1
|
Muirhead WR, Layard Horsfall H, Aicardi C, Carolan J, Akram H, Vanhoestenberghe A, Schaefer AT, Marcus HJ. Implanted cortical neuroprosthetics for speech and movement restoration. J Neurol 2024; 271:7156-7168. [PMID: 39446156 PMCID: PMC11561076 DOI: 10.1007/s00415-024-12604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024]
Abstract
Implanted cortical neuroprosthetics (ICNs) are medical devices developed to replace dysfunctional neural pathways by creating information exchange between the brain and a digital system which can facilitate interaction with the external world. Over the last decade, researchers have explored the application of ICNs for diverse conditions including blindness, aphasia, and paralysis. Both transcranial and endovascular approaches have been used to record neural activity in humans, and in a laboratory setting, high-performance decoding of the signals associated with speech intention has been demonstrated. Particular progress towards a device which can move into clinical practice has been made with ICNs focussed on the restoration of speech and movement. This article provides an overview of contemporary ICNs for speech and movement restoration, their mechanisms of action and the unique ethical challenges raised by the field.
Collapse
Affiliation(s)
- William R Muirhead
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- The Francis Crick Institute, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Hugo Layard Horsfall
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christine Aicardi
- Faculty of Natural, Mathematical & Engineering Sciences, King's College London, London, UK
| | - Jacques Carolan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Harith Akram
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Anne Vanhoestenberghe
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | | | - Hani J Marcus
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
2
|
Bjånes DA, Kellis S, Nickl R, Baker B, Aflalo T, Bashford L, Chivukula S, Fifer MS, Osborn LE, Christie B, Wester BA, Celnik PA, Kramer D, Pejsa K, Crone NE, Anderson WS, Pouratian N, Lee B, Liu CY, Tenore F, Rieth L, Andersen RA. Quantifying physical degradation alongside recording and stimulation performance of 980 intracortical microelectrodes chronically implanted in three humans for 956-2246 days. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313281. [PMID: 39314938 PMCID: PMC11419230 DOI: 10.1101/2024.09.09.24313281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Motivation The clinical success of brain-machine interfaces depends on overcoming both biological and material challenges to ensure a long-term stable connection for neural recording and stimulation. Therefore, there is a need to quantify any damage that microelectrodes sustain when they are chronically implanted in the human cortex. Methods Using scanning electron microscopy (SEM), we imaged 980 microelectrodes from Neuroport arrays chronically implanted in the cortex of three people with tetraplegia for 956-2246 days. We analyzed eleven multi-electrode arrays in total: eight arrays with platinum (Pt) electrode tips and three with sputtered iridium oxide tips (SIROF); one Pt array was left in sterile packaging, serving as a control. The arrays were implanted/explanted across three different clinical sites surgeries (Caltech/UCLA, Caltech/USC and APL/Johns Hopkins) in the anterior intraparietal area, Brodmann's area 5, motor cortex, and somatosensory cortex.Human experts rated the electron micrographs of electrodes with respect to five damage metrics: the loss of metal at the electrode tip, the amount of separation between the silicon shank and tip metal, tissue adherence or bio-material to the electrode, damage to the shank insulation and silicone shaft. These metrics were compared to functional outcomes (recording quality, noise, impedance and stimulation ability). Results Despite higher levels of physical degradation, SIROF electrodes were twice as likely to record neural activity than Pt electrodes (measured by SNR), at the time of explant. Additionally, 1 kHz impedance (measured in vivo prior to explant) significantly correlated with all physical damage metrics, recording, and stimulation performance for SIROF electrodes (but not Pt), suggesting a reliable measurement of in vivo degradation.We observed a new degradation type, primarily occurring on stimulated electrodes ("pockmarked" vs "cracked") electrodes; however, tip metalization damage was not significantly higher due to stimulation or amount of charge. Physical damage was centralized to specific regions of an array often with differences between outer and inner electrodes. This is consistent with degradation due to contact with the biologic milieu, influenced by variations in initial manufactured state. From our data, we hypothesize that erosion of the silicon shank often precedes damage to the tip metal, accelerating damage to the electrode / tissue interface. Conclusions These findings link quantitative measurements, such as impedance, to the physical condition of the microelectrodes and their capacity to record and stimulate. These data could lead to improved manufacturing or novel electrode designs to improve long-term performance of BMIs making them are vitally important as multi-year clinical trials of BMIs are becoming more common.
Collapse
Affiliation(s)
- D. A. Bjånes
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - S. Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC; Los Angeles, CA 90033, USA
| | - R. Nickl
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - B. Baker
- Electrical and Computer Engineering Univ. of Utah, Salt Lake City, UT
| | - T. Aflalo
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - L. Bashford
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - S. Chivukula
- Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA 90027
| | - M. S. Fifer
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - L. E. Osborn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - B. Christie
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - B. A. Wester
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | | | - D. Kramer
- Department of Neurological Surgery, University of Colorado Hospital, CO, 80045, USA
| | - K. Pejsa
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - N. E. Crone
- Department of Neurology, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - W. S. Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Laurel, MD, USA 20723
| | - N. Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - B. Lee
- Department of Neurological Surgery, Keck School of Medicine of USC; Los Angeles, CA 90033, USA
| | - C. Y. Liu
- USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine of USC; Los Angeles, CA 90033, USA
| | - F. Tenore
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - L. Rieth
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV
| | - R. A. Andersen
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
3
|
Chang H, Sun Y, Lu S, Lan Y. Enhancing Brain-Computer Interfaces through Kriging-Based Fusion of Sparse Regression Partial Differential Equations to Counter Injection Molding View of Node Displacement Effects. Polymers (Basel) 2024; 16:2507. [PMID: 39274138 PMCID: PMC11398258 DOI: 10.3390/polym16172507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Injection molding is an efficient and precise manufacturing technology that is widely used in the production of plastic products. In recent years, injection molding technology has made significant progress, especially with the combination of in-mold electronics (IME) technology, which makes it possible to embed electronic components directly into the surface of a product. IME technology improves the integration and performance of a product by embedding conductive materials and functional components in the mold. Brain-computer interfaces (BCIs) are a rapidly growing field of research that aims to capture, analyze, and feedback brain signals by directly connecting the brain to external devices. The Utah array, a high-density microelectrode array, has been widely used for the recording and transmission of brain signals. However, the traditional fabrication method of the Utah array suffers from high cost and low integration, which limits its promotion in practical applications. The lines that receive EEG signals are one of the key parts of a brain-computer interface system. The optimization of injection molding parameters is particularly important in order to effectively embed these lines into thin films and to ensure the precise displacement of the line nodes and the stability of signal transmission during the injection molding process. In this study, a method based on the Kriging prediction model and sparse regression partial differential equations (PDEs) is proposed to optimize the key parameters in the injection molding process. This method can effectively predict and control the displacement of nodes in the film, ensure the stability and reliability of the line during the injection process, and improve the accuracy of EEG signal transmission and system performance. The optimal injection parameters were finally obtained: a holding pressure of 525 MPa, a holding time of 50 s, and a melting temperature of 285 °C. Under this condition, the average node displacement of UA was reduced from the initial 0.19 mm to 0.89 µm, with an optimization rate of 95.32%.
Collapse
Affiliation(s)
- Hanjui Chang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Yue Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Shuzhou Lu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Yuntao Lan
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| |
Collapse
|
4
|
Wang F, Chen X, Roelfsema PR. Comparison of electrical microstimulation artifact removal methods for high-channel-count prostheses. J Neurosci Methods 2024; 408:110169. [PMID: 38782123 DOI: 10.1016/j.jneumeth.2024.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Neuroprostheses are used to electrically stimulate the brain, modulate neural activity and restore sensory and motor function following injury or disease, such as blindness, paralysis, and other movement and psychiatric disorders. Recordings are often made simultaneously with stimulation, allowing the monitoring of neural signals and closed-loop control of devices. However, stimulation-evoked artifacts may obscure neural activity, particularly when stimulation and recording sites are nearby. Several methods have been developed to remove stimulation artifacts, but it remains challenging to validate and compare these methods because the 'ground-truth' of the neuronal signals may be contaminated by artifacts. NEW METHOD Here, we delivered stimulation to the visual cortex via a high-channel-count prosthesis while recording neuronal activity and stimulation artifacts. We quantified the waveforms and temporal properties of stimulation artifacts from the cortical visual prosthesis (CVP) and used them to build a dataset, in which we simulated the neuronal activity and the stimulation artifacts. We illustrate how to use the simulated data to evaluate the performance of six software-based artifact removal methods (Template subtraction, Linear interpolation, Polynomial fitting, Exponential fitting, SALPA and ERAASR) in a CVP application scenario. RESULTS We here focused on stimulation artifacts caused by electrical stimulation through a high-channel-count cortical prosthesis device. We find that the Polynomial fitting and Exponential fitting methods outperform the other methods in recovering spikes and multi-unit activity. Linear interpolation and Template subtraction recovered the local-field potentials. CONCLUSION Polynomial fitting and Exponential fitting provided a good trade-off between the quality of the recovery of spikes and multi-unit activity (MUA) and the computational complexity for a cortical prosthesis.
Collapse
Affiliation(s)
- Feng Wang
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam 1105 BA, the Netherlands.
| | - Xing Chen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop St, Pittsburgh, PA 15213, US.
| | - Pieter R Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam 1105 BA, the Netherlands; Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop St, Pittsburgh, PA 15213, US; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, Amsterdam 1081 HV, the Netherlands; Department of Neurosurgery, Academic Medical Centre, Postbus 22660, Amsterdam 1100 DD, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris F-75012, France.
| |
Collapse
|
5
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Corrigendum to "Platelets and Hemostatic Proteins are Co-Localized with Chronic Neuroinflammation Surrounding Implanted Intracortical Microelectrodes" [Acta Biomaterialia. Volume 166, August 2023, Pages 278-290]. Acta Biomater 2024; 182:303-308. [PMID: 38845260 PMCID: PMC11295673 DOI: 10.1016/j.actbio.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
6
|
O’Sullivan KP, Orazem ME, Otto KJ, Butson CR, Baker JL. Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates. J Neural Eng 2024; 21:10.1088/1741-2552/ad5703. [PMID: 38862007 PMCID: PMC11302379 DOI: 10.1088/1741-2552/ad5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Electrodes chronically implanted in the brain undergo complex changes over time that can lower the signal to noise ratio (SNR) of recorded signals and reduce the amount of energy delivered to the tissue during therapeutic stimulation, both of which are relevant for the development of robust, closed-loop control systems. Several factors have been identified that link changes in the electrode-tissue interface (ETI) to increased impedance and degraded performance in micro- and macro-electrodes. Previous studies have demonstrated that brief pulses applied every few days can restore SNR to near baseline levels during microelectrode recordings in rodents, a process referred to as electrical rejuvenation. However, electrical rejuvenation has not been tested in clinically relevant macroelectrode designs in large animal models, which could serve as preliminary data for translation of this technique. Here, several variations of this approach were tested to characterize parameters for optimization.Approach. Alternating-current (AC) and direct-current (DC) electrical rejuvenation methods were explored in three electrode types, chronically implanted in two adult male nonhuman primates (NHP) (Macaca mulatta), which included epidural electrocorticography (ECoG) electrodes and penetrating deep-brain stimulation (DBS) electrodes. Electrochemical impedance spectroscopy (EIS) was performed before and after each rejuvenation paradigm as a gold standard measure of impedance, as well as at subsequent intervals to longitudinally track the evolution of the ETI. Stochastic error modeling was performed to assess the standard deviation of the impedance data, and consistency with the Kramers-Kronig relations was assessed to evaluate the stationarity of EIS measurement.Main results. AC and DC rejuvenation were found to quickly reduce impedance and minimize the tissue component of the ETI on all three electrode types, with DC and low-frequency AC producing the largest impedance drops and reduction of the tissue component in Nyquist plots. The effects of a single rejuvenation session were found to last from several days to over 1 week, and all rejuvenation pulses induced no observable changes to the animals' behavior.Significance. These results demonstrate the effectiveness of electrical rejuvenation for diminishing the impact of chronic ETI changes in NHP with clinically relevant macroelectrode designs.
Collapse
Affiliation(s)
- KP O’Sullivan
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
| | - ME Orazem
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1030 Center Drive P.O. Box 116005 Gainesville, FL 32611
| | - KJ Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - CR Butson
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road, Gainesville, FL 32608
| | - JL Baker
- Brain and Mind Research Institute, Weil Cornell Medical College, 407 E 61 St, New York, NY 10065
| |
Collapse
|
7
|
Chen K, Forrest AM, Burgos GG, Kozai TDY. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng 2024; 21:036033. [PMID: 38788704 DOI: 10.1088/1741-2552/ad5049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Objective.This study aims to reveal longitudinal changes in functional network connectivity within and across different brain structures near chronically implanted microelectrodes. While it is well established that the foreign-body response (FBR) contributes to the gradual decline of the signals recorded from brain implants over time, how the FBR affects the functional stability of neural circuits near implanted brain-computer interfaces (BCIs) remains unknown. This research aims to illuminate how the chronic FBR can alter local neural circuit function and the implications for BCI decoders.Approach.This study utilized single-shank, 16-channel,100µm site-spacing Michigan-style microelectrodes (3 mm length, 703µm2 site area) that span all cortical layers and the hippocampal CA1 region. Sex balanced C57BL6 wildtype mice (11-13 weeks old) received perpendicularly implanted microelectrode in left primary visual cortex. Electrophysiological recordings were performed during both spontaneous activity and visual sensory stimulation. Alterations in neuronal activity near the microelectrode were tested assessing cross-frequency synchronization of local field potential (LFP) and spike entrainment to LFP oscillatory activity throughout 16 weeks after microelectrode implantation.Main results. The study found that cortical layer 4, the input-receiving layer, maintained activity over the implantation time. However, layers 2/3 rapidly experienced severe impairment, leading to a loss of proper intralaminar connectivity in the downstream output layers 5/6. Furthermore, the impairment of interlaminar connectivity near the microelectrode was unidirectional, showing decreased connectivity from Layers 2/3 to Layers 5/6 but not the reverse direction. In the hippocampus, CA1 neurons gradually became unable to properly entrain to the surrounding LFP oscillations.Significance. This study provides a detailed characterization of network connectivity dysfunction over long-term microelectrode implantation periods. This new knowledge could contribute to the development of targeted therapeutic strategies aimed at improving the health of the tissue surrounding brain implants and potentially inform engineering of adaptive decoders as the FBR progresses. Our study's understanding of the dynamic changes in the functional network over time opens the door to developing interventions for improving the long-term stability and performance of intracortical microelectrodes.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Adam M Forrest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
8
|
Orlemann C, Boehler C, Kooijmans RN, Li B, Asplund M, Roelfsema PR. Flexible Polymer Electrodes for Stable Prosthetic Visual Perception in Mice. Adv Healthc Mater 2024; 13:e2304169. [PMID: 38324245 PMCID: PMC11468866 DOI: 10.1002/adhm.202304169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Brain interfaces that can stimulate neurons, cause minimal damage, and work for a long time will be central for future neuroprosthetics. Here, the long-term performance of highly flexible, thin polyimide shanks with several small (<15 µm) electrodes during electrical microstimulation of the visual cortex, is reported. The electrodes exhibit a remarkable stability when several billions of electrical pulses are applied in vitro. When the devices are implanted in the primary visual cortex (area V1) of mice and the animals are trained to detect electrical microstimulation, it is found that the perceptual thresholds are 2-20 microamperes (µA), which is far below the maximal currents that the electrodes can withstand. The long-term functionality of the devices in vivo is excellent, with stable performance for up to more than a year and little damage to the brain tissue. These results demonstrate the potential of thin floating electrodes for the long-term restoration of lost sensory functions.
Collapse
Affiliation(s)
- Corinne Orlemann
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of Freiburg79110FreiburgGermany
| | - Roxana N. Kooijmans
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
- Institute for Neuroscience and Medicine (INM‐1)Forschungszentrum Jülich52428JülichGermany
| | - Bingshuo Li
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK)University of Freiburg79110FreiburgGermany
- BrainLinks‐BrainTools CenterUniversity of Freiburg79110FreiburgGermany
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburg412 96Sweden
| | - Pieter R. Roelfsema
- Department of Vision and CognitionNetherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and SciencesAmsterdam1105 BAThe Netherlands
- Laboratory of Visual Brain TherapySorbonne UniversitéInstitut National de la Santé et de la Recherche MédicaleCentre National de la Recherche ScientifiqueInstitut de la VisionParisF‐75012France
- Department of Integrative NeurophysiologyCentre for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
- Department of NeurosurgeryAmsterdam University Medical CenterUniversity of AmsterdamAmsterdam1105 AZThe Netherlands
| |
Collapse
|
9
|
Nolta NF, Christensen MB, Tresco PA. Advanced age is not a barrier to chronic intracortical single-unit recording in rat cortex. Front Neurosci 2024; 18:1389556. [PMID: 38817909 PMCID: PMC11138162 DOI: 10.3389/fnins.2024.1389556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Available evidence suggests that as we age, our brain and immune system undergo changes that increase our susceptibility to injury, inflammation, and neurodegeneration. Since a significant portion of the potential patients treated with a microelectrode-based implant may be older, it is important to understand the recording performance of such devices in an aged population. Methods We studied the chronic recording performance and the foreign body response (FBR) to a clinically used microelectrode array implanted in the cortex of 18-month-old Sprague Dawley rats. Results and discussion To the best of our knowledge, this is the first preclinical study of its type in the older mammalian brain. Here, we show that single-unit recording performance was initially robust then gradually declined over a 12-week period, similar to what has been previously reported using younger adult rats and in clinical trials. In addition, we show that FBR biomarker distribution was similar to what has been previously described for younger adult rats implanted with multi-shank recording arrays in the motor cortex. Using a quantitative immunohistochemcal approach, we observed that the extent of astrogliosis and tissue loss near the recording zone was inversely related to recording performance. A comparison of recording performance with a younger cohort supports the notion that aging, in and of itself, is not a limiting factor for the clinical use of penetrating microelectrode recording arrays for the treatment of certain CNS disorders.
Collapse
Affiliation(s)
- Nicholas F. Nolta
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Michael B. Christensen
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
- Department of Otolaryngology – Head & Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Patrick A. Tresco
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
McNamara IN, Wellman SM, Li L, Eles JR, Savya S, Sohal HS, Angle MR, Kozai TDY. Electrode sharpness and insertion speed reduce tissue damage near high-density penetrating arrays. J Neural Eng 2024; 21:026030. [PMID: 38518365 DOI: 10.1088/1741-2552/ad36e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective. Over the past decade, neural electrodes have played a crucial role in bridging biological tissues with electronic and robotic devices. This study focuses on evaluating the optimal tip profile and insertion speed for effectively implanting Paradromics' high-density fine microwire arrays (FμA) prototypes into the primary visual cortex (V1) of mice and rats, addressing the challenges associated with the 'bed-of-nails' effect and tissue dimpling.Approach. Tissue response was assessed by investigating the impact of electrodes on the blood-brain barrier (BBB) and cellular damage, with a specific emphasis on tailored insertion strategies to minimize tissue disruption during electrode implantation.Main results.Electro-sharpened arrays demonstrated a marked reduction in cellular damage within 50μm of the electrode tip compared to blunt and angled arrays. Histological analysis revealed that slow insertion speeds led to greater BBB compromise than fast and pneumatic methods. Successful single-unit recordings validated the efficacy of the optimized electro-sharpened arrays in capturing neural activity.Significance.These findings underscore the critical role of tailored insertion strategies in minimizing tissue damage during electrode implantation, highlighting the suitability of electro-sharpened arrays for long-term implant applications. This research contributes to a deeper understanding of the complexities associated with high-channel-count microelectrode array implantation, emphasizing the importance of meticulous assessment and optimization of key parameters for effective integration and minimal tissue disruption. By elucidating the interplay between insertion parameters and tissue response, our study lays a strong foundation for the development of advanced implantable devices with a reduction in reactive gliosis and improved performance in neural recording applications.
Collapse
Affiliation(s)
- Ingrid N McNamara
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lehong Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sajishnu Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | | | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center of the Basis of Neural Cognition, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
11
|
Boltcreed E, Ersöz A, Han M, McConnell GC. Short-Term Effects of Gamma Stimulation on Neuroinflammation at the Tissue-Electrode Interface in Motor Cortex. Neuromodulation 2024; 27:500-508. [PMID: 38099883 PMCID: PMC10990794 DOI: 10.1016/j.neurom.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 04/05/2024]
Abstract
OBJECTIVES The reliability of long-term neural recordings as therapeutic interventions for motor and sensory disorders is hampered by the brain tissue response. Previous work showed that flickering light at gamma frequencies (ie, 20-50 Hz) causes enhanced microglial recruitment in the visual cortex. The effects of gamma stimulation on glial cells surrounding implanted neural electrodes are not well understood. We hypothesized that invasive stimulation in the gamma frequency band increases microglial recruitment in the short term and reduces astrogliosis at the tissue-electrode interface. MATERIALS AND METHODS Male Long Evans rats were implanted with dual-shank silicon microelectrode arrays into the motor cortex. After implantation, rats received one hour of 40-Hz stimulation at a constant current of 10 μA using charge-balanced, biphasic pulses on one shank, and the other shank served as the nonstimulated control. Postmortem, tissue sections were stained with ectodermal dysplasia 1 (ED1) for activated microglia, glial fibrillary acidic protein (GFAP) for astrocytes, and 4',6-diamidino-2-phenylindole (DAPI) for nonspecific nuclei. Fluorescent intensity and cell number as a function of distance from the tissue-electrode interface were used to quantify all stained sections. RESULTS Fluorescent intensity for ED1 was nearly 40% lower for control than for stimulated sites (0-500 μm away from the implant), indicating increased microglial recruitment to the stimulated site (p < 0.05). Fluorescent intensity for GFAP was >67% higher for control than for stimulated sites (0-500 μm away from the implant), indicating reduced astrogliosis at the stimulated site (p < 0.05). No differences were observed in DAPI-stained sections between conditions. CONCLUSIONS These results suggest that short-term gamma stimulation modulates glial recruitment in the immediate vicinity of the microelectrode. Future studies will investigate the long-term effects of gamma stimulation on glial recruitment at the tissue-electrode interface as a strategy to improve long-term recording reliability.
Collapse
Affiliation(s)
- Emily Boltcreed
- Stevens Institute of Technology, Hoboken, NJ; Semcer Center for Healthcare Innovation, Hoboken, NJ
| | - Alpaslan Ersöz
- Mechanical Engineering Department, Carnegie Mellon University, Pittsburgh, PA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| | - Martin Han
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| | - George C McConnell
- Stevens Institute of Technology, Hoboken, NJ; Semcer Center for Healthcare Innovation, Hoboken, NJ.
| |
Collapse
|
12
|
López-Madrona VJ, Trébuchon A, Mindruta I, Barbeau EJ, Barborica A, Pistol C, Oane I, Alario FX, Bénar CG. Identification of Early Hippocampal Dynamics during Recognition Memory with Independent Component Analysis. eNeuro 2024; 11:ENEURO.0183-23.2023. [PMID: 38514193 PMCID: PMC10993203 DOI: 10.1523/eneuro.0183-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 03/23/2024] Open
Abstract
The hippocampus is generally considered to have relatively late involvement in recognition memory, its main electrophysiological signature being between 400 and 800 ms after stimulus onset. However, most electrophysiological studies have analyzed the hippocampus as a single responsive area, selecting only a single-site signal exhibiting the strongest effect in terms of amplitude. These classical approaches may not capture all the dynamics of this structure, hindering the contribution of other hippocampal sources that are not located in the vicinity of the selected site. We combined intracerebral electroencephalogram recordings from epileptic patients with independent component analysis during a recognition memory task involving the recognition of old and new images. We identified two sources with different responses emerging from the hippocampus: a fast one (maximal amplitude at ∼250 ms) that could not be directly identified from raw recordings and a latter one, peaking at ∼400 ms. The former component presented different amplitudes between old and new items in 6 out of 10 patients. The latter component had different delays for each condition, with a faster activation (∼290 ms after stimulus onset) for recognized items. We hypothesize that both sources represent two steps of hippocampal recognition memory, the faster reflecting the input from other structures and the latter the hippocampal internal processing. Recognized images evoking early activations would facilitate neural computation in the hippocampus, accelerating memory retrieval of complementary information. Overall, our results suggest that the hippocampal activity is composed of several sources with an early activation related to recognition memory.
Collapse
Affiliation(s)
| | - Agnès Trébuchon
- Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille 13005, France
- Functional and Stereotactic Neurosurgery, APHM, Timone Hospital, Marseille 13005, France
| | - Ioana Mindruta
- Physics Department, University of Bucharest, Bucharest, Romania
| | - Emmanuel J Barbeau
- Centre de Recherche Cerveau et Cognition, Université de Toulouse, Université Paul Sabatier Toulouse, Toulouse 31052, France
- Centre National de la Recherche Scientifique, CerCo (UMR5549), Toulouse 31052, France
| | | | - Costi Pistol
- Physics Department, University of Bucharest, Bucharest, Romania
| | - Irina Oane
- Physics Department, University of Bucharest, Bucharest, Romania
| | | | - Christian G Bénar
- Inst Neurosci Syst, INS, INSERM, Aix Marseille Univ, Marseille 13005, France
| |
Collapse
|
13
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
14
|
Hernandez-Reynoso AG, Sturgill BS, Hoeferlin GF, Druschel LN, Krebs OK, Menendez DM, Thai TTD, Smith TJ, Duncan J, Zhang J, Mittal G, Radhakrishna R, Desai MS, Cogan SF, Pancrazio JJ, Capadona JR. The effect of a Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) coating on the chronic recording performance of planar silicon intracortical microelectrode arrays. Biomaterials 2023; 303:122351. [PMID: 37931456 PMCID: PMC10842897 DOI: 10.1016/j.biomaterials.2023.122351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Intracortical microelectrode arrays (MEAs) are used to record neural activity. However, their implantation initiates a neuroinflammatory cascade, involving the accumulation of reactive oxygen species, leading to interface failure. Here, we coated commercially-available MEAs with Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), to mitigate oxidative stress. First, we assessed the in vitro cytotoxicity of modified sample substrates. Then, we implanted 36 rats with uncoated, MnTBAP-coated ("Coated"), or (3-Aminopropyl)triethoxysilane (APTES)-coated devices - an intermediate step in the coating process. We assessed electrode performance during the acute (1-5 weeks), sub-chronic (6-11 weeks), and chronic (12-16 weeks) phases after implantation. Three subsets of animals were euthanized at different time points to assess the acute, sub-chronic and chronic immunohistological responses. Results showed that MnTBAP coatings were not cytotoxic in vitro, and their implantation in vivo improved the proportion of electrodes during the sub-chronic and chronic phases; APTES coatings resulted in failure of the neural interface during the chronic phase. In addition, MnTBAP coatings improved the quality of the signal throughout the study and reduced the neuroinflammatory response around the implant as early as two weeks, an effect that remained consistent for months post-implantation. Together, these results suggest that MnTBAP coatings are a potentially useful modification to improve MEA reliability.
Collapse
Affiliation(s)
- Ana G Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Brandon S Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - George F Hoeferlin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Olivia K Krebs
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Teresa T D Thai
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Thomas J Smith
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Jonathan Duncan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Jichu Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Gaurav Mittal
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Mrudang Spandan Desai
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, United States.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd, Cleveland, OH, 44106, United States.
| |
Collapse
|
15
|
Han Y, Li J, Chen T, Gao B, Wang H. Modern microelectronics and microfluidics on microneedles. Analyst 2023; 148:4591-4615. [PMID: 37664954 DOI: 10.1039/d3an01045g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Possessing the attractive advantages of moderate invasiveness and high compliance, there is no doubt that microneedles (MNs) have been a gradually rising star in the field of medicine. Recent evidence implies that microelectronics technology based on microcircuits, microelectrodes and other microelectronic elements combined with MNs can realize mild electrical stimulation, drug release and various types of electrical sensing detection. In addition, the combination of microfluidics technology and MNs makes it possible to transport fluid drugs and access a small quantity of body fluids which have shown significant untapped potential for a wide range of diagnostics. Of particular note is that combining both technologies and MNs is more difficult, but is promising to build a modern healthcare platform with more comprehensive functions. This review introduces the properties of MNs that can form integrated systems with microelectronics and microfluidics, and summarizes these systems and their applications. Furthermore, the future challenges and perspectives of the integrated systems are conclusively proposed.
Collapse
Affiliation(s)
- Yanzhang Han
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Tingting Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Huili Wang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes. Acta Biomater 2023; 166:278-290. [PMID: 37211307 PMCID: PMC10330779 DOI: 10.1016/j.actbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023]
Abstract
Intracortical microelectrodes induce vascular injury upon insertion into the cortex. As blood vessels rupture, blood proteins and blood-derived cells (including platelets) are introduced into the 'immune privileged' brain tissues at higher-than-normal levels, passing through the damaged blood-brain barrier. Blood proteins adhere to implant surfaces, increasing the likelihood of cellular recognition leading to activation of immune and inflammatory cells. Persistent neuroinflammation is a major contributing factor to declining microelectrode recording performance. We investigated the spatial and temporal relationship of blood proteins fibrinogen and von Willebrand Factor (vWF), platelets, and type IV collagen, in relation to glial scarring markers for microglia and astrocytes following implantation of non-functional multi-shank silicon microelectrode probes into rats. Together with type IV collagen, fibrinogen and vWF augment platelet recruitment, activation, and aggregation. Our main results indicate blood proteins participating in hemostasis (fibrinogen and vWF) persisted at the microelectrode interface for up to 8-weeks after implantation. Further, type IV collagen and platelets surrounded the probe interface with similar spatial and temporal trends as vWF and fibrinogen. In addition to prolonged blood-brain barrier instability, specific blood and extracellular matrix proteins may play a role in promoting the inflammatory activation of platelets and recruitment to the microelectrode interface. STATEMENT OF SIGNIFICANCE: Implanted microelectrodes have substantial potential for restoring function to people with paralysis and amputation by providing signals that feed into natural control algorithms that drive prosthetic devices. Unfortunately, these microelectrodes do not display robust performance over time. Persistent neuroinflammation is widely thought to be a primary contributor to the devices' progressive decline in performance. Our manuscript reports on the highly local and persistent accumulation of platelets and hemostatic blood proteins around the microelectrode interface of brain implants. To our knowledge neuroinflammation driven by cellular and non-cellular responses associated with hemostasis and coagulation has not been rigorously quantified elsewhere. Our findings identify potential targets for therapeutic intervention and a better understanding of the driving mechanisms to neuroinflammation in the brain.
Collapse
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
17
|
Chen X, Wang F, Kooijmans R, Klink PC, Boehler C, Asplund M, Roelfsema PR. Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys. J Neural Eng 2023; 20:036039. [PMID: 37386891 PMCID: PMC7617000 DOI: 10.1088/1741-2552/ace07e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Objective. Electrical stimulation of visual cortex via a neuroprosthesis induces the perception of dots of light ('phosphenes'), potentially allowing recognition of simple shapes even after decades of blindness. However, restoration of functional vision requires large numbers of electrodes, and chronic, clinical implantation of intracortical electrodes in the visual cortex has only been achieved using devices of up to 96 channels. We evaluated the efficacy and stability of a 1024-channel neuroprosthesis system in non-human primates (NHPs) over more than 3 years to assess its suitability for long-term vision restoration.Approach.We implanted 16 microelectrode arrays (Utah arrays) consisting of 8 × 8 electrodes with iridium oxide tips in the primary visual cortex (V1) and visual area 4 (V4) of two sighted macaques. We monitored the animals' health and measured electrode impedances and neuronal signal quality by calculating signal-to-noise ratios of visually driven neuronal activity, peak-to-peak voltages of the waveforms of action potentials, and the number of channels with high-amplitude signals. We delivered cortical microstimulation and determined the minimum current that could be perceived, monitoring the number of channels that successfully yielded phosphenes. We also examined the influence of the implant on a visual task after 2-3 years of implantation and determined the integrity of the brain tissue with a histological analysis 3-3.5 years post-implantation.Main results. The monkeys remained healthy throughout the implantation period and the device retained its mechanical integrity and electrical conductivity. However, we observed decreasing signal quality with time, declining numbers of phosphene-evoking electrodes, decreases in electrode impedances, and impaired performance on a visual task at visual field locations corresponding to implanted cortical regions. Current thresholds increased with time in one of the two animals. The histological analysis revealed encapsulation of arrays and cortical degeneration. Scanning electron microscopy on one array revealed degradation of IrOxcoating and higher impedances for electrodes with broken tips.Significance. Long-term implantation of a high-channel-count device in NHP visual cortex was accompanied by deformation of cortical tissue and decreased stimulation efficacy and signal quality over time. We conclude that improvements in device biocompatibility and/or refinement of implantation techniques are needed before future clinical use is feasible.
Collapse
Affiliation(s)
- Xing Chen
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
- Department of Ophthalmology, University of Pittsburgh School of Medicine, 1622 Locust St, Pittsburgh, PA 15219, United States of America
| | - Feng Wang
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
| | - Roxana Kooijmans
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
| | - Peter Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris F-75012, France
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
- Chalmers University of Technology, Chalmersplatsen 4, 412 96 Gothenburg, Sweden
| | - Pieter Roelf Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47,1105 BA Amsterdam, The Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris F-75012, France
- Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Department of Psychiatry, Academic Medical Center, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
18
|
Jeakle EN, Abbott JR, Usoro JO, Wu Y, Haghighi P, Radhakrishna R, Sturgill BS, Nakajima S, Thai TTD, Pancrazio JJ, Cogan SF, Hernandez-Reynoso AG. Chronic Stability of Local Field Potentials Using Amorphous Silicon Carbide Microelectrode Arrays Implanted in the Rat Motor Cortex. MICROMACHINES 2023; 14:680. [PMID: 36985087 PMCID: PMC10054633 DOI: 10.3390/mi14030680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Implantable microelectrode arrays (MEAs) enable the recording of electrical activity of cortical neurons, allowing the development of brain-machine interfaces. However, MEAs show reduced recording capabilities under chronic conditions, prompting the development of novel MEAs that can improve long-term performance. Conventional planar, silicon-based devices and ultra-thin amorphous silicon carbide (a-SiC) MEAs were implanted in the motor cortex of female Sprague-Dawley rats, and weekly anesthetized recordings were made for 16 weeks after implantation. The spectral density and bandpower between 1 and 500 Hz of recordings were compared over the implantation period for both device types. Initially, the bandpower of the a-SiC devices and standard MEAs was comparable. However, the standard MEAs showed a consistent decline in both bandpower and power spectral density throughout the 16 weeks post-implantation, whereas the a-SiC MEAs showed substantially more stable performance. These differences in bandpower and spectral density between standard and a-SiC MEAs were statistically significant from week 6 post-implantation until the end of the study at 16 weeks. These results support the use of ultra-thin a-SiC MEAs to develop chronic, reliable brain-machine interfaces.
Collapse
Affiliation(s)
- Eleanor N. Jeakle
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Justin R. Abbott
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Joshua O. Usoro
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Yupeng Wu
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Pegah Haghighi
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Brandon S. Sturgill
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Shido Nakajima
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Teresa T. D. Thai
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| | - Ana G. Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
19
|
Patel PR, Welle EJ, Letner JG, Shen H, Bullard AJ, Caldwell CM, Vega-Medina A, Richie JM, Thayer HE, Patil PG, Cai D, Chestek CA. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices. J Neural Eng 2023; 20:10.1088/1741-2552/acab86. [PMID: 36595323 PMCID: PMC9954796 DOI: 10.1088/1741-2552/acab86] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Objective.The Utah array is widely used in both clinical studies and neuroscience. It has a strong track record of safety. However, it is also known that implanted electrodes promote the formation of scar tissue in the immediate vicinity of the electrodes, which may negatively impact the ability to record neural waveforms. This scarring response has been primarily studied in rodents, which may have a very different response than primate brain.Approach.Here, we present a rare nonhuman primate histological dataset (n= 1 rhesus macaque) obtained 848 and 590 d after implantation in two brain hemispheres. For 2 of 4 arrays that remained within the cortex, NeuN was used to stain for neuron somata at three different depths along the shanks. Images were filtered and denoised, with neurons then counted in the vicinity of the arrays as well as a nearby section of control tissue. Additionally, 3 of 4 arrays were imaged with a scanning electrode microscope to evaluate any materials damage that might be present.Main results.Overall, we found a 63% percent reduction in the number of neurons surrounding the electrode shanks compared to control areas. In terms of materials, the arrays remained largely intact with metal and Parylene C present, though tip breakage and cracks were observed on many electrodes.Significance.Overall, these results suggest that the tissue response in the nonhuman primate brain shows similar neuron loss to previous studies using rodents. Electrode improvements, for example using smaller or softer probes, may therefore substantially improve the tissue response and potentially improve the neuronal recording yield in primate cortex.
Collapse
Affiliation(s)
- Paras R. Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Elissa J. Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Joseph G. Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hao Shen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Autumn J. Bullard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ciara M. Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Julianna M. Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hope E. Thayer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Parag G. Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Dawen Cai
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48019, United States of America
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
- Robotics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
20
|
Erofeev A, Antifeev I, Bolshakova A, Bezprozvanny I, Vlasova O. In Vivo Penetrating Microelectrodes for Brain Electrophysiology. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239085. [PMID: 36501805 PMCID: PMC9735502 DOI: 10.3390/s22239085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
In recent decades, microelectrodes have been widely used in neuroscience to understand the mechanisms behind brain functions, as well as the relationship between neural activity and behavior, perception and cognition. However, the recording of neuronal activity over a long period of time is limited for various reasons. In this review, we briefly consider the types of penetrating chronic microelectrodes, as well as the conductive and insulating materials for microelectrode manufacturing. Additionally, we consider the effects of penetrating microelectrode implantation on brain tissue. In conclusion, we review recent advances in the field of in vivo microelectrodes.
Collapse
Affiliation(s)
- Alexander Erofeev
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| | - Ivan Antifeev
- Laboratory of Methods and Instruments for Genetic and Immunoassay Analysis, Institute for Analytical Instrumentation of the Russian Academy of Sciences, 198095 Saint Petersburg, Russia
| | - Anastasia Bolshakova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
- Correspondence: (A.E.); (O.V.)
| |
Collapse
|
21
|
Microelectrode implants, inflammatory response and long-lasting effects on NADPH diaphorase neurons in the rat frontal cortex. Exp Brain Res 2022; 240:2569-2580. [PMID: 35947168 DOI: 10.1007/s00221-022-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
At present, one of the main therapeutic challenges comprises the development of technologies to improve the life quality of people suffering from different types of body paralysis, through the reestablishment of sensory and motor functions. In this regard, brain-machine interfaces (BMI) offer hope to effectively mitigate body paralysis through the control of paralyzed body parts by brain activity. Invasive BMI use chronic multielectrode implants to record neural activity directly from the brain tissue. While such invasive devices provide the highest amount of usable neural activity for BMI control, they also involve direct damage to the nervous tissue. In the cerebral cortex, high levels of the enzyme NADPH diaphorase (NADPH-d) characterize a particular class of interneurons that regulates neuronal excitability and blood supply. To gain insight into the biocompatibility of invasive BMI, we assessed the impact of chronic implanted tungsten multielectrode bundles on the distribution and morphology of NADPH-d-reactive neurons in the rat frontal cortex. NADPH-d neuronal labeling was correlated with glial response markers and with indices of healthy neuronal activity measured by electrophysiological recordings performed up to 3 months after multielectrode implantation. Chronic electrode arrays caused a small and quite localized structural disturbance on the implanted site, with neuronal loss and glial activation circumscribed to the site of implant. Electrodes remained viable during the entire period of implantation. Moreover, neither the distribution nor the morphology of NADPH-d neurons was altered. Overall, our findings provide additional evidence that tungsten multielectrodes can be employed as a viable element for long-lasting therapeutic BMI applications.
Collapse
|
22
|
Earley EJ, Mastinu E, Ortiz-Catalan M. Cross-Channel Impedance Measurement for Monitoring Implanted Electrodes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4880-4883. [PMID: 36086091 DOI: 10.1109/embc48229.2022.9871954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implanted electrodes, such as those used for cochlear implants, brain-computer interfaces, and prosthetic limbs, rely on particular electrical conditions for optimal operation. Measurements of electrical impedance can be a diagnostic tool to monitor implanted electrodes for changing conditions arising from glial scarring, encapsulation, and shorted or broken wires. Such measurements provide information about the electrical impedance between a single electrode and its electrical reference, but offer no insights into the overall network of impedances between electrodes. Other solutions generally rely on geometrical assumptions of the arrangement of the electrodes and may not generalize to other electrode networks. Here, we propose a linear algebra-based approach, Cross-Channel Impedance Measurement (CCIM), for measuring a network of impedances between electrodes which all share a common electrical reference. This is accomplished by measuring the voltage response from all electrodes to a known current applied between each electrode and the shared reference, and is agnostic to the number and arrangement of electrodes. The approach is validated using a simulated 8-electrode network, demonstrating direct impedance measurements between electrodes and the reference with 96.6% ±0.2% accuracy, and cross-channel impedance measurements with 93.3% ±0.6% accuracy in a typical system. Subsequent analyses on randomized systems demonstrate the sensitivity of the model to impedance range and measurement noise. Clinical Relevance- CCIM provides a system-agnostic diagnostic test for implanted electrode networks, which may aid in the longitudinal tracking of electrode performance and early identification of electronics failures.
Collapse
|
23
|
Abstract
Neuroprosthetic devices that record and modulate neural activities have demonstrated immense potential for bypassing or restoring lost neurological functions due to neural injuries and disorders. However, implantable electrical devices interfacing with brain tissue are susceptible to a series of inflammatory tissue responses along with mechanical or electrical failures which can affect the device performance over time. Several biomaterial strategies have been implemented to improve device-tissue integration for high quality and stable performance. Ranging from developing smaller, softer, and more flexible electrode designs to introducing bioactive coatings and drug-eluting layers on the electrode surface, such strategies have shown different degrees of success but with limitations. With their hydrophilic properties and specific bioactivities, carbohydrates offer a potential solution for addressing some of the limitations of the existing biomolecular approaches. In this review, we summarize the role of polysaccharides in the central nervous system, with a primary focus on glycoproteins and proteoglycans, to shed light on their untapped potential as biomaterials for neural implants. Utilization of glycosaminoglycans for neural interface and tissue regeneration applications is comprehensively reviewed to provide the current state of carbohydrate-based biomaterials for neural implants. Finally, we will discuss the challenges and opportunities of applying carbohydrate-based biomaterials for neural tissue interfaces.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
25
|
Oldroyd P, Malliaras GG. Achieving long-term stability of thin-film electrodes for neurostimulation. Acta Biomater 2022; 139:65-81. [PMID: 34020055 DOI: 10.1016/j.actbio.2021.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Implantable electrodes that can reliably measure brain activity and deliver an electrical stimulus to a target tissue are increasingly employed to treat various neurological diseases and neuropsychiatric disorders. Flexible thin-film electrodes have gained attention over the past few years to minimise invasiveness and damage upon implantation. Research has previously focused on optimising the electrode's electrical and mechanical properties; however, their chronic stability must be validated to translate electrodes from a research to a clinical application. Neurostimulation electrodes, which actively inject charge, have yet to reliably demonstrate continuous functionality for ten years or more in vivo, the accepted metric for clinical viability. Long-term stability can only be achieved if the focus switches to investigating how and why such devices fail. Unfortunately, there is a field-wide reluctance to investigate device stability and failures, which hinders device optimisation. This review surveys thin-film electrode designs with a focus on adhesion between electrode layers and the interactions with the surrounding environment. A comprehensive summary of the abiotic failure modes faced by such electrodes is presented, and to encourage investigation, systematic methods for analysing their origin are recommended. Finally, approaches to reducing the likelihood of device failure are offered. STATEMENT OF SIGNIFICANCE: Neural electrodes that can deliver an electrical stimulus to a target tissue are widely used to treat various neurological diseases. Essential to the function of these electrodes is the ability to safely stimulate the target tissue for extended periods (> 10 years); however, this has not yet been clinically achieved. The key to achieving long-term stability is an increased understanding of electrode interactions with the surrounding tissue and subsequent systematic analysis of their failure modes. This review highlights the need for a change in the approach to investigating electrode failure, and in doing so summarizes the common ways in which neural electrodes fail, methods for identifying them and approaches to preventing them.
Collapse
|
26
|
Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium. SENSORS 2022; 22:s22030802. [PMID: 35161547 PMCID: PMC8838160 DOI: 10.3390/s22030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.
Collapse
|
27
|
Otte E, Vlachos A, Asplund M. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell Tissue Res 2022; 387:461-477. [PMID: 35029757 PMCID: PMC8975777 DOI: 10.1007/s00441-021-03567-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Neural probes are sophisticated electrophysiological tools used for intra-cortical recording and stimulation. These microelectrode arrays, designed to penetrate and interface the brain from within, contribute at the forefront of basic and clinical neuroscience. However, one of the challenges and currently most significant limitations is their ‘seamless’ long-term integration into the surrounding brain tissue. Following implantation, which is typically accompanied by bleeding, the tissue responds with a scarring process, resulting in a gliotic region closest to the probe. This glial scarring is often associated with neuroinflammation, neurodegeneration, and a leaky blood–brain interface (BBI). The engineering progress on minimizing this reaction in the form of improved materials, microfabrication, and surgical techniques is summarized in this review. As research over the past decade has progressed towards a more detailed understanding of the nature of this biological response, it is time to pose the question: Are penetrating probes completely free from glial scarring at all possible?
Collapse
|
28
|
Woeppel K, Hughes C, Herrera AJ, Eles JR, Tyler-Kabara EC, Gaunt RA, Collinger JL, Cui XT. Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces. Front Bioeng Biotechnol 2021; 9:759711. [PMID: 34950640 PMCID: PMC8688945 DOI: 10.3389/fbioe.2021.759711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023] Open
Abstract
Brain-computer interfaces are being developed to restore movement for people living with paralysis due to injury or disease. Although the therapeutic potential is great, long-term stability of the interface is critical for widespread clinical implementation. While many factors can affect recording and stimulation performance including electrode material stability and host tissue reaction, these factors have not been investigated in human implants. In this clinical study, we sought to characterize the material integrity and biological tissue encapsulation via explant analysis in an effort to identify factors that influence electrophysiological performance. We examined a total of six Utah arrays explanted from two human participants involved in intracortical BCI studies. Two platinum (Pt) arrays were implanted for 980 days in one participant (P1) and two Pt and two iridium oxide (IrOx) arrays were implanted for 182 days in the second participant (P2). We observed that the recording quality followed a similar trend in all six arrays with an initial increase in peak-to-peak voltage during the first 30–40 days and gradual decline thereafter in P1. Using optical and two-photon microscopy we observed a higher degree of tissue encapsulation on both arrays implanted for longer durations in participant P1. We then used scanning electron microscopy and energy dispersive X-ray spectroscopy to assess material degradation. All measures of material degradation for the Pt arrays were found to be more prominent in the participant with a longer implantation time. Two IrOx arrays were subjected to brief survey stimulations, and one of these arrays showed loss of iridium from most of the stimulated sites. Recording performance appeared to be unaffected by this loss of iridium, suggesting that the adhesion of IrOx coating may have been compromised by the stimulation, but the metal layer did not detach until or after array removal. In summary, both tissue encapsulation and material degradation were more pronounced in the arrays that were implanted for a longer duration. Additionally, these arrays also had lower signal amplitude and impedance. New biomaterial strategies that minimize fibrotic encapsulation and enhance material stability should be developed to achieve high quality recording and stimulation for longer implantation periods.
Collapse
Affiliation(s)
- Kevin Woeppel
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Christopher Hughes
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Pittsburgh, PA, United States.,Rehab Neural Engineering Labs, Pittsburgh, PA, United States
| | - Angelica J Herrera
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Pittsburgh, PA, United States.,Rehab Neural Engineering Labs, Pittsburgh, PA, United States
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elizabeth C Tyler-Kabara
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States.,Department of Neurosurgery, The University of Texas at Austin, Austin, TX, United States
| | - Robert A Gaunt
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Pittsburgh, PA, United States.,Rehab Neural Engineering Labs, Pittsburgh, PA, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer L Collinger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Pittsburgh, PA, United States.,Rehab Neural Engineering Labs, Pittsburgh, PA, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Jang JW, Kang YN, Seo HW, Kim B, Choe HK, Park SH, Lee MG, Kim S. Long-term in-vivorecording performance of flexible penetrating microelectrode arrays. J Neural Eng 2021; 18. [PMID: 34795067 DOI: 10.1088/1741-2552/ac3656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/12/2022]
Abstract
Objective. Neural interfaces are an essential tool to enable the human body to directly communicate with machines such as computers or prosthetic robotic arms. Since invasive electrodes can be located closer to target neurons, they have advantages such as precision in stimulation and high signal-to-noise ratio (SNR) in recording, while they often exhibit unstable performance in long-termin-vivoimplantation because of the tissue damage caused by the electrodes insertion. In the present study, we investigated the electrical functionality of flexible penetrating microelectrode arrays (FPMAs) up to 3 months inin-vivoconditions.Approach. Thein-vivoexperiment was performed by implanting FPMAs in five rats. Thein-vivoimpedance as well as the action potential (AP) amplitude and SNR were analyzed over weeks. Additionally, APs were tracked over time to investigate the possibility of single neuron recording.Main results. It was observed that the FPMAs exhibited dramatic increases in impedance for the first 4 weeks after implantation, accompanied by decreases in AP amplitude. However, the increase/decrease in AP amplitude was always accompanied by the increase/decrease in background noise, resulting in quite consistently maintained SNRs. After 4 weeks of implantation, we observed two distinctive issues regarding long-term implantation, each caused by chronic tissue responses or by the delamination of insulation layer. The results demonstrate that the FPMAs successfully recorded neuronal signals up to 12 weeks, with very stably maintained SNRs, reduced by only 16.1% on average compared to the first recordings, although biological tissue reactions or physical degradation of the FPMA were present.Significance. The fabricated FPMAs successfully recorded intracortical signals for 3 months. The SNR was maintained up to 3 months and the chronic function of FPMA was comparable with other silicon based implantable electrodes.
Collapse
Affiliation(s)
- Jae-Won Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yoo Na Kang
- Department of Medical Assistant Robot, Korea Institute of Machinery and Materials (KIMM), Daegu, Republic of Korea
| | - Hee Won Seo
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Boil Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sang Hyun Park
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of MedicineKyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
30
|
Kumosa LS, Schouenborg J. Profound alterations in brain tissue linked to hypoxic episode after device implantation. Biomaterials 2021; 278:121143. [PMID: 34653937 DOI: 10.1016/j.biomaterials.2021.121143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
To enable authentic interfacing with neuronal structures in the brain, preventing alterations of tissue during implantation of devices is critical. By transiently implanting oxygen microsensors into rat cortex cerebri for 2 h, substantial and long lasting (>1 h) hypoxia is routinely generated in surrounding tissues; this hypoxia is linked to implantation generated compressive forces. Preferential loss of larger neurons and reduced metabolic components in surviving neurons indicates decreased viability one week after such hypoxic, compressive implantations. By devising an implantation method that relaxes compressive forces; magnitude and duration of hypoxia generated following such an implantation are ameliorated and neurons appear similar to naïve tissues. In line with these observations, astrocyte proliferation was significantly more pronounced for more hypoxic, compressive implantations. Surprisingly, astrocyte processes were frequently found to traverse cellular boundaries into nearby neuronal nuclei, indicating injury induction of a previously not described astrocyte-neuron interaction. Found more frequently in less hypoxic, force-relaxed insertions and thus correlating to a more beneficial outcome, this finding may suggest a novel protective mechanism. In conclusion, substantial and long lasting insertion induced hypoxia around brain implants, a previously overlooked factor, is linked to significant adverse alterations in nervous tissue.
Collapse
Affiliation(s)
- Lucas S Kumosa
- Neuronano Research Center, Faculty of Medicine, Lund University, Scheelevägen 2, Medicon Village 404A2, 223 81, Lund, Sweden.
| | - Jens Schouenborg
- Neuronano Research Center, Faculty of Medicine, Lund University, Scheelevägen 2, Medicon Village 404A2, 223 81, Lund, Sweden; NanoLund, Lund University, Professorsgatan 1, 223 63, Lund, Sweden.
| |
Collapse
|
31
|
Tan C, Kushwah N, Cui XT. Electrically Controlled Neurochemical Delivery from Microelectrodes for Focal and Transient Modulation of Cellular Behavior. BIOSENSORS-BASEL 2021; 11:bios11090348. [PMID: 34562938 PMCID: PMC8467485 DOI: 10.3390/bios11090348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Electrically controlled drug delivery of neurochemicals and biomolecules from conducting polymer microelectrode coatings hold great potentials in dissecting neural circuit or treating neurological disorders with high spatial and temporal resolution. The direct doping of a drug into a conducting polymer often results in low loading capacity, and the type of molecule that can be released is limited. Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated silica nanoparticles (SNP) has been developed as a more versatile platform for drug delivery. In this work, we demonstrate that neurochemicals with different surface charge, e.g., glutamate (GLU), gamma-Aminobutyric acid (GABA), dopamine (DA), 6,7-Dinitroquinoxaline- 2,3-dione (DNQX) and bicuculline, can be, respectively, incorporated into the SNP and electrically triggered to release repeatedly. The drug loaded SNPs were incorporated in PEDOT via electrochemical deposition on platinum microelectrodes. After PEDOT/SNP(drug) coating, the charge storage capacity (CSC) increased 10-fold to 55 ± 3 mC/cm2, and the impedance at 1 kHz was also reduced approximately 6-fold. With the aid of a porous SNP, the loading capacity and number of releases of GLU was increased >4-fold and 66-fold, respectively, in comparison to the direct doping of PEDOT with GLU (PEDOT/GLU). The focal release of GLU and GABA from a PEDOT/SNP (drug) coated microelectrode were tested in cultured neurons using Ca imaging. The change in fluo-4 fluorescence intensity after electrically triggered GLU (+6.7 ± 2.9%) or GABA (−6.8 ± 1.6%) release indicated the successful modulation of neural activities by neurotransmitter release. In addition to activating neural activities, glutamate can also act on endothelial cells to stimulate nitric oxide (NO) release. A dual functional device with two adjacent sensing and releasing electrodes was constructed and we tested this mechanism in endothelial cell cultures. In endothelial cells, approximately 7.6 ± 0.6 nM NO was detected in the vicinity of the NO sensor within 6.2 ± 0.5 s of GLU release. The rise time of NO signal, T0–100, was 14.5 ± 2.2 s. In summary, our work has demonstrated (1) a platform that is capable of loading and releasing drugs with different charges; (2) proof of concept demonstrations of how focal release of drugs can be used as a pharmacological manipulation to study neural circuitry or NO’s effect on endothelial cells.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
| | - Neetu Kushwah
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
32
|
Kim D, Park D, Kim TH, Chung JJ, Jung Y, Kim SH. Substance P/Heparin-Conjugated PLCL Mitigate Acute Gliosis on Neural Implants and Improve Neuronal Regeneration via Recruitment of Neural Stem Cells. Adv Healthc Mater 2021; 10:e2100107. [PMID: 34227258 DOI: 10.1002/adhm.202100107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/03/2021] [Indexed: 12/15/2022]
Abstract
The inflammatory host tissue response, characterized by gliosis and neuronal death at the neural interface, limits signal transmission and longevity of the neural probe. Substance P induces an anti-inflammatory response and neuronal regeneration and recruits endogenous stem cells. Heparin prevents nonspecific protein adsorption, suppresses the inflammatory response, and is beneficial to neuronal behavior. Poly(l-lactide-co-ε-caprolactone) (PLCL) is a soft and flexible polymer, and PLCL covalently conjugated with biomolecules has been widely used in tissue engineering. Coatings of heparin-conjugated PLCL (Hep-PLCL), substance P-conjugated PLCL (SP-PLCL), and heparin/substance P-conjugated PLCL (Hep/SP-PLCL) reduced the adhesion of astrocytes and fibroblasts and improved neuronal adhesion and neurite development compared to bare glass. The effects of these coatings are evaluated using immunohistochemistry analysis after implantation of coated stainless steel probes in rat brain for 1 week. In particular, Hep/SP-PLCL coating reduced the activation of microglia and astrocytes, the neuronal degeneration caused by inflammation, and indicated a potential for neuronal regeneration at the tissue-device interface. Suppression of the acute host tissue response by coating Hep/SP-PLCL could lead to improved functionality of the neural prosthesis.
Collapse
Affiliation(s)
- Donghak Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - DoYeun Park
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Tae Hee Kim
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Justin J. Chung
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| | - Soo Hyun Kim
- KU‐KIST Graduate School of Converging Science and Technology Korea University 145 Anam‐ro, Seongbuk‐gu Seoul 02841 Republic of Korea
- Biomaterials Research Center Korea Institute of Science and Technology (KIST) 5, Hwarang‐ro 14‐gil, Seongbuk‐gu Seoul 02792 Republic of Korea
| |
Collapse
|
33
|
Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation. MICROMACHINES 2021; 12:mi12080972. [PMID: 34442594 PMCID: PMC8400387 DOI: 10.3390/mi12080972] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
While microelectrode arrays (MEAs) offer the promise of elucidating functional neural circuitry and serve as the basis for a cortical neuroprosthesis, the challenge of designing and demonstrating chronically reliable technology remains. Numerous studies report “chronic” data but the actual time spans and performance measures corresponding to the experimental work vary. In this study, we reviewed the experimental durations that constitute chronic studies across a range of MEA types and animal species to gain an understanding of the widespread variability in reported study duration. For rodents, which are the most commonly used animal model in chronic studies, we examined active electrode yield (AEY) for different array types as a means to contextualize the study duration variance, as well as investigate and interpret the performance of custom devices in comparison to conventional MEAs. We observed wide-spread variance within species for the chronic implantation period and an AEY that decayed linearly in rodent models that implanted commercially-available devices. These observations provide a benchmark for comparing the performance of new technologies and highlight the need for consistency in chronic MEA studies. Additionally, to fully derive performance under chronic conditions, the duration of abiotic failure modes, biological processes induced by indwelling probes, and intended application of the device are key determinants.
Collapse
|
34
|
Woeppel KM, Cui XT. Nanoparticle and Biomolecule Surface Modification Synergistically Increases Neural Electrode Recording Yield and Minimizes Inflammatory Host Response. Adv Healthc Mater 2021; 10:e2002150. [PMID: 34190425 DOI: 10.1002/adhm.202002150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Due to their ability to interface with neural tissues, neural electrodes are the key tool used for neurophysiological studies, electrochemical detection, brain computer interfacing, and countless neuromodulation therapies and diagnostic procedures. However, the long-term applications of neural electrodes are limited by the inflammatory host tissue response, decreasing detectable electrical signals, and insulating the device from the native environment. Surface modification methods are proposed to limit these detrimental responses but each has their own limitations. Here, a combinatorial approach is presented toward creating a stable interface between the electrode and host tissues. First, a thiolated nanoparticle (TNP) coating is utilized to increase the surface area and roughness. Next, the neural adhesion molecule L1 is immobilized to the nanoparticle modified substrate. In vitro, the combined nanotopographical and bioactive modifications (TNP+L1) elevate the bioactivity of L1, which is maintained for 28 d. In vivo, TNP+L1 modification improves the recording performance of the neural electrode arrays compared to TNP or L1 modification alone. Postmortem histology reveals greater neural cell density around the TNP+L1 coating while eliminating any inflammatory microglial encapsulation after 4 weeks. These results demonstrate that nanotopographical and bioactive modifications synergistically produce a seamless neural tissue interface for chronic neural implants.
Collapse
Affiliation(s)
- Kevin M. Woeppel
- Department of Bioengineering University of Pittsburgh Pittsburgh PA 15260 USA
- Center for the Neural basis of Cognition Pittsburgh PA 15260 USA
| | - Xinyan Tracy Cui
- Department of Bioengineering University of Pittsburgh Pittsburgh PA 15260 USA
- Center for the Neural basis of Cognition Pittsburgh PA 15260 USA
- McGowan Institute for Regenerative Medicine Pittsburgh PA 15260 USA
| |
Collapse
|
35
|
Szymanski LJ, Kellis S, Liu CY, Jones KT, Andersen RA, Commins D, Lee B, McCreery DB, Miller CA. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J Neural Eng 2021; 18. [PMID: 34314384 DOI: 10.1088/1741-2552/ac127e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical microelectrode arrays (MEA) can be used as part of a brain-machine interface system to provide sensory feedback control of an artificial limb to assist persons with tetraplegia. Variability in functionality of electrodes has been reported but few studies in humans have examined the impact of chronic brain tissue responses revealed postmortem on electrode performancein vivo. Approach.In a tetraplegic man, recording MEAs were implanted into the anterior intraparietal area and Brodmann's area 5 (BA5) of the posterior parietal cortex and a recording and stimulation array was implanted in BA1 of the primary somatosensory cortex (S1). The participant expired from unrelated causes seven months after MEA implantation. The underlying tissue of two of the three devices was processed for histology and electrophysiological recordings were assessed.Main results.Recordings of neuronal activity were obtained from all three MEAs despite meningeal encapsulation. However, the S1 array had a greater encapsulation, yielded lower signal quality than the other arrays and failed to elicit somatosensory percepts with electrical stimulation. Histological examination of tissues underlying S1 and BA5 implant sites revealed localized leptomeningeal proliferation and fibrosis, lymphocytic infiltrates, astrogliosis, and foreign body reaction around the electrodes. The BA5 recording site showed focal cerebral microhemorrhages and leptomeningeal vascular ectasia. The S1 site showed focal tissue damage including vascular recanalization, neuronal loss, and extensive subcortical white matter necrosis. The tissue response at the S1 site included hemorrhagic-induced injury suggesting a likely mechanism for reduced function of the S1 implant.Significance.Our findings are similar to those from animal studies with chronic intracortical implants and suggest that vascular disruption and microhemorrhage during device implantation are important contributors to overall array and individual electrode performance and should be a topic for future device development to mitigate tissue responses. Neurosurgical considerations are also discussed.
Collapse
Affiliation(s)
- Linda J Szymanski
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America.,Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, United States of America
| | - Spencer Kellis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Kymry T Jones
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States of America
| | - Deborah Commins
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Brian Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Douglas B McCreery
- Huntington Medical Research Institute, Pasadena, CA, United States of America
| | - Carol A Miller
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| |
Collapse
|
36
|
Zou Y, Wang J, Guan S, Zou L, Gao L, Li H, Fang Y, Wang C. Anti-fouling peptide functionalization of ultraflexible neural probes for long-term neural activity recordings in the brain. Biosens Bioelectron 2021; 192:113477. [PMID: 34284305 DOI: 10.1016/j.bios.2021.113477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 11/19/2022]
Abstract
Implantable neural probes constitute an essential tool for neuronal activity recordings in basic neuroscience and also hold great promise for the development of neuroprosthesis to restore lost motor or sensory functions of the body. However, conventional neural probes are susceptible to biofouling because of their physicochemical mismatch with neural tissues, resulting in signal degradation in chronic studies. Here, we describe an ultraflexible neural probe (uFNP) with anti-fouling zwitterionic peptide modification for long-term stable neural activity recordings. The anti-fouling zwitterionic peptide consists of two parts: negatively charged glutamic acid (E) and positively charged lysine (K) formed EKEKEK (EK) head to create a hydration layer that resists protein adsorption on the microelectrodes, and a fragment of laminin formed IKVAV tail to increase the adhesion of the microelectrodes to neuronal cells. We demonstrate that EK-IKVAV modified uFNPs can allow for stable neuronal activity recordings over 16 weeks. Immunohistological studies confirm that EK-IKVAV functionalized uFNPs could induce greatly reduced neuronal cell loss. Collectively, these results suggest that the anti-fouling zwitterionic peptide functionalization of uFNPs provide a promising route to construct biocompatible and stable neural interfaces.
Collapse
Affiliation(s)
- Yimin Zou
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jinfen Wang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, PR China.
| | - Shouliang Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liang Zou
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lei Gao
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongbian Li
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ying Fang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Chen Wang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, PR China.
| |
Collapse
|
37
|
Hejazi M, Tong W, Ibbotson MR, Prawer S, Garrett DJ. Advances in Carbon-Based Microfiber Electrodes for Neural Interfacing. Front Neurosci 2021; 15:658703. [PMID: 33912007 PMCID: PMC8072048 DOI: 10.3389/fnins.2021.658703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Neural interfacing devices using penetrating microelectrode arrays have emerged as an important tool in both neuroscience research and medical applications. These implantable microelectrode arrays enable communication between man-made devices and the nervous system by detecting and/or evoking neuronal activities. Recent years have seen rapid development of electrodes fabricated using flexible, ultrathin carbon-based microfibers. Compared to electrodes fabricated using rigid materials and larger cross-sections, these microfiber electrodes have been shown to reduce foreign body responses after implantation, with improved signal-to-noise ratio for neural recording and enhanced resolution for neural stimulation. Here, we review recent progress of carbon-based microfiber electrodes in terms of material composition and fabrication technology. The remaining challenges and future directions for development of these arrays will also be discussed. Overall, these microfiber electrodes are expected to improve the longevity and reliability of neural interfacing devices.
Collapse
Affiliation(s)
- Maryam Hejazi
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - Wei Tong
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, The Australian College of Optometry, Carlton, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
| | - David J. Garrett
- School of Physics, The University of Melbourne, Parkville, VIC, Australia
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Dubaniewicz M, Eles JR, Lam S, Song S, Cambi F, Sun D, Wellman SM, Kozai TDY. Inhibition of Na +/H +exchanger modulates microglial activation and scar formation following microelectrode implantation. J Neural Eng 2021; 18. [PMID: 33621208 DOI: 10.1088/1741-2552/abe8f1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical microelectrodes are an important tool for neuroscience research and have great potential for clinical use. However, the use of microelectrode arrays to treat neurological disorders and control prosthetics is limited by biological challenges such as glial scarring, which can impair chronic recording performance. Microglia activation is an early and prominent contributor to glial scarring. After insertion of an intracortical microelectrode, nearby microglia transition into a state of activation, migrate, and encapsulate the device. Na+/H+exchanger isoform-1 (NHE-1) is involved in various microglial functions, including their polarity and motility, and has been implicated in pro-inflammatory responses to tissue injury. HOE-642 (cariporide) is an inhibitor of NHE-1 and has been shown to depress microglial activation and inflammatory response in brain injury models.Approach.In this study, the effects of HOE-642 treatment on microglial interactions to intracortical microelectrodes was evaluated using two-photon microscopyin vivo.Main results.The rate at which microglia processes and soma migrate in response to electrode implantation was unaffected by HOE-642 administration. However, HOE-642 administration effectively reduced the radius of microglia activation at 72 h post-implantation from 222.2µm to 177.9µm. Furthermore, treatment with HOE-642 significantly reduced microglial encapsulation of implanted devices at 5 h post-insertion from 50.7 ± 6.0% to 8.9 ± 6.1%, which suggests an NHE-1-specific mechanism mediating microglia reactivity and gliosis during implantation injury.Significance.This study implicates NHE-1 as a potential target of interest in microglial reactivity and HOE-642 as a potential treatment to attenuate the glial response and scar formation around implanted intracortical microelectrodes.
Collapse
Affiliation(s)
- Mitchell Dubaniewicz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Dandan Sun
- Veterans Administration Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.,NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
39
|
Dunlap CF, Colachis SC, Meyers EC, Bockbrader MA, Friedenberg DA. Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review. Front Neurorobot 2020; 14:558987. [PMID: 33162885 PMCID: PMC7581895 DOI: 10.3389/fnbot.2020.558987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic in vivo environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) Transient disruptions interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) Reversible disruptions cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.
Collapse
Affiliation(s)
- Collin F. Dunlap
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, United States
| | - Samuel C. Colachis
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, United States
| | - Eric C. Meyers
- Medical Devices and Neuromodulation, Battelle Memorial Institute, Columbus, OH, United States
| | - Marcia A. Bockbrader
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, United States
| | - David A. Friedenberg
- Advanced Analytics and Health Research, Battelle Memorial Institute, Columbus, OH, United States
| |
Collapse
|
40
|
Investigating the Association between Motor Function, Neuroinflammation, and Recording Metrics in the Performance of Intracortical Microelectrode Implanted in Motor Cortex. MICROMACHINES 2020; 11:mi11090838. [PMID: 32899336 PMCID: PMC7570280 DOI: 10.3390/mi11090838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Long-term reliability of intracortical microelectrodes remains a challenge for increased acceptance and deployment. There are conflicting reports comparing measurements associated with recording quality with postmortem histology, in attempts to better understand failure of intracortical microelectrodes (IMEs). Our group has recently introduced the assessment of motor behavior tasks as another metric to evaluate the effects of IME implantation. We hypothesized that adding the third dimension to our analysis, functional behavior testing, could provide substantial insight on the health of the tissue, success of surgery/implantation, and the long-term performance of the implanted device. Here we present our novel analysis scheme including: (1) the use of numerical formal concept analysis (nFCA) and (2) a regression analysis utilizing modern model/variable selection. The analyses found complimentary relationships between the variables. The histological variables for glial cell activation had associations between each other, as well as the neuronal density around the electrode interface. The neuronal density had associations to the electrophysiological recordings and some of the motor behavior metrics analyzed. The novel analyses presented herein describe a valuable tool that can be utilized to assess and understand relationships between diverse variables being investigated. These models can be applied to a wide range of ongoing investigations utilizing various devices and therapeutics.
Collapse
|
41
|
Shah AR, Khan MS, Hirahara AM, Lange M, Ranjan R, Dosdall DJ. In Vitro/Ex Vivo Investigation of Modified Utah Electrode Array to Selectively Sense and Pace the Sub-Surface Cardiac His Bundle. ACS Biomater Sci Eng 2020; 6:3335-3348. [PMID: 32715084 DOI: 10.1021/acsbiomaterials.0c00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Utah Electrode Arrays (UEAs) have previously been characterized and implanted for neural recordings and stimulation at relatively low current levels. This proof-of-concept study investigated the applicability of UEAs in sub-surface cardiac pacing, for the first time, particularly to selectively sense and pace the His-Bundle (HB). HB pacing produces synchronous ventricular depolarization and improved cardiac function. Modified UEAs with sputtered iridium oxide film (SIROF) tips (100 - 150 μm) were characterized for SIROF delamination using an electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and voltage transient (VT) techniques at various current levels of up to 8 mA for a biphasic pulse with 1 ms duration per phase at 4 Hz. Our results indicate that at a short pacing duration of 20 s with current levels of up to 4 mA, the SIROF exhibited a strong charge-transfer performance. For the longer pacing duration (6 min), SIROF demonstrated its holding capacity at all current levels except for ≥2 mA when delamination commenced for the time exceeded 4 min (EIS) and 2 min (VT). UEAs were inserted in isolated, perfused goat hearts to record the HB electrograms in real-time. Both stimulated and unstimulated electrodes were characterized for SIROF delamination before, during and after in vivo work. Our findings indicate that UEA was stable during the heart's contraction and relaxation phase. Further, at a short pacing duration with current levels of up to 4 mA, UEA demonstrated high selectively in sensing the HB. This proof-of-concept work demonstrates the potential applicability of UEAs in cardiac applications.
Collapse
Affiliation(s)
- Ankur R Shah
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA
| | - Muhammad S Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA
| | - Annie M Hirahara
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA
| | - Matthias Lange
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA
| | - Ravi Ranjan
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA.,Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, UT 84112, USA
| | - Derek J Dosdall
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT 84112, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84112, USA.,Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, UT 84112, USA.,Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
42
|
Wellman SM, Guzman K, Stieger KC, Brink LE, Sridhar S, Dubaniewicz MT, Li L, Cambi F, Kozai TDY. Cuprizone-induced oligodendrocyte loss and demyelination impairs recording performance of chronically implanted neural interfaces. Biomaterials 2020; 239:119842. [PMID: 32065972 PMCID: PMC7540937 DOI: 10.1016/j.biomaterials.2020.119842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Biological inflammation induced during penetrating cortical injury can disrupt functional neuronal and glial activity within the cortex, resulting in potential recording failure of chronically implanted neural interfaces. Oligodendrocytes provide critical support for neuronal health and function through direct contact with neuronal soma and axons within the cortex. Given their fundamental role to regulate neuronal activity via myelin, coupled with their heightened vulnerability to metabolic brain injury due to high energetic demands, oligodendrocytes are hypothesized as a possible source of biological failure in declining recording performances of intracortical microelectrode devices. To determine the extent of their contribution to neuronal activity and function, a cuprizone-inducible model of oligodendrocyte depletion and demyelination in mice was performed prior to microelectrode implantation. At 5 weeks of cuprizone exposure, mice demonstrated significantly reduced cortical oligodendrocyte density and myelin expression. Mice were then implanted with functional recording microelectrodes in the visual cortex and neuronal activity was evaluated up to 7 weeks alongside continued cuprizone administration. Cuprizone-induced oligodendrocyte loss and demyelination was associated with significantly reduced recording performances at the onset of implantation, which remained relatively stable over time. In contast, recording performances for mice on a normal diet were intially elevated before decreasing over time to the recording level of tcuprizone-treated mice. Further electrophysiological analysis revealed deficits in multi-unit firing rates, frequency-dependent disruptions in neuronal oscillations, and altered laminar communication within the cortex of cuprizone-treated mice. Post-mortem immunohistochemistry revealed robust depletion of oligodendrocytes around implanted microelectrode arrays alongside comparable neuronal densities to control mice, suggesting that oligodendrocyte loss was a possible contributor to chronically impaired device performances. This study highlights potentially significant contributions from the oligodendrocyte lineage population concerning the biological integration and long-term functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Kelly Guzman
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | | | - Sadhana Sridhar
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lehong Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Jung YH, Kim JU, Lee JS, Shin JH, Jung W, Ok J, Kim TI. Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907478. [PMID: 32104960 DOI: 10.1002/adma.201907478] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The rapid pace of progress in implantable electronics driven by novel technology has created devices with unconventional designs and features to reduce invasiveness and establish new sensing and stimulating techniques. Among the designs, injectable forms of biomedical electronics are explored for accurate and safe targeting of deep-seated body organs. Here, the classes of biomedical electronics and tools that have high aspect ratio structures designed to be injected or inserted into internal organs for minimally invasive monitoring and therapy are reviewed. Compared with devices in bulky or planar formats, the long shaft-like forms of implantable devices are easily placed in the organs with minimized outward protrusions via injection or insertion processes. Adding flexibility to the devices also enables effortless insertions through complex biological cavities, such as the cochlea, and enhances chronic reliability by complying with natural body movements, such as the heartbeat. Diverse types of such injectable implants developed for different organs are reviewed and the electronic, optoelectronic, piezoelectric, and microfluidic devices that enable stimulations and measurements of site-specific regions in the body are discussed. Noninvasive penetration strategies to deliver the miniscule devices are also considered. Finally, the challenges and future directions associated with deep body biomedical electronics are explained.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ju Seung Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Department of Biomedical Engineering, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
44
|
Thompson CH, Riggins TE, Patel PR, Chestek CA, Li W, Purcell E. Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. J Neural Eng 2020; 17:021001. [PMID: 31986501 PMCID: PMC7523527 DOI: 10.1088/1741-2552/ab7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Innovation in electrode design has produced a myriad of new and creative strategies for interfacing the nervous system with softer, less invasive, more broadly distributed sites with high spatial resolution. However, despite rapid growth in the use of implanted electrode arrays in research and clinical applications, there are no broadly accepted guiding principles for the design of biocompatible chronic recording interfaces in the central nervous system (CNS). Studies suggest that the architecture and flexibility of devices play important roles in determining effective tissue integration: device feature dimensions (varying from 'sub'- to 'supra'-cellular scales, <10 µm to >100 µm), Young's modulus, and bending modulus have all been identified as key features of design. However, critical knowledge gaps remain in the field with respect to the underlying motivation for these designs: (1) a systematic study of the relationship between device design features (materials, architecture, flexibility), biointegration, and signal quality needs to be performed, including controls for interaction effects between design features, (2) benchmarks for success need to be determined (biological integration, recording performance, longevity, stability), and (3) user results, particularly those that champion a specific design or electrode modification, need to be replicated across laboratories. Finally, the ancillary effects of factors such as tethering, site impedance and insertion method need to be considered. Here, we briefly review observations to-date of device design effects on tissue integration and performance, and then highlight the need for comprehensive and systematic testing of these effects moving forward.
Collapse
Affiliation(s)
- Cort H Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States of America
| | | | | | | | | | | |
Collapse
|
45
|
Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosens Bioelectron 2020; 155:112096. [PMID: 32090868 DOI: 10.1016/j.bios.2020.112096] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Intracortical microelectrodes are being developed to both record and stimulate neurons to understand brain circuitry or restore lost functions. However, the success of these probes is hampered partly due to the inflammatory host tissue responses to implants. To minimize the foreign body reactions, L1, a brain derived neuronal specific cell adhesion molecule, has been covalently bound to the neural electrode array surface. Here we evaluated the chronic recording performance of L1-coated silicon based laminar neural electrode arrays implanted into V1m cortex of mice. The L1 coating enhanced the overall visually evoked single-unit (SU) yield and SU amplitude, as well as signal-to-noise-ratio (SNR) in the mouse brain compared to the uncoated arrays across the 0-1500 μm depth. The improvement in recording is most dramatic in the hippocampus region, where the control group showed severe recording yield decrease after one week, while the L1 implants maintained a high SU yield throughout the 16 weeks. Immunohistological analysis revealed significant increases of axonal and neuronal density along with significantly lowered microglia activation around the L1 probe after 16 weeks. These results collectively confirm the effectiveness of L1 based biomimetic coating on minimizing inflammatory tissue response and improving neural recording quality and longevity. Improving chronic recording will benefit the brain-computer interface technologies and neuroscience studies involving chronic tracking of neural activities.
Collapse
|
46
|
Welle CG, Gao YR, Ye M, Lozzi A, Boretsky A, Abliz E, Hammer DX. Longitudinal neural and vascular structural dynamics produced by chronic microelectrode implantation. Biomaterials 2020; 238:119831. [PMID: 32045783 DOI: 10.1016/j.biomaterials.2020.119831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/06/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
Implanted microelectrode arrays sense local neuronal activity, signals which are used as control commands for brain computer interface (BCI) technology. Patients with tetraplegia have used BCI technology to achieve an extraordinary degree of interaction with their local environment. However, current microelectrode arrays for BCIs lose the ability to record high-quality neural signals in the months-to-years following implantation. Very little is known regarding the dynamic response of neurons and vasculature in the months following electrode array implantation, but loss of structural integrity near the electrode may contribute to the degradation of recording signals. Here, we use in-vivo dual-modality imaging to characterize neuronal and vasculature structures in the same animal for 3 months following electrode insertion. We find ongoing neuronal atrophy, but relative vascular stability, in close proximity to the electrode, along with evidence suggesting links between rare, abrupt hypoxic events and neuronal process atrophy.
Collapse
Affiliation(s)
- Cristin G Welle
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Departments of Neurosurgery and Physiology & Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| | - Yu-Rong Gao
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Department of Neuroscience and Multiphoton Imaging Core Facility, University of Rochester Medical Center, Rochester, NY, USA
| | - Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| | - Andrea Lozzi
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adam Boretsky
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Engility Corporation, San Antonio, TX, USA
| | - Erkinay Abliz
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| | - Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
47
|
Eles JR, Kozai TDY. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials 2020; 234:119767. [PMID: 31954232 DOI: 10.1016/j.biomaterials.2020.119767] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intracortical microelectrode implants can generate a tissue response hallmarked by glial scarring and neuron cell death within 100-150 μm of the biomaterial device. Many have proposed that any performance decline in intracortical microstimulation (ICMS) due to this foreign body tissue response could be offset by increasing the stimulation amplitude. The mechanisms of this approach are unclear, however, as there has not been consensus on how increasing amplitude affects the spatial and temporal recruitment patterns of ICMS. APPROACH We clarify these unknowns using in vivo two-photon imaging of mice transgenically expressing the calcium sensor GCaMP6s in Thy1 neurons or virally expressing the glutamate sensor iGluSnFr in neurons. Calcium and neurotransmitter activity are tracked in the neuronal somas and neuropil during long-train stimulation in Layer II/III of somatosensory cortex. MAIN RESULTS Neural calcium activity and glutamate release are dense and strongest within 20-40 μm around the electrode, falling off with distance from the electrode. Neuronal calcium increases with higher amplitude stimulations. During prolonged stimulation trains, a sub-population of somas fail to maintain calcium activity. Interestingly, neuropil calcium activity is 3-fold less correlated to somatic calcium activity for cells that drop-out during the long stimulation train compared to cells that sustain activity throughout the train. Glutamate release is apparent only within 20 μm of the electrode and is sustained for at least 10s after cessation of the 15 and 20 μA stimulation train, but not lower amplitudes. SIGNIFICANCE These results demonstrate that increasing amplitude can increase the radius and intensity of neural recruitment, but it also alters the temporal response of some neurons. Further, dense glutamate release is highest within the first 20 μm of the electrode site even at high amplitudes, suggesting that there may be spatial limitations to the amplitude parameter space. The glutamate elevation outlasts stimulation, suggesting that high-amplitude stimulation may affect neurotransmitter re-uptake. This ultimately suggests that increasing the amplitude of ICMS device stimulation may fundamentally alter the temporal neural response, which could have implications for using amplitude to improve the ICMS effect or "offset" the effects of glial scarring.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Usoro JO, Shih E, Black BJ, Rihani RT, Abbott J, Chakraborty B, Pancrazio JJ, Cogan SF. Chronic stability of local field potentials from standard and modified Blackrock microelectrode arrays implanted in the rat motor cortex. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab4c02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
WANG JF, TIAN HH, FANG Y. Implantable and Flexible Electronics for In vivo Brain Activity Recordings. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61192-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Stocking KC, Vazquez AL, Kozai TDY. Intracortical Neural Stimulation With Untethered, Ultrasmall Carbon Fiber Electrodes Mediated by the Photoelectric Effect. IEEE Trans Biomed Eng 2019; 66:2402-2412. [PMID: 30605086 DOI: 10.1109/tbme.2018.2889832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neural stimulation with tethered, electrically activated probes is damaging to neural tissue and lacks good spatial selectivity and stable chronic performance. The photoelectric effect, which converts incident light into electric potential and heat, provides an opportunity for a tetherless stimulation method. We propose a novel stimulation paradigm that relies on the photoelectric effect to stimulate neurons around a free-floating, ultrasmall (7-8 μm diameter) carbon fiber probe. METHODS A two-photon microscope induced photo-stimulation with a near-infrared laser. Chronoamperometry and chronopotentiometry were used to characterize the electrochemical properties of photo-stimulation, while the fluorescence of Rhodamine-B was used to quantify temperature changes. RESULTS Photo-stimulation caused a local cathodic potential pulse with minimal leakage current. Stimulation induced voltage deflections of 0.05-0.4 V in vitro, varying linearly with the power of the laser source (5-40 mW). Temperature increases in the immediate vicinity of the electrode were limited to 2.5 °C, suggesting that this stimulation modality can be used without inducing heat damage. Successful stimulation was supported in vivo by increased calcium fluorescence in local neurons at stimulation onset in a transgenic GCaMP-3 mouse model. Furthermore, cells activated by photo-stimulation were closer to the electrode than in electrical stimulation under similar conditions, indicating increased spatial precision. CONCLUSION Our results support the hypothesis that the proposed photoelectric method for neural stimulation is effective. SIGNIFICANCE Photoelectric stimulation is precise and avoids the need for a potentially destructive tether, making it a promising alternative to electrical stimulation.
Collapse
|