1
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
2
|
Sekar J, Attaway AH. The intersection of HIF-1α, O-GlcNAc, and skeletal muscle loss in chronic obstructive pulmonary disease. Glycobiology 2023; 33:873-878. [PMID: 37812446 PMCID: PMC10859630 DOI: 10.1093/glycob/cwad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Sarcopenia, defined as the loss of muscle mass and strength, is a major cause of morbidity and mortality in COPD (chronic obstructive pulmonary disease) patients. However, the molecular mechanisms that cause sarcopenia remain to be determined. In this review, we will highlight the unique molecular and metabolic perturbations that occur in the skeletal muscle of COPD patients in response to hypoxia, and emphasize important areas of future research. In particular, the mechanisms related to the glycolytic shift that occurs in skeletal muscle in response to hypoxia may occur via a hypoxia-inducible factor 1-alpha (HIF-1α)-mediated mechanism. Upregulated glycolysis in skeletal muscle promotes a unique post-translational glycosylation of proteins known as O-GlcNAcylation, which further shifts metabolism toward glycolysis. Molecular changes in the skeletal muscle of COPD patients are associated with fiber-type shifting from Type I (oxidative) muscle fibers to Type II (glycolytic) muscle fibers. The metabolic shift toward glycolysis caused by HIF-1α and O-GlcNAc modified proteins suggests a potential cause for sarcopenia in COPD, which is an emerging area of future research.
Collapse
Affiliation(s)
- Jinendiran Sekar
- Division of Infectious Diseases, Harbor-UCLA Medical Center, 1000 West Carson Street, MRL Building, Box 466; Torrance, CA 90502, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W Carson St, Torrance, CA 90502, United States
| | - Amy H Attaway
- Respiratory Institute, Cleveland Clinic, Cleveland Clinic Main Campus, Mail Code A90, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
3
|
Hai C, Bai C, Yang L, Wei Z, Wang H, Ma H, Ma H, Zhao Y, Su G, Li G. Effects of Different Generations and Sex on Physiological, Biochemical, and Growth Parameters of Crossbred Beef Cattle by Myostatin Gene-Edited Luxi Bulls and Simmental Cows. Animals (Basel) 2023; 13:3216. [PMID: 37893940 PMCID: PMC10603717 DOI: 10.3390/ani13203216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Myostatin (MSTN) is a protein that regulates skeletal muscle development and plays a crucial role in maintaining animal body composition and muscle structure. The loss-of-function mutation of MSTN gene can induce the muscle hypertrophic phenotype. (2) Methods: Growth indexes and blood parameters of the cattle of different months were analyzed via multiple linear regression. (3) Results: Compared with the control group, the body shape parameters of F2 cattle were improved, especially the body weight, cross height, and hip height, representing significant development of hindquarters, and the coat color of the F2 generation returned to the yellow of Luxi cattle. As adults, MSTN gene-edited bulls have a tall, wide acromion and a deep, wide chest. Both the forequarters and hindquarters are double-muscled with clear muscle masses. The multiple linear regression demonstrates that MSTN gene-edited hybrid beef cattle gained weight due to the higher height of the hindquarters. Significant differences in blood glucose, calcium, and low-density lipoprotein. Serum insulin levels decreased significantly at 24 months of age. MSTN gene editing improves the adaptability of cattle. (4) Conclusions: Our findings suggest that breeding with MSTN gene-edited Luxi bulls can improve the growth and performance of hybrid cattle, with potential benefits for both farmers and consumers.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Hong Wang
- Sheng-Quan Ecological Animal Husbandry Company, Chifeng 024500, China;
| | - Haoran Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Haibing Ma
- Inner Mongolia Aokesi Animal Husbandry Co., Ltd., Hesge Ula Ranch, Ulagai Management Area, Xilingol League 026321, China;
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| |
Collapse
|
4
|
Llanos P, Palomero J. Reactive Oxygen and Nitrogen Species (RONS) and Cytokines-Myokines Involved in Glucose Uptake and Insulin Resistance in Skeletal Muscle. Cells 2022; 11:cells11244008. [PMID: 36552772 PMCID: PMC9776436 DOI: 10.3390/cells11244008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance onset in skeletal muscle is characterized by the impairment of insulin signaling, which reduces the internalization of glucose, known as glucose uptake, into the cell. Therefore, there is a deficit of intracellular glucose, which is the main source for energy production in the cell. This may compromise cellular viability and functions, leading to pathological dysfunction. Skeletal muscle fibers continuously generate reactive oxygen and nitrogen species (RONS). An excess of RONS produces oxidative distress, which may evoke cellular damage and dysfunction. However, a moderate level of RONS, which is called oxidative eustress, is critical to maintain, modulate and regulate cellular functions through reversible interactions between RONS and the components of cellular signaling pathways that control those functions, such as the facilitation of glucose uptake. The skeletal muscle releases peptides called myokines that may have endocrine and paracrine effects. Some myokines bind to specific receptors in skeletal muscle fibers and might interact with cellular signaling pathways, such as PI3K/Akt and AMPK, and facilitate glucose uptake. In addition, there are cytokines, which are peptides produced by non-skeletal muscle cells, that bind to receptors at the plasma membrane of skeletal muscle cells and interact with the cellular signaling pathways, facilitating glucose uptake. RONS, myokines and cytokines might be acting on the same signaling pathways that facilitate glucose uptake in skeletal muscle. However, the experimental studies are limited and scarce. The aim of this review is to highlight the current knowledge regarding the role of RONS, myokines and cytokines as potential signals that facilitate glucose uptake in skeletal muscle. In addition, we encourage researchers in the field to lead and undertake investigations to uncover the fundamentals of glucose uptake evoked by RONS, myokines, and cytokines.
Collapse
Affiliation(s)
- Paola Llanos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380544, Chile
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Jesus Palomero
- Department of Physiology and Pharmacology, Faculty of Medicine, Campus Miguel de Unamuno, Universidad de Salamanca, Av. Alfonso X El Sabio, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-666-589-153
| |
Collapse
|
5
|
Schmid S, Heim-Kupr B, Pérez-Schindler J, Mansingh S, Beer M, Mittal N, Ehrenfeuchter N, Handschin C. PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds. Mol Metab 2022; 66:101643. [PMID: 36400401 PMCID: PMC9723918 DOI: 10.1016/j.molmet.2022.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Skeletal muscle is a pivotal organ for the coordination of systemic metabolism, constituting one of the largest storage site for glucose, lipids and amino acids. Tight temporal orchestration of protein breakdown in times of fasting has to be balanced with preservation of muscle mass and function. However, the molecular mechanisms that control the fasting response in muscle are poorly understood. METHODS We now have identified a role for the peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) in the regulation of catabolic pathways in this context in muscle-specific loss-of-function mouse models. RESULTS Muscle-specific knockouts for PGC-1β experience mitigated muscle atrophy in fasting, linked to reduced expression of myostatin, atrogenes, activation of AMP-dependent protein kinase (AMPK) and other energy deprivation signaling pathways. At least in part, the muscle fasting response is modulated by a negative effect of PGC-1β on the nuclear factor of activated T-cells 1 (NFATC1). CONCLUSIONS Collectively, these data highlight the complex regulation of muscle metabolism and reveal a new role for muscle PGC-1β in the control of proteostasis in fasting.
Collapse
Affiliation(s)
- Svenia Schmid
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Barbara Heim-Kupr
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | | | - Shivani Mansingh
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Markus Beer
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Nitish Mittal
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | | | - Christoph Handschin
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland.
| |
Collapse
|
6
|
Ahsan M, Garneau L, Aguer C. The bidirectional relationship between AMPK pathway activation and myokine secretion in skeletal muscle: How it affects energy metabolism. Front Physiol 2022; 13:1040809. [PMID: 36479347 PMCID: PMC9721351 DOI: 10.3389/fphys.2022.1040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2023] Open
Abstract
Myokines are peptides and proteins secreted by skeletal muscle cells, into the interstitium, or in the blood. Their regulation may be dependent or independent of muscle contraction to induce a variety of metabolic effects. Numerous myokines have been implicated in influencing energy metabolism via AMP-activated protein kinase (AMPK) signalling. As AMPK is centrally involved in glucose and lipid metabolism, it is important to understand how myokines influence its signalling, and vice versa. Such insight will better elucidate the mechanism of metabolic regulation during exercise and at rest. This review encompasses the latest research conducted on the relationship between AMPK signalling and myokines within skeletal muscles via autocrine or paracrine signalling.
Collapse
Affiliation(s)
- Mahdi Ahsan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University—Campus Outaouais, Gatineau, QC, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Wang S, Fang L, Cong L, Chung JPW, Li TC, Chan DYL. Myostatin: a multifunctional role in human female reproduction and fertility - a short review. Reprod Biol Endocrinol 2022; 20:96. [PMID: 35780124 PMCID: PMC9250276 DOI: 10.1186/s12958-022-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Myostatin (MSTN) is member of the transforming growth factor β (TGF-β) superfamily and was originally identified in the musculoskeletal system as a negative regulator of skeletal muscle growth. The functional roles of MSTN outside of the musculoskeletal system have aroused researchers' interest in recent years, with an increasing number of studies being conducted in this area. Notably, the expression of MSTN and its potential activities in various reproductive organs, including the ovary, placenta, and uterus, have recently been examined. Numerous studies published in the last few years demonstrate that MSTN plays a critical role in human reproduction and fertility, including the regulation of follicular development, ovarian steroidogenesis, granule-cell proliferation, and oocyte maturation regulation. Furthermore, findings from clinical samples suggest that MSTN may play a key role in the pathogenesis of several reproductive disorders such as uterine myoma, preeclampsia (PE), ovary hyperstimulation syndrome (OHSS), and polycystic ovarian syndrome (PCOS). There is no comprehensive review regarding to MSTN related to the female reproductive system in the literature. This review serves as a summary of the genes in reproductive medicine and their potential influence. We summarized MSTN expression in different compartments of the female reproductive system. Subsequently, we discuss the role of MSTN in both physiological and several pathological conditions related to the female fertility and reproduction-related diseases.
Collapse
Affiliation(s)
- Sijia Wang
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Luping Cong
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Jacqueline Pui Wah Chung
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Tin Chiu Li
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - David Yiu Leung Chan
- Assisted reproductive technologies unit, Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China.
| |
Collapse
|
9
|
Myostatin Deficiency Enhances Antioxidant Capacity of Bovine Muscle via the SMAD-AMPK-G6PD Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3497644. [PMID: 35663205 PMCID: PMC9159831 DOI: 10.1155/2022/3497644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
During exercise, the body’s organs and skeletal muscles produce reactive oxygen species (ROS). Excessive ROS can destroy cellular lipids, sugars, proteins, and nucleotides and lead to cancer. The production of nicotinamide adenine dinucleotide phosphate (NADPH) by the pentose phosphate pathway (PPP) is an auxiliary process of the cellular antioxidant system that supplements the reducing power of glutathione (GSH) to eliminate ROS in the cell. Myostatin (MSTN) is mainly expressed in skeletal muscle and participates in the regulation of skeletal muscle growth and development. Loss of MSTN leads to muscular hypertrophy, and MSTN deficiency upregulates glycolysis. However, the effect of MSTN on the PPP has not been reported. This study investigated the effect of MSTN on muscle antioxidant capacity from a metabolic perspective. We found that reducing MSTN modulates AMP-activated protein kinase (AMPK), a key molecule in cellular energy metabolism that directly regulates glucose metabolism through phosphorylation. Downregulation of MSTN promotes tyrosine modification of glucose-6-phosphate-dehydrogenase (G6PD) by AMPK and is regulated by the Smad signaling pathway. The Smad2/3 complex acts as a transcription factor to inhibit the AMPK expression. These results suggest that reduced MSTN expression inhibits the Smad signaling pathway, promotes AMPK expression, enhances the activity of G6PD enzyme, and enhances the antioxidant capacity of nonenzymatic GSH.
Collapse
|
10
|
Gu M, Zhou X, Zhu L, Gao Y, Gao L, Bai C, Yang L, Li G. Myostatin Mutation Promotes Glycolysis by Increasing Phosphorylation of Phosphofructokinase via Activation of PDE5A-cGMP-PKG in Cattle Heart. Front Cell Dev Biol 2022; 9:774185. [PMID: 35155444 PMCID: PMC8831326 DOI: 10.3389/fcell.2021.774185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Myostatin (MSTN) is a primary negative regulator of skeletal muscle mass and causes multiple metabolic changes. However, whether MSTN mutation affects heart morphology and physiology remains unclear. Myostatin mutation (MT) had no effect on cattle cardiac muscle in histological examination, but in biochemical assays, glycolysis increased in cattle hearts with MT. Compared with wild-type cattle, there were no differences in mRNA and protein levels of rate-limiting enzymes, but phosphofructokinase (PFK) phosphorylation increased in cattle hearts with MT. Transcriptome analysis showed that phosphodiesterase-5A (PDE5A), a target for inhibiting cGMP-PKG signaling, was downregulated. For the mechanism, chromatin immunoprecipitation qPCR showed that the SMAD2/SMAD3 complex in the canonical downstream pathway for MSTN combined with the promoter of PDE5A. The cGMP-PKG pathway was activated, and PKG increased phosphorylation of PFK in cattle hearts with MT. In addition, activation of PKG and the increase in PFK phosphorylation promoted glycolysis. Knockdown of PKG resulted in the opposite phenomena. The results indicated that MT potentiated PFK phosphorylation via the PDE5A-cGMP-PKG pathway and thereby promoted glycolysis in the heart.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Li Gao
- Baotou Teachers’ College, Baotou, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| |
Collapse
|
11
|
Wu D, Gu M, Wei Z, Bai C, Su G, Liu X, Zhao Y, Yang L, Li G. Myostatin Knockout Regulates Bile Acid Metabolism by Promoting Bile Acid Synthesis in Cattle. Animals (Basel) 2022; 12:ani12020205. [PMID: 35049827 PMCID: PMC8772948 DOI: 10.3390/ani12020205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Myostatin (MSTN) is a major negative regulator of skeletal muscle mass and causes a variety of metabolic changes. However, the effect of MSTN knockout on bile acid metabolism has rarely been reported. In this study, the physiological and biochemical alterations of serum in MSTN+/- and wild type (WT) cattle were investigated. There were no significant changes in liver and kidney biochemical indexes. However, compared with the WT cattle, lactate dehydrogenase, total bile acid (TBA), cholesterol, and high-density lipoprotein (HDL) in the MSTN+/- cattle were significantly increased, and glucose, low-density lipoprotein (LDL), and triglycerides (TG) were significantly decreased, indicating that MSTN knockout affected glucose and lipid metabolism and total bile acids content. Targeted metabolomic analysis of the bile acids and their derivatives was performed on serum samples and found that bile acids were significantly increased in the MSTN+/- cattle compared with the WT cattle. As the only bile acid synthesis organ in the body, we performed metabolomic analysis on the liver to study the effect of MSTN knockout on hepatic metabolism. Metabolic pathway enrichment analysis of differential metabolites showed significant enrichment of the primary bile acid biosynthesis and bile secretion pathway in the MSTN+/- cattle. Targeted metabolomics data further showed that MSTN knockout significantly increased bile acid content in the liver, which may have resulted from enhanced bile acid synthesis due to the expression of bile acid synthesis genes, cholesterol 7 alpha-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), and upregulation in the liver of the MSTN+/- cattle. These results indicate that MSTN knockout does not adversely affect bovine fitness but regulates bile acid metabolism via enhanced bile acid synthesis. This further suggests a role of MSTN in regulating metabolism.
Collapse
|
12
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
13
|
Fairman CM, Lønbro S, Cardaci TD, VanderVeen BN, Nilsen TS, Murphy AE. Muscle wasting in cancer: opportunities and challenges for exercise in clinical cancer trials. JCSM RAPID COMMUNICATIONS 2022; 5:52-67. [PMID: 36118249 PMCID: PMC9481195 DOI: 10.1002/rco2.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Low muscle in cancer is associated with an increase in treatment-related toxicities and is a predictor of cancer-related and all-cause mortality. The mechanisms of cancer-related muscle loss are multifactorial, including anorexia, hypogonadism, anaemia, inflammation, malnutrition, and aberrations in skeletal muscle protein turnover and metabolism. METHODS In this narrative review, we summarise relevant literature to (i) review the factors influencing skeletal muscle mass regulation, (ii) provide an overview of how cancer/treatments negatively impact these, (iii) review factors beyond muscle signalling that can impact the ability to participate in and respond to an exercise intervention to counteract muscle loss in cancer, and (iv) provide perspectives on critical areas of future research. RESULTS Despite the well-known benefits of exercise, there remains a paucity of clinical evidence supporting the impact of exercise in cancer-related muscle loss. There are numerous challenges to reversing muscle loss with exercise in clinical cancer settings, ranging from the impact of cancer/treatments on the molecular regulation of muscle mass, to clinical challenges in responsiveness to an exercise intervention. For example, tumour-related/treatment-related factors (e.g. nausea, pain, anaemia, and neutropenia), presence of comorbidities (e.g. diabetes, arthritis, and chronic obstructive pulmonary disease), injuries, disease progression and bone metastases, concomitant medications (e.g., metformin), can negatively affect an individual's ability to exercise safely and limit subsequent adaptation. CONCLUSIONS This review identifies numerous gaps and oppportunities in the area of low muscle and muscle loss in cancer. Collaborative efforts between preclinical and clinical researchers are imperative to both understanding the mechanisms of atrophy, and develop appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Ciaran M. Fairman
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29033, USA
- Correspondence to: Ciaran Fairman, Department of Exercise Science, University of South Carolina, Columbia, SC 29033, USA.
| | - Simon Lønbro
- Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Thomas D. Cardaci
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina 29033, USA
| | - Brandon N. VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tormod S. Nilsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Angela E. Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
14
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2022; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
15
|
Bigford GE, Donovan A, Webster MT, Dietrich WD, Nash MS. Selective Myostatin Inhibition Spares Sublesional Muscle Mass and Myopenia-Related Dysfunction after Severe Spinal Cord Contusion in Mice. J Neurotrauma 2021; 38:3440-3455. [PMID: 34714134 DOI: 10.1089/neu.2021.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Clinically relevant myopenia accompanies spinal cord injury (SCI), and compromises function, metabolism, body composition, and health. Myostatin, a transforming growth factor (TGF)β family member, is a key negative regulator of skeletal muscle mass. We investigated inhibition of myostatin signaling using systemic delivery of a highly selective monoclonal antibody - muSRK-015P (40 mg/kg) - that blocks release of active growth factor from the latent form of myostatin. Adult female mice (C57BL/6) were subjected to a severe SCI (65 kdyn) at T9 and were then immediately and 1 week later administered test articles: muSRK-015P (40 mg/kg) or control (vehicle or IgG). A sham control group (laminectomy only) was included. At euthanasia, (2 weeks post-SCI) muSRK-015P preserved whole body lean mass and sublesional gastrocnemius and soleus mass. muSRK-015P-treated mice with SCI also had significantly attenuated myofiber atrophy, lipid infiltration, and loss of slow-oxidative phenotype in soleus muscle. These outcomes were accompanied by significantly improved sublesional motor function and muscle force production at 1 and 2 weeks post-SCI. At 2 weeks post-SCI, lean mass was significantly decreased in SCI-IgG mice, but was not different in SCI-muSRK-015P mice than in sham controls. Total energy expenditure (kCal/day) at 2 weeks post-SCI was lower in SCI-immunoglobulin (Ig)G mice, but not different in SCI-muSRK-015P mice than in sham controls. We conclude that in a randomized, blinded, and controlled study in mice, myostatin inhibition using muSRK-015P had broad effects on physical, metabolic, and functional outcomes when compared with IgG control treated SCI animals. These findings may identify a useful, targeted therapeutic strategy for treating post-SCI myopenia and related sequelae in humans.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - W Dalton Dietrich
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mark S Nash
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physical Therapy, University of Miami, Miami, Florida, USA
| |
Collapse
|
16
|
Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/Activin-A Signaling in the Vessel Wall and Vascular Calcification. Cells 2021; 10:2070. [PMID: 34440838 PMCID: PMC8393536 DOI: 10.3390/cells10082070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
A current hypothesis is that transforming growth factor-β signaling ligands, such as activin-A and myostatin, play a role in vascular damage in atherosclerosis and chronic kidney disease (CKD). Myostatin and activin-A bind with different affinity the activin receptors (type I or II), activating distinct intracellular signaling pathways and finally leading to modulation of gene expression. Myostatin and activin-A are expressed by different cell types and tissues, including muscle, kidney, reproductive system, immune cells, heart, and vessels, where they exert pleiotropic effects. In arterial vessels, experimental evidence indicates that myostatin may mostly promote vascular inflammation and premature aging, while activin-A is involved in the pathogenesis of vascular calcification and CKD-related mineral bone disorders. In this review, we discuss novel insights into the biology and physiology of the role played by myostatin and activin in the vascular wall, focusing on the experimental and clinical data, which suggest the involvement of these molecules in vascular remodeling and calcification processes. Moreover, we describe the strategies that have been used to modulate the activin downward signal. Understanding the role of myostatin/activin signaling in vascular disease and bone metabolism may provide novel therapeutic opportunities to improve the treatment of conditions still associated with high morbidity and mortality.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Daniela Picciotto
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Leda Cipriani
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| |
Collapse
|
17
|
Rybalka E, Timpani CA, Debruin DA, Bagaric RM, Campelj DG, Hayes A. The Failed Clinical Story of Myostatin Inhibitors against Duchenne Muscular Dystrophy: Exploring the Biology behind the Battle. Cells 2020; 9:E2657. [PMID: 33322031 PMCID: PMC7764137 DOI: 10.3390/cells9122657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Myostatin inhibition therapy has held much promise for the treatment of muscle wasting disorders. This is particularly true for the fatal myopathy, Duchenne Muscular Dystrophy (DMD). Following on from promising pre-clinical data in dystrophin-deficient mice and dogs, several clinical trials were initiated in DMD patients using different modality myostatin inhibition therapies. All failed to show modification of disease course as dictated by the primary and secondary outcome measures selected: the myostatin inhibition story, thus far, is a failed clinical story. These trials have recently been extensively reviewed and reasons why pre-clinical data collected in animal models have failed to translate into clinical benefit to patients have been purported. However, the biological mechanisms underlying translational failure need to be examined to ensure future myostatin inhibitor development endeavors do not meet with the same fate. Here, we explore the biology which could explain the failed translation of myostatin inhibitors in the treatment of DMD.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Danielle A. Debruin
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Ryan M. Bagaric
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Dean G. Campelj
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, 3021 Victoria, Australia
| |
Collapse
|
18
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
19
|
Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 2020; 72:1667-1693. [PMID: 32812252 DOI: 10.1111/jphp.13359] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic β-cells and endothelial cells, was discovered.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
20
|
Xin XB, Yang SP, Li X, Liu XF, Zhang LL, Ding XB, Zhang S, Li GP, Guo H. Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle. Gen Comp Endocrinol 2020; 291:113237. [PMID: 31374285 DOI: 10.1016/j.ygcen.2019.113237] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanism underlying myostatin (MSTN)-regulated metabolic cross-talk remains poorly understood. In this study, we performed comparative proteomic and phosphoproteomic analyses of gluteus muscle tissues from MSTN-/- transgenic cattle using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to explore the signaling pathway of MSTN in metabolic cross-talk and cellular metabolism during muscle development. A total of 72 differentially expressed proteins (DEPs) and 36 differentially expressed phosphoproteins (DEPPs) were identified in MSTN-/- cattle compared to wild-type cattle. Bioinformatics analyses showed that MSTN knockout increased the activity of many key enzymes involved in fatty acid β-oxidation and glycolysis processes in cattle. Furthermore, comprehensive pathway analyses and hypothesis-driven AMP-activated protein kinase (AMPK) activity assays suggested that MSTN knockout triggers the activation of AMPK signaling pathways to regulate glucose and lipid metabolism by increasing the AMP/ATP ratio. Our results shed new light on the potential regulatory mechanism of MSTN associated with metabolic cross-talk in muscle development, which can be used in animal breeding to improve meat production in livestock animals, and can also provide valuable insight into treatments for obesity and diabetes mellitus in humans.
Collapse
Affiliation(s)
- Xiang-Bo Xin
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Shu-Ping Yang
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xin-Feng Liu
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Lin-Lin Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xiang-Bin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA.
| | - Guang-Peng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010070, China.
| | - Hong Guo
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China.
| |
Collapse
|
21
|
Blanks AM, Rodriguez-Miguelez P, Looney J, Tucker MA, Jeong J, Thomas J, Blackburn M, Stepp DW, Weintraub NJ, Harris RA. Whole body vibration elicits differential immune and metabolic responses in obese and normal weight individuals. Brain Behav Immun Health 2020; 1:100011. [PMID: 38377415 PMCID: PMC8474538 DOI: 10.1016/j.bbih.2019.100011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Traditional aerobic exercise reduces the risk of developing chronic diseases by inducing immune, metabolic, and myokine responses. Following traditional exercise, both the magnitude and time-course of these beneficial responses are different between obese compared to normal weight individuals. Although obesity may affect the ability to engage in traditional exercise, whole body vibration (WBV) has emerged as a more tolerable form of exercise . The impact of WBV on immune, metabolic, and myokine responses as well as differences between normal weight and obese individuals, however, is unknown. Purpose To determine if WBV elicits differential magnitudes and time-courses of immune, metabolic, and myokine responses between obese and normal weight individuals. Methods 21 participants [Obese (OB): n = 11, Age: 33 ± 4 y, percent body fat (%BF): 39.1 ± 2.4% & Normal weight (NW) n = 10, Age: 28 ± 8 y, %BF: 17.4 ± 2.1%] engaged in 10 cycles of WBV exercise [1 cycle = 1 min of vibration followed by 30 s of rest]. Blood samples were collected pre-WBV (PRE), immediately (POST), 3 h (3H), and 24 h (24H) post-WBV and analyzed for leukocytes, insulin, glucose, and myokines (IL-6, decorin, myostatin). Results The peak (3H) percent change in neutrophil counts (OB: 13.9 ± 17.4 vs. NW: 47.2 ± 6.2%Δ; p = 0.007) was different between groups. The percent change in neutrophil percentages was increased in NW (POST: -1.6 ± 2.0 vs. 3H: 13.0 ± 7.2%Δ, p = 0.019) but not OB (p > 0.05). HOMA β-cell function was increased at 24H (PRE: 83.4 ± 5.4 vs. 24H: 131.0 ± 14.1%; p = 0.013) in NW and was not altered in OB (p > 0.05). PRE IL-6 was greater in OB compared to NW (OB: 2.7 ± 0.6 vs. NW: 0.6 ± 0.1 pg/mL; p = 0.011); however, the percent change from PRE to peak (3H) was greater in NW (OB: 148.1 ± 47.9 vs. NW: 1277.9 ± 597.6 %Δ; p = 0.035). Creatine kinase, decorin, and myostatin were not significantly altered in either group (p > 0.05). Conclusion Taken together, these data suggest that acute whole body vibration elicits favorable immune, metabolic, and myokine responses and that these responses differ between obese and normal weight individuals.
Collapse
Affiliation(s)
- Anson M. Blanks
- Georgia Prevention Institute, Department of Population Health Sciences, Augusta University, Augusta, GA, USA
| | | | - Jacob Looney
- Georgia Prevention Institute, Department of Population Health Sciences, Augusta University, Augusta, GA, USA
| | - Matthew A. Tucker
- Georgia Prevention Institute, Department of Population Health Sciences, Augusta University, Augusta, GA, USA
| | - Jinhee Jeong
- Georgia Prevention Institute, Department of Population Health Sciences, Augusta University, Augusta, GA, USA
| | - Jeffrey Thomas
- Georgia Prevention Institute, Department of Population Health Sciences, Augusta University, Augusta, GA, USA
| | - Marsha Blackburn
- Georgia Prevention Institute, Department of Population Health Sciences, Augusta University, Augusta, GA, USA
| | - David W. Stepp
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | | | - Ryan A. Harris
- Georgia Prevention Institute, Department of Population Health Sciences, Augusta University, Augusta, GA, USA
- Sport and Exercise Science Research Institute, Ulster University, Jordanstown, Northern Ireland, UK
| |
Collapse
|
22
|
Wang L, Ma S, Ding Q, Wang X, Chen Y. CRISPR/Cas9-mediated MSTN gene editing induced mitochondrial alterations in C2C12 myoblast cells. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
24
|
Liu X, Bauman WA, Cardozo CP. Myostatin inhibits glucose uptake via suppression of insulin-dependent and -independent signaling pathways in myoblasts. Physiol Rep 2018; 6:e13837. [PMID: 30252210 PMCID: PMC6121119 DOI: 10.14814/phy2.13837] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022] Open
Abstract
The glucose transporter 4 (Glut4) mediates insulin-dependent glucose uptake. Glut4 expression levels are correlated with whole-body glucose homeostasis. Insulin signaling is known to recruit Glut4 to the cell surface. Expression of Glut4 is subject to tissue-specific hormonal and metabolic regulation. The molecular mechanisms regulating skeletal muscle Glut4 expression remain to be elucidated. Myostatin (Mstn) is reported to be involved in the regulation of energy metabolism. While elevated Mstn levels in muscle are associated with obesity and type-2 diabetes in both human and mouse models, Mstn null mice exhibit immunity to dietary-induced obesity and insulin resistance. The molecular mechanisms by which Mstn initiates the development of insulin resistance and disorders of glucose disposal are not well delineated. Here we investigated effects of Mstn on insulin action in C2C12 cells. Mstn significantly reduced basal and insulin-induced IRS-1 tyrosine (Tyr495) phosphorylation, and expression and activation of PI3K, associated with diminished AKT phosphorylation and elevated GSK3β phosphorylation at Ser9. In addition, Mstn inhibited Glut4 mRNA and protein expression, and reduced insulin-induced Glut4 membrane translocation and glucose uptake. Conversely, SB431542, a Smad2/3 inhibitor, significantly increased cellular response to insulin. Mstn decreased AMP-activated protein kinase (AMPK) activity accompanied by reduced Glut4 gene expression and glucose uptake, which were partially reversed by AICAR, an AMPK activator. These data suggest that Mstn inhibits Glut4 expression and insulin-induced Glut4 integration into cytoplasmic membranes and glucose uptake and that these changes are mediated by direct insulin-desensitizing effect and indirect suppression of AMPK activation.
Collapse
Affiliation(s)
- Xin‐Hua Liu
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
- Department of Rehabilitation MedicineMount Sinai School of MedicineNew YorkNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineMount Sinai School of MedicineNew YorkNew York
- Department of Rehabilitation MedicineMount Sinai School of MedicineNew YorkNew York
| |
Collapse
|
25
|
Rovira M, Arrey G, Planas JV. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish. Front Physiol 2017; 8:1063. [PMID: 29326600 PMCID: PMC5741866 DOI: 10.3389/fphys.2017.01063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR) and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK) was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest improved aerobic capacity as a result of swimming-induced exercise. Finally, the induction of myokine expression by swimming-induced exercise support the hypothesis that these myokines may have been produced and secreted by the exercised zebrafish muscle and acted on fast muscle cells to promote metabolic remodeling. These results support the use of zebrafish as a suitable model for studies on muscle remodeling in vertebrates, including humans.
Collapse
Affiliation(s)
- Mireia Rovira
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain
| | - Gerard Arrey
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain
| | - Josep V Planas
- Departament de Biologia Cel·lular, Facultat de Biologia, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Deng Z, Luo P, Lai W, Song T, Peng J, Wei HK. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis. Biochem Biophys Res Commun 2017; 494:278-284. [DOI: 10.1016/j.bbrc.2017.10.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 02/07/2023]
|
27
|
Manfredi LH, Paula-Gomes S, Zanon NM, Kettelhut IC. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents. ACTA ACUST UNITED AC 2017; 50:e6733. [PMID: 29069231 PMCID: PMC5649873 DOI: 10.1590/1414-431x20176733] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2024]
Abstract
Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.
Collapse
Affiliation(s)
- L H Manfredi
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Curso de Medicina, Universidade Federal de Fronteira Sul, Chapecó, SC, Brasil
| | - S Paula-Gomes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - N M Zanon
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - I C Kettelhut
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
28
|
Jia H, Zhao Y, Li T, Zhang Y, Zhu D. miR-30e is negatively regulated by myostatin in skeletal muscle and is functionally related to fiber-type composition. Acta Biochim Biophys Sin (Shanghai) 2017; 49:392-399. [PMID: 28338991 DOI: 10.1093/abbs/gmx019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Indexed: 01/12/2023] Open
Abstract
Myostatin (MSTN) negatively regulates skeletal myogenesis in which microRNAs (miRNAs) also play critical roles. Using miRNA microarrays of skeletal muscle from MSTN-knockout (MSTN-/-) mice, we recently showed that miR-431 is regulated by MSTN signaling. To identify additional miRNAs regulated by MSTN, we re-analyzed these miRNA arrays and validated their expression by quantitative RT-PCR. Herein, we demonstrated that miR-30e was significantly upregulated in skeletal muscle of MSTN-/- mice compared with that of the wild-type littermates. Importantly, the predicted targets of miR-30e are functionally involved in myocyte differentiation and fiber-type formation. Using luciferase reporter gene assays, we further showed that peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (Pgc1α), is a direct target of miR-30e. Overexpression of miR-30e in C2C12 cells significantly decreased Pgc1α and increased type II form of myosin heavy chain gene expression, suggesting that miR-30e functionally associates with glycolytic myofiber formation. Thus, our data indicate that the altered fiber-type composition in MSTN-/- mice are attributable in part to deregulated expression of miR-30e.
Collapse
Affiliation(s)
- Haixue Jia
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yixia Zhao
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
29
|
Abstract
UNLABELLED Purpose/aim of the study: Myostatin is a myokine that has been shown to inhibit muscle growth and to have potentially deleterious effects on metabolism. The aim of the current study was to compare its circulating serum levels in subjects from the whole spectrum of carbohydrate disturbances leading to diabetes. MATERIALS AND METHODS A total of 159 age-, sex-, and BMI-matched subjects participated in the study - 50 had normal glucose tolerance (NGT), 60 had prediabetes (PreDM), and 49 had type 2 diabetes mellitus (T2D). Oral glucose tolerance testing was used to determine glucose tolerance. Serum myostatin was quantified by means of ELISA. RESULTS Circulating serum myostatin levels were highest in patients with T2D, lower in subjects with prediabetes, and lowest in subjects with normoglycemia (all p < 0.05). Myostatin was shown to be positively associated with fasting plasma glucose, HOMA-IR, hepatic enzymes, uric acid, and FINDRISC questionnaire scores in both sexes. ROC analyses determined circulating myostatin levels to be of value for differentiating subjects with T2D (AUC = 0.72, p = 0.002 in men; AUC = 0.70, p = 0.004 in women) in the study population. After adjustment for potential confounders, in a multiple binary logistic regression model, serum myostatin added further information to traditional risk estimates in distinguishing subjects with T2D. CONCLUSIONS Serum myostatin levels are higher with deterioration of carbohydrate tolerance. Furthermore, circulating myostatin is positively associated with traditional biochemical estimates of poor metabolic health. These data add to evidence of the involvement of this myokine in the pathogenesis of T2D.
Collapse
Affiliation(s)
- Yavor S Assyov
- a Clinic of Endocrinology , University Hospital "Alexandrovska", Medical University , Sofia , Bulgaria
| | - Tsvetelina V Velikova
- b Laboratory of Clinical Immunology , University Hospital "St. Ivan Rilski", Medical University , Sofia , Bulgaria
| | - Zdravko A Kamenov
- a Clinic of Endocrinology , University Hospital "Alexandrovska", Medical University , Sofia , Bulgaria
| |
Collapse
|
30
|
Kocsis T, Trencsenyi G, Szabo K, Baan JA, Muller G, Mendler L, Garai I, Reinauer H, Deak F, Dux L, Keller-Pinter A. Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity. Am J Physiol Endocrinol Metab 2017; 312:E150-E160. [PMID: 27965203 DOI: 10.1152/ajpendo.00216.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/30/2022]
Abstract
The TGFβ family member myostatin (growth/differentiation factor-8) is a negative regulator of skeletal muscle growth. The hypermuscular Compact mice carry the 12-bp Mstn(Cmpt-dl1Abc) deletion in the sequence encoding the propeptide region of the precursor promyostatin, and additional modifier genes of the Compact genetic background contribute to determine the full expression of the phenotype. In this study, by using mice strains carrying mutant or wild-type myostatin alleles with the Compact genetic background and nonmutant myostatin with the wild-type background, we studied separately the effect of the Mstn(Cmpt-dl1Abc) mutation or the Compact genetic background on morphology, metabolism, and signaling. We show that both the Compact myostatin mutation and Compact genetic background account for determination of skeletal muscle size. Despite the increased musculature of Compacts, the absolute size of heart and kidney is not influenced by myostatin mutation; however, the Compact genetic background increases them. Both Compact myostatin and genetic background exhibit systemic metabolic effects. The Compact mutation decreases adiposity and improves whole body glucose uptake, insulin sensitivity, and 18FDG uptake of skeletal muscle and white adipose tissue, whereas the Compact genetic background has the opposite effect. Importantly, the mutation does not prevent the formation of mature myostatin; however, a decrease in myostatin level was observed, leading to altered activation of Smad2, Smad1/5/8, and Akt, and an increased level of p-AS160, a Rab-GTPase-activating protein responsible for GLUT4 translocation. Based on our analysis, the Compact genetic background strengthens the effect of myostatin mutation on muscle mass, but those can compensate for each other when systemic metabolic effects are compared.
Collapse
Affiliation(s)
- Tamas Kocsis
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | - Kitti Szabo
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Julia Aliz Baan
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Geza Muller
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Luca Mendler
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | - Ferenc Deak
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary;
| |
Collapse
|
31
|
Irimia JM, Guerrero M, Rodriguez-Miguelez P, Cadefau JA, Tesch PA, Cussó R, Fernandez-Gonzalo R. Metabolic adaptations in skeletal muscle after 84 days of bed rest with and without concurrent flywheel resistance exercise. J Appl Physiol (1985) 2017; 122:96-103. [DOI: 10.1152/japplphysiol.00521.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/25/2016] [Accepted: 11/30/2016] [Indexed: 11/22/2022] Open
Abstract
As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n = 9) or without (BR; n = 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α), and myostatin, were analyzed in samples from m. vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1α and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle.
Collapse
Affiliation(s)
- José M. Irimia
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana
| | - Mario Guerrero
- Department of Biomedicine, Barcelona University, Barcelona, Spain
| | - Paula Rodriguez-Miguelez
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Georgia Prevention Institute, Department of Pediatrics, Augusta University, Augusta, Georgia; and
| | - Joan A. Cadefau
- Department of Biomedicine, Barcelona University, Barcelona, Spain
| | - Per A. Tesch
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Roser Cussó
- Department of Biomedicine, Barcelona University, Barcelona, Spain
| | - Rodrigo Fernandez-Gonzalo
- Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Radiobiology Unit, Laboratory of Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Mol, Belgium
| |
Collapse
|
32
|
Hjorth M, Pourteymour S, Görgens SW, Langleite TM, Lee S, Holen T, Gulseth HL, Birkeland KI, Jensen J, Drevon CA, Norheim F. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells. Acta Physiol (Oxf) 2016; 217:45-60. [PMID: 26572800 DOI: 10.1111/apha.12631] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
AIM Some health benefits of exercise may be explained by an altered secretion of myokines. Because previous focus has been on upregulated myokines, we screened for downregulated myokines and identified myostatin. We studied the expression of myostatin in relation to exercise and dysglycaemia in skeletal muscle, adipose tissue and plasma. We further examined some effects of myostatin on energy metabolism in primary human muscle cells and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. METHODS Sedentary men with or without dysglycaemia underwent a 45-min acute bicycle test before and after 12 weeks of combined endurance and strength training. Blood samples and biopsies from m. vastus lateralis and adipose tissue were collected. RESULTS Myostatin mRNA expression was reduced in skeletal muscle after acute as well as long-term exercise and was even further downregulated by acute exercise on top of 12-week training. Furthermore, the expression of myostatin at baseline correlated negatively with insulin sensitivity. Myostatin expression in the adipose tissue increased after 12 weeks of training and correlated positively with insulin sensitivity markers. In cultured muscle cells but not in SGBS cells, myostatin promoted an insulin-independent increase in glucose uptake. Furthermore, muscle cells incubated with myostatin had an enhanced rate of glucose oxidation and lactate production. CONCLUSION Myostatin was differentially expressed in the muscle and adipose tissue in relation to physical activity and dysglycaemia. Recombinant myostatin increased the consumption of glucose in human skeletal muscle cells, suggesting a complex regulatory role of myostatin in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- M. Hjorth
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. Pourteymour
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - T. M. Langleite
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - S. Lee
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - T. Holen
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - H. L. Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - K. I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - J. Jensen
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - C. A. Drevon
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - F. Norheim
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
33
|
Kazemi F. The correlation of resistance exercise-induced myostatin with insulin resistance and plasma cytokines in healthy young men. J Endocrinol Invest 2016; 39:383-8. [PMID: 26280319 DOI: 10.1007/s40618-015-0373-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE This study was designed to examine the correlation of resistance exercise (RE)-induced myostatin (MSTN) with insulin resistance and plasma cytokines in healthy young men. METHODS Twenty-four healthy men were randomly divided into RE (n = 12) and control (n = 12) group. After a session of familiarization, one repetition maximum (1-RM) was calculated. Circuit RE program involved 3 sets of 15 repetitions at 55 % of 1-RM. Blood samples were collected before and 24 h after the exercise. Paired t test, independent t test, and Pearson's correlation were used for analyzing data. RESULTS A significant decrease in plasma level of MSTN, glucose, insulin, interleukin-6 (IL-6), and homeostasis model assessment of insulin resistance (HOMA-IR) and a significant increase in plasma interleukin-10 (IL-10) were found in RE group 24 h post-exercise versus pre-exercise (p < 0.05). Furthermore, except plasma IL-10, a significant decrease in metabolic variables was found in RE group versus control group (p < 0.05). A significantly positive correlation of plasma MSTN with HOMA-IR and plasma IL-6 and a significantly negative correlation of plasma MSTN with plasma IL-10 were found in RE group versus control group (p < 0.05). CONCLUSIONS It seems that a circuit RE bout by reducing HOMA-IR and changing plasma cytokines (decreased IL-6 and increased IL-10) can decrease plasma level of MSTN in healthy young men. In other word, the beneficial effect of acute RE may be reflected by changes in MSTN in healthy young individuals.
Collapse
Affiliation(s)
- F Kazemi
- School of Physical Education and Sport Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
34
|
García-Fontana B, Reyes-García R, Morales-Santana S, Ávila-Rubio V, Muñoz-Garach A, Rozas-Moreno P, Muñoz-Torres M. Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state? Endocrine 2016; 52:54-62. [PMID: 26438394 DOI: 10.1007/s12020-015-0758-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/22/2015] [Indexed: 12/29/2022]
Abstract
Myostatin and irisin are two myokines related to energy metabolism, acting on skeletal muscle and recently suggested on adipose tissue in mice. However, the exact role of these myokines in humans has not been fully established. Our aim was to evaluate the relationship between serum levels of myostatin and irisin in type 2 diabetes mellitus patients and non-diabetic controls and to explore its links with metabolic parameters. Case-control study including 73 type 2 diabetes mellitus patients and 55 non-diabetic subjects as control group. Circulating myostatin and irisin levels were measured by enzyme-linked immunosorbent assays. Type 2 diabetes mellitus patients showed significantly lower myostatin levels (p = 0.001) and higher irisin levels (p = 0.036) than controls. An inverse relationship was observed between myostatin and irisin levels (p = 0.002). Moreover, in type 2 diabetes mellitus patients, after adjusting by confounder factors, myostatin was negatively related to fasting plasma glucose (p = 0.005) and to triglyceride levels (p = 0.028) while irisin showed a positive association with these variables (p = 0.017 and p = 0.006 respectively). A linear regression analysis showed that irisin and fasting plasma glucose levels were independently associated to myostatin levels and that myostatin and triglyceride levels were independently associated to irisin concentrations in type 2 diabetes mellitus patients. Our results suggest that serum levels of myostatin and irisin are related in patients with type 2 diabetes. Triglyceride and glucose levels could modulate myostatin and irisin concentrations as a compensatory mechanism to improve the metabolic state in these patients although further studies are needed to elucidate whether the action of these myokines represents an adaptative response.
Collapse
Affiliation(s)
- Beatriz García-Fontana
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Endocrinology Division, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Olóriz 16, 18012, Granada, Spain
| | - Rebeca Reyes-García
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Endocrinology Division, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Olóriz 16, 18012, Granada, Spain
- Endocrinology Unit, Hospital General Universitario Rafael Méndez, Ctra. Nacional 340, Km. 589, 30817, Lorca, Murcia, Spain
| | - Sonia Morales-Santana
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Endocrinology Division, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Olóriz 16, 18012, Granada, Spain
- Proteomic Research Service, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Olóriz 16, 18012, Granada, Spain
| | - Verónica Ávila-Rubio
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Endocrinology Division, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Olóriz 16, 18012, Granada, Spain
| | - Araceli Muñoz-Garach
- Endocrinology and Nutrition Service, Hospital Clínico Universitario Virgen de la Victoria, Campus de Teatinos, S/N, 29010, Málaga, Spain
| | - Pedro Rozas-Moreno
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Endocrinology Division, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Olóriz 16, 18012, Granada, Spain
- Endocrinology Division, Hospital General de Ciudad Real, Calle del Obispo Rafael Torija, s/n, 13005, Ciudad Real, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Endocrinology Division, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Olóriz 16, 18012, Granada, Spain.
| |
Collapse
|
35
|
Identification of Deleterious Mutations in Myostatin Gene of Rohu Carp (Labeo rohita) Using Modeling and Molecular Dynamic Simulation Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7562368. [PMID: 27019850 PMCID: PMC4785247 DOI: 10.1155/2016/7562368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/18/2022]
Abstract
The myostatin (MSTN) is a known negative growth regulator of skeletal muscle. The mutated myostatin showed a double-muscular phenotype having a positive significance for the farmed animals. Consequently, adequate information is not available in the teleosts, including farmed rohu carp, Labeo rohita. In the absence of experimental evidence, computational algorithms were utilized in predicting the impact of point mutation of rohu myostatin, especially its structural and functional relationships. The four mutations were generated at different positions (p.D76A, p.Q204P, p.C312Y, and p.D313A) of MSTN protein of rohu. The impacts of each mutant were analyzed using SIFT, I-Mutant 2.0, PANTHER, and PROVEAN, wherein two substitutions (p.D76A and p.Q204P) were predicted as deleterious. The comparative structural analysis of each mutant protein with the native was explored using 3D modeling as well as molecular-dynamic simulation techniques. The simulation showed altered dynamic behaviors concerning RMSD and RMSF, for either p.D76A or p.Q204P substitution, when compared with the native counterpart. Interestingly, incorporated two mutations imposed a significant negative impact on protein structure and stability. The present study provided the first-hand information in identifying possible amino acids, where mutations could be incorporated into MSTN gene of rohu carp including other carps for undertaking further in vivo studies.
Collapse
|
36
|
Li B, Liu K, Weng Q, Li P, Wei W, Li Q, Chen J, Huang R, Wu W, Liu H. RNA-seq analysis reveals new candidate genes for drip loss in a Pietrain × Duroc × Landrace × Yorkshire population. Anim Genet 2016; 47:192-9. [DOI: 10.1111/age.12401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Bojiang Li
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Kaiqing Liu
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Qiannan Weng
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Pinghua Li
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Wei Wei
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Qifa Li
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Jie Chen
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Ruihua Huang
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
37
|
Zou X, Meng J, Li L, Han W, Li C, Zhong R, Miao X, Cai J, Zhang Y, Zhu D. Acetoacetate Accelerates Muscle Regeneration and Ameliorates Muscular Dystrophy in Mice. J Biol Chem 2015; 291:2181-95. [PMID: 26645687 DOI: 10.1074/jbc.m115.676510] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
Acetoacetate (AA) is a ketone body and acts as a fuel to supply energy for cellular activity of various tissues. Here, we uncovered a novel function of AA in promoting muscle cell proliferation. Notably, the functional role of AA in regulating muscle cell function is further evidenced by its capability to accelerate muscle regeneration in normal mice, and it ameliorates muscular dystrophy in mdx mice. Mechanistically, our data from multiparameter analyses consistently support the notion that AA plays a non-metabolic role in regulating muscle cell function. Finally, we show that AA exerts its function through activation of the MEK1-ERK1/2-cyclin D1 pathway, revealing a novel mechanism in which AA serves as a signaling metabolite in mediating muscle cell function. Our findings highlight the profound functions of a small metabolite as signaling molecule in mammalian cells.
Collapse
Affiliation(s)
- Xiaoting Zou
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Jiao Meng
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Li Li
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Wanhong Han
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Changyin Li
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Ran Zhong
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Xuexia Miao
- the Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Cai
- the Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Zhang
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Dahai Zhu
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| |
Collapse
|
38
|
Lee K, Ochi E, Song H, Nakazato K. Activation of AMP-activated protein kinase induce expression of FoxO1, FoxO3a, and myostatin after exercise-induced muscle damage. Biochem Biophys Res Commun 2015; 466:289-94. [PMID: 26342801 DOI: 10.1016/j.bbrc.2015.08.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
Abstract
AMP-activated protein kinase (AMPK) has been shown to regulate protein metabolism in skeletal muscle. We previously found that levels of Forkhead box proteins, FoxO1 and FoxO3a, and myostatin in rat gastrocnemius increased after exercise-induced muscle damage (EIMD). Eccentric muscle contractions (ECs), defined as elongation of muscle under tension, were used for inducing EIMD. The objective of this study was to clarify whether AMPK participates in activation and expression of FoxO proteins and myostatin in rat gastrocnemius muscle after EIMD. Wistar rats were randomly assigned into the following three groups; CON (n = 6), 180ECs group (ankle angular velocity, 180°/s; n = 6), and 30ECs group (ankle angular velocity, 30°/s; n = 6). 20 ECs were conducted with percutaneous electrical stimulation of gastrocnemius and simultaneous forced dorsiflexion of ankle joint (from 0° to 45°). To evaluate activation of AMPK, we measured the phosphorylated states of AMPK and acetyl CoA carboxylase. For evaluation of the direct relationships of AMPK and other proteins, we also examined contents of FoxOs and myostatin with stimulation of L6 myotube with AMPK agonist, 5 -aminoimidazole -4 -carboxamide -1-β-d-ribofuranoside (AICAR) (0.1, 0.5, 1, 1.5, and 2 mM). Western blotting was employed for protein analysis. Significant torque deficit was only observed in the 180ECs, suggesting EIMD. We also observed that phosphorylated AMPKα was induced in response to 180ECs (p < 0.01 vs. CON). Additionally, the level of phosphorylated acetyl CoA carboxylase was significantly higher in response to 180ECs and 30ECs. The phosphorylated states of FoxO1, FoxO3a, and myostatin expression were increased significantly in response to 180ECs. Furthermore, treatment of L6 myotubes with AICAR showed similar tendencies to that observed in in vivo gastrocnemius muscle treated with 180ECs. Therefore, we conclude that activation of AMPK plays a key role in increasing the level of FoxO1, FoxO3a, and myostatin in gastrocnemius after EIMD.
Collapse
Affiliation(s)
- Kihyuk Lee
- Graduate School of Health and Sport Sciences, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya, Tokyo 158-8508, Japan; Korea Institute of Sports Science, San223-19, Gongneung-dong Nowon-gu Seoul 139-242, South Korea.
| | - Eisuke Ochi
- Graduate School of Education, Okayama University, 3-1-1, Tsushimanaka, Kita, 700-8530, Okayama, Japan.
| | - Hongsun Song
- Korea Institute of Sports Science, San223-19, Gongneung-dong Nowon-gu Seoul 139-242, South Korea.
| | - Koichi Nakazato
- Graduate School of Health and Sport Sciences, Nippon Sport Science University, 7-1-1, Fukasawa, Setagaya, Tokyo 158-8508, Japan.
| |
Collapse
|
39
|
Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE, Zhang S, MacLaughlin SM, Kleemann DO, Walker SK, Roberts CT, McMillen IC. Impact of periconceptional and preimplantation undernutrition on factors regulating myogenesis and protein synthesis in muscle of singleton and twin fetal sheep. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 2015; 3:3/8/e12495. [PMID: 26265755 PMCID: PMC4562581 DOI: 10.14814/phy2.12495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we determined the effect of maternal undernutrition in the periconceptional (PCUN: ~80 days before to 6 days after conception) and preimplantation (PIUN: 0-6 days after conception) periods on the mRNA and protein abundance of key factors regulating myogenesis and protein synthesis, and on the relationship between the abundance of these factors and specific microRNA expression in the quadriceps muscle of singleton and twin fetal sheep at 135-138 days of gestation. PCUN and PIUN resulted in a decrease in the protein abundance of MYF5, a factor which determines the myogenic lineage, in singletons and twins. Interestingly, there was a concomitant increase in insulin-like growth factor-1 mRNA expression, a decrease in the protein abundance of the myogenic inhibitor, myostatin (MSTN), and an increase in the mRNA and protein abundance of the MSTN inhibitor, follistatin (FST), in the PCUN and PIUN groups in both singletons and twins. These promyogenic changes may compensate for the decrease in MYF5 protein abundance evoked by early embryonic undernutrition. PCUN and PIUN also increased the protein abundance of phosphorylated eukaryotic translation initiation factor binding protein 1 (EIF4EBP1; T70 and S65) in fetal muscle in singletons and twins. There was a significant inverse relationship between the expression of miR-30a-5p, miR-30d-5p, miR-27b-3p, miR106b-5p, and miR-376b and the protein abundance of mechanistic target of rapamycin (MTOR), FST, or MYF5 in singletons or twins. In particular, the expression of miR-30a-5p was increased and MYF5 protein abundance was decreased, in PCUN and PIUN twins supporting the conclusion that the impact of PCUN and PIUN is predominantly on the embryo.
Collapse
Affiliation(s)
- Shervi Lie
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia
| | - Janna L Morrison
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia
| | - Olivia Williams-Wyss
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia,Discipline of Physiology, School of Medical Sciences, University of AdelaideAdelaide, South Australia, Australia
| | - Catherine M Suter
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia,Faculty of Medicine, University of New South WalesKensington, New South Wales, Australia
| | - David T Humphreys
- Victor Chang Cardiac Research InstituteDarlinghurst, New South Wales, Australia
| | - Susan E Ozanne
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, University of CambridgeCambridge, UK
| | - Song Zhang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia
| | - Severence M MacLaughlin
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia
| | - David O Kleemann
- South Australian Research and Development Institute, Turretfield Research CentreRosedale, South Australia, Australia
| | - Simon K Walker
- South Australian Research and Development Institute, Turretfield Research CentreRosedale, South Australia, Australia
| | - Claire T Roberts
- Discipline of Obstetrics and Gynaecology, University of AdelaideAdelaide, South Australia, Australia
| | - I Caroline McMillen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South AustraliaAdelaide, South Australia, Australia,The Chancellery, University of NewcastleNewcastle, New South Wales, Australia,Correspondence I. C. McMillen, The Chancellery, University of Newcastle, Callaghan, NSW 2308, Australia., Tel: 02-4921-5101, Fax: 02-4921-5115, E-mail:
| |
Collapse
|
40
|
Wu R, Li H, Li T, Zhang Y, Zhu D. Myostatin regulates miR-431 expression via the Ras-Mek-Erk signaling pathway. Biochem Biophys Res Commun 2015; 461:224-9. [DOI: 10.1016/j.bbrc.2015.03.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
|
41
|
Bassi D, Bueno PDG, Nonaka KO, Selistre-Araujo HS, Leal AMDO. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2015; 59:148-53. [PMID: 25993678 DOI: 10.1590/2359-3997000000028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/17/2015] [Indexed: 11/22/2022]
|
42
|
Morelos RM, Ramírez JL, García-Gasca A, Ibarra AM. Expression of the myostatin gene in the adductor muscle of the Pacific lion-paw scallop Nodipecten subnodosus in association with growth and environmental conditions. ACTA ACUST UNITED AC 2015; 323:239-55. [PMID: 25731876 DOI: 10.1002/jez.1914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/07/2014] [Accepted: 12/27/2014] [Indexed: 12/25/2022]
Abstract
The cDNA sequence of the myostatin gene in the Pacific lion-paw Nodipecten subnodosus (Ns-mstn) was characterized, and the temporal expression during grow-out was analyzed for the first time in a scallop. Ns-mstn encodes a 459-amino-acid protein in which two propeptide proteolytic sites were identified, the previously recognized (RSKR) and a second one at position 266-269 aa (RRKR). The alternative furin cleavage site could be related with post-translational processing, or it could be a tissue-specific mechanism for signaling activity. The Ns-mstn transcript was located by in situ hybridization in sarcomeres and around the nucleus of muscle fibers. The temporal expression analysis by qPCR in the adductor muscle showed that Ns-mstn expression was significantly different (P < 0.05) between months during the grow-out period, increasing largely during the summer months when both biomass and muscle weight did not increase or even decreased; muscle fiber size and number were found to decrease significantly. Exogenous and endogenous factors such as high temperature and low food availability, as well as gametogenesis and reproduction, can be associated with the growth pattern and Ns-mstn expression changes. Our results indicate that MSTN is involved in adductor muscle growth regulation in N. subnodosus as it occurs in vertebrate skeletal muscle although Ns-mstn expression in non-muscle organs/tissues suggests additional functions.
Collapse
Affiliation(s)
- Rosa M Morelos
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste S.C., La Paz, Mexico
| | | | | | | |
Collapse
|
43
|
Wang Q, Guo T, Portas J, McPherron AC. A soluble activin receptor type IIB does not improve blood glucose in streptozotocin-treated mice. Int J Biol Sci 2015; 11:199-208. [PMID: 25561902 PMCID: PMC4279095 DOI: 10.7150/ijbs.10430] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM), or insulin dependent DM, is accompanied by decreased muscle mass. The growth factor myostatin (MSTN) is a negative regulator of muscle growth, and a loss of MSTN signaling has been shown to increase muscle mass and prevent the development of obesity, insulin resistance and lipodystrophic diabetes in mice. The effects of MSTN inhibition in a T1DM model on muscle mass and blood glucose are unknown. We asked whether MSTN inhibition would increase muscle mass and decrease hyperglycemia in mice treated with streptozotocin (STZ) to destroy pancreatic beta cells. After diabetes developed, mice were treated with a soluble MSTN/activin receptor fused to Fc (ACVR2B:Fc). ACVR2B:Fc increased body weight and muscle mass compared to vehicle treated mice. Unexpectedly, ACVR2B:Fc reproducibly exacerbated hyperglycemia within approximately one week of administration. ACVR2B:Fc treatment also elevated serum levels of the glucocorticoid corticosterone. These results suggest that although MSTN/activin inhibitors increased muscle mass, they may be counterproductive in improving health in patients with T1DM.
Collapse
Affiliation(s)
- Qian Wang
- 1. Current Addresses: Pathology Department, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Tingqing Guo
- 2. Novo Nordisk Research Centre China, Changping District, Beijing, China
| | - Jennifer Portas
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
44
|
Peiris HN, Lappas M, Georgiou HM, Vaswani K, Salomon C, Rice GE, Mitchell MD. Myostatin in the placentae of pregnancies complicated with gestational diabetes mellitus. Placenta 2014; 36:1-6. [PMID: 25443639 DOI: 10.1016/j.placenta.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is characterised by maternal glucose intolerance and insulin resistance during pregnancy. Myostatin, initially identified as a negative regulator of muscle development may also function in the regulation of placental development and glucose uptake. Myostatin expression in placentae of GDM complicated pregnancies is unknown. However, higher myostatin levels occur in placentae of pregnancies complicated with preeclampsia. We hypothesise that myostatin will be differentially expressed in GDM complicated pregnancies. METHODS Myostatin concentrations (ELISA) were evaluated in plasma of presymptomatic women who later developed GDM and compared to plasma of normal glucose tolerant (NGT) women. Furthermore, myostatin protein expression (Western blot) was studied in placentae of pregnant women with GDM (treated with diet or insulin) compared to placentae of NGT women. RESULTS No significant difference in myostatin concentration was seen in plasma of pre-symptomatic GDM women compared to NGT women. In placenta significant differences in myostatin protein expressions (higher precursor; p < 0.05and lower dimer: p < 0.005) were observed in GDM complicated compared to NGT pregnancies. Furthermore, placentae of GDM women treated with insulin compared to diet have higher dimer (p < 0.005) and lower precursor (p < 0.05). Compared to lean women, placentae of obese NGT women were lower in myostatin dimer expression (p < 0.05). DISCUSSION Myostatin expression in placental tissue is altered under stress conditions (e.g. obesity and abnormal glucose metabolism) found in pregnancies complicated with GDM. We hypothesise that myostatin is active in these placentae and could affect glucose homoeostasis and/or cytokine production thereby altering the function of the placenta.
Collapse
Affiliation(s)
- H N Peiris
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - M Lappas
- Department of Obstetrics & Gynaecology, The University of Melbourne, Mercy Hospital, Heidelberg, 3084, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - H M Georgiou
- Department of Obstetrics & Gynaecology, The University of Melbourne, Mercy Hospital, Heidelberg, 3084, Victoria, Australia
| | - K Vaswani
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - C Salomon
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - G E Rice
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - M D Mitchell
- The University of Queensland Centre for Clinical Research, Brisbane, Australia.
| |
Collapse
|
45
|
Zarfeshani A, Ngo S, Sheppard AM. Leucine alters hepatic glucose/lipid homeostasis via the myostatin-AMP-activated protein kinase pathway - potential implications for nonalcoholic fatty liver disease. Clin Epigenetics 2014; 6:27. [PMID: 25859286 PMCID: PMC4391119 DOI: 10.1186/1868-7083-6-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022] Open
Abstract
Background Elevated plasma levels of the branched-chain amino acid (BCAA) leucine are associated with obesity and insulin resistance (IR), and thus the propensity for type 2 diabetes mellitus development. However, other clinical studies suggest the contradictory view that leucine may in fact offer a degree of protection against metabolic syndrome. Aiming to resolve this apparent paradox, we assessed the effect of leucine supplementation on the metabolism of human hepatic HepG2 cells. Results We demonstrate that pathophysiological leucine appears to be antagonistic to insulin, promotes glucose uptake (and not glycogen synthesis), but results in hepatic cell triglyceride (TG) accumulation. Further, we provide evidence that myostatin (MSTN) regulation of AMP-activated protein kinase (AMPK) is a key pathway in the metabolic effects elicited by excess leucine. Finally, we report associated changes in miRNA expression (some species previously linked to metabolic disease etiology), suggesting that epigenetic processes may contribute to these effects. Conclusions Collectively, our observations suggest leucine may be both ‘friend’ and ‘foe’ in the context of metabolic syndrome, promoting glucose sequestration and driving lipid accumulation in liver cells. These observations provide insight into the clinical consequences of excess plasma leucine, particularly for hyperglycemia, IR and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Aida Zarfeshani
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton Auckland, 1023 New Zealand
| | - Sherry Ngo
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton Auckland, 1023 New Zealand
| | - Allan M Sheppard
- Developmental Epigenetics Group, Liggins Institute, The University of Auckland, 85 Park Road, Grafton Auckland, 1023 New Zealand
| |
Collapse
|
46
|
Murach K, Raue U, Wilkerson B, Minchev K, Jemiolo B, Bagley J, Luden N, Trappe S. Single muscle fiber gene expression with run taper. PLoS One 2014; 9:e108547. [PMID: 25268477 PMCID: PMC4182496 DOI: 10.1371/journal.pone.0108547] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022] Open
Abstract
This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I) and fast-twitch (MHC IIa) muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO2max = 70±1 ml•kg−1•min−1) during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30∶18±0∶30 min:s, 89±1% HRmax) while in heavy training (∼72 km/wk) and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14), Myostatin (MSTN), Heat shock protein 72 (HSP72), Muscle ring-finger protein-1 (MURF1), Myogenic factor 6 (MRF4), and Insulin-like growth factor 1 (IGF1) via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05). MSTN was suppressed with exercise in both fiber types and training states (P<0.05) while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05). Robust induction of FN14 (previously shown to strongly correlate with hypertrophy) and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.
Collapse
Affiliation(s)
- Kevin Murach
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States of America
| | - Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States of America
| | - Brittany Wilkerson
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States of America
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States of America
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States of America
| | - James Bagley
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States of America
| | - Nicholas Luden
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States of America
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States of America
- * E-mail:
| |
Collapse
|
47
|
Dschietzig TB. Myostatin — From the Mighty Mouse to cardiovascular disease and cachexia. Clin Chim Acta 2014; 433:216-24. [DOI: 10.1016/j.cca.2014.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 02/02/2023]
|
48
|
Kuang L, Xie X, Zhang X, Lei M, Li C, Ren Y, Zheng J, Guo Z, Zhang C, Yang C, Zheng Y. Expression Profiles of Myostatin, Myogenin, and Myosin Heavy Chain in Skeletal Muscles of Two Rabbit Breeds Differing in Growth Rate. Anim Biotechnol 2014; 25:223-33. [DOI: 10.1080/10495398.2013.865639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Watts R, Ghozlan M, Hughey CC, Johnsen VL, Shearer J, Hittel DS. Myostatin inhibits proliferation and insulin-stimulated glucose uptake in mouse liver cells. Biochem Cell Biol 2014; 92:226-34. [PMID: 24882465 DOI: 10.1139/bcb-2014-0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although myostatin functions primarily as a negative regulator of skeletal muscle growth and development, accumulating biological and epidemiological evidence indicates an important contributing role in liver disease. In this study, we demonstrate that myostatin suppresses the proliferation of mouse Hepa-1c1c7 murine-derived liver cells (50%; p < 0.001) in part by reducing the expression of the cyclins and cyclin-dependent kinases that elicit G1-S phase transition of the cell cycle (p < 0.001). Furthermore, real-time PCR-based quantification of the long noncoding RNA metastasis associated lung adenocarcinoma transcript 1 (Malat1), recently identified as a myostatin-responsive transcript in skeletal muscle, revealed a significant downregulation (25% and 50%, respectively; p < 0.05) in the livers of myostatin-treated mice and liver cells. The importance of Malat1 in liver cell proliferation was confirmed via arrested liver cell proliferation (p < 0.05) in response to partial Malat1 siRNA-mediated knockdown. Myostatin also significantly blunted insulin-stimulated glucose uptake and Akt phosphorylation in liver cells while increasing the phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS), a protein that is essential for cancer cell proliferation and insulin-stimulated glucose transport. Together, these findings reveal a plausible mechanism by which circulating myostatin contributes to the diminished regenerative capacity of the liver and diseases characterized by liver insulin resistance.
Collapse
Affiliation(s)
- Rani Watts
- a Faculty of Kinesiology, University of Calgary, 2500 University Dr. Calgary, AB T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:1331-44. [PMID: 24513455 DOI: 10.1016/j.bbagen.2013.10.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/06/2013] [Accepted: 10/22/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases. SCOPE OF REVIEW We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases. MAJOR CONCLUSION Induction of adaptive responses via AMPK-PFK2, AMPK-FOXO3a, AMPK-PGC-1α, and AMPK-mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases. GENERAL SIGNIFICANCE Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Shi-Bei Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Tsung-Pu Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|