1
|
Rezazadeh S, Salami SR, Hosseini M, Oster H, Saebipour MR, Hassanzadeh-Taheri MM, Shoorei H. Investigating the resilience of kidneys in rats exposed to chronic partial sleep deprivation and circadian rhythm disruption as disruptive interventions. Neurobiol Sleep Circadian Rhythms 2025; 18:100109. [PMID: 39720585 PMCID: PMC11664416 DOI: 10.1016/j.nbscr.2024.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
Sleep is a vital biological function that significantly influences overall health. While sleep deprivation (SD) and circadian rhythm disruption are known to negatively impact various organs, their specific effects on kidney function remain understudied. This study aimed to investigate the impact of chronic partial sleep deprivation and circadian rhythm disruption on renal function in rats, providing insights into the relationship between sleep disturbances and kidney health. A total of 40 male Wistar rats were divided into five groups: a control group, a group with circadian rhythm disruption (CIR), a group with sleep deprivation during the light phase (SD-AM), a group with sleep deprivation during the dark phase (SD-PM), and a group with combined sleep deprivation and circadian rhythm disruption (SD-CIR). Sleep deprivation was induced using a specialized machine, depriving rats of sleep for 4 h daily, while circadian rhythm disruption was achieved through a 3.5-h light/dark cycle. After four weeks, kidney tissues and blood samples were collected for histological and biochemical analyses. The results showed that all experimental groups exhibited reduced water intake, with the CIR and SD-CIR groups also showing significantly lower food intake and reduced weight gain compared to controls. Oxidative stress markers revealed increased serum malondialdehyde (MDA) levels in the SD-PM and SD-CIR groups. Despite these metabolic and oxidative changes, histological examination of the kidneys revealed no significant alterations in renal structure or function across the groups. This study highlights the negative effects of chronic partial sleep deprivation and circadian rhythm disruption on feeding behavior, weight gain, and oxidative stress in rats. However, these interventions did not significantly alter renal structure or function. Further research is needed to explore the physiological mechanisms underlying these findings and the potential long-term effects of sleep disturbances on kidney health.
Collapse
Affiliation(s)
- Shirin Rezazadeh
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Rastgoo Salami
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Mohammad Reza Saebipour
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Hamed Shoorei
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Pham K, Lazenby M, Yamada K, Lattin CR, Wada H. Zebra finches (Taeniopygia castanotis) display varying degrees of stress resilience in response to constant light. Gen Comp Endocrinol 2024; 361:114644. [PMID: 39592083 DOI: 10.1016/j.ygcen.2024.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The ability for traits to recover after exposure to stress varies depending on the magnitude, duration, or type of stressor. One such stressor is circadian rhythm disruption stemming from exposure to light at night. Circadian rhythm disruption may lead to long-term physiological consequences; however, the capacity in which individuals recover and display stress resilience is not known. Here, we exposed zebra finches (Taeniopygia castanotis) to constant light (24L:0D) or a regular light/dark cycle (14L:10D) for 23 days, followed by a recovery period for 12 days. We measured body mass, corticosterone, and glucose levels at multiple timepoints, and relative protein expression of glucocorticoid receptors at euthanasia. Body mass significantly increased over time in light-exposed birds compared to controls, but a 12-day recovery period reversed this increase. Baseline levels of circulating glucose decreased in light-exposed birds compared to controls, but returned to pretreatment levels after the 12-day recovery period. In contrast, the glucose stress response did not show a similar recovery trend, suggesting longer recovery is needed or that this is a persistent effect in light-exposed birds. Surprisingly, we did not detect any differences in baseline corticosterone or reactivity of the hypothalamic-pituitiary-adrenal (HPA) axis between groups throughout the experiment. Moreover, we did not detect differences between relative protein expression of glucocorticoid receptors or a relationship with HPA axis reactivity. Yet, we found a positive relationship between glucocorticoid receptors and the glucose stress response, but only in the light group. Our results indicate that physiological and morphological traits differ in their ability to recover in response to constant light and warrants further investigation on the mechanisms driving stress resilience under a disrupted circadian rhythm.
Collapse
Affiliation(s)
- Kevin Pham
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Madeline Lazenby
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Duret LC, Nagoshi E. The intertwined relationship between circadian dysfunction and Parkinson's disease. Trends Neurosci 2024:S0166-2236(24)00203-0. [PMID: 39578132 DOI: 10.1016/j.tins.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Neurodegenerative disorders represent a leading cause of disability among the elderly population, and Parkinson's disease (PD) is the second most prevalent. Emerging evidence suggests a frequent co-occurrence of circadian disruption and PD. However, the nature of this relationship remains unclear: is circadian disruption a cause, consequence, or a parallel feature of the disease that shares the same root cause? This review seeks to address this question by highlighting and discussing clinical evidence and findings from experiments using vertebrate and invertebrate animal models. While research on causality is still in its early stages, the available data suggest reciprocal interactions between PD progression and circadian disruption.
Collapse
Affiliation(s)
- Lou C Duret
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, University of Geneva, CH-1205 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
4
|
Li DD, Zhou T, Gao J, Wu GL, Yang GR. Circadian rhythms and breast cancer: from molecular level to therapeutic advancements. J Cancer Res Clin Oncol 2024; 150:419. [PMID: 39266868 PMCID: PMC11393214 DOI: 10.1007/s00432-024-05917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Circadian rhythms, the endogenous biological clocks that govern physiological processes, have emerged as pivotal regulators in the development and progression of breast cancer. This comprehensive review delves into the intricate interplay between circadian disruption and breast tumorigenesis from multifaceted perspectives, encompassing biological rhythms, circadian gene regulation, tumor microenvironment dynamics, and genetic polymorphisms. METHODS AND RESULTS Epidemiological evidence underscores the profound impact of external factors, such as night shift work, jet lag, dietary patterns, and exercise routines, on breast cancer risk and progression through the perturbation of circadian homeostasis. The review elucidates the distinct roles of key circadian genes, including CLOCK, BMAL1, PER, and CRY, in breast cancer biology, highlighting their therapeutic potential as molecular targets. Additionally, it investigates how circadian rhythm dysregulation shapes the tumor microenvironment, fostering epithelial-mesenchymal transition, chronic inflammation, and immunosuppression, thereby promoting tumor progression and metastasis. Furthermore, the review sheds light on the association between circadian gene polymorphisms and breast cancer susceptibility, paving the way for personalized risk assessment and tailored treatment strategies. CONCLUSIONS Importantly, it explores innovative therapeutic modalities that harness circadian rhythms, including chronotherapy, melatonin administration, and traditional Chinese medicine interventions. Overall, this comprehensive review emphasizes the critical role of circadian rhythms in the pathogenesis of breast cancer and highlights the promising prospects for the development of circadian rhythm-based interventions to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Dou-Dou Li
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Gao
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guan-Lin Wu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Guang-Rui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
5
|
Liang X, Chen J, An X, Ren Y, Liu Q, Huang L, Zhang P, Qu P, Li J. The optimal time restricted eating interventions for blood pressure, weight, fat mass, glucose, and lipids: A meta-analysis and systematic review. Trends Cardiovasc Med 2024; 34:389-401. [PMID: 37838299 DOI: 10.1016/j.tcm.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND No previous systematic review or meta-analysis has evaluated the effect of optimal time-restricted eating (TRE) interventions on cardiovascular (CVD) risk factors. This meta-analysis aimed to illustrate the effect of a suitable TRE on CVD risk factors. METHODS A systematic review was performed to identify trials reporting the effects of TRE, relative to non-diet controls, on CVD risk factors in humans. A random-effects model was used to evaluate the effect sizes, and the results are expressed as the mean difference (MD) and 95% confidence intervals (CIs). Subgroup analyses were performed to examine the influence of the study population, age, duration of intervention, and baseline mean BMI on the CVD indexes. RESULTS TRE intervention significantly reduced systolic pressure (SBP) (MD: -3.45 mmHg; 95%CI:(-6.20,-0.71) mmHg; P = 0.01), body weight (MD: -1.63 Kg; 95%CI:(-2.09,-1.17) Kg; P<0.001), body mass index (BMI) (MD: -0.47 Kg/m2; 95% CI: (-0.72, -0.22) Kg/m2; P<0.001), and fat mass (MD: -0.98 Kg; 95% CI: (-1.51,-0.44) Kg; P<0.001), and reduced blood glucose levels. Based on the results of subgroup analysis, this meta-analysis identified the optimal TRE for BP (with a 6 h feeding window, last eating time point at 6-8 PM, and male participants with obesity and aged ≥ 45 years), obesity (with a 6 h feeding window, last eating time point at 6-8 PM, and female participants aged ≥ 45 years), lipids (with an 8 h feeding window, last eating time point at 6-8 PM, and male participants aged < 45 years), and glucose (with a 10-12 h feeding window, last eating time point before 6 PM, and female participants aged < 45years). CONCLUSIONS Relative to a non-diet control, TRE is effective for the improvement of CVD risks. Moreover, individual TRE interventions should be developed for different populations to achieve the most effective health improvement for CVD risk factors.
Collapse
Affiliation(s)
- Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China.
| | - Jingyu Chen
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Xizou An
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Yanling Ren
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Qin Liu
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Lan Huang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Ping Zhang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Ping Qu
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
6
|
Jones AA, Marino GM, Arble DM. Time-restricted feeding reveals a role for neural respiratory clocks in optimizing daily ventilatory-metabolic coupling in mice. Am J Physiol Endocrinol Metab 2024; 327:E111-E120. [PMID: 38836780 PMCID: PMC11390118 DOI: 10.1152/ajpendo.00111.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
The master circadian clock, located in the suprachiasmatic nuclei (SCN), organizes the daily rhythm in minute ventilation (V̇e). However, the extent that the daily rhythm in V̇e is secondary to SCN-imposed O2 and CO2 cycles (i.e., metabolic rate) or driven by other clock mechanisms remains unknown. Here, we experimentally shifted metabolic rate using time-restricted feeding (without affecting light-induced synchronization of the SCN) to determine the influence of metabolic rate in orchestrating the daily V̇e rhythm. Mice eating predominantly at night exhibited robust daily rhythms in O2 consumption (V̇o2), CO2 production (V̇co2), and V̇e with similar peak times (approximately ZT18) that were consistent with SCN organization. However, feeding mice exclusively during the day separated the relative timing of metabolic and ventilatory rhythms, resulting in an approximately 8.5-h advance in V̇co2 and a disruption of the V̇e rhythm, suggesting opposing circadian and metabolic influences on V̇e. To determine if the molecular clock of cells involved in the neural control of breathing contributes to the daily V̇e rhythm, we examined V̇e in mice lacking BMAL1 in Phox2b-expressing respiratory cells (i.e., BKOP mice). The ventilatory and metabolic rhythms of predominantly night-fed BKOP mice did not differ from wild-type mice. However, in contrast to wild-type mice, exclusive day feeding of BKOP mice led to an unfettered daily V̇e rhythm with a peak time aligning closely with the daily V̇co2 rhythm. Taken together, these results indicate that both daily V̇co2 changes and intrinsic circadian time-keeping within Phox2b respiratory cells are predominant orchestrators of the daily rhythm in ventilation.NEW & NOTEWORTHY The master circadian clock organizes the daily rhythm in ventilation; however, the extent that this rhythm is driven by SCN regulation of metabolic rate versus other clock mechanisms remains unknown. We report that metabolic rate alone is insufficient to explain the daily oscillation in ventilation and that neural respiratory clocks within Phox2b-expressing cells additionally optimize breathing. Collectively, these findings advance our mechanistic understanding of the circadian rhythm in ventilatory control.
Collapse
Affiliation(s)
- Aaron A Jones
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Gabriella M Marino
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Deanna M Arble
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States
| |
Collapse
|
7
|
Aragona F, Fazio F, Piccione G, Giannetto C. Chronophysiology of domestic animals. Chronobiol Int 2024; 41:888-903. [PMID: 38832548 DOI: 10.1080/07420528.2024.2360723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Plavc L, Skubic C, Dolenc Grošelj L, Rozman D. Variants in the circadian clock genes PER2 and PER3 associate with familial sleep phase disorders. Chronobiol Int 2024; 41:757-766. [PMID: 38695651 DOI: 10.1080/07420528.2024.2348016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024]
Abstract
Delayed sleep phase disorder and advanced sleep phase disorder cause disruption of the circadian clock and present with extreme morning/evening chronotype with unclear role of the genetic etiology, especially for delayed sleep phase disorder. To assess if genotyping can aid in clinical diagnosis, we examined the presence of genetic variants in circadian clock genes previously linked to both sleep disorders in Slovenian patient cohort. Based on Morning-evening questionnaire, we found 15 patients with extreme chronotypes, 13 evening and 2 morning, and 28 controls. Sanger sequencing was used to determine the presence of carefully selected candidate SNPs in regions of the CSNK1D, PER2/3 and CRY1 genes. In a patient with an extreme morning chronotype and a family history of circadian sleep disorder we identified two heterozygous missense variants in PER3 gene, c.1243C>G (NM_001377275.1 (p.Pro415Ala)) and c.1250A>G (NM_001377275.1 (p.His417Arg)). The variants were significantly linked to Advanced sleep phase disorder and were also found in proband's father with extreme morningness. Additionally, a rare SNP was found in PER2 gene in a patient with clinical picture of Delayed sleep phase disorder. The novel variant in PER2 (NM_022817.3):c.1901-218 G>T was found in proband's parent with eveningness, indicating an autosomal dominant inheritance. We identified a family with autosomal dominant inheritance of two PER3 heterozygous variants that can be linked to Advanced sleep phase disorder. We revealed also a rare hereditary form of Delayed sleep phase disorder with a new PER2 variant with autosomal dominant inheritance, shedding the light into the genetic causality.
Collapse
Affiliation(s)
- Laura Plavc
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Skubic
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc Grošelj
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Usha Satheesan S, Chowdhury S, Kolthur-Seetharam U. Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs. Life Sci Alliance 2024; 7:e202302180. [PMID: 38408795 PMCID: PMC10897495 DOI: 10.26508/lsa.202302180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.
Collapse
Affiliation(s)
- Sandra Usha Satheesan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
10
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
11
|
Lateef RS, Pokharel B, Shafin TN. Dozing Off With Drosophila: The Effect of Disrupted Circadian Rhythms and Sleep Disturbance on Mortality, Mood, and Addiction. Neurosci Insights 2023; 18:26331055231218698. [PMID: 38146331 PMCID: PMC10749519 DOI: 10.1177/26331055231218698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Many environmental factors can disrupt sleep and circadian rhythms, yet the consequences of such disruptions are poorly understood. The main goals of this project were to study the effects of disrupted circadian rhythms and sleep disturbance on Drosophila melanogaster's: (1) lifespan, (2) depression-like behaviors, and (3) propensity to consume caffeine-containing media. Three experimental groups were used: controls, Circadian Dysfunction (CD), and Sleep Disturbance (SD). Circadian disruption (CD): used flies with Tim01 mutation, which eliminates circadian behavioral rhythms. Sleep disturbance (SD): used flies subjected to hourly light exposure and manual mechanical disruption, for 48 hours. To assess the effect on lifespan, the percent of flies surviving over time, within each group, was calculated. Impaired geotaxis, or loss of climbing motivation, was assessed as a measure of a depression-like state. Preference for caffeine-containing food was evaluated using a choice chamber where caffeine enriched, and regular media were presented to flies. Group differences were analyzed with survival curves. Chi-square tests were used for the categorical variables. Survival curve analysis showed that Flies with the timeless gene mutation (tim01) have a significantly shorter lifespan than controls. Geotaxis was not significantly impaired by sleep disturbance, but it was negatively affected by circadian dysfunction. Both the Circadian Dysfunction and Sleep Disturbance groups showed a preference for caffeine-containing food, after 72 hours of exposure to it, although the Circadian Dysfunction group was much more affected than the Sleep Disturbance group. Sleep and circadian disturbances can negatively influence physical and mental wellbeing and the accompanying molecular mechanisms, as well as disrupted brain physiology, must be studied. It is critical to identify and minimize social and environmental disruptors of such biological rhythms.
Collapse
Affiliation(s)
- Rania S Lateef
- Governor’s School at Innovation Park and George Mason University, Manassas, VA, USA
| | | | | |
Collapse
|
12
|
Cortés-Espinar AJ, Ibarz-Blanch N, Soliz-Rueda JR, Calvo E, Bravo FI, Mulero M, Ávila-Román J. Abrupt Photoperiod Changes Differentially Modulate Hepatic Antioxidant Response in Healthy and Obese Rats: Effects of Grape Seed Proanthocyanidin Extract (GSPE). Int J Mol Sci 2023; 24:17057. [PMID: 38069379 PMCID: PMC10707189 DOI: 10.3390/ijms242317057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Disruptions of the light/dark cycle and unhealthy diets can promote misalignment of biological rhythms and metabolic alterations, ultimately leading to an oxidative stress condition. Grape seed proanthocyanidin extract (GSPE), which possesses antioxidant properties, has demonstrated its beneficial effects in metabolic-associated diseases and its potential role in modulating circadian disruptions. Therefore, this study aimed to assess the impact of GSPE administration on the liver oxidant system of healthy and diet-induced obese rats undergoing a sudden photoperiod shift. To this end, forty-eight photoperiod-sensitive Fischer 344/IcoCrl rats were fed either a standard (STD) or a cafeteria diet (CAF) for 6 weeks. A week before euthanizing, rats were abruptly transferred from a standard photoperiod of 12 h of light/day (L12) to either a short (6 h light/day, L6) or a long photoperiod (18 h light/day, L18) while receiving a daily oral dose of vehicle (VH) or GSPE (25 mg/kg). Alterations in body weight gain, serum and liver biochemical parameters, antioxidant gene and protein expression, and antioxidant metabolites were observed. Interestingly, GSPE partially ameliorated these effects by reducing the oxidative stress status in L6 through an increase in GPx1 expression and in hepatic antioxidant metabolites and in L18 by increasing the NRF2/KEAP1/ARE pathway, thereby showing potential in the treatment of circadian-related disorders by increasing the hepatic antioxidant response in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Antonio J. Cortés-Espinar
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Néstor Ibarz-Blanch
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Jorge R. Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Enrique Calvo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.J.C.-E.); (N.I.-B.); (J.R.S.-R.); (E.C.); (F.I.B.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, 43007 Tarragona, Spain
| | - Javier Ávila-Román
- Molecular and Applied Pharmacology Group (FARMOLAP), Department of Pharmacology, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
13
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. The role of daylight exposure on body mass in male mice. Physiol Behav 2023; 266:114186. [PMID: 37028499 PMCID: PMC10225047 DOI: 10.1016/j.physbeh.2023.114186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Physiology and behavior are synchronized to the external environment by endogenous circadian rhythms that are set to precisely 24 h by exposure to bright light early in the day. Exposure to artificial light outside of the typical solar day, such as during the night, may impair aspects of physiology and behavior in human and non-human animals. Both the intensity and the wavelength of light are important in mediating these effects. The present report is the result of an unplanned change in our vivarium lighting conditions, which led to the observation that dim light during the daytime affects body mass similarly to dim nighttime light exposure in male Swiss Webster mice. Mice exposed to bright days (≥125 lux) with dark nights (0 lux) gained significantly less weight than those exposed to bright days with dim light at night (5 lux) or dim days (≤60 lux) with either dark nights or dim light at night. Notably, among the mice exposed to dim daytime light, no weight gain differences were observed between dark nights and dim light at night exposure; however dim light at night exposure shifted food intake to the inactive phase as previously reported. The mechanisms mediating these effects remain unspecified, but it appears that dimly illuminated days may have similar adverse metabolic effects as exposure to artificial light at night.
Collapse
Affiliation(s)
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV 26505 USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV 26505 USA; Department of Medicine, Division of Oncology/Hematology, Morgantown, WV 26505 USA; West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV 26505 USA
| |
Collapse
|
14
|
Adlanmerini M, Lazar MA. The REV-ERB Nuclear Receptors: Timekeepers for the Core Clock Period and Metabolism. Endocrinology 2023; 164:bqad069. [PMID: 37149727 PMCID: PMC10413432 DOI: 10.1210/endocr/bqad069] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
REV-ERB nuclear receptors are potent transcriptional repressors that play an important role in the core mammalian molecular clock and metabolism. Deletion of both REV-ERBα and its largely redundant isoform REV-ERBβ in a murine tissue-specific manner have shed light on their specific functions in clock mechanisms and circadian metabolism. This review highlights recent findings that establish REV-ERBs as crucial circadian timekeepers in a variety of tissues, regulating overlapping and distinct processes that maintain normal physiology and protect from metabolic dysfunction.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, University of Toulouse 3, Toulouse, France
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Gutman R, Pendergast JS, Nakamura W, Kojima S. Editorial: Circadian desynchrony: Consequences, mechanisms, and Open Issues. Front Physiol 2023; 14:1177643. [PMID: 37008001 PMCID: PMC10064150 DOI: 10.3389/fphys.2023.1177643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
- Roee Gutman
- Laboratory of Integrative Physiology, The Department of Nutrition and Natural Products, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Julie S Pendergast
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Wataru Nakamura
- Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
16
|
Woods NP, Tangpukdee J, Thepa T, Methakanchanasak N. Consequences of Sleep Deprivation in Adult Diabetes Mellitus Type 2 Patients: An Integrative Review. Open Access Maced J Med Sci 2023. [DOI: 10.3889/oamjms.2023.10029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND: Sleep deprivation in individuals with diabetes mellitus type 2 is more prevalent than in ordinary people. At present, the adverse effects of diabetes type 2 people with sleep disorders and sleep deprivation on blood sugar control are irrefutable. Thorough assessments covering the whole structure should be of concern in health-care treatment. It is precipitated and delivered to the physical, mental health, and social environment, but no systematic review or minimal data were published. Furthermore, it may significantly affect the system more than existing research.
AIM: An integrative review aims to clarify the results or consequences of sleep disturbance/deprivation or insomnia symptoms among diabetes mellitus type 2 patients.
METHODS: The writers implemented a literature search in PubMed, CINAHL, and Medline using the terms DM type 2, insomnia, adult, effect, DM, sleep disturbance, sleep disorder, and a consequence between 2012 and 2022. Inclusion criteria selected through considering the entire article, and providing an abstract, were 20 articles.
RESULTS: Integrative data extraction and information were analyzed thematically. Identified were nine ideas: Association with blood sugar control, blood pressure control, risk of CVD, diabetes self-care behavior, weight gained and Obstructive Sleep Apnea (OSA), lifestyle and physical activity, mood/depression and anxiety symptoms, daily calories distribution, cholesterol/triglyceride, and liver enzyme levels.
CONCLUSION: The adverse effects of sleep deprivation in type 2 diabetes significantly affect all pathophysiologically, mentally, and lifestyle modifications, including diabetes self-care. Therefore, to highlight the importance of promoting optimum sleep in diabetes type2 patients, a health-care system is inevitably as necessary as diet and exercise management.
Collapse
|
17
|
Lages M, Barros R, Carmo-Silva S, Guarino MP. Linking dietary intake, circadian biomarkers, and clock genes on obesity: A study protocol. Front Nutr 2023; 10:1134789. [PMID: 37113302 PMCID: PMC10126511 DOI: 10.3389/fnut.2023.1134789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Background The prevalence of obesity continues to rise, and although this is a complex disease, the screening is made simply with the value of the Body Mass Index. This index only considers weight and height, being limited in portraying the multiple existing obesity phenotypes. The characterization of the chronotype and circadian system as an innovative phenotype of a patient's form of obesity is gaining increasing importance for the development of novel and pinpointed nutritional interventions. Objective The present study is a prospective observational controlled study conducted in Portugal, aiming to characterize the chronotype and determine its relation to the phenotype and dietary patterns of patients with obesity and healthy participants. Methods Adults with obesity (study group) and healthy adults (control group), aged between 18 and 75, will be enrolled in this study. Data will be collected to characterize the chronotype, dietary intake, and sleep quality through validated questionnaires. Body composition will also be assessed, and blood samples will be collected to quantify circadian and metabolic biomarkers. Discussion This study is expected to contribute to a better understanding of the impact of obesity and dietary intake on circadian biomarkers and, therefore, increase scientific evidence to help future therapeutic interventions based on chronobiology, with a particular focus on nutritional interventions.
Collapse
Affiliation(s)
- Marlene Lages
- ciTechCare—Center for Innovative Care and Health Technology, Polytechnic of Leiria, Leiria, Portugal
- Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- EPIUnit—Institute of Public Health, University of Porto, Porto, Portugal
| | - Renata Barros
- Faculty of Nutrition and Food Science, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- EPIUnit—Institute of Public Health, University of Porto, Porto, Portugal
| | - Sara Carmo-Silva
- Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
| | - Maria P. Guarino
- ciTechCare—Center for Innovative Care and Health Technology, Polytechnic of Leiria, Leiria, Portugal
- ESSLei, School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
- *Correspondence: Maria P. Guarino,
| |
Collapse
|
18
|
Circadian Rhythm Disorders Aggravate Periodontitis by Modulating BMAL1. Int J Mol Sci 2022; 24:ijms24010374. [PMID: 36613816 PMCID: PMC9820395 DOI: 10.3390/ijms24010374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythms regulate the body's homeostasis through the temporal control of tissue-specific circadian rhythm control genes. Circadian rhythm disorders (CRD) affect the expression levels of circadian rhythms-associated genes in brain and muscle aryl hydrocarbon receptor nuclear translocator-like-1(BMAL1), which is thought to contribute to metabolic disorders and an altered immune system. However, the relationship between CRD and the development of periodontitis was poorly reported. Therefore, this study aimed to investigate the role played by BMAL1 in periodontitis. We used a modified multi-platform approach (MMPM) to induce circadian rhythm disturbances in rats to investigate the role of BMAL1 in periodontitis. Our results showed significant downregulation of BMAL1 in the CRD with periodontitis group, significant resorption of alveolar bone, increased osteoclast differentiation, and upregulation of the inflammatory signaling molecule NF-κB. In addition, apoptosis and oxidative stress levels were increased in periodontal tissues. Collectively, our study suggests that BMAL1 is a key regulator in periodontitis exacerbated by CRD and that CRD may lead to the downregulation of BMAL1, thereby exacerbating oxidative stress and apoptosis in periodontal tissues. Our study found that BMAL1 may be associated with the progression of periodontitis and provides a new perspective on the treatment of periodontitis.
Collapse
|
19
|
Jerigova V, Zeman M, Okuliarova M. Circadian Disruption and Consequences on Innate Immunity and Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213722. [PMID: 36430199 PMCID: PMC9690954 DOI: 10.3390/ijms232213722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian rhythms control almost all aspects of physiology and behavior, allowing temporal synchrony of these processes between each other, as well as with the external environment. In the immune system, daily rhythms of leukocyte functions can determine the strength of the immune response, thereby regulating the efficiency of defense mechanisms to cope with infections or tissue injury. The natural light/dark cycle is the prominent synchronizing agent perceived by the circadian clock, but this role of light is highly compromised by irregular working schedules and unintentional exposure to artificial light at night (ALAN). The primary concern is disrupted circadian control of important physiological processes, underlying potential links to adverse health effects. Here, we first discuss the immune consequences of genetic circadian disruption induced by mutation or deletion of specific clock genes. Next, we evaluate experimental research into the effects of disruptive light/dark regimes, particularly light-phase shifts, dim ALAN, and constant light on the innate immune mechanisms under steady state and acute inflammation, and in the pathogenesis of common lifestyle diseases. We suggest that a better understanding of the mechanisms by which circadian disruption influences immune status can be of importance in the search for strategies to minimize the negative consequences of chronodisruption on health.
Collapse
|
20
|
Berisha A, Shutkind K, Borniger JC. Sleep Disruption and Cancer: Chicken or the Egg? Front Neurosci 2022; 16:856235. [PMID: 35663547 PMCID: PMC9160986 DOI: 10.3389/fnins.2022.856235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is a nearly ubiquitous phenomenon across the phylogenetic tree, highlighting its essential role in ensuring fitness across evolutionary time. Consequently, chronic disruption of the duration, timing, or structure of sleep can cause widespread problems in multiple physiological systems, including those that regulate energy balance, immune function, and cognitive capacity, among others. Many, if not all these systems, become altered throughout the course of cancer initiation, growth, metastatic spread, treatment, and recurrence. Recent work has demonstrated how changes in sleep influence the development of chronic diseases, including cancer, in both humans and animal models. A common finding is that for some cancers (e.g., breast), chronic disruption of sleep/wake states prior to disease onset is associated with an increased risk for cancer development. Additionally, sleep disruption after cancer initiation is often associated with worse outcomes. Recently, evidence suggesting that cancer itself can affect neuronal circuits controlling sleep and wakefulness has accumulated. Patients with cancer often report difficulty falling asleep, difficulty staying asleep, and severe fatigue, during and even years after treatment. In addition to the psychological stress associated with cancer, cancer itself may alter sleep homeostasis through changes to host physiology and via currently undefined mechanisms. Moreover, cancer treatments (e.g., chemotherapy, radiation, hormonal, and surgical) may further worsen sleep problems through complex biological processes yet to be fully understood. This results in a "chicken or the egg" phenomenon, where it is unclear whether sleep disruption promotes cancer or cancer reciprocally disrupts sleep. This review will discuss existing evidence for both hypotheses and present a framework through which the interactions between sleep and cancer can be dissociated and causally investigated.
Collapse
Affiliation(s)
- Adrian Berisha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Kyle Shutkind
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | | |
Collapse
|
21
|
Padgett CA, Butcher JT, Haigh SB, Speese AC, Corley ZL, Rosewater CL, Sellers HG, Larion S, Mintz JD, Fulton DJR, Stepp DW. Obesity Induces Disruption of Microvascular Endothelial Circadian Rhythm. Front Physiol 2022; 13:887559. [PMID: 35600313 PMCID: PMC9119407 DOI: 10.3389/fphys.2022.887559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Obese individuals are at significantly elevated risk of developing cardiovascular disease (CVD). Additionally, obesity has been associated with disrupted circadian rhythm, manifesting in abnormal sleeping and feeding patterns. To date, the mechanisms linking obesity, circadian disruption, and CVD are incompletely understood, and insight into novel mechanistic pathways is desperately needed to improve therapeutic potential and decrease morbidity and mortality. The objective of this study was to investigate the roles of metabolic and circadian disruptions in obesity and assess their contributions in promoting vascular disease. Lean (db/+) and obese (db/db) mice were subjected to 12 weeks of constant darkness to differentiate diurnal and circadian rhythms, and were assessed for changes in metabolism, gene expression, and vascular function. Expression of endothelial nitric oxide synthase (eNOS), an essential enzyme for vascular health, was blunted in obesity and correlated with the oscillatory loss of the novel regulator cezanne (OTUD7B). Lean mice subjected to constant darkness displayed marked reduction in vasodilatory capacity, while endothelial dysfunction of obese mice was not further compounded by diurnal insult. Endothelial gene expression of essential circadian clock components was altered in obesity, but imperfectly phenocopied in lean mice housed in constant darkness, suggesting overlapping but separate mechanisms driving endothelial dysfunction in obesity and circadian disruption. Taken together, these data provide insight into the nature of endothelial circadian rhythm in obesity and suggest a distinct mechanism by which obesity causes a unique circadian defect in the vasculature.
Collapse
Affiliation(s)
| | - Joshua T. Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | | | | | | | | | | | - Sebastian Larion
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - David J. R. Fulton
- Vascular Biology Center, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta, GA, United States
| | - David W. Stepp
- Vascular Biology Center, Augusta, GA, United States,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: David W. Stepp,
| |
Collapse
|
22
|
Zielinski MR, Gibbons AJ. Neuroinflammation, Sleep, and Circadian Rhythms. Front Cell Infect Microbiol 2022; 12:853096. [PMID: 35392608 PMCID: PMC8981587 DOI: 10.3389/fcimb.2022.853096] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Molecules involved in innate immunity affect sleep and circadian oscillators and vice versa. Sleep-inducing inflammatory molecules are activated by increased waking activity and pathogens. Pathologies that alter inflammatory molecules, such as traumatic brain injury, cancer, cardiovascular disease, and stroke often are associated with disturbed sleep and electroencephalogram power spectra. Moreover, sleep disorders, such as insomnia and sleep disordered breathing, are associated with increased dysregulation of inflammatory processes. Inflammatory molecules in both the central nervous system and periphery can alter sleep. Inflammation can also modulate cerebral vascular hemodynamics which is associated with alterations in electroencephalogram power spectra. However, further research is needed to determine the interactions of sleep regulatory inflammatory molecules and circadian clocks. The purpose of this review is to: 1) describe the role of the inflammatory cytokines interleukin-1 beta and tumor necrosis factor-alpha and nucleotide-binding domain and leucine-rich repeat protein-3 inflammasomes in sleep regulation, 2) to discuss the relationship between the vagus nerve in translating inflammatory signals between the periphery and central nervous system to alter sleep, and 3) to present information about the relationship between cerebral vascular hemodynamics and the electroencephalogram during sleep.
Collapse
Affiliation(s)
- Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States,Harvard Medical School, West Roxbury, MA, United States,*Correspondence: Mark R. Zielinski,
| | - Allison J. Gibbons
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| |
Collapse
|
23
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
24
|
Albuquerque T, Neves AR, Quintela T, Costa D. The Influence of Circadian Rhythm on Cancer Cells Targeting and Transfection Efficiency of a Polycation-Drug/Gene Delivery Vector. Polymers (Basel) 2022; 14:polym14040681. [PMID: 35215593 PMCID: PMC8875434 DOI: 10.3390/polym14040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
The conception of novel anticancer delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy. In this work, polyethylenimine (PEI) has been used to complex p53 encoded plasmid DNA (pDNA), and the anticancer drug methotrexate (MTX) has also been loaded into the vectors. To investigate the influence of circadian clock on drug/gene delivery efficiency, HeLa, C33A and fibroblast cells have been transfected with developed PEI/pDNA/MTX delivery vectors at six different time points. Phenomena as the cellular uptake/internalization, drug/gene delivery and p53 protein production have been evaluated. The cell-associated MTX fluorescence have been monitored, and p53 protein levels quantified. In HeLa and C33A cancer cells, significant levels of MTX were found for T8 and T12. For these time points, a high amount of p53 protein was quantified. Confocal microscopy images showed successful HeLa cell’s uptake of PEI/pDNA/MTX particles, at T8. In comparison, poor levels of MTX and p53 protein were found in fibroblasts; nevertheless, results indicated rhythmicity. Data demonstrate the influence of circadian rhythm on both cancer-cells targeting ability and transfection performance of PEI/pDNA/MTX carriers and seemed to provide the optimum time for drug/gene delivery. This report adds a great contribution to the field of cancer chronobiology, highlighting the relationship between circadian rhythm and nanodelivery systems, and charting the path for further research on a, yet, poorly explored but promising topic.
Collapse
Affiliation(s)
- Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
| | - Ana R. Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
- Correspondence:
| |
Collapse
|
25
|
Ragnoli B, Pochetti P, Pignatti P, Barbieri M, Mondini L, Ruggero L, Trotta L, Montuschi P, Malerba M. Sleep Deprivation, Immune Suppression and SARS-CoV-2 Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:904. [PMID: 35055726 PMCID: PMC8775678 DOI: 10.3390/ijerph19020904] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022]
Abstract
Sleep health and its adaptation to individual and environmental factors are crucial to promote physical and mental well-being across animal species. In recent years, increasing evidence has been reported regarding the relationship between sleep and the immune system and how sleep disturbances may perturb the delicate balance with severe repercussions on health outcomes. For instance, experimental sleep deprivation studies in vivo have reported several major detrimental effects on immune health, including induced failure of host defense in rats and increased risk for metabolic syndrome (MetS) and immune suppression in humans. In addition, two novel risk factors for dysregulated metabolic physiology have recently been identified: sleep disruption and circadian misalignment. In light of these recent findings about the interplay between sleep and the immune system, in this review, we focus on the relationship between sleep deprivation and immunity against viruses, with a special interest in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Beatrice Ragnoli
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy; (B.R.); (P.P.); (M.B.); (L.M.); (L.R.); (L.T.)
| | - Patrizia Pochetti
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy; (B.R.); (P.P.); (M.B.); (L.M.); (L.R.); (L.T.)
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia, 27100 Pavia, Italy;
| | - Mariangela Barbieri
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy; (B.R.); (P.P.); (M.B.); (L.M.); (L.R.); (L.T.)
| | - Lucrezia Mondini
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy; (B.R.); (P.P.); (M.B.); (L.M.); (L.R.); (L.T.)
| | - Luca Ruggero
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy; (B.R.); (P.P.); (M.B.); (L.M.); (L.R.); (L.T.)
| | - Liliana Trotta
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy; (B.R.); (P.P.); (M.B.); (L.M.); (L.R.); (L.T.)
| | - Paolo Montuschi
- Pharmacology Department, Faculty of Medicine, Catholic University of the Sacred Heart, 20123 Milan, Italy;
- Faculty of Medicine, National Hearth and Lung Institute, Imperial College of Science Technology and Medicine, Airways Disease Section, London SW7 2BX, UK
| | - Mario Malerba
- Respiratory Unit, S. Andrea Hospital, 13100 Vercelli, Italy; (B.R.); (P.P.); (M.B.); (L.M.); (L.R.); (L.T.)
- Department of Traslational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
26
|
Casey T, Suarez-Trujillo AM, McCabe C, Beckett L, Klopp R, Brito L, Rocha Malacco VM, Hilger S, Donkin SS, Boerman J, Plaut K. Transcriptome analysis reveals disruption of circadian rhythms in late gestation dairy cows may increase risk for fatty liver and reduced mammary remodeling. Physiol Genomics 2021; 53:441-455. [PMID: 34643103 DOI: 10.1152/physiolgenomics.00028.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Circadian disruption increased insulin resistance and decreased mammary development in late gestation, nonlactating (dry) cows. The objective was to measure the effect of circadian disruption on transcriptomes of the liver and mammary gland. At 35 days before expected calving (BEC), multiparous dry cows were assigned to either control (CON) or phase-shifted treatments (PS). CON was exposed to 16-h light and 8-h dark. PS was exposed to 16-h light to 8-h dark, but phase of the light-dark cycle was shifted 6 h every 3 days. On day 21 BEC, liver and mammary were biopsied. RNA was isolated (n = 6 CON, n = 6 PS per tissue), and libraries were prepared and sequenced using paired-end reads. Reads mapping to bovine genome averaged 27 ± 2 million and aligned to 14,222 protein-coding genes in liver and 15,480 in mammary analysis. In the liver, 834 genes, and in the mammary gland, 862 genes were different (nominal P < 0.05) between PS and CON. In the liver, genes upregulated in PS functioned in cholesterol biosynthesis, endoplasmic reticulum stress, wound healing, and inflammation. Genes downregulated in liver function in cholesterol efflux. In the mammary gland, genes upregulated functioned in mRNA processing and transcription and downregulated genes encoded extracellular matrix proteins and proteases, cathepsins and lysosomal proteases, lipid transporters, and regulated oxidative phosphorylation. Increased cholesterol synthesis and decreased efflux suggest that circadian disruption potentially increases the risk of fatty liver in cows. Decreased remodeling and lipid transport in mammary may decrease milk production capacity during lactation.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Conor McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Linda Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Rebecca Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Luiz Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Susan Hilger
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
27
|
Adlanmerini M, Krusen BM, Nguyen HCB, Teng CW, Woodie LN, Tackenberg MC, Geisler CE, Gaisinsky J, Peed LC, Carpenter BJ, Hayes MR, Lazar MA. REV-ERB nuclear receptors in the suprachiasmatic nucleus control circadian period and restrict diet-induced obesity. SCIENCE ADVANCES 2021; 7:eabh2007. [PMID: 34705514 PMCID: PMC8550249 DOI: 10.1126/sciadv.abh2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 05/28/2023]
Abstract
Circadian disruption, as occurs in shift work, is associated with metabolic diseases often attributed to a discordance between internal clocks and environmental timekeepers. REV-ERB nuclear receptors are key components of the molecular clock, but their specific role in the SCN master clock is unknown. We report here that mice lacking circadian REV-ERB nuclear receptors in the SCN maintain free-running locomotor and metabolic rhythms, but these rhythms are notably shortened by 3 hours. When housed under a 24-hour light:dark cycle and fed an obesogenic diet, these mice gained excess weight and accrued more liver fat than controls. These metabolic disturbances were corrected by matching environmental lighting to the shortened endogenous 21-hour clock period, which decreased food consumption. Thus, SCN REV-ERBs are not required for rhythmicity but determine the free-running period length. Moreover, these results support the concept that dissonance between environmental conditions and endogenous time periods causes metabolic disruption.
Collapse
Affiliation(s)
- Marine Adlanmerini
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brianna M. Krusen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hoang C. B. Nguyen
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clare W. Teng
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lauren N. Woodie
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael C. Tackenberg
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Caroline E. Geisler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jane Gaisinsky
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lindsey C. Peed
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bryce J. Carpenter
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew R. Hayes
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Untargeted metabolomics reveals sex-specific differences in lipid metabolism of adult rats exposed to dexamethasone in utero. Sci Rep 2021; 11:20342. [PMID: 34645877 PMCID: PMC8514544 DOI: 10.1038/s41598-021-99598-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Prenatal stress through glucocorticoid (GC) exposure leads to an increased risk of developing diseases such as cardiovascular disease, metabolic syndrome and hypertension in adulthood. We have previously shown that administration of the synthetic glucocorticoid, dexamethasone (Dex), to pregnant Wistar-Kyoto dams produces offspring with elevated blood pressures and disrupted circadian rhythm signaling. Given the link between stress, circadian rhythms and metabolism, we performed an untargeted metabolomic screen on the livers of offspring to assess potential changes induced by prenatal Dex exposure. This metabolomic analysis highlighted 18 significantly dysregulated metabolites in females and 12 in males. Pathway analysis using MetaboAnalyst 4.0 highlighted key pathway-level metabolic differences: glycerophospholipid metabolism, purine metabolism and glutathione metabolism. Gene expression analysis revealed significant upregulation of several lipid metabolism genes in females while males showed no dysregulation. Triglyceride concentrations were also found to be significantly elevated in female offspring exposed to Dex in utero, which may contribute to lipid metabolism activation. This study is the first to conduct an untargeted metabolic profile of liver from GC exposed offspring. Corroborating metabolic, gene expression and lipid profiling results demonstrates significant sex-specific lipid metabolic differences underlying the programming of hepatic metabolism.
Collapse
|
29
|
Manella G, Aizik D, Aviram R, Golik M, Asher G. Circa-SCOPE: high-throughput live single-cell imaging method for analysis of circadian clock resetting. Nat Commun 2021; 12:5903. [PMID: 34625543 PMCID: PMC8501123 DOI: 10.1038/s41467-021-26210-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022] Open
Abstract
Circadian clocks are self-sustained and cell-autonomous oscillators. They respond to various extracellular cues depending on the time-of-day and the signal intensity. Phase Transition Curves (PTCs) are instrumental in uncovering the full repertoire of responses to a given signal. However, the current methodologies for reconstructing PTCs are low-throughput, laborious, and resource- and time-consuming. We report here the development of an efficient and high throughput assay, dubbed Circadian Single-Cell Oscillators PTC Extraction (Circa-SCOPE) for generating high-resolution PTCs. This methodology relies on continuous monitoring of single-cell oscillations to reconstruct a full PTC from a single culture, upon a one-time intervention. Using Circa-SCOPE, we characterize the effects of various pharmacological and blood-borne resetting cues, at high temporal resolution and a wide concentration range. Thus, Circa-SCOPE is a powerful tool for comprehensive analysis and screening for circadian clocks' resetting cues, and can be valuable for basic as well as translational research.
Collapse
Affiliation(s)
- Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dan Aizik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Rona Aviram
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
30
|
Palmer JR, Duffy SL, Meares S, Pye J, Calamante F, Cespedes M, Hickie IB, Naismith SL. Rest-activity functioning is related to white matter microarchitecture and modifiable risk factors in older adults at-risk for dementia. Sleep 2021; 44:6082819. [PMID: 33428761 DOI: 10.1093/sleep/zsab007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
STUDY OBJECTIVES Growing evidence demonstrates pronounced alterations in rest-activity functioning in older adults at-risk for dementia. White matter degeneration, poor cardiometabolic functioning, and depression have also been linked to a greater risk of decline; however, limited studies have examined the white matter in relation to rest-activity functioning in at-risk older adults. METHODS We investigated associations between nonparametric actigraphy measures and white matter microarchitecture using whole-brain fixel-based analysis of diffusion-weighted imaging in older adults (aged 50 years or older) at-risk for cognitive decline and dementia. The fixel-based metrics assessed were fiber density, fiber cross-section, and combined fiber-density, and cross-section. Interactions between rest-activity functioning and known clinical risk factors, specifically body mass index (BMI), vascular risk factors, depressive symptoms and self-reported exercise, and their association with white matter properties were then investigated. RESULTS Sixty-seven older adults were included (mean = 65.78 years, SD = 7.89). Lower relative amplitude, poorer 24-h synchronization and earlier onset of the least active 5-h period were associated with reductions in markers of white matter atrophy in widespread regions, including cortico-subcortical and cortical association pathways. Preliminary evidence was also found indicating more pronounced white matter alterations in those with lower amplitude and higher BMI (β = 0.25, 95% CI [0.05, 0.46]), poorer 24-h synchronization and more vascular risk factors (β = 0.17, 95% CI [-0.02, 0.36]) and earlier onset of inactivity and greater depressive symptoms (β = 0.17, 95% CI [0.03, 0.30]). CONCLUSIONS These findings highlight the complex interplay between rest-activity rhythms, white matter, and clinical risk factors in individuals at-risk for dementia that should be considered in future studies.
Collapse
Affiliation(s)
- Jake R Palmer
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Shantel L Duffy
- Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration, Sydney, NSW, Australia
| | - Susanne Meares
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jonathon Pye
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Fernando Calamante
- Sydney Imaging and School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW, Australia
| | - Marcela Cespedes
- Australian e-Health Research Centre, CSIRO Health and Biosecurity, Herston, QLD, Australia
| | - Ian B Hickie
- Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration, Sydney, NSW, Australia
| |
Collapse
|
31
|
Charlot A, Hutt F, Sabatier E, Zoll J. Beneficial Effects of Early Time-Restricted Feeding on Metabolic Diseases: Importance of Aligning Food Habits with the Circadian Clock. Nutrients 2021; 13:nu13051405. [PMID: 33921979 PMCID: PMC8143522 DOI: 10.3390/nu13051405] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
The importance of metabolic health is a major societal concern due to the increasing prevalence of metabolic diseases such as obesity, diabetes, and various cardiovascular diseases. The circadian clock is clearly implicated in the development of these metabolic diseases. Indeed, it regulates physiological processes by hormone modulation, thus helping the body to perform them at the ideal time of day. Since the industrial revolution, the actions and rhythms of everyday life have been modified and are characterized by changes in sleep pattern, work schedules, and eating habits. These modifications have in turn lead to night shift, social jetlag, late-night eating, and meal skipping, a group of customs that causes circadian rhythm disruption and leads to an increase in metabolic risks. Intermittent fasting, especially the time-restricted eating, proposes a solution: restraining the feeding window from 6 to 10 h per day to match it with the circadian clock. This approach seems to improve metabolic health markers and could be a therapeutic solution to fight against metabolic diseases. This review summarizes the importance of matching life habits with circadian rhythms for metabolic health and assesses the advantages and limits of the application of time-restricted fasting with the objective of treating and preventing metabolic diseases.
Collapse
|
32
|
Taillard J, Sagaspe P, Philip P, Bioulac S. Sleep timing, chronotype and social jetlag: Impact on cognitive abilities and psychiatric disorders. Biochem Pharmacol 2021; 191:114438. [DOI: 10.1016/j.bcp.2021.114438] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
|
33
|
Period1 mediates rhythmic metabolism of toxins by interacting with CYP2E1. Cell Death Dis 2021; 12:76. [PMID: 33436540 PMCID: PMC7804260 DOI: 10.1038/s41419-020-03343-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/14/2023]
Abstract
The biological clock is an endogenous biological timing system, which controls metabolic functions in almost all organs. Nutrient metabolism, substrate processing, and detoxification are circadian controlled in livers. However, how the clock genes respond to toxins and influence toxicity keeps unclear. We identified the clock gene Per1 was specifically elevated in mice exposed to toxins such as carbon tetrachloride (CCl4). Mice lacking Per1 slowed down the metabolic rate of toxins including CCl4, capsaicin, and acetaminophen, exhibiting relatively more residues in the plasma. Liver injury and fibrosis induced by acute and chronic CCl4 exposure were markedly alleviated in Per1-deficient mice. These processes involved the binding of PER1 protein and hepatocyte nuclear factor-1alpha (HNF-1α), which enhances the recruitment of HNF-1α to cytochrome P450 2E1 (Cyp2e1) promoter and increases Cyp2e1 expression, thereby promoting metabolism for toxins in the livers. These results indicate that PER1 mediates the metabolism of toxins and appropriate suppression of Per1 response is a potential therapeutic target for toxin-induced hepatotoxicity.
Collapse
|
34
|
Adafer R, Messaadi W, Meddahi M, Patey A, Haderbache A, Bayen S, Messaadi N. Food Timing, Circadian Rhythm and Chrononutrition: A Systematic Review of Time-Restricted Eating's Effects on Human Health. Nutrients 2020; 12:nu12123770. [PMID: 33302500 PMCID: PMC7763532 DOI: 10.3390/nu12123770] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Recent observations have shown that lengthening the daily eating period may contribute to the onset of chronic diseases. Time-restricted eating (TRE) is a diet that especially limits this daily food window. It could represent a dietary approach that is likely to improve health markers. The aim of this study was to review how time-restricted eating affects human health. METHOD Five general databases and six nutrition journals were screened to identify all studies published between January 2014 and September 2020 evaluating the effects of TRE on human populations. RESULTS Among 494 articles collected, 23 were finally included for analysis. The overall adherence rate to TRE was 80%, with a 20% unintentional reduction in caloric intake. TRE induced an average weight loss of 3% and a loss of fat mass. This fat loss was also observed without any caloric restriction. Interestingly, TRE produced beneficial metabolic effects independently of weight loss, suggesting an intrinsic effect based on the realignment of feeding and the circadian clock. CONCLUSIONS TRE is a simple and well-tolerated diet that generates many beneficial health effects based on chrononutrition principles. More rigorous studies are needed, however, to confirm those effects, to understand their mechanisms and to assess their applicability to human health.
Collapse
Affiliation(s)
- Réda Adafer
- Department of General Medicine, Henri Warembourg Faculty of Medicine, University of Lille, 59000 Lille, France
| | - Wassil Messaadi
- Department of General Medicine, Henri Warembourg Faculty of Medicine, University of Lille, 59000 Lille, France
| | - Mériem Meddahi
- Department of General Medicine, Henri Warembourg Faculty of Medicine, University of Lille, 59000 Lille, France
| | - Alexia Patey
- Department of General Medicine, Henri Warembourg Faculty of Medicine, University of Lille, 59000 Lille, France
| | - Abdelmalik Haderbache
- Department of General Medicine, Henri Warembourg Faculty of Medicine, University of Lille, 59000 Lille, France
| | - Sabine Bayen
- Department of General Medicine, Henri Warembourg Faculty of Medicine, University of Lille, 59000 Lille, France
| | - Nassir Messaadi
- Department of General Medicine, Henri Warembourg Faculty of Medicine, University of Lille, 59000 Lille, France
| |
Collapse
|
35
|
Huang S, Jiao X, Lu D, Pei X, Qi D, Li Z. Recent advances in modulators of circadian rhythms: an update and perspective. J Enzyme Inhib Med Chem 2020; 35:1267-1286. [PMID: 32506972 PMCID: PMC7717701 DOI: 10.1080/14756366.2020.1772249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythm is a universal life phenomenon that plays an important role in maintaining the multiple physiological functions and regulating the adaptability to internal and external environments of flora and fauna. Circadian alignment in humans has the greatest effect on human health, and circadian misalignment is closely associated with increased risk for metabolic syndrome, cardiovascular diseases, neurological diseases, immune diseases, cancer, sleep disorders, and ophthalmic diseases. The recent description of clock proteins and related post-modification targets was involved in several diseases, and numerous lines of evidence are emerging that small molecule modulators of circadian rhythms can be used to rectify circadian disorder. Herein, we attempt to update the disclosures about the modulators targeting core clock proteins and related post-modification targets, as well as the relationship between circadian rhythm disorders and human health as well as the therapeutic role and prospect of these small molecule modulators in circadian rhythm related disease.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
36
|
Hawley JA, Sassone-Corsi P, Zierath JR. Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men. Diabetologia 2020; 63:2253-2259. [PMID: 32761356 DOI: 10.1007/s00125-020-05238-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
The proliferation in the rate of diagnosis of obesity and type 2 diabetes mellitus continues unabated, with current recommendations for primary lifestyle changes (i.e. modification to dietary patterns) having a limited impact in reducing the incidence of these metabolic diseases. Part of the reason for the failure to alter nutritional practices is that current dietary recommendations may be unrealistic for the majority of adults. Indeed, round-the-clock access to energy-dense, nutrient-poor food makes long-term changes to dietary habits challenging. Hence, there is urgent need for innovations in the delivery of evidence-based diet interventions to rescue some of the deleterious effects on circadian biology induced by our modern-day lifestyle. With the growing appreciation that the duration over which food is consumed during a day has profound effects on numerous physiological and metabolic processes, we discuss dietary protocols that modify the timing of food intake to deliberately alter the feeding-fasting cycle. Such chrono-nutrition functions to optimise metabolism by timing nutrient intake to the acrophases of metabolic rhythms to improve whole-body insulin sensitivity and glycaemic control, and thereby positively impact metabolic health. Graphical abstract.
Collapse
Affiliation(s)
- John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| | - Paolo Sassone-Corsi
- INSERM U1233-Department of Biological Chemistry, Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Yang CH, Hwang CF, Chuang JH, Lian WS, Wang FS, Huang EI, Yang MY. Constant Light Dysregulates Cochlear Circadian Clock and Exacerbates Noise-Induced Hearing Loss. Int J Mol Sci 2020; 21:E7535. [PMID: 33066038 PMCID: PMC7589695 DOI: 10.3390/ijms21207535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023] Open
Abstract
Noise-induced hearing loss is one of the major causes of acquired sensorineural hearing loss in modern society. While people with excessive exposure to noise are frequently the population with a lifestyle of irregular circadian rhythms, the effects of circadian dysregulation on the auditory system are still little known. Here, we disturbed the circadian clock in the cochlea of male CBA/CaJ mice by constant light (LL) or constant dark. LL significantly repressed circadian rhythmicity of circadian clock genes Per1, Per2, Rev-erbα, Bmal1, and Clock in the cochlea, whereas the auditory brainstem response thresholds were unaffected. After exposure to low-intensity (92 dB) noise, mice under LL condition initially showed similar temporary threshold shifts to mice under normal light-dark cycle, and mice under both conditions returned to normal thresholds after 3 weeks. However, LL augmented high-intensity (106 dB) noise-induced permanent threshold shifts, particularly at 32 kHz. The loss of outer hair cells (OHCs) and the reduction of synaptic ribbons were also higher in mice under LL after noise exposure. Additionally, LL enhanced high-intensity noise-induced 4-hydroxynonenal in the OHCs. Our findings convey new insight into the deleterious effect of an irregular biological clock on the auditory system.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Jiin-Haur Chuang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Ethan I. Huang
- Department of Otolaryngology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; (J.-H.C.); (F.-S.W.)
| |
Collapse
|
38
|
Ogata H, Horie M, Kayaba M, Tanaka Y, Ando A, Park I, Zhang S, Yajima K, Shoda JI, Omi N, Kaneko M, Kiyono K, Satoh M, Tokuyama K. Skipping Breakfast for 6 Days Delayed the Circadian Rhythm of the Body Temperature without Altering Clock Gene Expression in Human Leukocytes. Nutrients 2020; 12:nu12092797. [PMID: 32932677 PMCID: PMC7551061 DOI: 10.3390/nu12092797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
Breakfast is often described as “the most important meal of the day” and human studies have revealed that post-prandial responses are dependent on meal timing, but little is known of the effects of meal timing per se on human circadian rhythms. We evaluated the effects of skipping breakfast for 6 days on core body temperature, dim light melatonin onset, heart rate variability, and clock gene expression in 10 healthy young men, with a repeated-measures design. Subjects were provided an isocaloric diet three times daily (3M) or two times daily (2M, i.e., breakfast skipping condition) over 6 days. Compared with the 3M condition, the diurnal rhythm of the core body temperature in the 2M condition was delayed by 42.0 ± 16.2 min (p = 0.038). On the other hand, dim light melatonin onset, heart rate variability, and clock gene expression were not affected in the 2M condition. Skipping breakfast for 6 days caused a phase delay in the core body temperature in healthy young men, even though the sleep–wake cycle remained unchanged. Chronic effects of skipping breakfast on circadian rhythms remain to be studied.
Collapse
Affiliation(s)
- Hitomi Ogata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Correspondence: ; Tel.: +81-82-424-6589
| | - Masaki Horie
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Momoko Kayaba
- Department of Somnology, Tokyo Medical University, 5-10-10 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan;
| | - Yoshiaki Tanaka
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Akira Ando
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Insung Park
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8550, Japan; (I.P.); (S.Z.); (M.S.); (K.T.)
| | - Simeng Zhang
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8550, Japan; (I.P.); (S.Z.); (M.S.); (K.T.)
| | - Katsuhiko Yajima
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan;
| | - Jun-ichi Shoda
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Naomi Omi
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan; (M.H.); (Y.T.); (A.A.); (J.-i.S.); (N.O.)
| | - Miki Kaneko
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan; (M.K.); (K.K.)
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan; (M.K.); (K.K.)
| | - Makoto Satoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8550, Japan; (I.P.); (S.Z.); (M.S.); (K.T.)
| | - Kumpei Tokuyama
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8550, Japan; (I.P.); (S.Z.); (M.S.); (K.T.)
| |
Collapse
|
39
|
Funderburk L, Cardaci T, Fink A, Taylor K, Rohde J, Harris D. Healthy Behaviors through Behavioral Design-Obesity Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5049. [PMID: 32674287 PMCID: PMC7400269 DOI: 10.3390/ijerph17145049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Evidence for behavior modification for improved health outcomes was evaluated for nutrition, physical activity (PA), and indoor environmental quality (IEQ). The databases searched included LISTA, PubMed, and Web of Science, with articles rated using an a priori baseline score of 70/100 to establish inclusion. The initial search produced 52,847 articles, 63 of which were included in the qualitative synthesis. Thirteen articles met inclusion for nutrition: cafeteria interventions, single interventions, and vending interventions. Seventeen articles on physical activity were included: stair use, walking, and adjustable desks. For IEQ, 33 articles met inclusion: circadian disruption, view and natural light, and artificial light. A narrative synthesis was used to find meaningful connections across interventions with evidence contributing to health improvements. Commonalities throughout the nutrition studies included choice architecture, increasing the availability of healthy food items, and point-of-purchase food labeling. Interventions that promoted PA included stair use, sit/stand furniture, workplace exercise facilities and walking. Exposure to natural light and views of natural elements were found to increase PA and improve sleep quality. Overexposure to artificial light may cause circadian disruption, suppressing melatonin and increasing risks of cancers. Overall, design that encourages healthy behaviors may lower risks associated with chronic disease.
Collapse
Affiliation(s)
- LesLee Funderburk
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA; (T.C.); (A.F.); (K.T.); (D.H.)
| | - Thomas Cardaci
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA; (T.C.); (A.F.); (K.T.); (D.H.)
| | - Andrew Fink
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA; (T.C.); (A.F.); (K.T.); (D.H.)
| | - Keyanna Taylor
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA; (T.C.); (A.F.); (K.T.); (D.H.)
| | - Jane Rohde
- JSR Associates, Catonsville, MD 21228, USA;
| | - Debra Harris
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA; (T.C.); (A.F.); (K.T.); (D.H.)
- JSR Associates, Catonsville, MD 21228, USA;
| |
Collapse
|
40
|
Balachandran RC, Hatcher KM, Sieg ML, Sullivan EK, Molina LM, Mahoney MM, Eubig PA. Pharmacological challenges examining the underlying mechanism of altered response inhibition and attention due to circadian disruption in adult Long-Evans rats. Pharmacol Biochem Behav 2020; 193:172915. [DOI: 10.1016/j.pbb.2020.172915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
|
41
|
Farshadi E, van der Horst GT, Chaves I. Molecular Links between the Circadian Clock and the Cell Cycle. J Mol Biol 2020; 432:3515-3524. [DOI: 10.1016/j.jmb.2020.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
|
42
|
Casey T, Sun H, Suarez-Trujillo A, Crodian J, Zhang L, Plaut K, Burgess HJ, Dowden S, Haas DM, Ahmed A. Pregnancy rest-activity patterns are related to salivary cortisol rhythms and maternal-fetal health indicators in women from a disadvantaged population. PLoS One 2020; 15:e0229567. [PMID: 32126104 PMCID: PMC7053712 DOI: 10.1371/journal.pone.0229567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Irregular rest-activity patterns can disrupt metabolic and hormonal physiology and potentially lead to disease. Little is known regarding rest-activity patterns during gestation and their association with hormonal rhythms and health in pregnant women. We conducted a pilot study to determine if 24 h rest-activity was related to saliva cortisol rhythms and maternal-fetal health in an economically disadvantaged population. Primiparous women wore a wrist actigraphy device for a week to record activity during gestational weeks 22 (G22; n = 50) and 32 (G32; n = 46) and postpartum week one (PPW1; n = 39). Participants collected saliva samples every 4 hr over a 24 hr period during G22 (n = 22), G32 (n = 20) and 24–48 hr postnatal (n = 20), and cortisol concentrations were measured with ELISA. Circadian rhythmicity was assessed using autocorrelation coefficient (r24) and cosinor analysis. Blood glucose levels, body mass index (BMI), gestational disease data, and gestational age of infant at birth were abstracted from medical charts. Time of cortisol peak (acrophase) during G22 was related with acrophase of activity (r = 0.66; p = 0.001) and blood glucose levels (r = 0.58; p = 0.006). During G22, minutes of wake after sleep onset was positively related to cortisol mesor and AUC (p <0.05). Rest-activity r24, R2, and mesor during G32 were positively (p<0.05) associated with gestational age of infant at birth. Across all three time points r24 of activity was related with cortisol amplitude (r = 0.33; p = 0.01). Findings support a relationship between rest-activity patterns and saliva cortisol rhythms during pregnancy. The association of less robust activity rhythms with earlier gestational age of infant at birth indicates a potential link between circadian system disruption and maternal-fetal health outcomes.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Hui Sun
- Department of Statistics, Purdue University, West Lafayette, IN, United States of America
| | - Aridany Suarez-Trujillo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Jennifer Crodian
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Lingsong Zhang
- Department of Statistics, Purdue University, West Lafayette, IN, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Helen J. Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States of America
| | - Shelley Dowden
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN, United States of America
| | - David M. Haas
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN, United States of America
| | - Azza Ahmed
- School of Nursing, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
43
|
Bartman CM, Eckle T. Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease. Curr Pharm Des 2020; 25:1075-1090. [PMID: 31096895 DOI: 10.2174/1381612825666190516081612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
Throughout the evolutionary time, all organisms and species on Earth evolved with an adaptation to consistent oscillations of sunlight and darkness, now recognized as 'circadian rhythm.' Single-cellular to multisystem organisms use circadian biology to synchronize to the external environment and provide predictive adaptation to changes in cellular homeostasis. Dysregulation of circadian biology has been implicated in numerous prevalent human diseases, and subsequently targeting the circadian machinery may provide innovative preventative or treatment strategies. Discovery of 'peripheral circadian clocks' unleashed widespread investigations into the potential roles of clock biology in cellular, tissue, and organ function in healthy and diseased states. Particularly, oxygen-sensing pathways (e.g. hypoxia inducible factor, HIF1), are critical for adaptation to changes in oxygen availability in diseases such as myocardial ischemia. Recent investigations have identified a connection between the circadian rhythm protein Period 2 (PER2) and HIF1A that may elucidate an evolutionarily conserved cellular network that can be targeted to manipulate metabolic function in stressed conditions like hypoxia or ischemia. Understanding the link between circadian and hypoxia pathways may provide insights and subsequent innovative therapeutic strategies for patients with myocardial ischemia. This review addresses our current understanding of the connection between light-sensing pathways (PER2), and oxygen-sensing pathways (HIF1A), in the context of myocardial ischemia and lays the groundwork for future studies to take advantage of these two evolutionarily conserved pathways in the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, Graduate Training Program in Cell Biology, Stem Cells, and Development, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
44
|
Dopamine Signaling in the Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding. Curr Biol 2020; 30:196-208.e8. [PMID: 31902720 DOI: 10.1016/j.cub.2019.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
The widespread availability of energy-dense, rewarding foods is correlated with the increased incidence of obesity across the globe. Overeating during mealtimes and unscheduled snacking disrupts timed metabolic processes, which further contribute to weight gain. The neuronal mechanism by which the consumption of energy-dense food restructures the timing of feeding is poorly understood. Here, we demonstrate that dopaminergic signaling within the suprachiasmatic nucleus (SCN), the central circadian pacemaker, disrupts the timing of feeding, resulting in overconsumption of food. D1 dopamine receptor (Drd1)-null mice are resistant to diet-induced obesity, metabolic disease, and circadian disruption associated with energy-dense diets. Conversely, genetic rescue of Drd1 expression within the SCN restores diet-induced overconsumption, weight gain, and obesogenic symptoms. Access to rewarding food increases SCN dopamine turnover, and elevated Drd1-signaling decreases SCN neuronal activity, which we posit disinhibits downstream orexigenic responses. These findings define a connection between the reward and circadian pathways in the regulation of pathological calorie consumption.
Collapse
|
45
|
Vetter C. Circadian disruption: What do we actually mean? Eur J Neurosci 2020; 51:531-550. [PMID: 30402904 PMCID: PMC6504624 DOI: 10.1111/ejn.14255] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
The circadian system regulates physiology and behavior. Acute challenges to the system, such as those experienced when traveling across time zones, will eventually result in re-synchronization to local environmental time cues, but this re-synchronization is oftentimes accompanied by adverse short-term consequences. When such challenges are experienced chronically, adaptation may not be achieved, as for example in the case of rotating night shift workers. The transient and chronic disturbance of the circadian system is most frequently referred to as "circadian disruption", but many other terms have been proposed and used to refer to similar situations. It is now beyond doubt that the circadian system contributes to health and disease, emphasizing the need for clear terminology when describing challenges to the circadian system and their consequences. The goal of this review is to provide an overview of the terms used to describe disruption of the circadian system, discuss proposed quantifications of disruption in experimental and observational settings with a focus on human research, and highlight limitations and challenges of currently available tools. For circadian research to advance as a translational science, clear, operationalizable, and scalable quantifications of circadian disruption are key, as they will enable improved assessment and reproducibility of results, ideally ranging from mechanistic settings, including animal research, to large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
46
|
Framnes-DeBoer SN, Bakke E, Yalamanchili S, Peterson H, Sandoval DA, Seeley RJ, Arble DM. Bromocriptine improves glucose tolerance independent of circadian timing, prolactin, or the melanocortin-4 receptor. Am J Physiol Endocrinol Metab 2020; 318:E62-E71. [PMID: 31794265 PMCID: PMC6985791 DOI: 10.1152/ajpendo.00325.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromocriptine, a dopamine D2 receptor agonist originally used for the treatment of hyperprolactinemia, is largely successful in reducing hyperglycemia and improving glucose tolerance in type 2 diabetics. However, the mechanism behind bromocriptine's effect on glucose intolerance is unclear. Here, we tested three hypotheses, that bromocriptine may exert its effects on glucose metabolism by 1) decreasing prolactin secretion, 2) indirectly increasing activity of key melanocortin receptors in the central nervous system, or 3) improving/restoring circadian rhythms. Using a diet-induced obese (DIO) mouse model, we established that a 2-wk treatment of bromocriptine is robustly effective at improving glucose tolerance. We then demonstrated that bromocriptine is effective at improving the glucose tolerance of both DIO prolactin-deficient and melanocortin-4 receptor (MC4R)-deficient mice, pointing to bromocriptine's ability to affect glucose tolerance independently of prolactin or MC4R signaling. Finally, we tested bromocriptine's dependence on the circadian system by testing its effectiveness in environmental (e.g., repeated shifts to the light-dark cycle) and genetic (e.g., the Clock mutant mouse) models of circadian disruption. In both models of circadian disruption, bromocriptine was effective at improving glucose tolerance, indicating that a functional or well-aligned endogenous clock is not necessary for bromocriptine's effects on glucose metabolism. Taken together, these results do not support the role of prolactin, MC4R, or the circadian clock as integral to bromocriptine's underlying mechanism. Instead, we find that bromocriptine is a robust diabetic treatment and resilient to genetically induced obesity, diabetes, and circadian disruption.
Collapse
Affiliation(s)
| | - Ellen Bakke
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Hannah Peterson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Deanna M Arble
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
47
|
Bates K, Herzog ED. Maternal-Fetal Circadian Communication During Pregnancy. Front Endocrinol (Lausanne) 2020; 11:198. [PMID: 32351448 PMCID: PMC7174624 DOI: 10.3389/fendo.2020.00198] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
This article reviews evidence for maternal-fetal communication about the time of day. We explore the hypothesis that key maternal hormones synchronize daily rhythms in the fetus to regulate gestation duration. These findings may help to predict and prevent preterm birth.
Collapse
|
48
|
Dissi M, Ibrahim S, Tanko Y, Mohammed A. Models of modern-day circadian rhythm disruption and their diabetogenic potentials in adult male Wistar rats. SAUDI JOURNAL FOR HEALTH SCIENCES 2020. [DOI: 10.4103/sjhs.sjhs_69_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
49
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
50
|
Shaw E, Leung GKW, Jong J, Coates AM, Davis R, Blair M, Huggins CE, Dorrian J, Banks S, Kellow NJ, Bonham MP. The Impact of Time of Day on Energy Expenditure: Implications for Long-Term Energy Balance. Nutrients 2019; 11:E2383. [PMID: 31590425 PMCID: PMC6835928 DOI: 10.3390/nu11102383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022] Open
Abstract
There is evidence to indicate that the central biological clock (i.e., our endogenous circadian system) plays a role in physiological processes in the body that impact energy regulation and metabolism. Cross-sectional data suggest that energy consumption later in the day and during the night is associated with weight gain. These findings have led to speculation that when, as well as what, we eat may be important for maintaining energy balance. Emerging literature suggests that prioritising energy intake to earlier during the day may help with body weight maintenance. Evidence from tightly controlled acute experimental studies indicates a disparity in the body's ability to utilise (expend) energy equally across the day and night. Energy expenditure both at rest (resting metabolic rate) and after eating (thermic effect of food) is typically more efficient earlier during the day. In this review, we discuss the key evidence for a circadian pattern in energy utilisation and balance, which depends on meal timing. Whilst there is limited evidence that simply prioritising energy intake to earlier in the day is an effective strategy for weight loss, we highlight the potential benefits of considering the role of meal timing for improving metabolic health and energy balance. This review demonstrates that to advance our understanding of the contribution of the endogenous circadian system toward energy balance, targeted studies that utilise appropriate methodologies are required that focus on meal timing and frequency.
Collapse
Affiliation(s)
- Emma Shaw
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Gloria K W Leung
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Jessica Jong
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Alison M Coates
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA 5072, Australia.
| | - Rochelle Davis
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Merran Blair
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Catherine E Huggins
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Jillian Dorrian
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA 5072, Australia.
| | - Siobhan Banks
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA 5072, Australia.
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| | - Maxine P Bonham
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168 Australia.
| |
Collapse
|