experimental models, such as lipectomy, to evaluate the role of adipose tissue in both steatotic and nonsteatotic livers undergoing surgery, are described. Such information may be useful for the establishment of protective strategies aimed at regulating the liver–visceral adipose tissue axis and improving the postoperative outcomes in clinical liver surgery.
Collapse
|
5
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
6
|
Vivas Y, Díez-Hochleitner M, Izquierdo-Lahuerta A, Corrales P, Horrillo D, Velasco I, Martínez-García C, Campbell M, Sevillano J, Ricote M, Ros M, Ramos MP, Medina-Gomez G. Peroxisome proliferator activated receptor gamma 2 modulates late pregnancy homeostatic metabolic adaptations. Mol Med 2016; 22:724-736. [PMID: 27782293 DOI: 10.2119/molmed.2015.00262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 10/14/2016] [Indexed: 12/18/2022] Open
Abstract
Pregnancy requires the adaptation of maternal energy metabolism including expansion and functional modifications of adipose tissue. Insulin resistance (IR), predominantly during late gestation, is a physiological metabolic adaptation that serves to support the metabolic demands of fetal growth. The molecular mechanisms underlying these adaptations are not fully understood and may contribute to gestational diabetes mellitus. Peroxisome proliferator-activated receptor gamma (PPARγ) controls adipogenesis, glucose and lipid metabolism and insulin sensitivity. The PPARγ2 isoform is mainly expressed in adipocytes and is thus likely to contribute to adipose tissue adaptation during late pregnancy. In the present study, we investigated the contribution of PPARγ2 to the metabolic adaptations occurring during the late phase of pregnancy in the context of IR. Using a model of late pregnancy in PPARγ2 knockout (KO) mice, we found that deletion of PPARγ2 exacerbated IR in association with lower serum adiponectin levels, increased body weight and enhanced lipid accumulation in liver. Lack of PPARγ2 provoked changes in the distribution of fat mass and preferentially prevented the expansion of the perigonadal depot while at the same time exacerbating inflammation. PPARγ2KO pregnant mice presented adipose tissue depot-dependent decreased expression of genes involved in lipid metabolism. Collectively, these data indicate that PPARγ2 is essential to promote healthy adipose tissue expansion and immune and metabolic functionality during pregnancy, contributing to the physiological adaptations that lead gestation to term.
Collapse
Affiliation(s)
- Yurena Vivas
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain
| | - Monica Díez-Hochleitner
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain.,Faculty of Pharmacy, University San Pablo-CEU, Carretera Boadilla del Monte, km 5.3, 28668 Madrid, Spain
| | - Adriana Izquierdo-Lahuerta
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain
| | - Patricia Corrales
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain
| | - Daniel Horrillo
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain
| | - Ismael Velasco
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain
| | - Cristina Martínez-García
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain
| | - Mark Campbell
- Metabolic Research Laboratories, Level 4, Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ, UK
| | - Julio Sevillano
- Faculty of Pharmacy, University San Pablo-CEU, Carretera Boadilla del Monte, km 5.3, 28668 Madrid, Spain
| | - Mercedes Ricote
- National Center of Cardiovascular Research Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Manuel Ros
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain
| | - Maria Pilar Ramos
- Faculty of Pharmacy, University San Pablo-CEU, Carretera Boadilla del Monte, km 5.3, 28668 Madrid, Spain
| | - Gema Medina-Gomez
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, 28922 Madrid, Spain.,MEMORISM Research Unit of University Rey Juan Carlos- Institute of Biomedical Research "Alberto Sols" (CSIC)
| |
Collapse
|
7
|
Rogers LJ, Basnakian AG, Orloff MS, Ning B, Yao-Borengasser A, Raj V, Kadlubar S. 2-amino-1-methyl-6-phenylimidazo(4,5-b) pyridine (PhIP) induces gene expression changes in JAK/STAT and MAPK pathways related to inflammation, diabetes and cancer. Nutr Metab (Lond) 2016; 13:54. [PMID: 27547236 PMCID: PMC4992261 DOI: 10.1186/s12986-016-0111-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
Background 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), a heterocyclic aromatic amine (HCA) formed in meat that is cooked at high temperatures and then ingested, can potentially be retained in human adipose tissues. Methods To determine if PhIP is bioactive in the adipocyte, we exposed a human adipocyte cell line,HepG2 and Caco-2 cells to low dose PhIP. Uptake and retention of PhIP was determined and cytotoxicity was assessed by the TUNEL assay. Relative expression of PhIP-activating genes (CYP1A1, CYP1A2, SULT1A1 and UGT1A1) was determined by RT-PCR and global expression changes were also examined. Results The percent retention of 0.1 μCi [14C]-PhIP over a 24 h period was significantly higher in the adipocyte than the HepG2 (p = 0.0001) and Caco-2 (p = 0.0007) cell lines. Cytotoxicity rates were 14.4 and 2.6 % higher compared to controls in Caco-2 and HepG2 cells (p < 0.001 and 0.054, respectively); no significant differences were detected in adipocyte cells (p = 0.18). Caco-2 and HepG2 cells, respectively, had significantly higher basal expression of CYP1A1 (p = 0.001, p = 0.003), SULT1A1 (p = 0.04, p < 0.001) and UGT1A1 (p < 0.001, p = 0.01) compared to the adipocyte. Exposure to 5nM PhIP did not significantly induce expression of these genes in any of the cell lines. Global gene expression analysis of mature adipocytes exposed to 5nM PhIP for 72 h resulted in statistically significant changes in 8 genes (ANGPTL2, CD14, CIDEA, EGR1, FOS, IGFBP5, PALM and PSAT1). Gene-gene interaction and pathway analysis indicates that PhIP modulates genes controlled by the STAT3 transcriptional factor and initiates leptin signaling via the JAK/STAT and MAPK pathway cascades. Early growth response 1 (EGR1) and prostaglandin synthase 2 (COX-2) were down-regulated via c-Fos, while insulin binding protein 5 (IBP5) was up regulated. Expression of transcription factors (ANGPTL2, HP, LEP, SAA1, SAA2), genes related to inflammation (SAA1, LEP), diabetes (IGFBP5) and cancer risk (SAA2) were also elevated upon exposure to 5 nM PhIP.. Conclusions PhIP mediates gene expression changes within the adipocyte, and the pathways most affected are related to cancer and other chronic diseases. Further studies are needed on the relationship between dietary carcinogens such as PhIP with cancer, obesity and diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0111-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lora J Rogers
- University of Arkansas for Medical Sciences, 4301 W Markham St, #580, Little Rock, AR 72205 USA
| | - Alexei G Basnakian
- University of Arkansas for Medical Sciences, 4301 W Markham St, #580, Little Rock, AR 72205 USA
| | - Mohammed S Orloff
- University of Arkansas for Medical Sciences, 4301 W Markham St, #580, Little Rock, AR 72205 USA
| | - Baitang Ning
- National Center for Toxicological Research, NCTR Rd, Redfield, AR 72132 USA
| | | | - Vinay Raj
- University of Arkansas for Medical Sciences, 4301 W Markham St, #580, Little Rock, AR 72205 USA
| | - Susan Kadlubar
- University of Arkansas for Medical Sciences, 4301 W Markham St, #580, Little Rock, AR 72205 USA
| |
Collapse
|
8
|
Al-Zhoughbi W, Huang J, Paramasivan GS, Till H, Pichler M, Guertl-Lackner B, Hoefler G, Hoefler G. Tumor macroenvironment and metabolism. Semin Oncol 2014; 41:281-95. [PMID: 24787299 PMCID: PMC4012137 DOI: 10.1053/j.seminoncol.2014.02.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described.
Collapse
Affiliation(s)
- Wael Al-Zhoughbi
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jianfeng Huang
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria,Address correspondence to Gerald Hoefler, MD, Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Jimenez V, Muñoz S, Casana E, Mallol C, Elias I, Jambrina C, Ribera A, Ferre T, Franckhauser S, Bosch F. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice. Diabetes 2013; 62:4012-22. [PMID: 24043756 PMCID: PMC3837045 DOI: 10.2337/db13-0311] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.
Collapse
|
10
|
Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 2011; 302:C327-59. [PMID: 21900692 DOI: 10.1152/ajpcell.00168.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.
Collapse
Affiliation(s)
- Max Lafontan
- Institut National de la Santé et de la Recherche Médicale, UMR, Hôpital Rangueil, Toulouse, France.
| |
Collapse
|
11
|
Chaible LM, Corat MA, Abdelhay E, Dagli MLZ. Genetically modified animals for use in research and biotechnology. GENETICS AND MOLECULAR RESEARCH 2010; 9:1469-82. [PMID: 20677136 DOI: 10.4238/vol9-3gmr867] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transgenic animals are used extensively in the study of in vivo gene function, as models for human diseases and in the production of biopharmaceuticals. The technology behind obtaining these animals involves molecular biology techniques, cell culture and embryo manipulation; the mouse is the species most widely used as an experimental model. In scientific research, diverse models are available as tools for the elucidation of gene function, such as transgenic animals, knockout and conditional knockout animals, knock-in animals, humanized animals, and knockdown animals. We examined the evolution of the science for the development of these animals, as well as the techniques currently used in obtaining these animal models. We review the phenotypic techniques used for elucidation of alterations caused by genetic modification. We also investigated the role of genetically modified animals in the biotechnology industry, where they promise a revolution in obtaining heterologous proteins through natural secretions, such as milk, increasing the scale of production and facilitating purification, thereby lowering the cost of production of hormones, growth factors and enzymes.
Collapse
Affiliation(s)
- L M Chaible
- Laboratório de Oncologia Experimental, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
12
|
Abstract
The importance of white adipose tissue in the control of energy balance is now firmly recognized. In addition to fuel storage, adipocytes secrete an array of proteins factors (adipokines), which regulate multiple physiological and metabolic processes as well as influence body fat accumulation. Zinc-α2-glycoprotein (ZAG), a lipid mobilizing factor initially characterized as a tumor product associated with cachexia, has recently been identified as a novel adipokine. Although the exact role of ZAG in adipose tissue remains to be clarified, there is evidence that ZAG expression appears to be inversely related to adiposity, being upregulated in cachexia whereas reduced in obesity. Investigations on the regulation of ZAG give insights into its potential function in adipose tissue with a link to lipid mobilization and an anti-inflammatory action. Recent work shows that ZAG stimulates adiponectin secretion by human adipocytes. Data from genetic studies suggest that ZAG may be a candidate gene for body weight regulation; this is supported by the demonstration that ZAG-knockout mice are susceptible to weight gain, whereas transgenic mice overexpressing ZAG exhibit weight loss. The present review summarizes these new perspectives of ZAG and the potential mechanisms by which it might modulate adipose tissue mass and function.
Collapse
|
13
|
Abstract
White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body's fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and immune systems and play major roles in metabolism. Numerous studies have shown nutrient or hormonal manipulations can greatly influence adipose tissue development. In addition, the associations between various disease states, such as insulin resistance and cardiovascular disease, and disregulation of adipose tissue seen in epidemiological and intervention studies are great. Evaluation of known adipokines suggests these factors secreted from adipose tissue play roles in several pathologies. As the identification of more adipokines and determination of their role in biological systems, and the interactions between adipocytes and other cells types continues, there is little doubt that we will gain a greater appreciation for a tissue once thought to simply store excess energy.
Collapse
|
14
|
Palou A, Pico C, Keijer J. Integration of risk and benefit analysis-the window of benefit as a new tool? Crit Rev Food Sci Nutr 2009; 49:670-80. [PMID: 19582643 DOI: 10.1080/10408390802145401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Foods and food components can have positive and/or negative effects on our health, resulting in benefits and risks. At present these are evaluated in largely separated trajectories. In view of assessment, management, and communication, we here propose and argue for an integrated evaluation of risk and benefit of food components and foods. The window of benefit assessment concept is described as a framework to combine thresholds and scores. The recommended dietary allowance (RDA) and the tolerable upper intake level (UL) delimit the range of intakes that should be considered sufficient to prevent deficiency, while avoiding toxicity. Within these thresholds, two additional thresholds, the lower and upper level of additional benefit (LLAB and ULAB), define the range of intakes that constitute an additional benefit. Intake within these limits should thus be protective against a specified health or nutritional risk of public health relevance. To faithfully predict outcomes and to obtain the tools that are necessary to support scientific valid evaluations, a mechanism based systems biology understanding of the effects of foods and nutrients is seen as the way forward. Ultimately this should lead to an integrated risk-benefit assessment, which will allow better management and, especially, communication, to the benefit of the consumer.
Collapse
|
15
|
Abstract
Profound loss of adipose and other tissues is a hallmark of cancer cachexia, a debilitating condition associated with increased morbidity and mortality. Fat loss cannot be attributable to reduced appetite alone as it precedes the onset of anorexia and is much more severe in experimental models of cachexia than in food restriction. Morphological examination has shown marked remodelling of adipose tissue in cancer cachexia. It is characterised by the tissue containing shrunken adipocytes with a major reduction in cell size and increased fibrosis in the tissue matrix. The ultrastructure of 'slimmed' adipocytes has revealed severe delipidation and modifications in cell membrane conformation. Although the molecular mechanisms remain to be established, evidence suggests that altered adipocyte metabolism may lead to adipose atrophy in cancer cachexia. Increased lipolysis appears to be a key factor underlying fat loss, while inhibition of adipocyte development and lipid deposition may also contribute. Both tumour and host-derived factors are implicated in adipose atrophy. Zinc-alpha2-glycoprotein (ZAG), which is overexpressed by certain malignant tumours, has been identified as a novel adipokine. ZAG transcripts and protein expression in adipose tissue are up regulated in cancer cachexia but reduced with adipose tissue expansion in obesity. Studies in vitro demonstrate that recombinant ZAG stimulates lipolysis. ZAG may therefore act locally, as well as systemically, to promote lipid mobilisation in cancer cachexia. Further elucidation of ZAG function in adipose tissue may lead to novel targets for preventing adipose atrophy in malignancy.
Collapse
|
16
|
Groh S, Zong H, Goddeeris MM, Lebakken CS, Venzke D, Pessin JE, Campbell KP. Sarcoglycan complex: implications for metabolic defects in muscular dystrophies. J Biol Chem 2009; 284:19178-82. [PMID: 19494113 PMCID: PMC2740540 DOI: 10.1074/jbc.c109.010728] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The sarcoglycans are known as an integral subcomplex of the dystrophin glycoprotein complex, the function of which is best characterized in skeletal muscle in relation to muscular dystrophies. Here we demonstrate that the white adipocytes, which share a common precursor with the myocytes, express a cell-specific sarcoglycan complex containing β-, δ-, and ϵ-sarcoglycan. In addition, the adipose sarcoglycan complex associates with sarcospan and laminin binding dystroglycan. Using multiple sarcoglycan null mouse models, we show that loss of α-sarcoglycan has no consequence on the expression of the adipocyte sarcoglycan complex. However, loss of β- or δ-sarcoglycan leads to a concomitant loss of the sarcoglycan complex as well as sarcospan and a dramatic reduction in dystroglycan in adipocytes. We further demonstrate that β-sarcoglycan null mice, which lack the sarcoglycan complex in adipose tissue and skeletal muscle, are glucose-intolerant and exhibit whole body insulin resistance specifically due to impaired insulin-stimulated glucose uptake in skeletal muscles. Thus, our data demonstrate a novel function of the sarcoglycan complex in whole body glucose homeostasis and skeletal muscle metabolism, suggesting that the impairment of the skeletal muscle metabolism influences the pathogenesis of muscular dystrophy.
Collapse
Affiliation(s)
- Séverine Groh
- Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Ruschke K, Ebelt H, Klöting N, Boettger T, Raum K, Blüher M, Braun T. Defective peripheral nerve development is linked to abnormal architecture and metabolic activity of adipose tissue in Nscl-2 mutant mice. PLoS One 2009; 4:e5516. [PMID: 19436734 PMCID: PMC2677458 DOI: 10.1371/journal.pone.0005516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/16/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In mammals the interplay between the peripheral nervous system (PNS) and adipose tissue is widely unexplored. We have employed mice, which develop an adult onset of obesity due to the lack the neuronal specific transcription factor Nscl-2 to investigate the interplay between the nervous system and white adipose tissue (WAT). METHODOLOGY Changes in the architecture and innervation of WAT were compared between wildtype, Nscl2-/-, ob/ob and Nscl2-/-//ob/ob mice using morphological methods, immunohistochemistry and flow cytometry. Metabolic alterations in mutant mice and in isolated cells were investigated under basal and stimulated conditions. PRINCIPAL FINDINGS We found that Nscl-2 mutant mice show a massive reduction of innervation of white epididymal and paired subcutaneous inguinal fat tissue including sensory and autonomic nerves as demonstrated by peripherin and neurofilament staining. Reduction of innervation went along with defects in the formation of the microvasculature, accumulation of cells of the macrophage/preadipocyte lineage, a bimodal distribution of the size of fat cells, and metabolic defects of isolated adipocytes. Despite a relative insulin resistance of white adipose tissue and isolated Nscl-2 mutant adipocytes the serum level of insulin in Nscl-2 mutant mice was only slightly increased. CONCLUSIONS We conclude that the reduction of the innervation and vascularization of WAT in Nscl-2 mutant mice leads to the increase of preadipocyte/macrophage-like cells, a bimodal distribution of the size of adipocytes in WAT and an altered metabolic activity of adipocytes.
Collapse
Affiliation(s)
- Karen Ruschke
- Institute of Physiological Chemistry, University of Halle-Wittenberg, Halle, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Henning Ebelt
- Institute of Physiological Chemistry, University of Halle-Wittenberg, Halle, Germany
| | - Nora Klöting
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Thomas Boettger
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kay Raum
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Thomas Braun
- Institute of Physiological Chemistry, University of Halle-Wittenberg, Halle, Germany
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
18
|
White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 2008; 39:715-28. [PMID: 18996284 DOI: 10.1016/j.arcmed.2008.09.005] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/19/2008] [Indexed: 02/08/2023]
Abstract
Due to the public health problem represented by obesity, the study of adipose tissue, particularly of the adipocyte, is central to the understanding of metabolic abnormalities associated with the development of obesity. The concept of adipocyte as endocrine and functional cell is not totally understood and can be currently defined as the capacity of the adipocyte to sense, manage, and send signals to maintain energy equilibrium in the body. Adipocyte functionality is lost during obesity and has been related to adipocyte hypertrophy, disequilibrium between lipogenesis and lipolysis, impaired transcriptional regulation of the key factors that control adipogenesis, and lack of sensitivity to external signals, as well as a failure in the signal transduction process. Thus, dysfunctional adipocytes contribute to abnormal utilization of fatty acids causing lipotoxicity in non-adipose tissue such as liver, pancreas and heart, among others. To understand the metabolism of the adipocyte it is necessary to have an overview of the developmental process of new adipocytes, regulation of adipogenesis, lipogenesis and lipolysis, endocrine function of adipocytes and metabolic consequences of its dysfunction. Finally, the key role of adipose tissue is shown by studies in transgenic animals or in animal models of diet-induced obesity that indicate the contribution of adipose tissue during the development of metabolic syndrome. Thus, understanding of the molecular process that occurs in the adipocyte will provide new tools for the treatment of metabolic abnormalities during obesity.
Collapse
|
19
|
Abstract
Obesity results in marked alterations in cardiac energy metabolism, with a prominent effect being an increase in fatty acid uptake and oxidation by the heart. Obesity also results in dramatic changes in the release of adipokines, such as leptin and adiponectin, both of which have emerged as important regulators of cardiac energy metabolism. The link among obesity, cardiovascular disease, lipid metabolism, and adipokine signaling is complex and not well understood. However, optimizing cardiac energy metabolism in obese subjects may be one approach to preventing and treating cardiac dysfunction that can develop in this population. This review discusses what is presently known about the effects of obesity and the impact adipokines have on cardiac energy metabolism and insulin signaling. The clinical implications of obesity and energy metabolism on cardiac disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
20
|
Cousin W, Fontaine C, Dani C, Peraldi P. Hedgehog and adipogenesis: fat and fiction. Biochimie 2007; 89:1447-53. [PMID: 17933451 DOI: 10.1016/j.biochi.2007.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/24/2007] [Indexed: 11/19/2022]
Abstract
Morphogenes, abundantly described during embryogenesis have recently emerged as crucial modulators of cell differentiation processes. Hedgehog signaling, the dysregulation of which causing several pathologies such as congenital defects and cancer, is involved in several cell differentiation processes including adipogenesis. This review presents an overview of the relations between Hedgehog signaling, adipocyte differentiation and fat mass. While the anti-adipogenic role of Hedgehog signaling seems to be established, the effect of Hedgehog inhibition on adipocyte differentiation in vitro remains debated. Finally, Hedgehog potential as a pharmacological target to treat fat mass disorders is discussed.
Collapse
Affiliation(s)
- Wendy Cousin
- ISBDC, Université De Nice Sophia-Antipolis, CNRS, 28 Avenue De Valrose, 06100 Nice, France.
| | | | | | | |
Collapse
|
21
|
Abstract
Adipose tissue expands to accommodate increased lipid through hypertrophy of existing adipocytes and by initiating differentiation of preadipocytes. The capacity of adipose tissue to expand is critical for accommodating changes in energy availability, but this capacity is not an unlimited process and likely varies between individuals. We suggest that it is not the absolute amount of adipose tissue but rather the capacity of adipose tissue to expand that affects metabolic homeostasis. Here we highlight examples of disease states and transgenic animal models with altered adipose tissue function that support this hypothesis and discuss possible mechanisms by which altered adipose tissue expandability impairs metabolic homeostasis.
Collapse
Affiliation(s)
- Sarah L Gray
- Department of Clinical Biochemistry, University of Cambridge, United Kingdom
| | | |
Collapse
|
22
|
Feinman RD, Fine EJ. Nonequilibrium thermodynamics and energy efficiency in weight loss diets. Theor Biol Med Model 2007; 4:27. [PMID: 17663761 PMCID: PMC1947950 DOI: 10.1186/1742-4682-4-27] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 07/30/2007] [Indexed: 12/13/2022] Open
Abstract
Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels controls fatty acid flux and oxidation, 2) the rate of lipolysis is a primary target of insulin, postprandial, and 3) chronic carbohydrate-restricted diets reduce the levels of plasma TAG in response to a single meal. In summary, we propose that, in isocaloric diets of different macronutrient composition, there is variable flux of stored TAG controlled by the kinetic effects of insulin and other hormones. Because the fatty acid-TAG cycle never comes to equilibrium, net gain or loss is possible. The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables.
Collapse
Affiliation(s)
- Richard D Feinman
- Department of Biochemistry, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Eugene J Fine
- Department of Biochemistry, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
23
|
Beckmann N, Kneuer R, Gremlich HU, Karmouty-Quintana H, Blé FX, Müller M. In vivo mouse imaging and spectroscopy in drug discovery. NMR IN BIOMEDICINE 2007; 20:154-85. [PMID: 17451175 DOI: 10.1002/nbm.1153] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution MRI, optical imaging, and high-resolution ultrasound have become invaluable tools in preclinical pharmaceutical research. They can be used to non-invasively investigate, in vivo, rodent biology and metabolism, disease models, and pharmacokinetics and pharmacodynamics of drugs. The advantages and limitations of each approach usually determine its application, and therefore a small-rodent imaging laboratory in a pharmaceutical environment should ideally provide access to several techniques. In this paper we aim to illustrate how these techniques may be used to obtain meaningful information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research, Lichtstrasse 35, CH-4002 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
24
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas. Curr Opin Endocrinol Diabetes Obes 2007; 14:170-96. [PMID: 17940437 DOI: 10.1097/med.0b013e3280d5f7e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Merchant JL. Tales from the crypts: regulatory peptides and cytokines in gastrointestinal homeostasis and disease. J Clin Invest 2007; 117:6-12. [PMID: 17200701 PMCID: PMC1716224 DOI: 10.1172/jci30974] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gastrointestinal (GI) tract is composed of a diverse set of organs that together receive extracorporeal nutrition and convert it to energy substrates and cellular building blocks. In the process, it must sort through all that we ingest and discriminate what is useable from what is not, and having done that, it discards what is "junk." To accomplish these many and varied tasks, the GI tract relies on endogenous enteric hormones produced by enteroendocrine cells and the enteric nervous system. In many instances, the mediators of these tasks are small peptides that home to the CNS and accessory gut organs to coordinate oral intake with digestive secretions. As the contents of ingested material can contain harmful agents, the gut is armed with an extensive immune system. A breach of the epithelial barrier of the GI tract can result in local and eventually systemic disease if the gut does not mount an aggressive immune response.
Collapse
Affiliation(s)
- Juanita L Merchant
- Division of Gastroenterology, Department of Internal, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
26
|
Frühbeck G. The Sir David Cuthbertson Medal Lecture Hunting for new pieces to the complex puzzle of obesity. Proc Nutr Soc 2006. [DOI: 10.1079/pns2006510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Gray SL, Nora ED, Grosse J, Manieri M, Stoeger T, Medina-Gomez G, Burling K, Wattler S, Russ A, Yeo GSH, Chatterjee VK, O'Rahilly S, Voshol PJ, Cinti S, Vidal-Puig A. Leptin deficiency unmasks the deleterious effects of impaired peroxisome proliferator-activated receptor gamma function (P465L PPARgamma) in mice. Diabetes 2006; 55:2669-77. [PMID: 17003330 DOI: 10.2337/db06-0389] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)gamma is a key transcription factor facilitating fat deposition in adipose tissue through its proadipogenic and lipogenic actions. Human patients with dominant-negative mutations in PPARgamma display lipodystrophy and extreme insulin resistance. For this reason it was completely unexpected that mice harboring an equivalent mutation (P465L) in PPARgamma developed normal amounts of adipose tissue and were insulin sensitive. This finding raised important doubts about the interspecies translatability of PPARgamma-related findings, bringing into question the relevance of other PPARgamma murine models. Here, we demonstrate that when expressed on a hyperphagic ob/ob background, the P465L PPARgamma mutant grossly exacerbates the insulin resistance and metabolic disturbances associated with leptin deficiency, yet reduces whole-body adiposity and adipocyte size. In mouse, coexistence of the P465L PPARgamma mutation and the leptin-deficient state creates a mismatch between insufficient adipose tissue expandability and excessive energy availability, unmasking the deleterious effects of PPARgamma mutations on carbohydrate metabolism and replicating the characteristic clinical symptoms observed in human patients with dominant-negative PPARgamma mutations. Thus, adipose tissue expandability is identified as an important factor for the development of insulin resistance in the context of positive energy balance.
Collapse
Affiliation(s)
- Sarah L Gray
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Macia L, Viltart O, Verwaerde C, Delacre M, Delanoye A, Grangette C, Wolowczuk I. Genes involved in obesity: Adipocytes, brain and microflora. GENES & NUTRITION 2006; 1:189-212. [PMID: 18850214 PMCID: PMC3454837 DOI: 10.1007/bf02829968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The incidence of obesity and related metabolic disorders such as cardiovascular diseases and type 2 diabetes, are reaching worldwide epidemic proportions. It results from an imbalance between caloric intake and energy expenditure leading to excess energy storage, mostly due to genetic and environmental factors such as diet, food components and/or way of life. It is known since long that this balance is maintained to equilibrium by multiple mechanisms allowing the brain to sense the nutritional status of the body and adapt behavioral and metabolic responses to changes in fuel availability. In this review, we summarize selected aspects of the regulation of energy homeostasis, prevalently highlighting the complex relationships existing between the white adipose tissue, the central nervous system, the endogenous microbiota, and nutrition. We first describe how both the formation and functionality of adipose cells are strongly modulated by the diet before summarizing where and how the central nervous system integrates peripheral signals from the adipose tissue and/or the gastro-intestinal tract. Finally, after a short description of the intestinal commensal flora, rangingfrom its composition to its importance in immune surveillance, we enlarge the discussion on how nutrition modified this perfectly well-balanced ecosystem.
Collapse
Affiliation(s)
- L. Macia
- Laboratoire de Neuro-Immuno-Endocrinologie, Institut Pasteur de Lille /1 FR 142, 1, rue A. Calmette, BP 447, 59019 Lille cedex, France
| | - O. Viltart
- Unité de Neurosciences et de Physiologie Adaptatives SN4, Université de Lille I, 59655 Villeneuve d’Ascq, France
| | - C. Verwaerde
- Laboratoire de Neuro-Immuno-Endocrinologie, Institut Pasteur de Lille /1 FR 142, 1, rue A. Calmette, BP 447, 59019 Lille cedex, France
| | - M. Delacre
- Laboratoire de Neuro-Immuno-Endocrinologie, Institut Pasteur de Lille /1 FR 142, 1, rue A. Calmette, BP 447, 59019 Lille cedex, France
| | - A. Delanoye
- Laboratoire de Neuro-Immuno-Endocrinologie, Institut Pasteur de Lille /1 FR 142, 1, rue A. Calmette, BP 447, 59019 Lille cedex, France
| | - C. Grangette
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille / Institut de Biologie de Lille, 1, rue A. Calmette, BP 447, 59019 Lille cedex, France
| | - I. Wolowczuk
- Laboratoire de Neuro-Immuno-Endocrinologie, Institut Pasteur de Lille /1 FR 142, 1, rue A. Calmette, BP 447, 59019 Lille cedex, France
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Adipose tissue is a key player in metabolic homeostasis through its role as an energy depot and endocrine organ. The characterization of mouse models of lipodystrophy, in which adipose tissue development and function are impaired, has shed new light on the mechanisms by which adipose tissue dysregulation may contribute to conditions such as insulin resistance, fatty liver, and beta-cell toxicity. RECENT FINDINGS Here we review recent findings from mouse models with genetic alterations leading to reduced adipose tissue mass. The metabolic consequences depend on the basis for the adipose tissue reduction, and we classify mouse models into three categories based on whether they confer (1) lipoatrophy accompanied by insulin resistance, (2) reduced adipose tissue storage associated with enhanced energy expenditure, or (3) both lipoatrophic and energetic effects. SUMMARY Reductions in the capacity of adipose tissue to store triglycerides or to secrete adipokine hormones lead to altered lipid metabolism and insulin resistance. In contrast, depletion of fat stores by virtue of enhanced energy metabolism does not produce undesirable metabolic effects. However, enhanced energy metabolism cannot overcome the deleterious effects of impaired adipokine production, as revealed by studies of models with both lipoatrophic and energetic effects.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, USA.
| | | |
Collapse
|