1
|
Xiong Y, Chen Z, Xiang H, Liu Y, Wang Y. Polystyrene microplastics disrupt adrenal steroid synthesis in male mice via mitochondrial dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117528. [PMID: 39674024 DOI: 10.1016/j.ecoenv.2024.117528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Microplastics have gained significant social attention, as they can enter our bodies through food and drinking water. The adrenal gland is essential for the maintenance of metabolic homeostasis and stress responses. Nevertheless, the effects of microplastics on the steroid synthesis in the adrenal cortex was still unclear. In this study, through both in vivo and in vitro models, we found that polystyrene microplastics (PS-MPs) impaired adrenal steroid synthesis, leading to a reduction in corticosterone levels. In vivo, we further observed that chronic exposure to PS-MPs (0.25, 0.5 and 1 mg/d for 4 weeks) could induce abnormal mitochondrial morphology and functional disruptions of adrenal glands in male mice, along with an imbalance in cellular oxidative stress, manifested as increased level of reactive oxygen species, diminished antioxidant activity (glutathione peroxidase and superoxide dismutase). In vitro, these occurrences coincided with an elevated rate of cell apoptosis observed in adrenocortical cells following exposure to PS-MPs. We proposed that mitochondrial dysfunction not only directly influenced the biosynthetic processes of steroid hormones but also induced cell apoptosis through the initiation of cellular oxidative stress. The latter may represent a common mechanism underlying the multi-organ toxicity induced by PS-MPs in the body. Our findings would provide new insights for the development of more effective environmental protection measures and the reduction of plastic pollution.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zhe Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hanmin Xiang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Guadagnin AR, Peñagaricano F, Dahl GE, Laporta J. Programming effects of intrauterine hyperthermia on adrenal gland development. J Dairy Sci 2024; 107:6308-6321. [PMID: 38580145 DOI: 10.3168/jds.2023-24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Maternal heat stress during late pregnancy can lead to intrauterine hyperthermia and affect fetal hypothalamic-pituitary-adrenal axis development and function. Herein, we investigated the effects of chronic environmental heat stress exposure of Holstein cows in the last 2 mo of gestation on their offspring's adrenal gland histomorphology and transcriptome. Cows in their last 54 ± 5 d of gestation were either heat stressed (housed under the shade of a freestall barn) or provided heat stress abatement via active cooling (via water soakers and fans) during a subtropical summer (temperature-humidity index >68). Respiration rate (RR) and skin temperature (ST) were elevated in heat-stressed dams relative to the cows with access to heat abatement (23 breaths/min and 2°C higher for RR and ST, respectively). Heifers born to heat-stressed cows experienced heat stress in utero (HS), whereas heifers born to actively cooled cows did not (CL). The adrenal gland was harvested from 6 heifers per group that were euthanized at birth (d 0; n = 12) or 1 wk after weaning (d 63; n = 12). Circulating cortisol was measured from blood samples collected weekly throughout the preweaning period. At d 63, heifers that experienced HS while developing in utero had heavier adrenal glands, with a greater total tissue surface area and thickness of the zona glomerulosa (ZG), fasciculata (ZF), and reticularis (ZR), compared with CL heifers. In addition, the adrenal gland of HS heifers had fewer cells in the ZG, more and larger cells in the ZF, and larger cells in the ZR, relative to CL heifers. Although no changes in circulating cortisol were observed through the preweaning period, the transcriptomic profile of the adrenal tissue was altered by fetal exposure to hyperthermia. Both at birth and on d 63, approximately 30 pathways were differentially expressed in the adrenal glands of HS heifers relative to CL. These pathways were associated with immune function, inflammation, prolactin signaling, cell function, and calcium transport. Upstream regulators significantly activated or inhibited in the adrenal glands of heifers exposed to intrauterine hyperthermia were identified. Maternal exposure to heat stress during late gestation caused an enlargement of their offspring's adrenal glands by inducing ZG and ZF cell hypertrophy, and caused gene expression changes. These phenotypic, histological, and molecular changes in the adrenal gland might lead to alterations in stress, immune, and metabolic responses later in life.
Collapse
Affiliation(s)
- Anne R Guadagnin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
3
|
Knapczyk-Stwora K, Kozlowska A, Jastrzabek D, Grzesiak M, Slomczynska M, Koziorowski M. Impact of endocrine-active compounds on adrenal androgen production in pigs during neonatal period. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104435. [PMID: 38588759 DOI: 10.1016/j.etap.2024.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
This study investigated the impact of neonatal exposure to endocrine-active compounds (EACs): flutamide (antiandrogen), 4-tert-octylphenol (an estrogenic compound), and methoxychlor (an organochlorine insecticide exhibiting estrogenic, antiestrogenic and antiandrogenic activities) on androgen production within porcine adrenal glands. The expression of genes related to androgen synthesis and the level of androgen production were analyzed (i) in the adrenal glands of piglets exposed to EACs during the first 10 days of life (in vivo study), and (ii) in adrenal explants from sow-fed or formula-fed 10-day-old piglets incubated with EACs (ex vivo study). EACs affected the expression of genes linked to adrenal androgen biosynthesis. The prominent effect of methoxychlor on downregulation of StAR, CYP11A1 and HSD3B and upregulation of CYP17A1 and SULT2A1 were demonstrated. Furthermore, our study revealed divergent response to EACs between sow-fed and formula-fed piglets, suggesting that natural feeding may provide protection against adverse EACs effects, particularly those interfering with estrogens action.
Collapse
Affiliation(s)
- Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland.
| | - Aleksandra Kozlowska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland
| | - Damian Jastrzabek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland
| | - Malgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland
| | - Maria Slomczynska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland
| | - Marek Koziorowski
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland; Interdisciplinary Center for Preclinical and Clinical Research, University of Rzeszow, Werynia 2, Kolbuszowa 36-100, Poland
| |
Collapse
|
4
|
Pötzl B, Kürzinger L, Stopper H, Fassnacht M, Kurlbaum M, Dischinger U. Endocrine Disruptors: Focus on the Adrenal Cortex. Horm Metab Res 2024; 56:78-90. [PMID: 37884032 PMCID: PMC10764154 DOI: 10.1055/a-2198-9307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances known to interfere with endocrine homeostasis and promote adverse health outcomes. Their impact on the adrenal cortex, corticosteroids and their physiological role in the organism has not yet been sufficiently elucidated. In this review, we collect experimental and epidemiological evidence on adrenal disruption by relevant endocrine disruptors. In vitro data suggest significant alterations of gene expression, cell signalling, steroid production, steroid distribution, and action. Additionally, morphological studies revealed disturbances in tissue organization and development, local inflammation, and zone-specific hyperplasia. Finally, endocrine circuits, such as the hypothalamic-pituitary-adrenal axis, might be affected by EDCs. Many questions regarding the detection of steroidogenesis disruption and the effects of combined toxicity remain unanswered. Not only due to the diverse mode of action of adrenal steroids and their implication in many common diseases, there is no doubt that further research on endocrine disruption of the adrenocortical system is needed.
Collapse
Affiliation(s)
- Benedikt Pötzl
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Lydia Kürzinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of
Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| | - Max Kurlbaum
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
- Central Laboratory, Core Unit Clinical Mass Spectrometry, University
Hospital of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine I, Division of Endocrinology and
Diabetes, University Hospital of Würzburg, Würzburg,
Germany
| |
Collapse
|
5
|
Kim HS, Cheon YP, Lee SH. Effects of Nonylphenol on the Secretion of Catecholamines and Adrenocortical Hormones from Short-Term Incubated Rat Adrenal Glands. Dev Reprod 2023; 27:213-220. [PMID: 38292238 PMCID: PMC10824570 DOI: 10.12717/dr.2023.27.4.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 02/01/2024]
Abstract
Previously, we showed that a chronic-low-dose nonylphenol (NP) exposure resulted in histological changes with sexually dimorphic pattern in rat adrenal glands. We hypothesized that such structural changes are closely related to the hormonal secretory patterns. To test this hypothesis, we developed the short-term adrenal incubation method, and measured the levels of catecholamines and cortical steroids using the high-performance liquid chromatography with electrochemical detection (HPLC-ECD) and specific enzyme-linked immunosorbent assay, respectively. The norepinephrine (NE) levels in media from NP-treated female adrenal, except 100 pM NP, were significantly increased [control (CTL) vs 1 nM NP, p<0.001; vs 10 nM NP, p<0.05; vs 100 nM NP, p<0.001; vs 1 μM NP, p<0.01]. The NE secretion from male adrenal was higher when treated with 100 nM and 1 μM NP (CTL vs 100 nM NP, p<0.05; vs 1 μM NP, p<0.05, respectively). The aldosterone level in the female adrenal media treated with 100 pM NP was significantly decreased, on the other hand, that of media treated with 10 nM NP was significantly increased (CTL vs 100 pM NP, p<0.05; vs 10 nM NP, p<0.01). In male adrenal media, the aldosterone levels of 10 nM, 100 nM and 1 μM NP-treated media were significantly declined (CTL vs 10 nM NP, p<0.001; vs 100 nM NP, p<0.001; vs 1 μM NP, p<0.001). These results showed the NP treatment altered secretory pattern of aldosterone from adrenals of both sexes, showing sexual dimorphism. It may be helpful for understanding possible adrenal pathophysiology, and endocrine disrupting chemicals-related sexually dimorphic phenomena in adrenals.
Collapse
Affiliation(s)
- Hee-Su Kim
- Department of Biotechnology, Sangmyung
University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and
Physiology, School of Biological Sciences and Chemistry, Sungshin
University, Seoul 02844, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung
University, Seoul 03016, Korea
| |
Collapse
|
6
|
Mangion J, Gruppetta M. The environmental burden on endocrine neoplasia: a review on the documented impact of endocrine disrupting chemicals. Expert Rev Endocrinol Metab 2023; 18:513-524. [PMID: 37840278 DOI: 10.1080/17446651.2023.2268215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Endocrine-disrupting chemicals (EDCs) have gained more importance in the past decade, mostly due to their role in the pathogenesis of disease, especially in carcinogenesis. However, there is limited literature on the environmental burden on some of the less common endocrine neoplasia. AREAS COVERED This review focuses on both observational and experimental studies linking exposure to EDCs and endocrine neoplasia specifically pituitary, thyroid, adrenal and neuroendocrine tumors. Following PRISMA guidelines, a search of English peer-reviewed literature was performed using Medline and Google Scholar, giving preference to recent publications. EXPERT OPINION Exposure to EDC occurs not only in the household but also at work, whether it is in the office, factory, or farm and during transport from one location to another. Many studies have evaluated the effect of single environmental agents; however, humans are rarely exposed to only one EDC. Different EDCs and different levels of exposure may interact together to provide either a synergistic and/or an antagonistic disruption on human health, and hence a complex mechanism to elucidate. The ultimate adverse effect is difficult to predict, as it is not only influenced by the degree of exposure, but also by genetics, lifestyle, comorbidities, and other stressors.
Collapse
Affiliation(s)
- Jessica Mangion
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Mater Dei Hospital, Msida, Malta
- Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - Mark Gruppetta
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Mater Dei Hospital, Msida, Malta
- Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
7
|
Li Z, Robaire B, Hales BF. The Organophosphate Esters Used as Flame Retardants and Plasticizers Affect H295R Adrenal Cell Phenotypes and Functions. Endocrinology 2023; 164:bqad119. [PMID: 37522340 PMCID: PMC10424175 DOI: 10.1210/endocr/bqad119] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Adverse effects associated with exposure to brominated flame retardants have led to regulations for their use and their replacement with organophosphate esters (OPEs). However, little is known about the impact of OPEs on the adrenal, a vital endocrine gland. Here, we used a high-content screening approach to elucidate the effects of OPEs on H295R human adrenal cell phenotypic endpoints and function. The effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a legacy brominated flame retardant, on H295R cell cytotoxicity, oxidative stress, mitochondria, lysosomes, and lipid droplets were compared with those of 6 OPEs. Most OPEs reduced oxidative stress, increased the numbers of mitochondria, decreased lysosomes, and increased lipid droplets. Two potency ranking approaches, the lowest benchmark concentration/administered equivalent dose methods and Toxicological Prioritization Index analyses, revealed that the triaryl-OPEs (isopropylated triphenyl phosphate [IPPP], tris(methylphenyl) phosphate [TMPP], and triphenyl phosphate [TPHP]) and 1 nontriaryl OPE (tris(1,3-dichloro-2-propyl) phosphate [TDCIPP]) were more potent than BDE-47. The steroidogenic activity of adrenal cells in the presence or absence of forskolin, a steroidogenic stimulus, was determined after exposure to triaryl-OPEs. The basal production of cortisol and aldosterone was increased by IPPP but decreased by TPHP or TMPP exposure; the response to forskolin was not affected by these OPEs. All 3 triaryl OPEs altered the expression of rate-limiting enzymes involved in cholesterol and steroid biosynthesis; CYP11B1 and CYP11B2 were the most prominently affected targets. The OPE chemical-specific effects on cortisol and aldosterone production were best explained by alterations in STAR expression. Thus, the adrenal may be an important target for these endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
8
|
Egalini F, Marinelli L, Rossi M, Motta G, Prencipe N, Rossetto Giaccherino R, Pagano L, Grottoli S, Giordano R. Endocrine disrupting chemicals: effects on pituitary, thyroid and adrenal glands. Endocrine 2022; 78:395-405. [PMID: 35604630 PMCID: PMC9637063 DOI: 10.1007/s12020-022-03076-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In recent years, scientific research has increasingly focused on Endocrine Disrupting Chemicals (EDCs) and demonstrated their relevant role in the functional impairment of endocrine glands. This induced regulatory authorities to ban some of these compounds and to carefully investigate others in order to prevent EDCs-related conditions. As a result, we witnessed a growing awareness and interest on this topic. AIMS This paper aims to summarize current evidence regarding the detrimental effects of EDCs on pivotal endocrine glands like pituitary, thyroid and adrenal ones. Particularly, we directed our attention on the known and the hypothesized mechanisms of endocrine dysfunction brought by EDCs. We also gave a glimpse on recent findings from pioneering studies that could in the future shed a light on the pathophysiology of well-known, but poorly understood, endocrine diseases like hormone-producing adenomas. CONCLUSIONS Although intriguing, studies on endocrine dysfunctions brought by EDCs are challenging, in particular when investigating long-term effects of EDCs on humans. However, undoubtedly, it represents a new intriguing field of science research.
Collapse
Affiliation(s)
- Filippo Egalini
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Lorenzo Marinelli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Mattia Rossi
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giovanna Motta
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Nunzia Prencipe
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Ruth Rossetto Giaccherino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Loredana Pagano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Silvia Grottoli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Roberta Giordano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Department of Biological and Clinical Science, University of Turin, Regione Gonzole 10, 10043, Orbassano (TO), Italy
| |
Collapse
|
9
|
Yang F, Li Y, Xie Y, Yao W, Ren F. Diethyl phosphate disrupts hypothalamus-pituitary-adrenal axis endocrine hormones via nuclear receptors GR and Nur77: Integration of evidences from in vivo, in vitro and in silico approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157015. [PMID: 35777568 DOI: 10.1016/j.scitotenv.2022.157015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plenty of population epidemiology and cohort studies have found dialkyl phosphates (DAPs) in the urine were related to endocrine hormone disorders. However, we did not know whether these effects were caused by parent organophosphorus pesticides (OPs) or metabolite DAPs, especially the non-specific metabolite diethyl phosphate (DEP), which was the metabolic end product of most widely used diethyl OPs. In this study, animal experiments (in vivo), cell experiments (in vitro), small molecule-protein binding interaction experiments and computer molecular simulations (in silico) were used to explore the disturbing effects and molecular mechanisms of DEP on the hypothalamic-pituitary-adrenal (HPA) axis endocrine hormones. The animal experiments showed that chronic DEP exposure significantly disturbed the serum contents of HPA axis hormones in adult male rats. The target genes of glucocorticoid receptor (GR) in rat liver, including 11β-hsd1 and Pepck1 and PEPCK protein expressions, were down-regulated. Moreover, the gluconeogenic abilities of rats were impaired. However, it did not affect the expression of GR in the rat hypothalamus. These results indicated that the physiological functions of glucocorticoids and GR were damaged. Furthermore, spectroscopy experiments, cell experiments, molecular docking and molecular dynamics simulations also suggested that DEP can bind to nuclear receptors GR and Nur77, affecting their transcription factor functions, and the transcriptional expression levels of their downstream target genes were reduced. The biosynthesis and secretion of adrenocorticotropic hormone and glucocorticoids were blocked. Therefore, DEP can inhibit the production and physiological functions of HPA axis endocrine hormones by disrupting these related proteins and antagonizing nuclear receptors. These results were considered to provide a theoretical basis for strictly controlling the residue limits of OPs and their metabolites in foods, agricultural products and the environment. They also revealed new targets for evaluating the toxicities and risks of pesticide metabolites.
Collapse
Affiliation(s)
- Fangwei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Yixuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu Province 214122, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, and Beijing Laboratory of Food Quality and Safety, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
10
|
Liu M, Chen H, Dai H, Wang Y, Li J, Tian F, Li Z, Ge RS. Effects of bis (2-butoxyethyl) phthalate on adrenocortical function in male rats in puberty partially via down-regulating NR5A1/NR4A1/NR4A2 pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:2419-2433. [PMID: 35762508 DOI: 10.1002/tox.23607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Phthalates may interfere with the biosynthesis of steroid hormones in the adrenal cortex. Bis (2-butoxyethyl) phthalate (BBOP) is a phthalate containing oxygen atoms in the alcohol moiety. In this study, 35-day-old male Sprague-Dawley rats were daily gavaged with BBOP (0, 10, 100, 250, and 500 mg/kg body weight) for 21 days. BBOP did not affect the weight of body and adrenal glands. BBOP significantly reduced serum corticosterone levels at 250 and 500 mg/kg, and lowered aldosterone level at 500 mg/kg without affecting adrenocorticotropic hormone. BBOP did not alter the thickness of the adrenal cortex. BBOP significantly down-regulated the expression of steroidogenesis-related genes (Scarb1, Star, Cyp11a1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a1, and Nr4a2) and proteins, and antioxidant enzymes (Sod1, Sod2, Gpx1, and Cat) and their proteins, while up-regulating the expression of Mc2r and Agtr1a at various doses. BBOP reduced the phosphorylation of AKT1, AKT2, and ERK1/2, as well as the levels of SIRT1 and PGC1α without affecting the phosphorylation of AMPK. BBOP significantly induced the production of reactive oxygen species and apoptosis rate in H295R cells at 100 μM and higher after 24 h of treatment. In conclusion, male rats exposed to BBOP in puberty have significant reduction of steroid biosynthesis with a potential mechanism that is involved in the decrease in the phosphorylation of AKT1, AKT2, ERK1/2, as well as SIRT1 and PGC1α and increase in ROS.
Collapse
Affiliation(s)
- Miaoqing Liu
- Department of Pediatric Surgery and Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiqiong Chen
- Department of Pediatric Surgery and Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haipeng Dai
- Department of Pediatric Surgery and Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fuhong Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongrong Li
- Department of Pediatric Surgery and Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Dasmahapatra AK, Tchounwou PB. Histopathological evaluation of the interrenal gland (adrenal homolog) of Japanese medaka (Oryzias latipes) exposed to graphene oxide. ENVIRONMENTAL TOXICOLOGY 2022; 37:2460-2482. [PMID: 35809259 PMCID: PMC9463118 DOI: 10.1002/tox.23610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 05/23/2023]
Abstract
Due to unique physicochemical properties and wide industrial and biomedical applications, graphene oxide (GO) is ubiquitous in the aquatic ecosystem. Using Japanese medaka (Oryzias latipes) fish as a model, we previously demonstrated minimal endocrine disrupting (ED) effects of GO on reproductive organs, and thyroids. Current study investigated the ED-effects of GO on the interrenal gland (IRG) of medaka. Breeding pairs of adult male and female fish were exposed to 0 mg/L (control) or 20 mg/L GO by continuous immersion for 96 h, or to 0 or 100 μg/g GO by intraperitoneal administration. Also, 1 day post-hatch (dph) larvae were exposed to different concentrations of GO (2.5-20 mg/L) for 96 h. IRG was evaluated by immunohistochemical techniques after 21 days depuration in adults and 6 weeks in larvae. IRG cells were counted and the nuclear area was measured in hematoxylin-eosin stained sections using ImageJ software. We found that IRG is distributed adjacent to the posterior cardinal vein and its branches within the head kidney. Columnar/oval shaped periodic acid-Schiff negative, tyrosine hydroxylase positive cells are arranged either in a single, or in groups, sometimes encircling a sinusoid, or in a straight chord, laying adjacent to the endothelium of the cardinal vein, and having eosinophilic cytoplasm with round/oval basophilic nuclei. GO effect on nuclei and cell population in IRG was inconsistent; depending on exposure route, sex, and/or age of the fish. Also, because of its high adsorptive property and sharp edges, GO probably agglomerated on IRG, and induced physical injury, and ED effects.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- RCMI Center for Environmental HealthJackson State UniversityJacksonMississippiUSA
- Department of Biomolecular Sciences, Environmental Toxicology DivisionUniversity of MississippiOxfordMississippiUSA
| | - Paul B. Tchounwou
- RCMI Center for Environmental HealthJackson State UniversityJacksonMississippiUSA
| |
Collapse
|
12
|
Guarnotta V, Amodei R, Frasca F, Aversa A, Giordano C. Impact of Chemical Endocrine Disruptors and Hormone Modulators on the Endocrine System. Int J Mol Sci 2022; 23:ijms23105710. [PMID: 35628520 PMCID: PMC9145289 DOI: 10.3390/ijms23105710] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
There is growing concern regarding the health and safety issues of endocrine-disrupting chemicals (EDCs). Long-term exposure to EDCs has alarming adverse health effects through both hormone-direct and hormone-indirect pathways. Non-chemical agents, including physical agents such as artificial light, radiation, temperature, and stress exposure, are currently poorly investigated, even though they can seriously affect the endocrine system, by modulation of hormonal action. Several mechanisms have been suggested to explain the interference of EDCs with hormonal activity. However, difficulty in quantifying the exposure, low standardization of studies, and the presence of confounding factors do not allow the establishment of a causal relationship between endocrine disorders and exposure to specific toxic agents. In this review, we focus on recent findings on the effects of EDCs and hormone system modulators on the endocrine system, including the thyroid, parathyroid glands, adrenal steroidogenesis, beta-cell function, and male and female reproductive function.
Collapse
Affiliation(s)
- Valentina Guarnotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
| | - Roberta Amodei
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
| | - Francesco Frasca
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, 95122 Catania, Italy;
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Section of Endocrinology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Carla Giordano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
- Correspondence: ; Tel.: +39-0916552110
| |
Collapse
|
13
|
Akane H, Toyoda T, Mizuta Y, Cho YM, Ide T, Kosaka T, Tajima H, Aoyama H, Ogawa K. Histopathological and immunohistochemical evaluation for detecting changes in blood hormone levels caused by endocrine disruptors in a 28-day repeated-dose study in rats. J Appl Toxicol 2022; 42:1603-1617. [PMID: 35385133 DOI: 10.1002/jat.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
Although measurements of blood hormone levels in rodent toxicological studies can provide important information on the mechanisms of toxicity and extrapolation to humans, there are several difficulties such as large individual differences and limited sample volume. To develop a more simplified method that does not depend solely on blood samples, we examined the possible application of immunohistochemistry for detecting endocrine disruptors in short-term studies. Aminotriazole (AMT), propylthiouracil (PTU), phenobarbital, aminoglutethimide (AGT), estradiol, and vitamin D3 were administered orally to 6-week-old male and female SD rats (five/group) for 28 days. Measurements of serum hormone levels revealed decreases in triiodothyronine (T3) and thyroxine (T4) in the AMT and PTU groups, an increase in thyroid stimulating hormone (TSH) in the AMT, PTU, and AGT groups, and an increase in adrenocorticotrophic hormone in the AGT group. Increased thyroid, pituitary, and adrenal gland weights; histopathological lesions, including follicular hypertrophy/hyperplasia, hypertrophy/vacuolation of anterior pituitary cells, and increased adrenocortical vacuolation were observed in association with the hormone level changes. Immunohistochemical analysis revealed a decreased T4 level in the thyroid gland of the AMT and PTU groups and an increased area of TSH positive immunostaining in the pituitary gland of the AMT, PTU, and AGT groups, consistent with the changes in serum T4 and TSH levels, respectively. These results suggest that histopathological analysis and immunohistochemistry for T4 and TSH might be useful and sensitive methods of detecting thyroid dysfunction, and that combining organ weight measurements is a reliable parameter of detecting endocrine disruptors.
Collapse
Affiliation(s)
- Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Yasuko Mizuta
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Tetsuya Ide
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Tadashi Kosaka
- Toxicology Division, Institute of Environmental Toxicology, Joso, Japan
| | - Hitoshi Tajima
- Toxicology Division, Institute of Environmental Toxicology, Joso, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, Joso, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
14
|
Histopathology of Endocrine Organs of Miranda's White-Lipped Frogs (Leptodactylus macrosternum) from Cultivated and Non-Cultivated Regions in Semi-Arid Northeastern Brazil. J Comp Pathol 2022; 192:1-10. [DOI: 10.1016/j.jcpa.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/29/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
|
15
|
Yang Y, Wang C, Shen H, Fan H, Liu J, Wu N. Cis-bifenthrin inhibits cortisol and aldosterone biosynthesis in human adrenocortical H295R cells via cAMP signaling cascade. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103784. [PMID: 34896276 DOI: 10.1016/j.etap.2021.103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Cis-bifenthrin (cis-BF) is a common-used pyrethroid insecticide frequently detected in environmental and biological matrices. Mounting evidence highlights the endocrine disrupting effects of cis-BF due to anti-estrogenic or anti-androgenic activity. However, little is known about the exposure effects of cis-BF on adrenal cortex function. In this study, effects of cis-BF on biosynthesis of adrenal steroids, as well as the potential mechanisms were investigated in human adrenocortical carcinoma (H295R) cells. Cis-BF decreased basal production levels of cortisol and aldosterone, as well as cAMP-induced production of cortisol. Both he basal and cAMP-stimulated transcriptional levels of several steroidogenic genes were significantly down-regulated by cis-BF. As an important rate-limiting enzyme in steroidogenesis, the protein level of StAR was prohibited by cis-BF on both basal and cAMP-induced conditions. Intracellular level of cAMP was significantly reduced by cis-BF. Overall, these data suggest that cis-BF may inhibit the biosynthesis of cortisol and aldosterone via disrupting cAMP signaling cascade.
Collapse
Affiliation(s)
- Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China.
| | - Chunlei Wang
- Department of Public Health, Yu Hang No.2 People's Hospital, Hangzhou 311100, China
| | - Hong Shen
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Hongliang Fan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Jing Liu
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanxiang Wu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| |
Collapse
|
16
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
17
|
Malanchini M, Engelhardt LE, Raffington LA, Sabhlok A, Grotzinger AD, Briley DA, Madole JW, Freis SM, Patterson MW, Harden KP, Tucker-Drob EM. Weak and uneven associations of home, neighborhood, and school environments with stress hormone output across multiple timescales. Mol Psychiatry 2021; 26:4823-4838. [PMID: 32366955 PMCID: PMC9030635 DOI: 10.1038/s41380-020-0747-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 01/15/2023]
Abstract
The progression of lifelong trajectories of socioeconomic inequalities in health and mortality begins in childhood. Dysregulation in cortisol, a stress hormone that is the primary output of the hypothalamus-pituitary-adrenal (HPA) axis, has been hypothesized to be a mechanism for how early environmental adversity compromises health. However, despite the popularity of cortisol as a biomarker for stress and adversity, little is known about whether cortisol output differs in children being raised in socioeconomically disadvantaged environments. Here, we show that there are few differences between advantaged and disadvantaged children in their cortisol output. In 8-14-year-old children from the population-based Texas Twin Project, we measured cortisol output at three different timescales: (a) diurnal fluctuation in salivary cortisol (n = 400), (b) salivary cortisol reactivity and recovery after exposure to the Trier Social Stress Test (n = 444), and (c) cortisol concentration in hair (n = 1210). These measures converged on two moderately correlated, yet distinguishable, dimensions of HPA function. We tested differences in cortisol output across nine aspects of social disadvantage at the home (e.g., family socioeconomic status), school (e.g., average levels of academic achievement), and neighborhood (e.g., concentrated poverty). Children living in neighborhoods with higher concentrated poverty had higher diurnal cortisol output, as measured in saliva; otherwise, child cortisol output was unrelated to any other aspect of social disadvantage. Overall, we find limited support for alteration in HPA axis functioning as a general mechanism for the health consequences of socioeconomic inequality in childhood.
Collapse
Affiliation(s)
- Margherita Malanchini
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK.
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
- Population research Center, The University of Texas at Austin, Austin, TX, USA.
| | - Laura E Engelhardt
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Laurel A Raffington
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Population research Center, The University of Texas at Austin, Austin, TX, USA
| | - Aditi Sabhlok
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew D Grotzinger
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Daniel A Briley
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - James W Madole
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Samantha M Freis
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Megan W Patterson
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - K Paige Harden
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Population research Center, The University of Texas at Austin, Austin, TX, USA
| | - Elliot M Tucker-Drob
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
- Population research Center, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
18
|
King MD, Elliott JE, Williams TD. Effects of petroleum exposure on birds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142834. [PMID: 33109373 DOI: 10.1016/j.scitotenv.2020.142834] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Birds are vulnerable to petroleum pollution, and exposure has a range of negative effects resulting from plumage fouling, systemic toxicity, and embryotoxicity. Recent research has not been synthesized since Leighton's 1993 review despite the continued discharge of conventional petroleum, including high-volume oil spills and chronic oil pollution, as well as the emergence of understudied unconventional crude oil types. To address this, we reviewed the individual-level effects of crude oil and refined fuel exposure in avifauna with peer-reviewed articles published 1993-2020 to provide a critical synthesis of the state of the science. We also sought to answer how unconventional crude petroleum effects compare with conventional crude oil. Relevant knowledge gaps and research challenges were identified. The resulting review examines avian exposure to petroleum and synthesizes advances regarding the physical effects of oil hydrocarbons on feather structure and function, as well the toxic effects of inhaled or ingested oil, embryotoxicity, and how exposure affects broader scale endpoints related to behavior, reproduction, and survival. Another outcome of the review was the knowledge gaps and challenges identified. The first finding was a paucity of oil ingestion rate estimates in birds. Characterizing environmentally realistic exposure and ingestion rates is a higher research priority than additional conventional oral dosing experiments. Second, there is an absence of toxicity data for unconventional crude petroleum. Although the effects of air and water contamination in the Canadian oil sands region have received attention, toxicity data for direct exposure to unrefined bitumen produced there in high volumes and other such unconventional oil types are needed. Third, we encountered barriers to the interpretation, replication, broad relevance, and comparability of studies. We therefore propose best practices and promising technological advancements for researchers. This review consolidates our understanding of petroleum's effects on birds and points a way forward for researchers and resource managers.
Collapse
Affiliation(s)
- Mason D King
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - John E Elliott
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC V4K 3N2, Canada.
| | - Tony D Williams
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
19
|
Faruk EM, Alasmari WA, Fouad H, Nafea OE, Hasan RAA. Extracellular vesicles derived from bone marrow mesenchymal stem cells repair functional and structural rat adrenal gland damage induced by fluoride. Life Sci 2021; 270:119122. [PMID: 33508294 DOI: 10.1016/j.lfs.2021.119122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
The adrenal glands have striking morpho-biochemical features that render them vulnerable to the effects of toxins. AIMS This study was conducted to explore the therapeutic utility of extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) against fluoride-induced adrenal toxicity. MATERIALS AND METHODS The work included isolation and further identification of BMSC-EVs by transmission electron microscopy and flow cytometric analysis. Adrenal toxicity in rats was induced by oral administration of 300 ppm of sodium fluoride (NaF) in drinking water for 60 days followed by a single dose injection of BMSC-EVs. The effects of BMSC-EVs against NaF was evaluated by adrenal oxidant/antioxidant biomarkers, hormonal assay of plasma adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) and mRNA gene expression quantitation for adrenal cortical steroidogenic pathway-encoding genes. Histopathological examination of the adrenal tissue was performed. KEY FINDINGS BMSC-EVs were effectively isolated and characterized. NaF exposure decreased adrenal superoxide dismutase and catalase activities, increased adrenal malondialdehyde levels, elevated plasma ACTH, diminished CORT concentrations and downregulated the adrenal cortical steroidogenic pathway-encoding genes. In addition, NaF-induced marked adrenal histopathological lesions. SIGNIFICANCE BMSC-EVs treatment repaired damaged adrenal tissue and recovered its function greatly following NaF consumption. BMSC-EVs reversed the toxic effects of NaF and reprogramed injured adrenal cells by activating regenerative processes.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Hanan Fouad
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Rehab Abd Allah Hasan
- Department of Histology and Cell Biology, Faculty of Medicine for Girls (AFMG), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Jagodić J, Rovčanin B, Paunović I, Jovanović M, Gavrović-Jankulović M, Manojlović D, Stojsavljević A. The first insight into the trace element status of human adrenal gland accompanied by elemental alterations in adrenal adenomas. J Trace Elem Med Biol 2021; 63:126658. [PMID: 33035811 DOI: 10.1016/j.jtemb.2020.126658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The baseline status of trace metals in adrenal tissue is unresolved, while the elemental profile for any adrenal pathology has not been examined so far. This study aimed to determine the baseline status of important toxic (Ni, As, Cd, Pb, Th, U) and essential trace elements (Mn, Co, Cu, Zn, Se) in healthy adrenal tissues (HATs) as well as to examine whether there are alterations in the elemental composition of adenomatous adrenal tissues (AATs). Furthermore, this study aimed to find potential trace metals that could play a role in the pathogenesis of adrenal adenoma (AA). METHODS The study included 45 patients diagnosed with AA. Impacts of relevant parameters such as gender, age, smoking habits and nodular sizes were considered. All samples were subjected to microwave digestion and the trace elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS This is the first study that provided an insight into the elemental status of HATs. It was also shown that AATs had altered trace metal contents. Compared to HATs, the most significant findings were related to the high content of essential (Cu, Mn, Se, Zn) and Pb as a non-essential metal. Although gender, age and smoking habits had a modest effect on metal profiles, the most significant alterations were related to the nodular diameter above 4 cm, indicating that the growth of benign tumor could influence changes in elemental composition. CONCLUSION For the first time the baseline contents of essential and toxic trace metals in HATs were determined. The results of this study may highlight the role of toxic and essential trace metals in AAs and could provide new insights into the molecular basis of pathophysiological changes caused by the hazardous effects of trace metals on adrenal structure and function.
Collapse
Affiliation(s)
- Jovana Jagodić
- Department of Analytical Chemistry, University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Branislav Rovčanin
- Department of Endocrine Surgery, Faculty of Medicine, University of Belgrade, Clinical Center of Serbia, Belgrade, Serbia; Center for Endocrine Surgery, Clinical Center of Serbia, Dr Subotića 13, Belgrade, Serbia
| | - Ivan Paunović
- Department of Endocrine Surgery, Faculty of Medicine, University of Belgrade, Clinical Center of Serbia, Belgrade, Serbia; Center for Endocrine Surgery, Clinical Center of Serbia, Dr Subotića 13, Belgrade, Serbia
| | - Milan Jovanović
- Department of Endocrine Surgery, Faculty of Medicine, University of Belgrade, Clinical Center of Serbia, Belgrade, Serbia; Center for Endocrine Surgery, Clinical Center of Serbia, Dr Subotića 13, Belgrade, Serbia
| | - Marija Gavrović-Jankulović
- Department of Biochemistry, University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Dragan Manojlović
- Department of Analytical Chemistry, University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia; Departments Ecology, Management of Natural Resources and Chemical Engineering, South Ural State University, Lenin Prospect 76, Chelyabinsk, Russia
| | - Aleksandar Stojsavljević
- Department of Analytical Chemistry, University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, Belgrade, Serbia; Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
21
|
Mallia V, Verhaegen S, Styrishave B, Eriksen GS, Johannsen ML, Ropstad E, Uhlig S. Microcystins and Microcystis aeruginosa PCC7806 extracts modulate steroidogenesis differentially in the human H295R adrenal model. PLoS One 2020; 15:e0244000. [PMID: 33320886 PMCID: PMC7737990 DOI: 10.1371/journal.pone.0244000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the potential interference of cyanobacterial metabolites, in particular microcystins (MCs), with steroid hormone biosynthesis. Steroid hormones control many fundamental processes in an organism, thus alteration of their tissue concentrations may affect normal homeostasis. We used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to investigate the modulation of 14 hormones involved in the adrenal steroid biosynthesis pathway using forskolin-treated H295R cells, following exposure with either microcystin-LR (MC-LR) alone, a mixture made up of MC-LR together with eight other MCs and nodularin-R (NOD-R), or extracts from the MC-LR-producing Microcystis aeruginosa PCC7806 strain or its MC-deficient mutant PCC7806mcyB−. Production of 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) was increased in the presence of MC-LR in a dose-dependent manner, indicating an inhibitory effect on 3β-hydroxysteroid dehydrogenase (3β-HSD). This effect was not observed following exposure with a MCs/NOD-R mixture, and thus the effect of MC-LR on 3β-HSD appears to be stronger than for other congeners. Exposure to extracts from both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− had an opposite effect on 3β-HSD, i.e. concentrations of pregnenolone, 17-hydroxypregnenolone and DHEA were significantly decreased, showing that there are other cyanobacterial metabolites that outcompete the effect of MC-LR, and possibly result instead in net-induction. Another finding was a possible concentration-dependent inhibition of CYP21A2 or CYP11β1, which catalyse oxidation reactions leading to cortisol and cortisone, by MC-LR and the MCs/NOD-R mixture. However, both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB− extracts had an opposite effect resulting in a substantial increase in cortisol levels. Our results suggest that MCs can modulate steroidogenesis, but the net effect of the M. aeruginosa metabolome on steroidogenesis is different from that of pure MC-LR and independent of MC production.
Collapse
Affiliation(s)
- Vittoria Mallia
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Steven Verhaegen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Bjarne Styrishave
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Malene Louise Johannsen
- Faculty of Health and Medical Sciences, Toxicology and Drug Metabolism Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Erik Ropstad
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| |
Collapse
|
22
|
Di Lorenzo M, Sciarrillo R, Rosati L, Sellitti A, Barra T, De Luca A, Laforgia V, De Falco M. Effects of alkylphenols mixture on the adrenal gland of the lizard Podarcis sicula. CHEMOSPHERE 2020; 258:127239. [PMID: 32535440 DOI: 10.1016/j.chemosphere.2020.127239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 05/20/2023]
Abstract
Alkylphenols (AP) are widespread environmental compounds belonging to the large family of substances known as Endocrine Disrupting Chemicals (EDCs). The present study was carried out to assess the effects of Octylphenol (OP) alone and in combination with Nonylphenol (NP) on the hypothalamus-pituitary-adrenal gland (HPA) axis of the lizard Podarcis sicula. Lizards are good bioindicators due to their features such as wide distribution, large population and good sensitivity to contaminants. Results obtained showed a time and dose-dependent stimulation of the HPA together with a high variation of both catecholamine plasma levels and greater vascularization and hypertrophy of steroidogenic cord of adrenal gland after both OP and OP + NP treatments. Interestingly, the OP + NP mixture treatment has provoked a state of stress of the adrenal gland which in fact appeared to be characterized by the presence of a marked macrophage infiltration which can be seen especially close to the connective capsule surrounding the gland. This macrophage infiltration could be an evidence of a particularly pronounced inflammatory state to indicate, probably, an animal's response to a non-physiological situation.
Collapse
Affiliation(s)
- Mariana Di Lorenzo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Rosaria Sciarrillo
- Department of Biological and Environmental Sciences, University of Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Anna Sellitti
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Teresa Barra
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Maria De Falco
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy.
| |
Collapse
|
23
|
Di Lorenzo M, Barra T, Rosati L, Valiante S, Capaldo A, De Falco M, Laforgia V. Adrenal gland response to endocrine disrupting chemicals in fishes, amphibians and reptiles: A comparative overview. Gen Comp Endocrinol 2020; 297:113550. [PMID: 32679158 DOI: 10.1016/j.ygcen.2020.113550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
The adrenal gland is an essential component of the body stress response; it is formed by two portions: a steroidogenic and a chromaffin tissue. Despite the anatomy of adrenal gland is different among classes of vertebrates, the hormones produced are almost the same. During stress, these hormones contribute to body homeostasis and maintenance of ion balance. The adrenal gland is very sensitive to toxic compounds, many of which behave like endocrine-disruptor chemicals (EDCs). They contribute to alter the endocrine system in wildlife and humans and are considered as possible responsible of the decline of several vertebrate ectotherms. Considering that EDCs regularly can be found in all environmental matrices, the aim of this review is to collect information about the impact of these chemical compounds on the adrenal gland of fishes, amphibians and reptiles. In particular, this review shows the different behavior of these "sentinel species" when they are exposed to stress condition. The data supplied in this review can help to further elucidate the role of EDCs and their harmful impact on the survival of these vertebrates.
Collapse
Affiliation(s)
- Mariana Di Lorenzo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy.
| | - Teresa Barra
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
24
|
Tochitani T, Yamashita A, Matsumoto I, Kouchi M, Fujii Y, Miyawaki I. Dose- and time-dependent changes in blood and adrenal levels of multiple steroids in rats after administration of ketoconazole with or without ACTH. J Toxicol Sci 2019; 44:601-610. [PMID: 31474741 DOI: 10.2131/jts.44.601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To verify simultaneous measurement of blood levels of adrenal steroids as a tool to evaluate drug effects on adrenal steroidogenesis, dose- and time-dependent changes in blood levels of corticosterone and its precursors (pregnenolone, progesterone and deoxycorticosterone), as well as their relationship with the pathological changes in the adrenal gland, were examined in rats dosed with ketoconazole (KET). Also examined were whether effects on adrenal steroidogenesis that were not obvious in the blood steroid levels after sole administration of KET could be revealed by post-administration of ACTH, and the correlation between the blood and adrenal steroid levels. Male rats were dosed with 15, 50, or 150 mg/kg of KET for 1 or 7 days with or without ACTH, and the blood and adrenal concentrations of the steroids were measured. KET increased the blood deoxycorticosterone level even at a dose level and time point at which histopathological changes were not obvious. KET-induced changes in blood levels of other steroids were revealed by ACTH, and the blood and adrenal levels were generally correlated especially after ACTH post-administration. Thus, blood levels of adrenal steroids, including precursors, can be a sensitive and early marker of drug effects on the adrenal steroidogenesis that reflect adrenal levels of steroids. The usefulness of the multiple steroid measurement as a method for mechanism investigation of drug effects on the adrenal gland can be further enhanced by ACTH.
Collapse
Affiliation(s)
| | | | - Izumi Matsumoto
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| | - Mami Kouchi
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| | - Yuta Fujii
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| |
Collapse
|
25
|
Tochitani T, Yamashita A, Matsumoto I, Kouchi M, Fujii Y, Yamada T, Miyawaki I. Physiological and drug-induced changes in blood levels of adrenal steroids and their precursors in cynomolgus monkeys: An application of steroid profiling by LC-MS/MS for evaluation of the adrenal toxicity. J Toxicol Sci 2019; 44:575-584. [PMID: 31474739 DOI: 10.2131/jts.44.575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The adrenal gland is the most common toxicological target of drugs within the endocrine system, and inhibition of adrenal steroidogenesis can be fatal in humans. However, methods to evaluate the adrenal toxicity are limited. The aim of the present study was to verify the usefulness of simultaneous measurement of blood levels of multiple adrenal steroids, including precursors, as a method to evaluate drug effects on adrenal steroidogenesis in cynomolgus monkeys. With this aim, physiological and drug-induced changes in blood levels of adrenal steroids, including cortisol, aldosterone, androgen, and their precursors were examined. First, for physiological changes, intraday and interday changes in blood steroid levels were examined in male and female cynomolgus monkeys. The animals showed circadian changes in steroid levels that are similar to those in humans, while interday changes were relatively small in males. Next, using males, changes in blood steroid levels induced by ketoconazole and metyrapone were examined, which suppress adrenal steroidogenesis via inhibition of CYP enzymes. Consistent with rats and humans, both ketoconazole and metyrapone increased the deoxycorticosterone and deoxycortisol levels, probably via CYP11B1 inhibition, and the increase was observed earlier and with greater dynamic range than the changes in cortisol level. Changes in other steroid levels reflecting the drug mechanisms were also observed. In conclusion, this study showed that in cynomolgus monkeys, simultaneous measurement of blood levels of adrenal steroids, including precursors, can be a valuable method to sensitively evaluate drug effects on adrenal steroidogenesis and to investigate the underlying mechanisms.
Collapse
Affiliation(s)
| | | | - Izumi Matsumoto
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| | - Mami Kouchi
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| | - Yuta Fujii
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| | - Toru Yamada
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd
| |
Collapse
|
26
|
Akram M, Patt M, Kaserer T, Temml V, Waratchareeyakul W, Kratschmar DV, Haupenthal J, Hartmann RW, Odermatt A, Schuster D. Identification of the fungicide epoxiconazole by virtual screening and biological assessment as inhibitor of human 11β-hydroxylase and aldosterone synthase. J Steroid Biochem Mol Biol 2019; 192:105358. [PMID: 30965118 DOI: 10.1016/j.jsbmb.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/22/2022]
Abstract
Humans are constantly exposed to a multitude of environmental chemicals that may disturb endocrine functions. It is crucial to identify such chemicals and uncover their mode-of-action to avoid adverse health effects. 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) catalyze the formation of cortisol and aldosterone, respectively, in the adrenal cortex. Disruption of their synthesis by exogenous chemicals can contribute to cardio-metabolic diseases, chronic kidney disease, osteoporosis, and immune-related disorders. This study applied in silico screening and in vitro evaluation for the discovery of xenobiotics inhibiting CYP11B1 and CYP11B2. Several databases comprising environmentally relevant pollutants, chemicals in body care products, food additives and drugs were virtually screened using CYP11B1 and CYP11B2 pharmacophore models. A first round of biological testing used hamster cells overexpressing human CYP11B1 or CYP11B2 to analyze 25 selected virtual hits. Three compounds inhibited CYP11B1 and CYP11B2 with IC50 values below 3 μM. The most potent inhibitor was epoxiconazole (IC50 value of 623 nM for CYP11B1 and 113 nM for CYP11B2, respectively); flurprimidol and ancymidol were moderate inhibitors. In a second round, these three compounds were tested in human adrenal H295R cells endogenously expressing CYP11B1 and CYP11B2, confirming the potent inhibition by epoxiconazole and the more moderate effects by flurprimidol and ancymidol. Thus, the in silico screening, prioritization of chemicals for initial biological tests and use of H295R cells to provide initial mechanistic information is a promising strategy to identify potential endocrine disruptors inhibiting corticosteroid synthesis. A critical assessment of human exposure levels and in vivo evaluation of potential corticosteroid disrupting effects by epoxiconazole is required.
Collapse
Affiliation(s)
- Muhammad Akram
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| | - Melanie Patt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Teresa Kaserer
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Veronika Temml
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Watcharee Waratchareeyakul
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, 22000, Chanthaburi, Thailand.
| | - Denise V Kratschmar
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Joerg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123, Saarbrücken, Germany.
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Universitätscampus E8 1, 66123, Saarbrücken, Germany; Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Daniela Schuster
- Institute of Pharmacy / Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria; Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 22, 5020, Salzburg, Austria.
| |
Collapse
|
27
|
Rehman H, Ullah I, David M, Ullah A, Jahan S. Neonatal exposure to furan alters the development of reproductive systems in adult male Sprague Dawley rats. Food Chem Toxicol 2019; 130:231-241. [DOI: 10.1016/j.fct.2019.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
|
28
|
Tochitani T, Yamashita A, Matsumoto I, Kouchi M, Fujii Y, Miyawaki I, Yamada T, Bando K. Usefulness of Simultaneous Measurement of Plasma Steroids, Including Precursors, for the Evaluation of Drug Effects on Adrenal Steroidogenesis in Rats. Toxicol Pathol 2017; 45:756-763. [PMID: 29046138 DOI: 10.1177/0192623317730416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the usefulness of simultaneous measurement of plasma steroids, including precursors, for the evaluation of drug effects on adrenal steroidogenesis in vivo. Plasma concentrations of corticosterone and its precursors were examined in rats dosed with compounds that affect adrenal steroidogenesis via different modes of action as well as the relationships of the changes with blood chemistry and adrenal histopathology. Male rats were dosed with tricresyl phosphate, aminoglutethimide, trilostane (TRL), metyrapone (MET), ketoconazole (KET), or mifepristone for 7 days. In the TRL, MET, and KET groups, precursor levels were markedly increased, while there were no significant changes in the corticosterone level, suggesting that the precursors are more sensitive biomarkers to detect the effect on adrenal steroidogenesis. Also, the precursors with increased levels were those that are normally metabolized by the inhibited enzymes, reflecting the modes of action of the compounds. In addition, different patterns of changes were observed in blood chemistry and histopathology, supporting the mechanism suggested by the steroid changes. These results show that simultaneous measurement of plasma steroids, including precursors, can be a valuable method to sensitively evaluate drug effects on adrenal steroidogenesis and to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Tomoaki Tochitani
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Akihito Yamashita
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Izumi Matsumoto
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Mami Kouchi
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Yuta Fujii
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Izuru Miyawaki
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Toru Yamada
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Kiyoko Bando
- 1 Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| |
Collapse
|
29
|
Pottinger TG. Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:550-558. [PMID: 28318786 DOI: 10.1016/j.envpol.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Disruption of non-reproductive endocrine systems in wildlife by chemicals has received little attention but represents a potentially significant problem. Nitrate is a major anthropogenic contaminant in the freshwater aquatic environment and has been identified as a potential disrupter of endocrine function in aquatic animals. This study was conducted to investigate the relationship between the function of the neuroendocrine stress axis in fish and inorganic N loading along reaches of rivers receiving cumulative point source and diffuse chemical inputs. To accomplish this, the responsiveness of the stress axis, quantified as the rate of release of cortisol to water across the gills during exposure to a standardised stressor, was measured in three-spined sticklebacks (Gasterosteus aculeatus L.) resident at three sites on each of four rivers in north-west England. The magnitude of the stress response in fish captured at the sites furthest downstream on all rivers was more than twice that of fish captured at upstream sites. Site-specific variation in stress axis reactivity was better explained by between-site variation in concentrations of dissolved nitrate, nitrite, and ammonia than by the concentration of wastewater treatment works effluent. An increase in the magnitude of the stress response was seen among sticklebacks at sites where long-term averaged concentrations of NH3-N, NO3-N and NO2-N exceeded 0.6, 4.0 and 0.1 mg/L respectively. These data suggest that either (i) inorganic N is a better surrogate than wastewater effluent concentration for an unknown factor or factors affecting stress axis function in fish, or (ii) dissolved inorganic N directly exerts a disruptive influence on the function of the neuroendocrine stress axis in fish, supporting concerns that nitrate is an endocrine-modulating chemical.
Collapse
Affiliation(s)
- Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK.
| |
Collapse
|
30
|
Steroid profiling in H295R cells to identify chemicals potentially disrupting the production of adrenal steroids. Toxicology 2017; 381:51-63. [DOI: 10.1016/j.tox.2017.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/16/2022]
|
31
|
Guengerich FP. Intersection of the Roles of Cytochrome P450 Enzymes with Xenobiotic and Endogenous Substrates: Relevance to Toxicity and Drug Interactions. Chem Res Toxicol 2017; 30:2-12. [PMID: 27472660 PMCID: PMC5293730 DOI: 10.1021/acs.chemrestox.6b00226] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Today much is known about cytochrome P450 (P450) enzymes and their catalytic specificity, but the range of reactions catalyzed by each still continues to surprise. Historically, P450s had been considered to be involved in either the metabolism of xenobiotics or endogenous chemicals, in the former case playing a generally protective role and in the latter case a defined physiological role. However, the line of demarcation is sometimes blurred. It is difficult to be completely specific in drug design, and some P450s involved in the metabolism of steroids and vitamins can be off-targets. In a number of cases, drugs have been developed that act on some of those P450s as primary targets, e.g., steroid aromatase inhibitors. Several of the P450s involved in the metabolism of endogenous substrates are less specific than once thought and oxidize several related structures. Some of the P450s that primarily oxidize endogenous chemicals have been shown to oxidize xenobiotic chemicals, even in a bioactivation mode.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
32
|
Pottinger TG, Matthiessen P. Long-term water quality data explain interpopulation variation in responsiveness to stress in sticklebacks at both wastewater effluent-contaminated and uncontaminated sites. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:3014-3022. [PMID: 27167553 DOI: 10.1002/etc.3486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/05/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
The magnitude of the corticosteroid response to a standardized stressor varied in proportion to the concentration of effluent in three-spined sticklebacks (Gasterosteus aculeatus L.) captured downstream of 10 wastewater-treatment plants (WWTPs). However, at 9 sites with no upstream WWTP input interpopulation variation in the reactivity of the stress axis occurred across a similar range to that seen for fish at impacted sites, suggesting that the factor(s) responsible for modulating stress responsiveness in sticklebacks is not unique to sites receiving WWTP effluent. Physicochemical data from a long-term monitoring program were employed to investigate whether variation in water quality contributed to between-site variation in stress axis reactivity. Between-site variation in 14 water quality determinands explained between 30% and 60% of the variation in stress reactivity and fish size for sticklebacks at both WWTP-contaminated and uncontaminated sites. At uncontaminated sites the mean mass and length of sticklebacks increased with total oxidized nitrogen (N) concentration (as an indicator of anthropogenic input), whereas at WWTP-contaminated sites fish size decreased with increasing effluent concentration, suggesting that factors adversely affecting growth were present predominantly at WWTP-contaminated sites. In contrast, at both contaminated and uncontaminated sites the magnitude of the corticosteroid response to a standardized stressor increased with anthropogenic input (effluent concentration or total oxidized N, respectively), indicating that a factor or factors modulating the reactivity of the stress axis may be present at both WWTP-contaminated and uncontaminated sites. Environ Toxicol Chem 2016;35:3014-3022. © 2016 SETAC.
Collapse
|
33
|
Merlo E, Podratz PL, Sena GC, de Araújo JFP, Lima LCF, Alves ISS, Gama-de-Souza LN, Pelição R, Rodrigues LCM, Brandão PAA, Carneiro MTWD, Pires RGW, Martins-Silva C, Alarcon TA, Miranda-Alves L, Silva IV, Graceli JB. The Environmental Pollutant Tributyltin Chloride Disrupts the Hypothalamic-Pituitary-Adrenal Axis at Different Levels in Female Rats. Endocrinology 2016; 157:2978-95. [PMID: 27267847 DOI: 10.1210/en.2015-1896] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.
Collapse
Affiliation(s)
- Eduardo Merlo
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Priscila L Podratz
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Gabriela C Sena
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Julia F P de Araújo
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Leandro C F Lima
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Izabela S S Alves
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Letícia N Gama-de-Souza
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Renan Pelição
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Lívia C M Rodrigues
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Poliane A A Brandão
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Maria T W D Carneiro
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Rita G W Pires
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Cristina Martins-Silva
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Tamara A Alarcon
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Leandro Miranda-Alves
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Ian V Silva
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Jones B Graceli
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| |
Collapse
|
34
|
Pottinger TG, Matthiessen P. Disruption of the stress response in wastewater treatment works effluent-exposed three-spined sticklebacks persists after translocation to an unpolluted environment. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:538-547. [PMID: 26821232 DOI: 10.1007/s10646-016-1612-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
The hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis plays a key role in responding to biotic and abiotic challenges in all vertebrates. Recent studies have shown that the apical response of the HPI axis to stressors in three-spined sticklebacks varies in proportion to the concentration of wastewater treatment works (WWTW) effluent to which the fish are exposed. This study was conducted to determine whether between-site variation in stress responsiveness among WWTW effluent-exposed sticklebacks is persistent or reversible. Sticklebacks from eight sites in north-west England affected by WWTW effluent and exhibiting between-population variation in HPI axis reactivity, were moved to a clean-water aquarium environment. After five months in the contaminant-free environment the responsiveness of these fish to a standardised stressor was determined, by measuring the rate of stress-induced cortisol release across the gills, and compared with the responses of fish newly sampled from the eight original capture sites. Inter-site differences in the reactivity of the HPI axis, proportional to the effluent concentration at each site, persisted among the translocated female sticklebacks for at least 5 months. In male fish however, the direct relationship between stress responsiveness and site-specific effluent was not evident 5 months post-translocation. These results support previous observations that the HPA/I axis, a non-reproductive endocrine system, is vulnerable to modulation by anthropogenic factors in fish and show for the first time that, in female fish at least, this modulation is not transient. The mechanisms underlying these observations, and the implications for the fitness and resilience of affected populations, requires investigation.
Collapse
Affiliation(s)
- Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK.
| | - Peter Matthiessen
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
- Dolfan Barn, Beulah, Llanwrtyd Wells, Powys, LD5 4UE, UK
| |
Collapse
|
35
|
Odermatt A, Strajhar P, Engeli RT. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J Steroid Biochem Mol Biol 2016; 158:9-21. [PMID: 26807866 DOI: 10.1016/j.jsbmb.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Strajhar
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Roger T Engeli
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
36
|
Tochitani T, Yamashita A, Kouchi M, Fujii Y, Matsumoto I, Miyawaki I, Yamada T, Funabashi H. Changes in plasma concentrations of corticosterone and its precursors after ketoconazole administration in rats: An application of simultaneous measurement of multiple steroids using LC–MS/MS. ACTA ACUST UNITED AC 2016; 68:125-31. [DOI: 10.1016/j.etp.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/18/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023]
|
37
|
Hampl R, Kubátová J, Stárka L. Steroids and endocrine disruptors--History, recent state of art and open questions. J Steroid Biochem Mol Biol 2016; 155:217-23. [PMID: 24816231 DOI: 10.1016/j.jsbmb.2014.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/14/2014] [Accepted: 04/20/2014] [Indexed: 12/17/2022]
Abstract
This introductory chapter provides an overview of the levels and sites at which endocrine disruptors (EDs) affect steroid actions. In contrast to the special issue of Journal of Steroid Biochemistry and Molecular Biology published three years ago and devoted to EDs as such, this paper focuses on steroids. We tried to point to more recent findings and opened questions. EDs interfere with steroid biosynthesis and metabolism either as inhibitors of relevant enzymes, or at the level of their expression. Particular attention was paid to enzymes metabolizing steroid hormones to biologically active products in target cells, such as aromatase, 5α-reductase and 3β-, 11β- and 17β-hydroxysteroid dehydrogenases. An important target for EDs is also steroid acute regulatory protein (StAR), responsible for steroid precursor trafficking to mitochondria. EDs influence receptor-mediated steroid actions at both genomic and non-genomic levels. The remarkable differences in response to various steroid-receptor ligands led to a more detailed investigation of events following steroid/disruptor binding to the receptors and to the mapping of the signaling cascades and nuclear factors involved. A virtual screening of a large array of EDs with steroid receptors, known as in silico methods (≡computer simulation), is another promising approach for studying quantitative structure activity relationships and docking. New data may be expected on the effect of EDs on steroid hormone binding to selective plasma transport proteins, namely transcortin and sex hormone-binding globulin. Little information is available so far on the effects of EDs on the major hypothalamo-pituitary-adrenal/gonadal axes, of which the kisspeptin/GPR54 system is of particular importance. Kisspeptins act as stimulators for hormone-induced gonadotropin secretion and their expression is regulated by sex steroids via a feed-back mechanism. Kisspeptin is now believed to be one of the key factors triggering puberty in mammals, and various EDs affect its expression and function. Finally, advances in analytics of EDs, especially those persisting in the environment, in various body fluids (plasma, urine, seminal fluid, and follicular fluid) are mentioned. Surprisingly, relatively scarce information is available on the simultaneous determination of EDs and steroids in the same biological material. This article is part of a Special Issue entitled 'Endocrine disruptors & steroids'.
Collapse
Affiliation(s)
- Richard Hampl
- Institute of Endocrinology, Národní 8, 116 94 Praha 1, Czech Republic.
| | - Jana Kubátová
- Institute of Endocrinology, Národní 8, 116 94 Praha 1, Czech Republic
| | - Luboslav Stárka
- Institute of Endocrinology, Národní 8, 116 94 Praha 1, Czech Republic
| |
Collapse
|
38
|
Harvey PW. Adrenocortical endocrine disruption. J Steroid Biochem Mol Biol 2016; 155:199-206. [PMID: 25460300 DOI: 10.1016/j.jsbmb.2014.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/12/2014] [Accepted: 10/14/2014] [Indexed: 02/04/2023]
Abstract
The adrenal has been neglected in endocrine disruption regulatory testing strategy. The adrenal is a vital organ, adrenocortical insufficiency is recognised in life threatening "adrenal crises" and Addison's disease, and the consequences of off-target toxicological inhibition of adrenocortical steroidogenesis is well recognised in clinical medicine, where drugs such as aminoglutethimide and etomidate killed patients via unrecognised inhibition of adrenocortical steroidogenic enzymes (e.g. CYP11B1) along the cortisol and aldosterone pathways. The consequences of adrenocortical dysfunction during early development are also recognised in the congenital salt wasting and adrenogenital syndromes presenting neonatally, yet despite a remit to focus on developmental and reproductive toxicity mechanisms of endocrine disruption by many regulatory agencies (USEPA EDSTAC; REACH) the assessment of adrenocortical function has largely been ignored. Further, every step in the adrenocortical steroidogenic pathway (ACTH receptor, StAR, CYP's 11A1, 17, 21, 11B1, 11B2, and 3-hydroxysteroid dehydrogenase Δ4,5 isomerase) is known to be a potential target with multiple examples of chemicals inhibiting these targets. Many of these chemicals have been detected in human and wildlife tissues. This raises the question of whether exposure to low level environmental chemicals may be affecting adrenocortical function. This review examines the omission of adrenocortical testing in the current regulatory frameworks; the characteristics that make the adrenal cortex particularly vulnerable to toxic insult; chemicals and their toxicological targets within the adrenocortical steroidogenic pathways; the typical manifestations of adrenocortical toxicity (e.g. human iatrogenically induced pharmacotoxicological adrenal insufficiency, manifestations in typical mammalian regulatory general toxicology studies, manifestations in wildlife) and models of adrenocortical functional assessment. The utility of the in vivo ACTH challenge test to prove adrenocortical competency, and the H295R cell line to examine molecular mechanisms of steroidogenic pathway toxicity, are discussed. Finally, because of the central role of the adrenal in the physiologically adaptive stress response, the distinguishing features of stress, compared with adrenocortical toxicity, are discussed with reference to the evidence required to claim that adrenal hypertrophy results from stress rather than adrenocortical enzyme inhibition which is a serious adverse toxicological finding. This article is part of a special issue entitled 'Endocrine disruptors and steroids'.
Collapse
Affiliation(s)
- Philip W Harvey
- Toxicology Department, Covance Laboratories Ltd., Otley Road, Harrogate, North Yorkshire HG3 1PY, United Kingdom.
| |
Collapse
|
39
|
Tartu S, Lendvai ÁZ, Blévin P, Herzke D, Bustamante P, Moe B, Gabrielsen GW, Bustnes JO, Chastel O. Increased adrenal responsiveness and delayed hatching date in relation to polychlorinated biphenyl exposure in Arctic-breeding black-legged kittiwakes (Rissa tridactyla). Gen Comp Endocrinol 2015; 219:165-72. [PMID: 25796954 DOI: 10.1016/j.ygcen.2014.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
High levels of environmental contaminants such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and mercury (Hg) have been reported in some Arctic top predators such as seabirds. Chronic exposure to these contaminants might alter the response to environmental changes through interference with the regulation of corticosterone (CORT), a glucocorticoid stress hormone released by the hypothalamo-pituitary-adrenal (HPA) axis. Positive and negative relationships between CORT and environmental contaminants have been reported in polar seabirds. However, patterns appear inconclusive and it is difficult to attribute these relationships to a dysfunction of the HPA axis or to other confounding effects. In order to explore the relationships between the HPA axis activity and contaminants, we tested whether different aspects of the HPA axis of an Arctic seabird, the black-legged kittiwakes Rissa tridactyla, would be related to blood Hg, PCB and OCP concentrations. Male kittiwakes were caught during the incubation period in Svalbard and were subjected to different stress series: (1) a capture-restraint stress protocol, (2) an injection of dexamethasone (DEX) that enabled to test the efficacy of the HPA negative feedback and (3) an injection of adrenocorticotropic hormone (ACTH) that informed on the adrenal responsiveness. The HPA axis activity was unrelated to ΣOCPs and Hg. However, birds with high concentrations of ΣPCBs released more CORT after the ACTH injection. It is suggested that ΣPCBs may increase the number of ACTH-receptors on the adrenals. Additionally, hatching date was delayed in males with higher concentrations of ΣPCBs and ΣOCPs. This study gives new evidence that PCBs and adrenal activity may be related. Thus high PCB burden may make individuals more prone to other stressors such as ongoing climate change.
Collapse
Affiliation(s)
- Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372-ULR CNRS, F-79360, France.
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372-ULR CNRS, F-79360, France
| | - Dorte Herzke
- Norwegian Institute for Air Research, FRAM High North Research Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Børge Moe
- Norwegian Institute for Nature Research, Postboks 5685 Sluppen, N-7485 Trondheim, Norway
| | - Geir Wing Gabrielsen
- Norwegian Polar Institute, FRAM - High North Research Centre on Climate and the Environment, N-9296 Tromsø, Norway
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, FRAM - High North Research Centre for Climate and the Environment, N-9296 Tromsø, Norway
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372-ULR CNRS, F-79360, France
| |
Collapse
|
40
|
Inomata A, Sasano H. Practical approaches for evaluating adrenal toxicity in nonclinical safety assessment. J Toxicol Pathol 2015; 28:125-32. [PMID: 26441474 PMCID: PMC4588206 DOI: 10.1293/tox.2015-0025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 11/23/2022] Open
Abstract
The adrenal gland has characteristic morphological and biochemical features that render it particularly susceptible to the actions of xenobiotics. As is the case with other endocrine organs, the adrenal gland is under the control of upstream organs (hypothalamic-pituitary system) in vivo, often making it difficult to elucidate the mode of toxicity of a test article. It is very important, especially for pharmaceuticals, to determine whether a test article-related change is caused by a direct effect or other associated factors. In addition, antemortem data, including clinical signs, body weight, food consumption and clinical pathology, and postmortem data, including gross pathology, organ weight and histopathologic examination of the adrenal glands and other related organs, should be carefully monitored and evaluated. During evaluation, the following should also be taken into account: (1) species, sex and age of animals used, (2) metabolic activation by a cytochrome P450 enzyme(s) and (3) physicochemical properties and the metabolic pathway of the test article. In this review, we describe the following crucial points for toxicologic pathologists to consider when evaluating adrenal toxicity: functional anatomy, blood supply, hormone production in each compartment, steroid biosynthesis, potential medulla-cortex interaction, and species and gender differences in anatomical features and other features of the adrenal gland which could affect vulnerability to toxic effects. Finally practical approaches for evaluating adrenal toxicity in nonclinical safety studies are discussed.
Collapse
Affiliation(s)
- Akira Inomata
- Tsukuba Drug Safety, Global Drug Safety, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
41
|
Martinez-Arguelles DB, Papadopoulos V. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland. Front Endocrinol (Lausanne) 2015; 6:29. [PMID: 25788893 PMCID: PMC4349159 DOI: 10.3389/fendo.2015.00029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/18/2015] [Indexed: 12/18/2022] Open
Abstract
Humans are continuously exposed to hundreds of man-made chemicals that pollute the environment in addition to multiple therapeutic drug treatments administered throughout life. Some of these chemicals, known as endocrine disruptors (EDs), mimic endogenous signals, thereby altering gene expression, influencing development, and promoting disease. Although EDs are eventually removed from the market or replaced with safer alternatives, new evidence suggests that early-life exposure leaves a fingerprint on the epigenome, which may increase the risk of disease later in life. Epigenetic changes occurring in early life in response to environmental toxicants have been shown to affect behavior, increase cancer risk, and modify the physiology of the cardiovascular system. Thus, exposure to an ED or combination of EDs may represent a first hit to the epigenome. Only limited information is available regarding the effect of ED exposure on adrenal function. The adrenal gland controls the stress response, blood pressure, and electrolyte homeostasis. This endocrine organ therefore has an important role in physiology and is a sensitive target of EDs. We review herein the effect of ED exposure on the adrenal gland with particular focus on in utero exposure to the plasticizer di(2-ethylehyl) phthalate. We discuss the challenges associated with identifying the mechanism mediating the epigenetic origins of disease and availability of biomarkers that may identify individual or population risks.
Collapse
Affiliation(s)
- Daniel B. Martinez-Arguelles
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Daniel B. Martinez-Arguelles and Vassilios Papadopoulos, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montréal, QC H3G 1A4, Canada e-mail: ;
| | - Vassilios Papadopoulos
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Biochemistry, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Daniel B. Martinez-Arguelles and Vassilios Papadopoulos, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montréal, QC H3G 1A4, Canada e-mail: ;
| |
Collapse
|
42
|
Lattin CR, Ngai HM, Romero LM. Evaluating the stress response as a bioindicator of sub-lethal effects of crude oil exposure in wild house sparrows (Passer domesticus). PLoS One 2014; 9:e102106. [PMID: 25029334 PMCID: PMC4100771 DOI: 10.1371/journal.pone.0102106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Petroleum can disrupt endocrine function in humans and wildlife, and interacts in particularly complex ways with the hypothalamus-pituitary-adrenal (HPA) axis, responsible for the release of the stress hormones corticosterone and cortisol (hereafter CORT). Ingested petroleum can act in an additive fashion with other stressors to cause increased mortality, but it is not clear exactly why--does petroleum disrupt feedback mechanisms, stress hormone production, or both? This laboratory study aimed to quantify the effects of ingested Gulf of Mexico crude oil on the physiological stress response of house sparrows (Passer domesticus). We examined baseline and stress-induced CORT, negative feedback, and adrenal sensitivity in house sparrows given a 1% oil or control diet (n = 12 in each group). We found that four weeks on a 1% oil diet did not alter baseline CORT titers or efficacy of negative feedback, but significantly reduced sparrows' ability to secrete CORT in response to a standardized stressor and adrenocorticotropin hormone injection, suggesting that oil damages the steroid-synthesizing cells of the adrenal. In another group of animals on the same 1% oil (n = 9) or control diets (n = 8), we examined concentrations of eight different blood chemistry parameters, and CORT in feathers grown before and during the feeding experiments as other potential biomarkers of oil exposure. None of the blood chemistry parameters differed between birds on the oil and control diets after two or four weeks of feeding, nor did feather CORT differ between the two groups. Overall, this study suggests that the response of CORT to stressors, but not baseline HPA function, may be a particularly sensitive bioindicator of sub-lethal chronic effects of crude oil exposure.
Collapse
Affiliation(s)
- Christine R. Lattin
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| | - Heather M. Ngai
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - L. Michael Romero
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
43
|
Tartu S, Angelier F, Herzke D, Moe B, Bech C, Gabrielsen GW, Bustnes JO, Chastel O. The stress of being contaminated? Adrenocortical function and reproduction in relation to persistent organic pollutants in female black legged kittiwakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 476-477:553-560. [PMID: 24496028 DOI: 10.1016/j.scitotenv.2014.01.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 06/03/2023]
Abstract
High levels of environmental pollutants such as persistent organic pollutants (POPs) including PCB and DDT have been found in the Arctic and many of those pollutants may impair reproduction through endocrine disruption. Nevertheless, their effects on stress hormones remain poorly understood, especially in free-ranging birds. Corticosterone, the principal glucocorticoid in birds, can indirectly impair reproduction. The aim of the present study was to examine the relationships between POPs and reproduction through their potential consequences on different reproductive traits (breeding decision, egg-laying date, breeding success) and corticosterone secretion (baseline and stress-induced levels). We addressed those questions in an Arctic population of female black-legged kittiwakes during the pre-breeding stage and measured several legacy POPs (PCBs and pesticides: HCB, p,p'-DDE, CHL) in whole blood. POP levels were not related to breeding decision neither to breeding success, whereas females with high levels of pesticides laid their eggs earlier in the season. We found a negative relationship between POP levels and body condition index in non-breeding females. Black-legged kittiwakes with higher levels of PCB showed stronger adrenocortical response when subjected to a capture-handling stress protocol. We suggest that PCBs may disrupt corticosterone secretion whereas the positive relationship between pesticides and egg-laying date could either originate from a direct effect of pesticides or may be related to other confounding factors such as age or individual's quality. Although no direct negative reproduction output of POPs was found in this study, it is possible that the most contaminated individuals would be more sensitive to environmental stress and would be less able to maintain parental investment than less polluted individuals.
Collapse
Affiliation(s)
- Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UPR 1934-CNRS, F-79360, France.
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UPR 1934-CNRS, F-79360, France
| | - Dorte Herzke
- Norwegian Institute for Air Research, FRAM - High North Research Centre on Climate and the Environment, N-9296 Tromsø, Norway
| | - Børge Moe
- Norwegian Institute for Nature Research, FRAM - High North Research Centre on Climate and the Environment, N-9296 Tromsø, Norway
| | - Claus Bech
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Research Institute, FRAM Centre High North Research on Climate and the Environment, N-9296 Tromsø, Norway
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, FRAM - High North Research Centre on Climate and the Environment, N-9296 Tromsø, Norway
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UPR 1934-CNRS, F-79360, France
| |
Collapse
|
44
|
Pereiro N, Moyano R, Blanco A, Lafuente A. Regulation of corticosterone secretion is modified by PFOS exposure at different levels of the hypothalamic-pituitary-adrenal axis in adult male rats. Toxicol Lett 2014; 230:252-62. [PMID: 24440345 DOI: 10.1016/j.toxlet.2014.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/25/2013] [Accepted: 01/02/2014] [Indexed: 01/29/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a fluorinated compound and a Persistent Organic Pollutant which can disrupt the endocrine system. This work was undertaken to evaluate the possible effects of PFOS exposure on the regulation of corticosterone secretion in adrenal and pituitary glands and at hypothalamic level in adult male rat, and to evaluate the possible morphological alterations induced by PFOS in this endocrine tissue. Adult male rats were orally treated with 0.5, 1.0, 3.0 and 6.0 mg of PFOS/kg/day for 28 days. Corticosterone, adrenocorticotropic hormone (ACTH) and corticotrophin-releasing hormone (CRH) secretion decreased in PFOS-treated rats. After PFOS exposure, relative expression of adrenocorticotropic hormone receptor (ACTHr) and proopiomelanocortin (POMC) genes was increased in adrenal and in pituitary glands, respectively; while relative expression of ACTHr and CRH genes decreased in hypothalamus with the doses of 0.5 and 1.0 mg/kg/day. PFOS treatment increased relative nitric oxide synthase 1 and 2 (NOS1 and NOS2) gene expression in the adrenal gland, and incremented superoxide dismutase activity. PFOS exposure induces a global inhibition of the hypothalamic-pituitary-adrenal (HPA) axis activity, and small morphological changes were observed in adrenal zona fasciculata cells.
Collapse
Affiliation(s)
- N Pereiro
- Laboratory of Toxicology, Faculty of Sciences, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain
| | - R Moyano
- Department of Pharmacology, Toxicology and Legal and Forensic Medicine, Veterinary Faculty, University of Córdoba, 14071, Córdoba, Spain
| | - A Blanco
- Department of Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, 14071 Córdoba, Spain
| | - A Lafuente
- Laboratory of Toxicology, Faculty of Sciences, University of Vigo, Las Lagunas S/n, 32004 Ourense, Spain.
| |
Collapse
|
45
|
Lattin CR, Romero LM. Chronic exposure to a low dose of ingested petroleum disrupts corticosterone receptor signalling in a tissue-specific manner in the house sparrow (Passer domesticus). CONSERVATION PHYSIOLOGY 2014; 2:cou058. [PMID: 27293679 PMCID: PMC4732471 DOI: 10.1093/conphys/cou058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 05/06/2023]
Abstract
Stress-induced concentrations of glucocorticoid hormones (including corticosterone, CORT) can be suppressed by chronic exposure to a low dose of ingested petroleum. However, endocrine-disrupting chemicals could interfere with CORT signalling beyond the disruption of hormone titres, including effects on receptors in different target tissues. In this study, we examined the effects of 6 weeks of exposure to a petroleum-laced diet (1% oil weight:food weight) on tissue mass and intracellular CORT receptors in liver, fat, muscle and kidney (metabolic tissues), spleen (an immune tissue) and testes (a reproductive tissue). In the laboratory, male house sparrows were fed either a 1% weathered crude oil (n = 12) or a control diet (n = 12); glucocorticoid receptors and mineralocorticoid receptors were quantified using radioligand binding assays. In oil-exposed birds, glucocorticoid receptors were lower in one metabolic tissue (liver), higher in another metabolic tissue (fat) and unchanged in four other tissues (kidney, muscle, spleen and testes) compared with control birds. We saw no differences in mineralocorticoid receptors between groups. We also saw a trend towards reduced mass of the testes in oil-exposed birds compared with controls, but no differences in fat, kidney, liver, muscle or spleen mass between the two groups. This is the first study to examine the effects of petroleum on CORT receptor density in more than one or two target tissues. Given that a chronic low dose of ingested petroleum can affect stress-induced CORT titres as well as receptor density, this demonstrates that oil can act at multiple levels to disrupt an animal's response to environmental stressors. This also highlights the potential usefulness of the stress response as a bioindicator of chronic crude oil exposure.
Collapse
Affiliation(s)
- Christine R. Lattin
- Corresponding author: Department of Diagnostic Radiology, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT 06520, USA. Tel: +1 203 785 5054.
| | | |
Collapse
|
46
|
Nordstad T, Moe B, Bustnes JO, Bech C, Chastel O, Goutte A, Sagerup K, Trouvé C, Herzke D, Gabrielsen GW. Relationships between POPs and baseline corticosterone levels in black-legged kittiwakes (Rissa tridactyla) across their breeding cycle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 164:219-226. [PMID: 22366481 DOI: 10.1016/j.envpol.2012.01.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/24/2012] [Accepted: 01/29/2012] [Indexed: 05/31/2023]
Abstract
Chronic exposure to persistent organic pollutants (POPs) in wildlife might alter the response to environmental changes through interference with the regulation of stress hormones. Here, we examined the relationship between blood concentrations of several POPs and baseline plasma corticosterone levels in the black-legged kittiwake (Rissa tridactyla) during three distinct periods in the breeding season. The concentrations of POPs and corticosterone increased, whereas body mass decreased progressively from the pre-laying period to the incubation and the chick rearing period. ∑PCB (polychlorinated biphenyls) correlated positively with the baseline corticosterone levels during the pre-laying period, which might suggest that PCBs affect the regulation of corticosterone. However, this relationship was not found during the incubation or the chick rearing period. Possible explanations are discussed with emphasis on how total stress/allostatic load is handled during different periods and conditions.
Collapse
Affiliation(s)
- Tore Nordstad
- Norwegian Polar Institute, FRAM - High North Research Centre on Climate and the Environment, NO-9296 Tromsø, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cherfan AJ, Tamim HM, AlJumah A, Rishu AH, Al-Abdulkareem A, Al Knawy BA, Hajeer A, Tamimi W, Brits R, Arabi YM. Etomidate and mortality in cirrhotic patients with septic shock. BMC CLINICAL PHARMACOLOGY 2011; 11:22. [PMID: 22208901 PMCID: PMC3295685 DOI: 10.1186/1472-6904-11-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/30/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Clinical effects and outcomes of a single dose etomidate prior to intubation in the intensive care setting is controversial. The aim of this study is to evaluate the association of a single dose effect of etomidate prior to intubation on the mortality of septic cirrhotic patients and the impact of the subsequent use of low dose hydrocortisone. METHODS This is a nested-cohort study within a randomized double blind placebo controlled study evaluating the use of low dose hydrocortisone in cirrhotic septic patients. Cirrhotic septic patients ≥ 18 years were included in the study. Patients who received etomidate prior to intubation were compared to those who did not receive etomidate for all cause 28-day mortality as a primary outcome. RESULTS Sixty two intubated patients out of the 75 patients randomized in the initial trial were eligible for this study. Twenty three of the 62 intubated patients received etomidate dose prior to intubation. Etomidate use was not associated with all cause 28-day mortality or hospital mortality but was associated with significantly higher ICU mortality (91% vs. 64% for etomidate and controls groups, respectively; p = 0.02). Etomidate patients who received subsequent doses of hydrocortisone required lower doses of vasopressors and had more vasopressor-free days but no improvement in mortality. CONCLUSIONS In this group of septic cirrhotic patients with very high mortality, etomidate increased ICU mortality. Subsequent use of hydrocortisone appears to have no benefit beyond decreasing vasopressor requirements. The lowest mortality was observed in patients who did not receive etomidate but received hydrocortisone.
Collapse
Affiliation(s)
- Antoine J Cherfan
- Pharmaceutical Care Department, Clinical Pharmacy Division, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harvey PW, Sutcliffe C. Adrenocortical hypertrophy: establishing cause and toxicological significance. J Appl Toxicol 2011; 30:617-26. [PMID: 20687119 DOI: 10.1002/jat.1569] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The primary cause of adrenocortical hypertrophy is increased adrenocorticotrophic hormone (ACTH) stimulation. In toxicology studies, such a condition can arise as a result of the stress response, but it may also occur due to deficient glucocorticoid feedback regulation of ACTH due to toxicity to the adrenal cortex. This latter condition is defined as adrenocortical insufficiency and represents a serious adverse toxic effect on the function of the adrenal cortex. Adrenocortical hypertrophy may occur in the absence of other adrenocortical lesions such that a toxicopathological mechanism is not obvious, for example by pharmacological inhibition of steroidogenesis at the biochemical level. This review discusses the different aetiological factors and mechanisms producing adrenocortical hypertrophy. The need for further evidence in ascribing findings to stress is discussed, as is a protocol for establishing differential diagnoses between stress-induced and toxicity-induced adrenocortical hypertrophy, which is useful in cases where there are no other histopathological lesions in the adrenal cortex. It is concluded that all cases of adrenocortical hypertrophy require further investigation or evidence to ascribe such findings to either stress or adrenocortical inhibition/insufficiency, and that all cases of adrenocortical insufficiency (whether due to a histopathological lesion or reversible pharmacological enzyme inhibition) represent a serious adverse effect that must be properly considered in toxicological risk assessment.
Collapse
Affiliation(s)
- Philip W Harvey
- Toxicology Department, Covance Laboratories, Otley Road, Harrogate, North Yorkshire HG31PY, UK.
| | | |
Collapse
|
49
|
In vivo alternative assessment of the chemicals that interfere with anterior pituitary POMC expression and interrenal steroidogenesis in POMC: EGFP transgenic zebrafish. Toxicol Appl Pharmacol 2010; 248:217-25. [DOI: 10.1016/j.taap.2010.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/29/2010] [Accepted: 08/14/2010] [Indexed: 11/23/2022]
|
50
|
Kodavanti PRS, Curras-Collazo MC. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol 2010; 31:479-96. [PMID: 20609372 DOI: 10.1016/j.yfrne.2010.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 02/08/2023]
Abstract
Organohalogen compounds are global environmental pollutants. They are highly persistent, bioaccumulative, and cause adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination may be a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. This review focuses on PCBs and PBDEs as old and new organohalogens, respectively, and their effects on two neuroendocrine systems; thyroid hormones and the arginine vasopressin system (AVP). Regarding neuroendocrine effects of organohalogens, there is considerable information on the thyroid system as a target and evidence is now accumulating that the AVP system and associated functions are also susceptible to disruption. AVP-mediated functions such as osmoregulation, cardiovascular function as well as social behavior, sexual function and learning/memory are discussed. For both thyroid and AVP systems, the timing of exposure seems to play a major role in the outcome of adverse effects. The mechanism of organohalogen action is well understood for the thyroid system. In comparison, this aspect is understudied in the AVP system but some similarities in neural processes, shown to be targeted by these pollutants, serve as promising possibilities for study. One challenge in understanding modes of action within neuroendocrine systems is their complexity stemming, in part, from interdependent levels of organization. Further, because of the interplay between neuroendocrine and neural functions and behavior, further investigation into organohalogen-mediated effects is warranted and may yield insights with wider scope. Indeed, the current literature provides scattered evidence regarding the role of organohalogen-induced neuroendocrine disruption in the neuroplasticity related to both learning functions and brain structure but future studies are needed to establish the role of endocrine disruption in nervous system function and development.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, B 105-06, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|