1
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
2
|
Chen H, Pan L, Zhang C, Liu L, Tu B, Liu E, Huang Y. Gastroretentive Raft Forming System for Enhancing Therapeutic Effect of Drug-Loaded Hollow Mesoporous Silica on Gastric Ulcers. Adv Healthc Mater 2024; 13:e2400566. [PMID: 38767185 DOI: 10.1002/adhm.202400566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Indexed: 05/22/2024]
Abstract
Gastric ulcers are characterized by damage to the stomach lining and are often triggered by substances such as ethanol and non-steroidal anti-inflammatory drugs. Patchouli alcohol (PA) has demonstrated effectiveness in treating gastric ulcers through antioxidative and anti-inflammatory effects. However, the water insolubility of PA and rapid gastric emptying cause low drug concentration and poor absorption in the stomach, resulting in limited treatment efficacy of PA. This study develops an oral gastroretentive raft forming system (GRFDDS) containing the aminated hollow mesoporous silica nanoparticles (NH2-HMSN) for PA delivery. The application of NH2-HMSN can enhance PA-loading capacity and water dispersibility, promoting bio-adhesion to the gastric mucosa and sustained drug release. The incorporation of PA-loaded NH2-HMSN (NH2-HMSN-PA) into GRFDDS can facilitate gastric drug retention and achieve long action, thereby improving therapeutic effects. The results reveal that NH2-HMSN-PA protects the gastric mucosa damage by inhibiting NLRP3-mediated pyroptosis. The GRFDDS, optimized through orthogonal design, demonstrates the gastric retention capacity and sustained drug release, exhibiting significant therapy efficacy in an ethanol-induced acute gastric ulcers model and an aspirin-induced chronic gastric ulcers model through antioxidation, anti-pyroptosis, and anti-inflammation. This study provides a potential strategy for enhancing druggability of insoluble natural compounds and therapeutic management of gastric ulcers.
Collapse
Affiliation(s)
- Huayuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Li Pan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563003, China
| | - Chengyu Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510450, China
| | - Lin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Bin Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yongzhuo Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510450, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai, 201203, China
| |
Collapse
|
3
|
Shiu WT, Yoo V, Liu Y, Chang LY, Azizivahed T, Huang Y, Ragogna PJ, Liu L. Small but bright: origin of the enhanced luminescence of ultrasmall ZnGa 2O 4:Cr 3+ in mesoporous silica nanoparticles. Phys Chem Chem Phys 2024; 26:17561-17568. [PMID: 38869486 DOI: 10.1039/d4cp01775g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Chromium(III)-doped zinc gallate (CZGO) is one of the representative persistent luminescent phosphors emitting in the near-infrared (NIR) region. The emission wavelength it covers falls in the tissue-transparent window, making CZGO a promising optical probe for various biomedical applications. The PersL mechanism dictates that such a phenomenon is only profound in large crystals, so the preparation of CZGO with sizes small enough for biological applications while maintaining its luminescence remains a challenging task. Recent attempts to use mesoporous silica nanoparticles (MSN) as a template for growing nanosized CZGO have been successful. MSN is also a well-studied drug carrier, and incorporating CZGO in MSN further expands its potential in imaging-guided therapeutics. Despite the interest, it is unclear of how the addition of MSN would affect the luminescence properties of CZGO. In this work, we observed that forming a CZGO@MSN nanocomposite could enhance the luminescence intensity and extend the PersL lifetime of CZGO. X-ray absorption fine structure (XAFS) analysis was conducted to investigate the local structure of Zn2+, and an interaction between Zn2+ in CZGO and the MSN matrix was identified.
Collapse
Affiliation(s)
- Wai-Tung Shiu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Vania Yoo
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Yihong Liu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Lo-Yueh Chang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Tahereh Azizivahed
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Paul J Ragogna
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Lijia Liu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
4
|
Zhang Y, Lin X, Chen X, Fang W, Yu K, Gu W, Wei Y, Zheng H, Piao J, Li F. Strategies to Regulate the Degradation and Clearance of Mesoporous Silica Nanoparticles: A Review. Int J Nanomedicine 2024; 19:5859-5878. [PMID: 38887691 PMCID: PMC11182361 DOI: 10.2147/ijn.s451919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted extensive attention as drug delivery systems because of their unique meso-structural features (high specific surface area, large pore volume, and tunable pore structure), easily modified surface, high drug-loading capacity, and sustained-release profiles. However, the enduring and non-specific enrichment of MSNs in healthy tissues may lead to toxicity due to their slow degradability and hinder their clinical application. The emergence of degradable MSNs provided a solution to this problem. The understanding of strategies to regulate degradation and clearance of these MSNs for promoting clinical trials and expanding their biological applications is essential. Here, a diverse variety of degradable MSNs regarding considerations of physiochemical properties and doping strategies of degradation, the biodistribution of MSNs in vivo, internal clearance mechanism, and adjusting physical parameters of clearance are highlighted. Finally, an overview of these degradable and clearable MSNs strategies for biosafety is provided along with an outlook of the encountered challenges.
Collapse
Affiliation(s)
- Yuelin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xue Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xinxin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Weixiang Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Kailing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wenting Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Jigang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
5
|
Zhaisanbayeva BA, Mun EA, Ulmanova L, Zhunissova Z, Umbayev B, Olzhayev F, Vorobjev IA, Hortelano G, Khutoryanskiy VV. In vitro and in vivo toxicity of thiolated and PEGylated organosilica nanoparticles. Int J Pharm 2024; 652:123852. [PMID: 38280501 DOI: 10.1016/j.ijpharm.2024.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
This study comprises the comprehensive toxicological assessment of thiolated organosilica nanoparticles (NPs) synthesised from 3-mercaptopropyltrimethoxysilane (MPTS). We investigated the influence of three different types of nanoparticles synthesised from 3-mercaptopropyltrimethoxysilane: the starting thiolated silica (Si-NP-SH) and their derivatives prepared by surface PEGylation with PEG 750 (Si-NP-PEG750) and 5000 Da (Si-NP-PEG5000) on biological subjects from in vitro to in vivo experiments to explore the possible applications of those nanoparticles in biomedical research. As a result of this study, we generated a comprehensive understanding of the toxicological properties of these nanoparticles, including their cytotoxicity in different cell lines, hemolytic properties, in vitro localisation, mucosal irritation properties and biodistribution in BALB/c mice. Our findings indicate that all three types of nanoparticles can be considered safe and have promising prospects for use in biomedical applications. Nanoparticles did not affect the viability of HPF, MCF7, HEK293 and A549 cell lines at low concentrations (up to 100 µg/mL); moreover, they did not cause organ damage to BALB/c mice at concentrations of 10 mg/kg. The outcomes of this study enhance our understanding of the impact of organosilica nanoparticles on health and the environment, which is vital for developing silica nanoparticle-based drug delivery systems and provides opportunities to expand the applications of organosilica nanoparticles.
Collapse
Affiliation(s)
- Balnur A Zhaisanbayeva
- School of Engineering and Digital Science, Nazarbayev University, 010000 Astana, Kazakhstan; School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Ellina A Mun
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Leila Ulmanova
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Zarina Zhunissova
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Ivan A Vorobjev
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan; National Laboratory Astana, Nazarbayev University, 010000 Astana, Kazakhstan.
| | - Gonzalo Hortelano
- School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan.
| | | |
Collapse
|
6
|
Majumdar S, Tiwari A, Mallick D, Patel DK, Trigun SK, Krishnamurthy S. Oral Release Kinetics, Biodistribution, and Excretion of Dopants from Barium-Containing Bioactive Glass in Rats. ACS OMEGA 2024; 9:7188-7205. [PMID: 38371771 PMCID: PMC10870265 DOI: 10.1021/acsomega.3c09250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Background: Inorganic biomaterials are biologically active and are used as implants and drug delivery system. They have therapeutically active elements present in their framework that are released in the physiological milieu. Release of these dopants above the supraphysiological limit may produce adverse effects and physicochemical interactions with the loaded drugs. Therefore, this necessitates evaluating the in vivo release kinetics, biodistribution, and excretion profiles of dopants from barium-doped bioglass (BaBG) that has potential anti-inflammatory, antiulcer, and regenerative properties. Methods: In vitro leaching of Ca, Si, and Ba from BaBG was analyzed in simulated body fluid. Release kinetics post single-dose oral administration (1, 5, and 10 mg/kg) was performed in rats. Blood was collected at different time points, and pharmacokinetic parameters of released elements were calculated. The routes of excretion and biodistribution in major organs were evaluated using ICP-MS. Results: Elements were released after the oral administration of BaBG into the plasma. They showed dose-dependent release kinetics and mean residence time. Cmax was observed at 24 h for all elements, followed by a downhill fall. There was also a dose-dependent increase in the volume of distribution, and the clearance of dopants was mostly through feces. Ba and Si were biodistributed significantly in the liver, spleen, and kidneys. However, by the end of day 7, there was a leveling-off effect observed for all elements. Conclusion: All of the dopants exhibited a dose-dependent increase in release kinetics and biodistribution in vital organs. This study will help in dose optimization and understanding of various physicochemical and pharmacokinetic interactions when BaBG is used for future pharmacological studies.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Anshul Tiwari
- Analytical
Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Debasmit Mallick
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Devendra K. Patel
- Analytical
Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Surendra Kumar Trigun
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
7
|
Kwon RY, Youn SM, Choi SJ. Oral Excretion Kinetics of Food-Additive Silicon Dioxides and Their Effect on In Vivo Macrophage Activation. Int J Mol Sci 2024; 25:1614. [PMID: 38338896 PMCID: PMC10855107 DOI: 10.3390/ijms25031614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
A food additive, silicon dioxide (SiO2) is commonly used in the food industry as an anti-caking agent. The presence of nanoparticles (NPs) in commercial food-grade SiO2 has raised concerns regarding their potential toxicity related to nano size. While recent studies have demonstrated the oral absorption and tissue distribution of food-additive SiO2 particles, limited information is available about their excretion behaviors and potential impact on macrophage activation. In this study, the excretion kinetics of two differently manufactured (fumed and precipitated) SiO2 particles were evaluated following repeated oral administration to rats for 28 d. The excretion fate of their intact particles, decomposed forms, or ionic forms was investigated in feces and urine, respectively. Monocyte uptake, Kupffer cell activation, and cytokine release were assessed after the oral administration of SiO2 particles. Additionally, their intracellular fates were determined in Raw 264.7 cells. The results revealed that the majority of SiO2 particles were not absorbed but directly excreted via feces in intact particle forms. Only a small portion of SiO2 was eliminated via urine, predominantly in the form of bioconverted silicic acid and slightly decomposed ionic forms. SiO2 particles were mainly present in particle forms inside cells, followed by ionic and silicic acid forms, indicating their slow conversion into silicic acid after cellular uptake. No effects of the manufacturing method were observed on excretion and fates. Moreover, no in vivo monocyte uptake, Kupffer cell polarization, or cytokine release were induced by orally administered SiO2 particles. These finding contribute to understanding the oral toxicokinetics of food-additive SiO2 and provide valuable insights into its potential toxicity.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (R.-Y.K.); (S.-M.Y.)
| |
Collapse
|
8
|
Budiman A, Wardhana YW, Ainurofiq A, Nugraha YP, Qaivani R, Hakim SNAL, Aulifa DL. Drug-Coformer Loaded-Mesoporous Silica Nanoparticles: A Review of the Preparation, Characterization, and Mechanism of Drug Release. Int J Nanomedicine 2024; 19:281-305. [PMID: 38229702 PMCID: PMC10790662 DOI: 10.2147/ijn.s449159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Drug-coformer systems, such as coamorphous and cocrystal, are gaining recognition as highly effective strategies for enhancing the stability, solubility, and dissolution of drugs. These systems depend on the interactions between drug and coformer to prevent the conversion of amorphous drugs into the crystalline form and improve the solubility. Furthermore, mesoporous silica (MPS) is also a promising carrier commonly used for stabilization, leading to solubility improvement of poorly water-soluble drugs. The surface interaction of drug-MPS and the nanoconfinement effect prevent amorphous drugs from crystallizing. A novel method has been developed recently, which entails the loading of drug-coformer into MPS to improve the solubility, dissolution, and physical stability of the amorphous drug. This method uses the synergistic effects of drug-coformer interactions and the nanoconfinement effect within MPS. Several studies have reported successful incorporation of drug-coformer into MPS, indicating the potential for significant improvement in dissolution characteristics and physical stability of the drug. Therefore, this study aimed to discuss the preparation and characterization of drug-coformer within MPS, particularly the interaction in the nanoconfinement, as well as the impact on drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Yoga Windhu Wardhana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java45363, Indonesia
| | - Ahmad Ainurofiq
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Central Java, 57126, Indonesia
| | - Yuda Prasetya Nugraha
- School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, 40132, Indonesia
| | - Ridhatul Qaivani
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Siti Nazila Awaliyyah Lukmanul Hakim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, 45363, Indonesia
| |
Collapse
|
9
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Wang Q, Song Y, Gao J, Li Q, Chen J, Xie Y, Wang Z, Tan H, Yang H, Zhang N, Qian J, Pang Z, Huang Z, Ge J. Hippo pathway-manipulating neutrophil-mimic hybrid nanoparticles for cardiac ischemic injury via modulation of local immunity and cardiac regeneration. Acta Pharm Sin B 2023; 13:4999-5015. [PMID: 38045050 PMCID: PMC10692379 DOI: 10.1016/j.apsb.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 12/05/2023] Open
Abstract
The promise of regeneration therapy for restoration of damaged myocardium after cardiac ischemic injury relies on targeted delivery of proliferative molecules into cardiomyocytes whose healing benefits are still limited owing to severe immune microenvironment due to local high concentration of proinflammatory cytokines. Optimal therapeutic strategies are therefore in urgent need to both modulate local immunity and deliver proliferative molecules. Here, we addressed this unmet need by developing neutrophil-mimic nanoparticles NM@miR, fabricated by coating hybrid neutrophil membranes with artificial lipids onto mesoporous silica nanoparticles (MSNs) loaded with microRNA-10b. The hybrid membrane could endow nanoparticles with strong capacity to migrate into inflammatory sites and neutralize proinflammatory cytokines and increase the delivery efficiency of microRNA-10b into adult mammalian cardiomyocytes (CMs) by fusing with cell membranes and leading to the release of MSNs-miR into cytosol. Upon NM@miR administration, this nanoparticle could home to the injured myocardium, restore the local immunity, and efficiently deliver microRNA-10b to cardiomyocytes, which could reduce the activation of Hippo-YAP pathway mediated by excessive cytokines and exert the best proliferative effect of miR-10b. This combination therapy could finally improve cardiac function and mitigate ventricular remodeling. Consequently, this work offers a combination strategy of immunity modulation and proliferative molecule delivery to boost cardiac regeneration after injury.
Collapse
Affiliation(s)
- Qiaozi Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yanan Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jinfeng Gao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Jing Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yifang Xie
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhengmin Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Haipeng Tan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Hongbo Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Ning Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zheyong Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
11
|
Kirla H, Henry DJ, Jansen S, Thompson PL, Hamzah J. Use of Silica Nanoparticles for Drug Delivery in Cardiovascular Disease. Clin Ther 2023; 45:1060-1068. [PMID: 37783646 DOI: 10.1016/j.clinthera.2023.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death worldwide. The current CVD therapeutic drugs require long-term treatment with high doses, which increases the risk of adverse effects while offering only marginal treatment efficacy. Silica nanoparticles (SNPs) have been proven to be an efficient drug delivery vehicle for numerous diseases, including CVD. This article reviews recent progress and advancement in targeted delivery for drugs and diagnostic and theranostic agents using silica nanoparticles to achieve therapeutic efficacy and improved detection of CVD in clinical and preclinical settings. METHODS A search of PubMed, Scopus, and Google Scholar databases from 1990 to 2023 was conducted. Current clinical trials on silica nanoparticles were identified through ClinicalTrials.gov. Search terms include silica nanoparticles, cardiovascular diseases, drug delivery, and therapy. FINDINGS Silica nanoparticles exhibit biocompatibility in biological systems, and their shape, size, surface area, and surface functionalization can be customized for the safe transport and protection of drugs in blood circulation. These properties also enable effective drug uptake in specific tissues and controlled drug release after systemic, localized, or oral delivery. A range of silica nanoparticles have been used as nanocarrier for drug delivery to treat conditions such as atherosclerosis, hypertension, ischemia, thrombosis, and myocardial infarction. IMPLICATIONS The use of silica nanoparticles for drug delivery and their ongoing development has emerged as a promising strategy to improve the effectiveness of drugs, imaging agents, and theranostics with the potential to revolutionize the treatment of CVD.
Collapse
Affiliation(s)
- Haritha Kirla
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia.
| | - David J Henry
- Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, Western Australia, Australia
| | - Shirley Jansen
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter L Thompson
- Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia; Curtin Health Innovation Research Institute and Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Heart & Vascular Research Institute, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
12
|
Hicks MR, Liu X, Young CS, Saleh K, Ji Y, Jiang J, Emami MR, Mokhonova E, Spencer MJ, Meng H, Pyle AD. Nanoparticles systemically biodistribute to regenerating skeletal muscle in DMD. J Nanobiotechnology 2023; 21:303. [PMID: 37641124 PMCID: PMC10463982 DOI: 10.1186/s12951-023-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/09/2023] [Indexed: 08/31/2023] Open
Abstract
Skeletal muscle disease severity can often progress asymmetrically across muscle groups and heterogeneously within tissues. An example is Duchenne Muscular Dystrophy (DMD) in which lack of dystrophin results in devastating skeletal muscle wasting in some muscles whereas others are spared or undergo hypertrophy. An efficient, non-invasive approach to identify sites of asymmetry and degenerative lesions could enable better patient monitoring and therapeutic targeting of disease. In this study, we utilized a versatile intravenously injectable mesoporous silica nanoparticle (MSNP) based nanocarrier system to explore mechanisms of biodistribution in skeletal muscle of mdx mouse models of DMD including wildtype, dystrophic, and severely dystrophic mice. Moreover, MSNPs could be imaged in live mice and whole muscle tissues enabling investigation of how biodistribution is altered by different types of muscle pathology such as inflammation or fibrosis. We found MSNPs were tenfold more likely to aggregate within select mdx muscles relative to wild type, such as gastrocnemius and quadriceps. This was accompanied by decreased biodistribution in off-target organs. We found the greatest factor affecting preferential delivery was the regenerative state of the dystrophic skeletal muscle with the highest MSNP abundance coinciding with the regions showing the highest level of embryonic myosin staining and intramuscular macrophage uptake. To demonstrate, muscle regeneration regulated MSNP distribution, we experimentally induced regeneration using barium chloride which resulted in a threefold increase of intravenously injected MSNPs to sites of regeneration 7 days after injury. These discoveries provide the first evidence that nanoparticles have selective biodistribution to skeletal muscle in DMD to areas of active regeneration and that nanoparticles could enable diagnostic and selective drug delivery in DMD skeletal muscle.
Collapse
Affiliation(s)
- Michael R Hicks
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Xiangsheng Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Courtney S Young
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- MyoGene Bio, San Diego, CA, USA
| | - Kholoud Saleh
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ying Ji
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jinhong Jiang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Michael R Emami
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ekaterina Mokhonova
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Melissa J Spencer
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Huan Meng
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- California Nanosystems Institute at UCLA, Los Angeles, CA, USA.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China.
| | - April D Pyle
- Department of Microbiology, Immunology and Medical Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Eli and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Kianpour M, Huang CW, Vejvisithsakul PP, Wang JY, Li CF, Shiao MS, Pan CT, Shiue YL. Aptamer/doxorubicin-conjugated nanoparticles target membranous CEMIP2 in colorectal cancer. Int J Biol Macromol 2023; 245:125510. [PMID: 37353120 DOI: 10.1016/j.ijbiomac.2023.125510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The objectives were to identify the functional domains of a potential oncoprotein, cell migration inducing hyaluronidase 2 (CEMIP2), evaluate its expression levels and roles in colorectal cancer (CRC), and develop an aptamer-based nanoparticle for targeted therapy. Data mining on TCGA identified that CEMIP2 might play oncogenic roles in CRC. In a local cohort, CEMIP2 mRNA levels significantly stepwise increase in CRC patients with higher stages, and high CEMIP2 confers worse disease-free survival. In addition, CEMIP2 mRNA levels significantly correlated to hyaluronan levels in sera from CRC patients. Deletion mapping identified that CEMIP2 containing G8 and PANDER-like domains preserved hyaluronidase activity and oncogenic roles, including cell proliferation, anchorage-independent cell growth, cell migration and invasion, and human umbilical vein endothelial cell (HUVEC) tube formation in CRC-derived cells. A customized monoclonal mouse anti-human CEMIP2 antibody probing the PANDER-like domain (anti-289307) counteracted CEMIP2-mediated carcinogenesis in vitro. Cell-SELEX pinpointed an aptamer, aptCEMIP2(101), specifically interacted with the full-length CEMIP2, potentially involving its 3D structure. Treatments with aptCEMIP2(101) significantly reduced CEMIP2-mediated tumorigenesis in vitro. Mesoporous silica nanoparticles (MSN) carrying atpCEMIP2(101) and Dox were fabricated. Dox@MSN, MSN-aptCEMIP2(101), and Dox@MSN-aptCEMIP2(101) significantly suppressed tumorigenesis in vitro compared to the Mock, while Dox@MSN-aptCEMIP2(101) showed substantially higher effects compared to Dox@MSN and MSN-aptCEMIP2(101) in CRC-derived cells. Our study identified a novel oncogene and developed an effective aptamer-based targeted therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Kianpour
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Pichpisith Pierre Vejvisithsakul
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Pingtung Hospital, Ministry of Health and Welfare, Pingtung 900214, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan 71004, Taiwan; Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Cheng-Tang Pan
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
14
|
Iranshahy M, Hanafi-Bojd MY, Aghili SH, Iranshahi M, Nabavi SM, Saberi S, Filosa R, Nezhad IF, Hasanpour M. Curcumin-loaded mesoporous silica nanoparticles for drug delivery: synthesis, biological assays and therapeutic potential - a review. RSC Adv 2023; 13:22250-22267. [PMID: 37492509 PMCID: PMC10363773 DOI: 10.1039/d3ra02772d] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Curcumin-loaded mesoporous silica nanoparticles (MSNs) have shown promise as drug delivery systems to address the limited pharmacokinetic characteristics of curcumin. Functionalization with folic acid and PEGylation enhance anticancer activity, biocompatibility, stability, and permeability. Co-delivery with other drugs results in synergistically enhanced cytotoxic activity. Environment-responsive MSNs prevent undesirable drug leakage and increase selectivity towards target tissues. This review summarizes the methods of Cur-loaded MSN synthesis and functionalization and their application in various diseases, and also highlights the potential of Cur-loaded MSNs as a promising drug delivery system.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | | | | | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera 82030 San Salvatore Telesino BN Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE) Brazil
| | - Satar Saberi
- Department of Chemistry, Faculty of Science, Farhangian University Tehran Iran
| | - Rosanna Filosa
- Dipartimento di Scienze e Tecnologie, Università Degli Studi Del Sannio Benevento Italy
| | - Iman Farzam Nezhad
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad Mashhad Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
15
|
Wang Z, Li Z, Shi W, Zhu D, Hu S, Dinh PUC, Cheng K. A SARS-CoV-2 and influenza double hit vaccine based on RBD-conjugated inactivated influenza A virus. SCIENCE ADVANCES 2023; 9:eabo4100. [PMID: 37352360 PMCID: PMC10289656 DOI: 10.1126/sciadv.abo4100] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
The circulating flu viruses merging with the ongoing COVID-19 pandemic raises a more severe threat that promotes the infectivity of SARS-CoV-2 associated with higher mortality rates. Here, we conjugated recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein onto inactivated influenza A virus (Flu) to develop a SARS-CoV-2 virus-like particle (VLP) vaccine with two-hit protection. This double-hit vaccine (Flu-RBD) not only induced protective immunities against SARS-CoV-2 but also remained functional as a flu vaccine. The Flu core improved the retention and distribution of Flu-RBD vaccine in the draining lymph nodes, with enhanced immunogenicity. In a hamster model of live SARS-CoV-2 infection, two doses of Flu-RBD efficiently protected animals against viral infection. Furthermore, Flu-RBD VLP elicited a strong neutralization activity against both SARS-CoV-2 Delta pseudovirus and wild-type influenza A H1N1 inactivated virus in mice. Overall, the Flu-RBD VLP vaccine is a promising candidate for combating COVID-19, influenza A, and coinfection.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Weiwei Shi
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Phuong-Uyen C. Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, NC 27606, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Sabiu G, Kasinath V, Jung S, Li X, Tsokos GC, Abdi R. Targeted nanotherapy for kidney diseases: a comprehensive review. Nephrol Dial Transplant 2023; 38:1385-1396. [PMID: 35945647 PMCID: PMC10229287 DOI: 10.1093/ndt/gfac233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney diseases represent a major public health problem, affecting millions of people worldwide. Moreover, the treatment of kidney diseases is burdened by the problematic effects of conventional drug delivery, such as systemic drug toxicity, rapid drug clearance, and the absence of precise targeting of the kidney. Although the use of nanotechnology in medicine is in its early stage and lacks robust translational studies, nanomedicines have already shown great promise as novel drug-delivery systems for the treatment of kidney disease. On the basis of our current knowledge of renal anatomy and physiology, pathophysiology of kidney diseases, and physicochemical characteristics of nanoparticles, an expansive repertoire and wide use of nanomedicines could be developed for kidney diseases in the near future. Some limitations have slowed the transition of these agents from preclinical studies to clinical trials, however. In this review, we summarize the current knowledge on renal drug-delivery systems and recent advances in renal cell targeting; we also demonstrate their important potential as future paradigm-shifting therapies for kidney diseases.
Collapse
Affiliation(s)
- Gianmarco Sabiu
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Nephrology, University of Milan, Milan, Italy
| | - Vivek Kasinath
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofei Li
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Cheng Y, Tao J, Zhang Y, Xi L, Han R, Xu M, Lee SMY, Ge W, Gan Y, Zheng Y. Shape and Shear Stress Impact on the Toxicity of Mesoporous Silica Nanoparticles: In Vitro and In Vivo Evidence. Mol Pharm 2023. [PMID: 37167021 DOI: 10.1021/acs.molpharmaceut.3c00180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used in the biomedical field because of their unique and excellent properties. However, the potential toxicity of different shaped MSNs via injection has not been fully studied. This study aims to systematically explore the impact of shape and shear stress on the toxicity of MSNs after injection. An in vitro blood flow model was developed to investigate the cytotoxicity and the underlying mechanisms of spherical MSNs (S-MSN) and rodlike MSNs (R-MSN) in human umbilical vein endothelial cells (HUVECs). The results suggested that the interactions between MSNs and HUVECs under the physiological flow conditions were significantly different from that under static conditions. Whether under static or flow conditions, R-MSN showed better cellular uptake and less oxidative damage than S-MSN. The main mechanism of cytotoxicity induced by R-MSN was due to shear stress-dependent mechanical damage of the cell membrane, while the toxicity of S-MSN was attributed to mechanical damage and oxidative damage. The addition of fetal bovine serum (FBS) alleviated the toxicity of S-MSN by reducing cellular uptake and oxidative stress under static and flow conditions. Moreover, the in vivo results showed that both S-MSN and R-MSN caused cardiovascular toxicity in zebrafish and mouse models due to the high shear stress, especially in the heart. S-MSN led to severe oxidative damage at the accumulation site, such as liver, spleen, and lung in mice, while R-MSN did not cause significant oxidative stress. The results of in vitro blood flow and in vivo models indicated that particle shape and shear stress are crucial to the biosafety of MSNs, providing new evidence for the toxicity mechanisms of the injected MSNs.
Collapse
Affiliation(s)
- Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yaqi Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Run Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yong Gan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
18
|
Qu H, Jin X, Cheng W, Wu D, Ma B, Lou C, Zheng J, Jing L, Xue X, Wang Y. Uncovering the Fate and Risks of Intravenously Injected Prussian Blue Nanoparticles in mice by an Integrated Methodology of Toxicology, Pharmacokinetics, Proteomics, and Metabolomics. Part Fibre Toxicol 2023; 20:18. [PMID: 37147710 PMCID: PMC10161560 DOI: 10.1186/s12989-023-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Prussian blue (PB) nanoparticles (NPs) have been intensively investigated for medical applications, but an in-depth toxicological investigation of PB NPs has not been implemented. In the present study, a comprehensive investigation of the fate and risks of PB NPs after intravenous administration was carried out by using a mouse model and an integrated methodology of pharmacokinetics, toxicology, proteomics, and metabolomics. RESULTS General toxicological studies demonstrated that intravenous administration of PB NPs at 5 or 10 mg/kg could not induce obvious toxicity in mice, while mice treated with a relatively high dose of PB NPs at 20 mg/kg exhibited loss of appetite and weight decrease in the first two days postinjection. Pharmacokinetic studies revealed that intravenously administered PB NPs (20 mg/kg) underwent fast clearance from blood, highly accumulated in the liver and lungs of mice, and finally cleared from tissues. By further integrated proteomics and metabolomics analysis, we found that protein expression and metabolite levels changed significantly in the liver and lungs of mice due to the high accumulation of PB NPs, leading to slight inflammatory responses and intracellular oxidative stress. CONCLUSIONS Collectively, our integrated experimental data imply that the high accumulation of PB NPs may cause potential risks to the liver and lungs of mice, which will provide detailed references and guidance for further clinical application of PB NPs in the future.
Collapse
Affiliation(s)
- Haijing Qu
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xing Jin
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Wei Cheng
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqi Wu
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Boyu Ma
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Chenmei Lou
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jian Zheng
- School of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lijia Jing
- School of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Xiangdong Xue
- School of Pharmacy, Shanghai Frontiers Science Center for Drug Target Identification and Drug Delivery, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Wang
- School of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
19
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
20
|
Tan Y, Yu D, Feng J, You H, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Toxicity evaluation of silica nanoparticles for delivery applications. Drug Deliv Transl Res 2023:10.1007/s13346-023-01312-z. [PMID: 37024610 DOI: 10.1007/s13346-023-01312-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 04/08/2023]
Abstract
Silica nanoparticles (SiNPs) are being explored as nanocarriers for therapeutics delivery, which can address a number of intrinsic drawbacks of therapeutics. To translate laboratory innovation into clinical application, their potential toxicity has been of great concern. This review attempts to comprehensively summarize the existing literature on the toxicity assessment of SiNPs. The current data suggest that the composition of SiNPs, their physicochemical properties, their administration route, their frequency and duration of administration, and the sex of animal models are related to their tissue and blood toxicity, immunotoxicity, and genotoxicity. However, the correlation between in vitro and in vivo toxicity has not been well established, mainly because both the in vitro and the in vivo-dosed quantities are unrealistic. This article also discusses important factors to consider in the toxicology of SiNPs and current approaches to reducing their toxicity. The aim is to give readers a better understanding of the toxicology of silica nanoparticles and to help identify key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Li Q, Hatakeyama M, Kitaoka T. Polysaccharide Nanofiber-Stabilized Pickering Emulsion Microparticles Induce Pyroptotic Cell Death in Hepatocytes and Kupffer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207433. [PMID: 36978239 DOI: 10.1002/smll.202207433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The intracellular uptake and interaction behavior of emulsion microparticles in liver cells critical to host defense and inflammation is significant to understanding their potential cytotoxicity and biomedical applications. In this study, the cell death responses of fibroblastic, hepatocyte, and Kupffer cells (KCs) induced by four types of emulsion particles that are stabilized by polysaccharide nanofibers (cellulose or chitin), an inorganic nanoparticle (β-tricalcium phosphate), or surfactants are compared. Pickering emulsion (PE) microparticles stabilized by polysaccharide nanofibers or inorganic nanoparticles have a droplet size of 1-3 µm, while the surfactant-stabilized emulsion has a diameter of ≈190 nm. Polysaccharide nanofiber-stabilized PEs (PPEs) markedly induce lactate dehydrogenase release in all cell types. Additionally, characteristic pyroptotic cell death, which is accompanied by cell swelling, membrane blebbing, and caspase-1 activation, occurs in hepatocytes and KCs. These PE microparticles are co-cultured with lipopolysaccharide-primed KCs associated with cytokine interleukin-1β release, and the PPEs demonstrate biological activity as a mediator of the inflammation response. Well-designed PPE microparticles induce pyroptosis of liver cells, which may provide new insight into regulating inflammation-related diseases for designing potent anticancer drugs and vaccine adjuvants.
Collapse
Affiliation(s)
- Qi Li
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
22
|
Xu K, Li S, Zhou Y, Gao X, Mei J, Liu Y. Application of Computing as a High-Practicability and -Efficiency Auxiliary Tool in Nanodrugs Discovery. Pharmaceutics 2023; 15:1064. [PMID: 37111551 PMCID: PMC10144056 DOI: 10.3390/pharmaceutics15041064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023] Open
Abstract
Research and development (R&D) of nanodrugs is a long, complex and uncertain process. Since the 1960s, computing has been used as an auxiliary tool in the field of drug discovery. Many cases have proven the practicability and efficiency of computing in drug discovery. Over the past decade, computing, especially model prediction and molecular simulation, has been gradually applied to nanodrug R&D, providing substantive solutions to many problems. Computing has made important contributions to promoting data-driven decision-making and reducing failure rates and time costs in discovery and development of nanodrugs. However, there are still a few articles to examine, and it is necessary to summarize the development of the research direction. In the review, we summarize application of computing in various stages of nanodrug R&D, including physicochemical properties and biological activities prediction, pharmacokinetics analysis, toxicological assessment and other related applications. Moreover, current challenges and future perspectives of the computing methods are also discussed, with a view to help computing become a high-practicability and -efficiency auxiliary tool in nanodrugs discovery and development.
Collapse
Affiliation(s)
- Ke Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangkai Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
23
|
Wang X, Jia Z, Zhou X, Su L, Wang M, Wang T, Zhang H. Nanoplastic-induced vascular endothelial injury and coagulation dysfunction in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161271. [PMID: 36587662 DOI: 10.1016/j.scitotenv.2022.161271] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Nanoplastics are the persistent pollutants in a variety of environments, representing a potential threat to human health. Notably, plastic particles have been detected in sample of human bloodstream. It is thus significant to investigate the effects of nanoplastics on the cardiovascular system owing to its ease transfer through the bloodstream to other organs. However, few studies have been performed to evaluate the cardiovascular toxicity of nanoplastics. Herein, we pursued to investigate the adverse cardiovascular impacts of polystyrene (PS), PS-NH2 and PS-COOH nanoplastics on mice. Experimental results demonstrated that the exposure to these nanoplastics could result in structural damage of vascular endothelial cells and inflammatory response. Moreover, it was found out that the dysfunctions of coagulation and prethrombotic state were caused by nanoplastics, which could be ascribed to the activation of JAK1/STAT3/TF signaling pathway. In summary, results clearly indicated that nanoplastic exposure lead to vascular toxicity to mice, which serves as a basis for future studies about the potential physiological threat of nanoplastics to humans.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Xiuran Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Lei Su
- Department of Food Industry, Shandong Institute of Commerce and Technology, Jinan 250103, PR China
| | - Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Tian Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
24
|
Zhou J, Yu Q, Song J, Li S, Li XL, Kang BK, Chen HY, Xu JJ. Photothermally Triggered Copper Payload Release for Cuproptosis-Promoted Cancer Synergistic Therapy. Angew Chem Int Ed Engl 2023; 62:e202213922. [PMID: 36585379 DOI: 10.1002/anie.202213922] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Cuproptosis is a new form of programmed cell death and exhibits enormous potential in cancer treatment. However, reducing the undesirable Cu ion release in normal tissue and maximizing the copper-induced therapeutic effect in cancer sites are two main challenges. In this study, we constructed a photothermally triggered nanoplatform (Au@MSN-Cu/PEG/DSF) to realize on-demand delivery for synergistic therapy. The released disulfiram (DSF) chelated with Cu2+ in situ to generate highly cytotoxic bis(diethyldithiocarbamate)copper (CuET), causing cell apoptosis, and the formed Cu+ species promoted toxic mitochondrial protein aggregation, leading to cell cuproptosis. Synergistic with photothermal therapy, Au@MSN-Cu/PEG/DSF could effectively kill tumor cells and inhibit tumor growth (inhibition rate up to 80.1 %). These results provide a promising perspective for potential cancer treatment based on cuproptosis, and may also inspire the design of advanced nano-therapeutic platforms.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Xiang-Ling Li
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Bin K Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
25
|
Zdarta J, Kołodziejczak-Radzimska A, Bachosz K, Rybarczyk A, Bilal M, Iqbal HMN, Buszewski B, Jesionowski T. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. Adv Colloid Interface Sci 2023; 315:102889. [PMID: 37030261 DOI: 10.1016/j.cis.2023.102889] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
The synergistic combination of current biotechnological and nanotechnological research has turned to multienzyme co-immobilization as a promising concept to design biocatalysis engineering. It has also intensified the development and deployment of multipurpose biocatalysts, for instance, multienzyme co-immobilized constructs, via biocatalysis/protein engineering to scale-up and fulfil the ever-increasing industrial demands. Considering the characteristic features of both the loaded multienzymes and nanostructure carriers, i.e., selectivity, specificity, stability, resistivity, induce activity, reaction efficacy, multi-usability, high catalytic turnover, optimal yield, ease in recovery, and cost-effectiveness, multienzyme-based green biocatalysts have become a powerful norm in biocatalysis/protein engineering sectors. In this context, the current state-of-the-art in enzyme engineering with a synergistic combination of nanotechnology, at large, and nanomaterials, in particular, are significantly contributing and providing robust tools to engineer and/or tailor enzymes to fulfil the growing catalytic and contemporary industrial needs. Considering the above critics and unique structural, physicochemical, and functional attributes, herein, we spotlight important aspects spanning across prospective nano-carriers for multienzyme co-immobilization. Further, this work comprehensively discuss the current advances in deploying multienzyme-based cascade reactions in numerous sectors, including environmental remediation and protection, drug delivery systems (DDS), biofuel cells development and energy production, bio-electroanalytical devices (biosensors), therapeutical, nutraceutical, cosmeceutical, and pharmaceutical oriented applications. In conclusion, the continuous developments in nano-assembling the multienzyme loaded co-immobilized nanostructure carriers would be a unique way that could act as a core of modern biotechnological research.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Agnieszka Kołodziejczak-Radzimska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
26
|
Moradi Kashkooli F, Jakhmola A, Hornsby TK, Tavakkoli JJ, Kolios MC. Ultrasound-mediated nano drug delivery for treating cancer: Fundamental physics to future directions. J Control Release 2023; 355:552-578. [PMID: 36773959 DOI: 10.1016/j.jconrel.2023.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The application of biocompatible nanocarriers in medicine has provided several benefits over conventional treatment methods. However, achieving high treatment efficacy and deep penetration of nanocarriers in tumor tissue is still challenging. To address this, stimuli-responsive nano-sized drug delivery systems (DDSs) are an active area of investigation in delivering anticancer drugs. While ultrasound is mainly used for diagnostic purposes, it can also be applied to affect cellular function and the delivery/release of anticancer drugs. Therapeutic ultrasound (TUS) has shown potential as both a stand-alone anticancer treatment and a method to induce targeted drug release from nanocarrier systems. TUS approaches have been used to overcome various physiological obstacles, including endothelial barriers, the tumor microenvironment (TME), and immunological hurdles. Combining nanomedicine and ultrasound as a smart DDS can increase in situ drug delivery and improve access to impermeable tissues. Furthermore, smart DDSs can perform targeted drug release in response to distinctive TMEs, external triggers, or dual/multi-stimulus. This results in enhanced treatment efficacy and reduced damage to surrounding healthy tissue or organs at risk. Integrating DDSs and ultrasound is still in its early stages. More research and clinical trials are required to fully understand ultrasound's underlying physical mechanisms and interactions with various types of nanocarriers and different types of cells and tissues. In the present review, ultrasound-mediated nano-sized DDS, specifically focused on cancer treatment, is presented and discussed. Ultrasound interaction with nanoparticles (NPs), drug release mechanisms, and various types of ultrasound-sensitive NPs are examined. Additionally, in vitro, in vivo, and clinical applications of TUS are reviewed in light of the critical challenges that need to be considered to advance TUS toward an efficient, secure, straightforward, and accessible cancer treatment. This study also presents effective TUS parameters and safety considerations for this treatment modality and gives recommendations about system design and operation. Finally, future perspectives are considered, and different TUS approaches are examined and discussed in detail. This review investigates drug release and delivery through ultrasound-mediated nano-sized cancer treatment, both pre-clinically and clinically.
Collapse
Affiliation(s)
| | - Anshuman Jakhmola
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tyler K Hornsby
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Jahangir Jahan Tavakkoli
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Ferdous Z, Elzaki O, Beegam S, Zaaba NE, Tariq S, Adeghate E, Nemmar A. Comparative Evaluation of the Effects of Amorphous Silica Nanoparticles on the Erythrocytes of Wistar Normotensive and Spontaneously Hypertensive Rats. Int J Mol Sci 2023; 24:ijms24043784. [PMID: 36835195 PMCID: PMC9967603 DOI: 10.3390/ijms24043784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Silica nanoparticles (SiNPs) are one of the most widely used nanomaterials. SiNPs can encounter erythrocytes and hypertension is strongly linked to abnormalities in the functional and structural characteristics of erythrocytes. As little is known about the combinatorial effect of SiNP-hypertension interactions on erythrocytes, the aim of this work was to study the effects triggered by hypertension on SiNPs induced hemolysis and the pathophysiological mechanism underlying it. We compared the interaction of amorphous 50 nm SiNPs at various concentrations (0.2, 1, 5 and 25 µg/mL) with erythrocytes of normotensive (NT) and hypertensive (HT) rats in vitro. Following incubation of the erythrocytes, SiNPs induced significant and dose-dependent increase in hemolysis. Transmission electron microscopy revealed erythrocyte deformity in addition to SiNPs taken up by erythrocytes. The erythrocyte susceptibility to lipid peroxidation was significantly increased. The concentration of reduced glutathione, and activities of superoxide dismutase, and catalase were significantly increased. SiNPs significantly increased intracellular Ca2+. Likewise, the concentration of the cellular protein annexin V and calpain activity was enhanced by SiNPs. Concerningly, all the tested parameters were significantly enhanced in erythrocytes from HT rats compared to NT rats. Our results collectively demonstrate that hypertension can potentially exacerbate the in vitro effect induced by SiNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence: ; Tel.: +971-3-7137533
| |
Collapse
|
28
|
Ugalde-Arbizu M, Aguilera-Correa JJ, García-Almodóvar V, Ovejero-Paredes K, Díaz-García D, Esteban J, Páez PL, Prashar S, San Sebastian E, Filice M, Gómez-Ruiz S. Dual Anticancer and Antibacterial Properties of Silica-Based Theranostic Nanomaterials Functionalized with Coumarin343, Folic Acid and a Cytotoxic Organotin(IV) Metallodrug. Pharmaceutics 2023; 15:pharmaceutics15020560. [PMID: 36839883 PMCID: PMC9962538 DOI: 10.3390/pharmaceutics15020560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.
Collapse
Affiliation(s)
- Maider Ugalde-Arbizu
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Victoria García-Almodóvar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Paulina L. Páez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| |
Collapse
|
29
|
Li M, Cui H, Cao Y, Lin Y, Yang Y, Gao M, Zhang W, Wang C. Deep eutectic solvents-Hydrogels for the topical management of rheumatoid arthritis. J Control Release 2023; 354:664-679. [PMID: 36682725 DOI: 10.1016/j.jconrel.2023.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Deep eutectic solvents (DES) have demonstrated their ability to facilitate skin penetrability of rigid nanoparticles (NPs). Here, we reported a feasible and simple transdermal delivery strategy using mesoporous silica nanoparticles impregnated in DES hydrogels for topical management of rheumatoid arthritis (RA). To achieve this goal, nanoceria was immobilized within a silica nanoparticle matrix (MSN) and encapsulated with methotrexate (MTX). The functionalized nanoparticles were first engineered in an Arginine (Arg)-citric acid (CA) DES and then transferred to the carbomer hydrogel matrix. Due to the strong affinity of DES hydrogels to the skin, combined with solvent-driven "Drag" effects, the prepared DES-MSNs hydrogels produced dynamic mobility of MSNs through skin layers, resulting in high skin penetrability. After application to the skin, the hydrogel solvent drove the rigid NPs across the skin barrier in a nonintrusive manner, resulting in sustained penetration and accumulation of MSNs at subcutaneous inflammation sites. Subsequently, the MTX payload exerted a direct therapeutic effect, while nanoceria moderated the inflammatory microenvironment by initiating reactive oxygen species (ROS) scavenging and transformation of the macrophage phenotype. In this way, the synergistic action of the combination of immuno- and chemotherapy of the drug and its carrier on RA was achieved. Our work provides a novel strategy for multisite regulation and controlled management of RA in a noninvasive way.
Collapse
Affiliation(s)
- Mingjian Li
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yubiao Cao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Mingju Gao
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan 663000, Yunnan, PR China
| | - Wen Zhang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
30
|
Tng DJH, Low JGH. Current status of silica-based nanoparticles as therapeutics and its potential as therapies against viruses. Antiviral Res 2023; 210:105488. [PMID: 36566118 PMCID: PMC9776486 DOI: 10.1016/j.antiviral.2022.105488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
In the past decade, interest in nanoparticles for clinical indications has been steadily gaining traction. Most recently, Lipid Nanoparticles (LNP) have been used successfully to construct the SARS-CoV-2 mRNA vaccines for rapid pandemic response. Similarly, silica is another nanomaterial which holds much potential to create nanomedicines against pathogens of interest. One major advantage of silica-based nanoparticles is its crystalline and highly ordered structure, which can be specifically tuned to achieve the desired properties needed for clinical applications. Increasingly, clinical research has shown the potential of silica nanoparticles not only as an antiviral, but also its ability as a delivery system for antiviral small molecules and vaccines against viruses. Silica has an excellent biosafety profile and has been tested in several early phase clinical trials since 2012, demonstrating good tolerability and minimal reported side effects. In this review, we discuss the clinical development of silica nanoparticles to date and identify the gaps and potential pitfalls in its path to clinical translation.
Collapse
Affiliation(s)
- Danny Jian Hang Tng
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, 169856, Singapore; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Jenny Guek Hong Low
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, 169856, Singapore; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, 169857, Singapore; Viral Research and Experimental Medicine Center, SingHealth/Duke-NUS Academic Medical Center (ViREMiCS), Singapore, 169856, Singapore.
| |
Collapse
|
31
|
Sivamaruthi BS, Thangaleela S, Kesika P, Suganthy N, Chaiyasut C. Mesoporous Silica-Based Nanoplatforms Are Theranostic Agents for the Treatment of Inflammatory Disorders. Pharmaceutics 2023; 15:pharmaceutics15020439. [PMID: 36839761 PMCID: PMC9960588 DOI: 10.3390/pharmaceutics15020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Complete recovery from infection, sepsis, injury, or trauma requires a vigorous response called inflammation. Inflammatory responses are essential in balancing tissue homeostasis to protect the tissue or resolve harmful stimuli and initiate the healing process. Identifying pathologically important inflammatory stimuli is important for a better understanding of the immune pathways, mechanisms of inflammatory diseases and organ dysfunctions, and inflammatory biomarkers and for developing therapeutic targets for inflammatory diseases. Nanoparticles are an efficient medical tool for diagnosing, preventing, and treating various diseases due to their interactions with biological molecules. Nanoparticles are unique in diagnosis and therapy in that they do not affect the surroundings or show toxicity. Modern medicine has undergone further development with nanoscale materials providing advanced experimentation, clinical use, and applications. Nanoparticle use in imaging, drug delivery, and treatment is growing rapidly owing to their spectacular accuracy, bioavailability, and cellular permeability. Mesoporous silica nanoparticles (MSNs) play a significant role in nano therapy with several advantages such as easy synthesis, loading, controllability, bioavailability over various surfaces, functionalization, and biocompatibility. MSNs can be used as theranostics in immune-modulatory nano systems to diagnose and treat inflammatory diseases. The application of MSNs in the preparation of drug-delivery systems has been steadily increasing in recent decades. Several preclinical studies suggest that an MSN-mediated drug-delivery system could aid in treating inflammatory diseases. This review explains the role of nanoparticles in medicine, synthesis, and functional properties of mesoporous silica nanoparticles and their therapeutic role against various inflammatory diseases.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natarajan Suganthy
- Bionanomaterials Research Laboratory, Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India
- Correspondence: (N.S.); (C.C.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.S.); (C.C.)
| |
Collapse
|
32
|
Ferreira LAD, Rambo C, Gomes MJK, Ribeiro KDP, Nishimoto GDA, Tisatto LGDR, Fritzen LD, da Cruz YB, Kambara AL, Rodrigues MJVB, Nogueira GA, Salvador HD, Oliveira-Toré CDF, Reason IJDM, Telles JEQ, Tomiotto-Pellissier F. Nanoparticles and phototherapy combination as therapeutic alternative in prostate cancer: A scoping review. Eur J Pharmacol 2023; 939:175421. [PMID: 36435234 DOI: 10.1016/j.ejphar.2022.175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Prostate cancer (CaP) is one of the most common types of cancers worldwide. Despite the existing surgical techniques, prostatectomy patients may experience tumor recurrence. In addition, castration-resistant cancers pose a challenge, especially given their lack of response to standard care. Thus, the development of more efficient therapies has become a field of great interest, and photothermal therapy (PTT) and photodynamic therapy (PDT) are promising alternatives, given their high capacity to cause cell injury and consequent tumor ablation. Phototherapy, along with chemotherapy, has also been shown to be more effective than pharmacotherapy alone. Free molecules used as photosensitizers are rapidly cleared from the body, do not accumulate in the tumor, and are primarily hydrophobic and require toxic solvents. Thus, the use of nanoparticles can be an effective strategy, given their ability to carry or bind to different molecules, protecting them from degradation and allowing their association with other surface ligands, which favors permeation and retention at the tumor site. Despite this, there is still a gap in the literature regarding the use of phototherapy in association with nanotechnology for the treatment of CaP. In this scoping review, it was found that most of the particles studied could act synergistically through PDT and PTT. In addition, fluorescent quenchers can act as diagnostic and therapeutic tools. However, future clinical studies should be performed to confirm the benefits and safety of the combination of nanoparticles and phototherapy for CaP.
Collapse
Affiliation(s)
| | - Camila Rambo
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Lucas Diego Fritzen
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Aline Lika Kambara
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | - Fernanda Tomiotto-Pellissier
- Department of Medical Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil; Laboratory of Immunopathology of Neglected Diseases and Cancer (LIDNC), Department of Pathological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
33
|
Qian Z, Zhang Y, Yuan J, Gong S, Chen B. Current applications of nanomaterials in urinary system tumors. Front Bioeng Biotechnol 2023; 11:1111977. [PMID: 36890910 PMCID: PMC9986335 DOI: 10.3389/fbioe.2023.1111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The development of nanotechnology and nanomaterials has provided insights into the treatment of urinary system tumors. Nanoparticles can be used as sensitizers or carriers to transport drugs. Some nanoparticles have intrinsic therapeutic effects on tumor cells. Poor patient prognosis and highly drug-resistant malignant urinary tumors are worrisome to clinicians. The application of nanomaterials and the associated technology against urinary system tumors offers the possibility of improving treatment. At present, many achievements have been made in the application of nanomaterials against urinary system tumors. This review summarizes the latest research on nanomaterials in the diagnosis and treatment of urinary system tumors and provides novel ideas for future research on nanotechnologies in this field.
Collapse
Affiliation(s)
- Zhounan Qian
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Yuan
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Sun Gong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
Hao P, Wang Y, Sun X, Wang J, Zhang LW. Derivation of the toxicological threshold of silicon element in the extractables and leachables from the pharmaceutical packaging and process components. Toxicol Ind Health 2022; 38:819-834. [DOI: 10.1177/07482337221123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Silicon is one of the most monitored elements in extractables and leachables studies of pharmaceutical packaging systems and related components. There is a need to review and evaluate toxicological thresholds of silicon because of its direct contact with drug products (DP) especially a liquid form of DP with the widely used pharmaceutical packaging systems made of silicon materials like glass and silicone. It is required by regulatory authorities to test silicon content in DP; however, there are no official guidelines on the toxicology of silicon that are currently available, yet the knowledge of toxicological thresholds of silicon is critical to justify the analytical limit of quantification (LOQ). Therefore, we reviewed the toxicity of silicon to derive a toxicological threshold by literature review of toxicity studies of both inorganic and organic silicon compounds. Oral toxicity is low for inorganic silicon like silicon dioxide or organic silicon polymers such as silicone tube/silicone oil (polydimethylsiloxane, or namely, PDMS as the major ingredient). In comparison, inhalational toxicity of silicon dioxide leads to pulmonary silicosis or even lung cancer. When orally administered, the toxicity of silicon dioxide, glass, polymers, or PDMS oligomers varies depending on their morphology, molecular weight (MW), and degrees of polymerization. PDMS with high MW has minimal toxic symptoms with non-detectable degradation/elimination by both intraperitoneal and subcutaneous administration routes, while exposure to either PDMS or small molecule dimethyl silicone compounds by the intravenous administration route may lead to death. We here determined a general parenteral permitted daily exposure (PDE) of 93 μg/day for inorganic silicon element and 100 μg/day for organic silicon element by reviewing toxicological data of both forms of silicon. In conclusion, this work provides evidence for pharmaceutical companies and regulatory agencies on the PDEs of silicon elements in pharmaceutical packaging and process components through a variety of administration routes.
Collapse
Affiliation(s)
- Pengchao Hao
- Hangzhou Cobetter Filtration Equipment Co., Ltd., Hangzhou, China
| | - Yingying Wang
- Sanitation & Environment Technology Institute Co. Ltd, Soochow University, Suzhou, China
| | - Xiongfei Sun
- Huiyu-Anlab (Suzhou) Pharmaceutical Technology Co., Ltd, Suzhou, China
| | - Jinhui Wang
- Sanitation & Environment Technology Institute Co. Ltd, Soochow University, Suzhou, China
| | - Leshuai W. Zhang
- Sanitation & Environment Technology Institute Co. Ltd, Soochow University, Suzhou, China
- School of Radiology and Protection of Soochow University, State Key Laboratory of Radiology and Radiation Protection, Collaborative Innovation Center of Radiation Medicine in Jiangsu Universities, Suzhou, China
| |
Collapse
|
35
|
Petrisor G, Motelica L, Ficai D, Trusca RD, Surdu VA, Voicu G, Oprea OC, Ficai A, Andronescu E. New Mesoporous Silica Materials Loaded with Polyphenols: Caffeic Acid, Ferulic Acid and p-Coumaric Acid as Dietary Supplements for Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15227982. [PMID: 36431468 PMCID: PMC9696098 DOI: 10.3390/ma15227982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 05/13/2023]
Abstract
In this study, two types of mesoporous silica with different pore structures and volumes were synthesized by the soft-templating method. The two types of mesoporous silica, type MCM-41 and MCM-48, were loaded with three polyphenols-caffeic acid, p-coumaric acid and trans-ferulic acid-in the same ratio of mesoporous silica:polyphenol (1:0.4 w/w). The materials obtained were characterized from a morphological and structural point of view through different analysis techniques. Through X-ray diffraction (XRD), the crystallization plane and the ordered structure of the mesoporous silica were observed. The difference between the two types of materials containing MCM-41 and MCM-48 was observed through the different morphologies of the silica particles through scanning electron microscopy (SEM) and also through the Brunauer-Emmet-Teller (BET) analysis, that the surface areas and volumes of pores was different between the two types of mesoporous silica, and, after loading with polyphenols, the values were reduced. The characteristic bands of silica and of polyphenols were easily observed by Fourier-transform infrared spectroscopy (FTIR), and, through thermogravimetric analysis (TGA), the residual mass was determined and the estimated amount of polyphenol in the materials and the efficient loading of mesoporous silica with polyphenols could be determined. The in vitro study was performed in two types of simulated biological fluids with different pH-simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The obtained materials could be used in various biomedical applications as systems with controlled release of natural polyphenols and the most suitable application could be as food supplements especially when a mixture of such materials is used or when the polyphenols are co-loaded within the mesoporous silica.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Correspondence:
| | - Roxana Doina Trusca
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgeta Voicu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
36
|
Sivasubramanian M, Lin LJ, Wang YC, Yang CS, Lo LW. Industrialization’s eye view on theranostic nanomedicine. Front Chem 2022; 10:918715. [PMID: 36059870 PMCID: PMC9437266 DOI: 10.3389/fchem.2022.918715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of nanomedicines (NMs) in the healthcare industry will bring about groundbreaking improvements to the current therapeutic and diagnostic scenario. However, only a few NMs have been developed into clinical applications due to a lack of regulatory experience with them. In this article, we introduce the types of NM that have the potential for clinical translation, including theranostics, multistep NMs, multitherapy NMs, and nanoclusters. We then present the clinical translational challenges associated with NM from the pharmaceutical industry’s perspective, such as NMs’ intrinsic physiochemical properties, safety, scale-up, lack of regulatory experience and standard characterization methods, and cost-effectiveness compared with their traditional counterparts. Overall, NMs face a difficult task to overcome these challenges for their transition from bench to clinical use.
Collapse
|
37
|
Ahmadi F, Sodagar-Taleghani A, Ebrahimnejad P, Pouya Hadipour Moghaddam S, Ebrahimnejad F, Asare-Addo K, Nokhodchi A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int J Pharm 2022; 625:122099. [PMID: 35961417 DOI: 10.1016/j.ijpharm.2022.122099] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Cancer is the second cause of human mortality after cardiovascular disease around the globe. Conventional cancer therapies are chemotherapy, radiation, and surgery. In fact, due to the lack of absolute specificity and high drug concentrations, early recognition and treatment of cancer with conventional approaches have become challenging issues in the world. To mitigate against the limitations of conventional cancer chemotherapy, nanomaterials have been developed. Nanomaterials exhibit particular properties that can overcome the drawbacks of conventional therapies such as lack of specificity, high drug concentrations, and adverse drug reactions. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their well-defined pore size and structure, high surface area, good biocompatibility and biodegradability, ease of surface modification, and stable aqueous dispersions. This review highlights the current progress with the use of MSNs for the delivery of chemotherapeutic agents for the diagnosis and treatment of cancer. Various stimuli-responsive gatekeepers, which endow the MSNs with on-demand drug delivery, surface modification strategies for targeting purposes, and multifunctional MSNs utilized in drug delivery systems (DDSs) are also addressed. Also, the capability of MSNs as flexible imaging platforms is considered. In addition, physicochemical attributes of MSNs and their effects on cancer therapy with a particular focus on recent studies is emphasized. Moreover, major challenges to the use of MSNs for cancer therapy, biosafety and cytotoxicity aspects of MSNs are discussed.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Sodagar-Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyyed Pouya Hadipour Moghaddam
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Farzam Ebrahimnejad
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kofi Asare-Addo
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK; Lupin Pharmaceutical Research Inc., Coral Springs, FL, USA.
| |
Collapse
|
38
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
39
|
Moreno-Mendieta S, Guillén D, Vasquez-Martínez N, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics. Pharm Res 2022; 39:1823-1849. [PMID: 35739369 DOI: 10.1007/s11095-022-03301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/23/2022] [Indexed: 12/17/2022]
Abstract
A robust comprehension of phagocytosis is crucial for understanding its importance in innate immunity. A detailed description of the molecular mechanisms that lead to the uptake and clearance of endogenous and exogenous particles has helped elucidate the role of phagocytosis in health and infectious or autoimmune diseases. Furthermore, knowledge about this cellular process is important for the rational design and development of particulate systems for the administration of vaccines or therapeutics. Depending on these specific applications and the required biological responses, particles must be designed to encourage or avoid their phagocytosis and prolong their circulation time. Functionalization with specific polymers or ligands and changes in the size, shape, or surface of particles have important effects on their recognition and internalization by professional and nonprofessional phagocytes and have a major influence on their fate and safety. Here, we review the phagocytosis of particles intended to be used as carrier or delivery systems for vaccines or therapeutics, the cells involved in this process depending on the route of administration, and the strategies employed to obtain the most desirable particles for each application through the manipulation of their physicochemical characteristics. We also offer a view of the challenges and potential opportunities in the field and give some recommendations that we expect will enable the development of improved approaches for the rational design of these systems.
Collapse
Affiliation(s)
- Silvia Moreno-Mendieta
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico. .,Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Nathaly Vasquez-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.,Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
40
|
Wang T, Zhang Z, Xie M, Li S, Zhang J, Zhou J. Apigenin Attenuates Mesoporous Silica Nanoparticles-Induced Nephrotoxicity by Activating FOXO3a. Biol Trace Elem Res 2022; 200:2793-2806. [PMID: 34448149 DOI: 10.1007/s12011-021-02871-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used in many biomedical applications and clinical fields. However, the applications of MSNs are limited by their severe toxicity. Apigenin (AG) has demonstrated pharmacological effects with low toxicity. The aim of this study was to clarify the role of AG in the progression of MSNs-induced renal injury. BALB/c mice and NRK-52E cells were exposed to MSNs with or without AG. AG protected mice and NRK-52E cells from the MSNs-induced pathological variations in renal tissues and decreased cell viability. AG significantly reduced the levels of serum blood urea nitrogen (BUN) and serum creatinine (Scr), upregulated the levels of superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT), and improved the pathological changes of the kidney in MSNs-treated mice. The protective effects of AG were associated with its ability to increase the levels of antioxidants, reduce the accumulation of ROS, and inhibit the expression of the inflammatory mediators (TNF-α, IL-6). In addition, AG treatment upregulated the activity of FOXO3a, increased the level of IkBα, and reduced the nuclear translocation of NF-κB, which ultimately alleviated MSNs-induced inflammation. Nuclear FOXO3a translocation also triggered antioxidant gene transcription and protected nephrocyte from oxidative damage. However, knockdown of FOXO3a significantly blocked the protective effects of AG. These findings suggested that AG could be a promising therapeutic strategy for MSNs-induced nephrotoxicity, and this protective effect might be related to the suppression of oxidative stress and inflammation via the FOXO3a/NF-κB pathway.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Ziwen Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Saifeng Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jian Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China.
| |
Collapse
|
41
|
Liao H, Niu C. Role of CD47-SIRPα Checkpoint in Nanomedicine-Based Anti-Cancer Treatment. Front Bioeng Biotechnol 2022; 10:887463. [PMID: 35557862 PMCID: PMC9087583 DOI: 10.3389/fbioe.2022.887463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Many cancers have evolved various mechanisms to evade immunological surveillance, such as the inhibitory immune checkpoint of the CD47-SIRPα signaling pathway. By targeting this signaling pathway, researchers have developed diverse nanovehicles with different loaded drugs and modifications in anticancer treatment. In this review, we present a brief overview of CD47-SIRPα interaction and nanomedicine. Then, we delve into recent applications of the CD47-SIRPα interaction as a target for nanomedicine-based antitumor treatment and its combination with other targeting pathway drugs and/or therapeutic approaches.
Collapse
Affiliation(s)
- Haiqin Liao
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Chengcheng Niu,
| |
Collapse
|
42
|
Landsiedel R, Hahn D, Ossig R, Ritz S, Sauer L, Buesen R, Rehm S, Wohlleben W, Groeters S, Strauss V, Sperber S, Wami H, Dobrindt U, Prior K, Harmsen D, van Ravenzwaay B, Schnekenburger J. Gut microbiome and plasma metabolome changes in rats after oral gavage of nanoparticles: sensitive indicators of possible adverse health effects. Part Fibre Toxicol 2022; 19:21. [PMID: 35321750 PMCID: PMC8941749 DOI: 10.1186/s12989-022-00459-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The oral uptake of nanoparticles is an important route of human exposure and requires solid models for hazard assessment. While the systemic availability is generally low, ingestion may not only affect gastrointestinal tissues but also intestinal microbes. The gut microbiota contributes essentially to human health, whereas gut microbial dysbiosis is known to promote several intestinal and extra-intestinal diseases. Gut microbiota-derived metabolites, which are found in the blood stream, serve as key molecular mediators of host metabolism and immunity. RESULTS Gut microbiota and the plasma metabolome were analyzed in male Wistar rats receiving either SiO2 (1000 mg/kg body weight/day) or Ag nanoparticles (100 mg/kg body weight/day) during a 28-day oral gavage study. Comprehensive clinical, histopathological and hematological examinations showed no signs of nanoparticle-induced toxicity. In contrast, the gut microbiota was affected by both nanoparticles, with significant alterations at all analyzed taxonomical levels. Treatments with each of the nanoparticles led to an increased abundance of Prevotellaceae, a family with gut species known to be correlated with intestinal inflammation. Only in Ag nanoparticle-exposed animals, Akkermansia, a genus known for its protective impact on the intestinal barrier was depleted to hardly detectable levels. In SiO2 nanoparticles-treated animals, several genera were significantly reduced, including probiotics such as Enterococcus. From the analysis of 231 plasma metabolites, we found 18 metabolites to be significantly altered in Ag-or SiO2 nanoparticles-treated rats. For most of these metabolites, an association with gut microbiota has been reported previously. Strikingly, both nanoparticle-treatments led to a significant reduction of gut microbiota-derived indole-3-acetic acid in plasma. This ligand of the arylhydrocarbon receptor is critical for regulating immunity, stem cell maintenance, cellular differentiation and xenobiotic-metabolizing enzymes. CONCLUSIONS The combined profiling of intestinal microbiome and plasma metabolome may serve as an early and sensitive indicator of gut microbiome changes induced by orally administered nanoparticles; this will help to recognize potential adverse effects of these changes to the host.
Collapse
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniela Hahn
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Rainer Ossig
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Sabrina Ritz
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Lydia Sauer
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Sascha Rehm
- HB Technologies AG, 72076, Tübingen, Germany
- Medical Data Integration Center, University Tuebingen, 72072, Tübingen, Germany
| | | | - Sibylle Groeters
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Saskia Sperber
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Haleluya Wami
- Institute of Hygiene, University of Muenster, 48149, Muenster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Muenster, 48149, Muenster, Germany
| | - Karola Prior
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, 48149, Muenster, Germany
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, 48149, Muenster, Germany
| | | | - Juergen Schnekenburger
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstrasse 17, 48149, Muenster, Germany.
| |
Collapse
|
43
|
Multifunctional Mesoporous Silica Nanoparticles for Oral Drug Delivery. COATINGS 2022. [DOI: 10.3390/coatings12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanotechnology has transformed engineering designs across a wide spectrum of materials and applications. Mesoporous Silica Nanoparticles (MSNs) are one of the new fabrications of nanostructures as medication delivery systems. MSNs have pore sizes varying from 2 to 50 nm, making them ideal for a variety of biological applications. They offer unique characteristics such as a tunable surface area, well-defined surface properties, and the ability to improve drug pharmacokinetic characteristics. Moreover, they have the potential to reduce adverse effects by delivering a precise dose of medications to a specific spot rather than the more frequent systemic delivery, which diffuses across tissues and organs. In addition, the vast number of pores allow drug incorporation and transportation of drugs to various sites making MSNs a feasible platform for orally administered drugs. Though the oral route is the most suitable and convenient platform for drug delivery, conventional oral drug delivery systems are associated with several limitations. Surpassing gastrointestinal barriers and the low oral bioavailability of poorly soluble medicines pose a major challenge in the pharmaceutical industry. This review provides insights into the role of MSNs and its mechanism as an oral drug delivery system.
Collapse
|
44
|
Zhao Z, Li M, Zheng L, Yang Y, Cui X, Xu T, Zhang W, Wang C. Noninvasive transdermal delivery of mesoporous silica nanoparticles using deep eutectic solvent. J Control Release 2022; 343:43-56. [DOI: 10.1016/j.jconrel.2022.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 01/31/2023]
|
45
|
Gao Q, Wang Y, Ji Y, Zhao X, Zhang P, Chen L. Tracking of realistic nanoplastics in complicated matrices by iridium element labeling and inductively coupled plasma mass spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127628. [PMID: 34740506 DOI: 10.1016/j.jhazmat.2021.127628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Herein, we proposed a protocol to track realistic nanoplastics (NPs) by labeling them with an iridium-containing organic molecular agent (denoted as Ir) followed by inductively coupled plasma mass spectroscopy detection, as exemplified by polyethylene terephthalate (PET) NPs prepared from water bottles. The Ir showed satisfactory labeling stability in typical environmental and biological matrices. After 3d's incubation, the leaching ratios were less than 3% in water, phosphate buffered saline, sea water, cell culture medium, artificial gastric juice, artificial intestinal fluid, sediment resuspension, and around 5% in fetal bovine serum. On this basis, in vivo distribution of PET NPs in mice was analyzed. The intravenously injected NPs widely distributed in liver, spleen, lung and kidney. Comparatively, NPs could hardly be detected in these organs after intragastric administration, suggesting that they could not penetrate the intestinal barriers. The temporal and spatial distribution of the NPs in an intertidal zone sediment resuspension model was also investigated. The NPs mostly deposited at the overlying deposit, implying the absorption-driven sinking behavior of NPs with natural organic matters. This work provided an effective way to quantitatively track realistic NPs, which could promote the understanding of the fate and effect of NPs in natural environments and organisms.
Collapse
Affiliation(s)
- Qi Gao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Panpan Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
46
|
Li J, Sun R, Xu H, Wang G. Integrative Metabolomics, Proteomics and Transcriptomics Analysis Reveals Liver Toxicity of Mesoporous Silica Nanoparticles. Front Pharmacol 2022; 13:835359. [PMID: 35153799 PMCID: PMC8829009 DOI: 10.3389/fphar.2022.835359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
As pharmaceutical excipients, mesoporous silica nanoparticles (MSNs) have attracted considerable concern based on potential risks to the public. The impact of MSNs on biochemical metabolism is poorly understood, and few studies have compared the effects of MSNs administered via different routes. To evaluate the hepatotoxicity of MSNs, metabolomics, proteomics and transcriptomic analyses were performed in mice after intravenous (20 mg/kg/d) or oral ad-ministration (200 mg/kg/d) of MSNs for 10 days. Intravenous injection induced significant hepatic injury based on pathological inspection and increased the levels of AST/ALT and the inflammatory factors IL-6, IL-1β and TNF-a. Omics data suggested intravenous administration of MSNs perturbed the following metabolites: succinate, hypoxanthine, GSSG, NADP+, NADPH and 6-phosphogluconic acid. In addition, increases in GPX, SOD3, G6PD, HK, and PFK at proteomic and transcriptomic levels suggested elevation of glycolysis and pentose phosphate pathway, synthesis of glutathione and nucleotides, and antioxidative pathway activity, whereas oxidative phosphorylation, TCA and mitochondrial energy metabolism were reduced. On the other hand, oral administration of MSNs disturbed inflammatory factors and metabolites of ribose-5-phosphate, 6-phosphogluconate, GSSG, and NADP+ associated with the pentose phosphate pathway, glutathione synthesis and oxidative stress albeit to a lesser extent than intravenous injection despite the administration of a ten-fold greater dose. Overall, systematic biological data suggested that intravenous injection of nanoparticles of pharmaceutical excipients substantially affected hepatic metabolism function and induced oxidative stress and inflammation, whereas oral administration exhibited milder effects compared with intravenous injection.
Collapse
Affiliation(s)
- Jing Li
- Lab of Nano-Biology Technology, School of Physics and Electronics, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Xu
- Lab of Nano-Biology Technology, School of Physics and Electronics, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha, China.,Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
47
|
Potential Toxic Effects of Exposure to Titanium Silicon Oxide Nanoparticles in Male Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042029. [PMID: 35206216 PMCID: PMC8872251 DOI: 10.3390/ijerph19042029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
Abstract
Recently, nano titanium silicon oxide (TiSiO4 NPs) has been used in different fields and industries. Very few toxicological data exist for TiSiO4 NPs. In the present study, the potential adverse effects of oral exposure to a single dose of TiSiO4 NPs ≤ 50 nm (250 mg/kg b.w.) in adult male rats were investigated through the assessment of biomarkers for serum biochemical parameters, liver DNA damage, and histopathological examination and determination of Si and Ti in the exposed rat tissues. The results revealed that there were no significant changes in serum total protein, albumin, and triglycerides content, while total cholesterol level was significantly increased 7 days after exposure. TiSiO4 NPs significantly increased superoxide dismutase (SOD), glutathione peroxidase (GPx), acetylcholine esterase (AChE), lactate dehydrogenase (LDH) activity, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels in the exposed rat serum, whereas alanine aminotransferase (ALT), aspartate aminotransferase (AST) activity, urea level, immunoglobulins (IgG and IgM) concentrations, progesterone, and testosterone levels were significantly decreased. The liver comet assay indices were significantly increased after 7 days post-exposure. Moreover, histopathological changes and the accumulation of Si and Ti in liver, kidney, spleen, and lung tissues of treated rats were recorded.
Collapse
|
48
|
Guo Z, Wang X, Zhang P, Sun F, Chen Z, Ma W, Meng F, Hao H, Shang X. Silica nanoparticles cause spermatogenesis dysfunction in mice via inducing cell cycle arrest and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113210. [PMID: 35051769 DOI: 10.1016/j.ecoenv.2022.113210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of silica nanoparticles (SiNPs) has increased the risk of human exposure, which raised concerns about their adverse effects on human health, especially the reproductive system. Previous studies have shown that SiNPs could cause damage to reproductive organs, but the specific mechanism is still unclear. In this study, to investigate the underlying mechanism of male reproductive toxicity induced by SiNPs, 40 male mice at the age of 8 weeks were divided into two groups and then intraperitoneally injected with vehicle control or 10 mg/kg SiNPs per day for one week. The results showed that SiNPs could damage testicular structure, perturb spermatogenesis and reduce serum testosterone levels, leading to a decrease in sperm quality and quantity. In addition, the ROS level in the testis of exposed mice was significantly increased, followed by imbalance of the oxidative redox status. Further study revealed that exposure to SiNPs led to cell cycle arrest and apoptosis, as shown by downregulation of the expression of positive cell cycle regulators and the activation of TNF-α/TNFR Ⅰ-mediated apoptotic pathway. The results demonstrated that SiNPs could cause testicles injure via inducing oxidative stress and DNA damage which led to cell cycle arrest and apoptosis, and thereby resulting in spermatogenic dysfunction.
Collapse
Affiliation(s)
- Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Xuying Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Pinzheng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Fanli Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Ziyun Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Wendong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Fangyu Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Huiyu Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China.
| |
Collapse
|
49
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, Che Q, Guo J, Su Z. Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Front Pharmacol 2022; 13:829796. [PMID: 35153797 PMCID: PMC8832880 DOI: 10.3389/fphar.2022.829796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
Mesoporous silica nanocarrier (MSN) preparations have a wide range of medical applications. Studying the biocompatibility of MSN is an important part of clinical transformation. Scientists have developed different types of mesoporous silica nanocarriers (MSNs) for different applications to realize the great potential of MSNs in the field of biomedicine, especially in tumor treatment. MSNs have achieved good results in diagnostic bioimaging, tissue engineering, cancer treatment, vaccine development, biomaterial application and diagnostics. MSNs can improve the therapeutic efficiency of drugs, introduce new drug delivery strategies, and provide advantages that traditional drugs lack. It is necessary not only to innovate MSNs but also to comprehensively understand their biological distribution. In this review, we summarize the various medical uses of MSN preparations and explore the factors that affect their distribution and biocompatibility in the body based on metabolism. Designing more reasonable therapeutic nanomedicine is an important task for the further development of the potential clinical applications of MSNs.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongyi Xie
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingjian Wen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Guangzhou, China
| | - Jiao Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jiao Guo, ; Zhengquan Su,
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jiao Guo, ; Zhengquan Su,
| |
Collapse
|