1
|
Eroglu B, Isales C, Eroglu A. Age and duration of obesity modulate the inflammatory response and expression of neuroprotective factors in mammalian female brain. Aging Cell 2024; 23:e14313. [PMID: 39230054 PMCID: PMC11634740 DOI: 10.1111/acel.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024] Open
Abstract
Obesity has become a global epidemic and is associated with comorbidities, including diabetes, cardiovascular, and neurodegenerative diseases, among others. While appreciable insight has been gained into the mechanisms of obesity-associated comorbidities, effects of age, and duration of obesity on the female brain remain obscure. To address this gap, adolescent and mature adult female mice were subjected to a high-fat diet (HFD) for 13 or 26 weeks, whereas age-matched controls were fed a standard diet. Subsequently, the expression of inflammatory cytokines, neurotrophic/neuroprotective factors, and markers of microgliosis and astrogliosis were analyzed in the hypothalamus, hippocampus, and cerebral cortex, along with inflammation in visceral adipose tissue. HFD led to a typical obese phenotype in all groups independent of age and duration of HFD. However, the intermediate duration of obesity induced a limited inflammatory response in adolescent females' hypothalamus while the hippocampus, cerebral cortex, and visceral adipose tissue remained unaffected. In contrast, the prolonged duration of obesity resulted in inflammation in all three brain regions and visceral adipose tissue along with upregulation of microgliosis/astrogliosis and suppression of neurotrophic/neuroprotective factors in all brain regions, denoting the duration of obesity as a critical risk factor for neurodegenerative diseases. Importantly, when female mice were older (i.e., mature adult), even the intermediate duration of obesity induced similar adverse effects in all brain regions. Taken together, our findings suggest that (1) both age and duration of obesity have a significant impact on obesity-associated comorbidities and (2) early interventions to end obesity are critical to preserving brain health.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| | - Carlos Isales
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
- Department of MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| | - Ali Eroglu
- Department of Neuroscience and Regenerative MedicineMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
- Department of Obstetrics and GynecologyMedical College of Georgia, Augusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
2
|
Alsuwayt B, Iftikhar N, Hussain AI, Ahmad A, Zafar I, Khanam A, Tan WN, Nahar L, Almuqati AF, Haji EM, Almutairy AF, Sarker SD. The Bioprotective Effects of Marigold Tea Polyphenols on Obesity and Oxidative Stress Biomarkers in High-Fat-Sugar Diet-Fed Rats. Cardiovasc Ther 2024; 2024:3833521. [PMID: 39742004 PMCID: PMC11469925 DOI: 10.1155/2024/3833521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/29/2024] [Indexed: 01/03/2025] Open
Abstract
Background: The research is aimed at exploring the potential of marigold petal tea (MPT), rich in polyphenol contents, against oxidative stress and obesity in a rat model following a high-fat-sugar diet (HFSD). Methods: The MPT was prepared through the customary method of decoction and was subjected to analysis for its polyphenol composition using reversed-phase high-performance liquid chromatography (RP-HPLC). Two specific doses of MPT, namely, 250 and 500 mg/kg body weight (BW), were chosen for the study-referred to as MPT-250 and MPT-500, respectively. Result: The main phenolic acids and flavonoids identified in MPT, with concentrations exceeding 10 mg/100 mL of tea, included catechin, rutin, salicylic acid, gallic acid, sinapic acid, chlorogenic acid, cinnamic acid, and ellagic acid. The total phenolic (TP) and total flavonoid (TF) contents in MPT were measured to be 5.53 and 7.73 mg/g, respectively. Additionally, MPT demonstrated a 57.2% scavenging capacity with 2,2-diphenyl-1-picrylhydrazyl radical. Notably, the administration of a higher dose (MPT-500) showed a significant reduction in body mass index (BMI) and a 51.24% reduction in the rate of increase in BW compared to the HFSD group. The findings indicated that all the treatment groups, that is, orlistat treatment (OT), MPT-250, and MPT-500 groups, experienced reduced levels of serum total cholesterol (TC), triglyceride (TG), and markers of lipoproteins in contrast to the HFSD group. Moreover, MPT helped restore the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH), thereby demonstrating its potential in combating oxidative stress. The MPT-500 group also displayed decreased liver and kidney weights and an improved atherogenic index when compared to the HFSD group. Conclusion: The results clearly indicate that a high dosage of MPT showed antiobesity activity which was comparable to the same effects produced by the conventional drug orlistat.
Collapse
Affiliation(s)
- Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Neelam Iftikhar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abdullah Ijaz Hussain
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Irsa Zafar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Arifa Khanam
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27 78371, Olomouc, Czech Republic
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Esraa Mohammad Haji
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Ali F. Almutairy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
3
|
Rashwan AG, Assar DH, Salah AS, Liu X, Al-Hawary II, Abu-Alghayth MH, Salem SMR, Khalil K, Hanafy NAN, Abdelatty A, Sun L, Elbialy ZI. Dietary Chitosan Attenuates High-Fat Diet-Induced Oxidative Stress, Apoptosis, and Inflammation in Nile Tilapia ( Oreochromis niloticus) through Regulation of Nrf2/Kaep1 and Bcl-2/Bax Pathways. BIOLOGY 2024; 13:486. [PMID: 39056682 PMCID: PMC11273726 DOI: 10.3390/biology13070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Fatty liver injury is a prevalent condition in most farmed fish, yet the molecular mechanisms underpinning this pathology remain largely elusive. A comprehensive feeding trial spanning eight weeks was conducted to discern the potential of dietary chitosan in mitigating the deleterious effects of a high-fat diet (HFD) while concurrently exploring the underlying mechanism. Growth performance, haemato-biochemical capacity, antioxidant capacity, apoptotic/anti-apoptotic gene expression, inflammatory gene expression, and histopathological changes in the liver, kidney, and intestine were meticulously assessed in Nile tilapia. Six experimental diets were formulated with varying concentrations of chitosan. The first three groups were administered a diet comprising 6% fat with chitosan concentrations of 0%, 5%, and 10% and were designated as F6Ch0, F6Ch5, and F6Ch10, respectively. Conversely, the fourth, fifth, and sixth groups were fed a diet containing 12% fat with chitosan concentrations of 0%, 5%, and 10%, respectively, for 60 days and were termed F12Ch0, F12Ch5, and F12Ch10. The results showed that fish fed an HFD demonstrated enhanced growth rates and a significant accumulation of fat in the perivisceral tissue, accompanied by markedly elevated serum hepatic injury biomarkers and serum lipid levels, along with upregulation of pro-apoptotic and inflammatory markers. In stark contrast, the expression levels of nrf2, sod, gpx, and bcl-2 were notably decreased when compared with the control normal fat group. These observations were accompanied by marked diffuse hepatic steatosis, diffuse tubular damage, and shortened intestinal villi. Intriguingly, chitosan supplementation effectively mitigated the aforementioned findings and alleviated intestinal injury by upregulating the expression of tight junction-related genes. It could be concluded that dietary chitosan alleviates the adverse impacts of an HFD on the liver, kidney, and intestine by modulating the impaired antioxidant defense system, inflammation, and apoptosis through the variation in nrf2 and cox2 signaling pathways.
Collapse
Affiliation(s)
- Aya G. Rashwan
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Xiaolu Liu
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ibrahim I. Al-Hawary
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia;
| | - Shimaa M. R. Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 33516, Egypt;
| | - Karim Khalil
- Department of Veterinary Medicine, College of Applied & Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
| | - Nemany A. N. Hanafy
- Group of Molecular Cell Biology and Bionanotechnology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Abdelatty
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Luyang Sun
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| |
Collapse
|
4
|
Pereira RO, Correia LA, Farah D, Komoni G, Farah V, Fiorino P. Wistar rat as an animal model to study high-fat induced kidney damage: a systematic review. Arch Physiol Biochem 2024; 130:205-214. [PMID: 34915796 DOI: 10.1080/13813455.2021.2017462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 12/09/2022]
Abstract
The effects of high-fat-associated kidney damage in humans are not completely elucidated. Animal experiments are essential to understanding the mechanisms underlying human diseases. This systematic review aimed to compile evidence of the role of a high-fat diet during the development of renal lipotoxicity and fibrosis of Wistar rats to understand whether this is a satisfactory model for the study of high fat-induced kidney damage. We conducted systematic searches in PUBMED, EMBASE, Lilacs, and Web of Science databases from inception until May 2021. The risk of bias was assessed using SYRCLE toll. Two reviewers independently screened abstracts and reviewed full-text articles. A total of 11 studies were included. The damage varied depending on the age and sex of the animals, time of protocol, and amount of fat in the diet. In conclusion, the Wistar rat is an adequate animal model to assess the effects of a high-fat diet on the kidneys.HighlightsA high-fat diet may promote kidney damage in Wistar rats.Wistar rat is efficient as an animal model to study high-fat-induced kidney damage.The effect of the diet depends on the fat amount, consumption time, and animal age.
Collapse
Affiliation(s)
- Renata O Pereira
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Luana A Correia
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Daniela Farah
- Women's Health Technology Assessment Center, Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
| | - Geovana Komoni
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Vera Farah
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Patricia Fiorino
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| |
Collapse
|
5
|
Arrari F, Jabri MA, Ayari A, Dakhli N, Ben Fayala C, Boubaker S, Sebai H. Chromatographic Analyses of Spirulina (Arthrospira platensis) and Mechanism of Its Protective Effects against Experimental Obesity and Hepatic Steatosis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1823. [PMID: 37893541 PMCID: PMC10608300 DOI: 10.3390/medicina59101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Obesity is currently a major health problem due to fatty acid accumulation and excess intake of energy, which leads to an increase in oxidative stress, particularly in the liver. The main goal of this study is to evaluate the protective effects of spirulina (SP) against cafeteria diet (CD)-induced obesity, oxidative stress, and lipotoxicity in rats. Materials and Methods: The rats were divided into four groups and received daily treatments for eight weeks as follows: control group fed a standard diet (SD 360 g/d); cafeteria diet group (CD 360 g/d); spirulina group (SP 500 mg/kg); and CD + SP group (500 mg/kg, b.w., p.o.) according to body weight (b.w.) per oral (p.o.). Results: Our results show that treatment with a CD increased the weights of the body, liver, and abdominal fat. Additionally, severe hepatic alteration, disturbances in the metabolic parameters of serum, and lipotoxicity associated with oxidative stress in response to the CD-induced obesity were observed. However, SP treatment significantly reduced the liver alteration of CD feed and lipid profile disorder associated with obesity. Conclusions: Our findings suggest that spirulina has a marked potential therapeutic effect against obesity and mitigates disturbances in liver function parameters, histological alterations, and oxidative stress status.
Collapse
Affiliation(s)
- Fatma Arrari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Mohamed-Amine Jabri
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Ala Ayari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Nouha Dakhli
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| | - Chayma Ben Fayala
- Laboratory of Human and Experimental Pathological Anatomy, Pasteur Institute of Tunisia, Tunis 1002, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathological Anatomy, Pasteur Institute of Tunisia, Tunis 1002, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia; (M.-A.J.); (H.S.)
| |
Collapse
|
6
|
Jabri MA, Hajaji S, Omrani A, Ben Youssef M, Sebai H. Myrtle Berries Seeds Prevent Dyslipidemia, Inflammation, and Excessive Cardiac Reactive Oxygen Species Production in Response to High-Fat Diet-Induced Obesity. J Med Food 2023; 26:631-640. [PMID: 37566463 DOI: 10.1089/jmf.2021.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Anthocyanins are the major polyphenols in myrtle berries seeds aqueous extract (MBSAE). This study investigates the protective potentials of MBSAE against obesity lipotoxicity and inflammation induced by a high-fat diet (HFD). It also describes the underlying mechanisms involved in its protective effects, with special attention to myocardial reactive oxygen species (ROS) production. Male Wistar rats were fed HFD for 6 weeks to induce obesity. MBSAE (100 mg/kg, b.w., p.o.) was orally administered to HFD-fed rats. Anti-obesity effects were triggered by the inhibitory action of the MBSAE against the weights of the body, its relative heart and the total abdominal fat. Treatment with MBSAE also restored the lipid profile to baseline compared with the HFD rats and lowered also the white blood cells count, including neutrophils, lymphocytes, and basophils number as well as cytokines (tumor necrosis factor-α, interleukin [IL]-6, and IL-1β) levels in the rats serum, thus improving the tissue inflammatory status associated with obesity. Exposure of rats to HFD during 6 weeks induces a myocardial oxidative stress as assessed by deleterious effects on lipoperoxidation state, antioxidant enzyme (SOD, CAT, and GPx) activities as well as sulfhydryl groups and GSH rates. Of importance, our study shows also that HFD provokes a heart ROS (H2O2, OH•, and O2•-) overload. Of interest, all these oxidative heart disturbances were clearly ended by MBSAE treatment. Therefore, consumption of MBSAE as a natural extract may be a potential therapeutic strategy to treat obesity-associated diseases.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Soumaya Hajaji
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Ameni Omrani
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Meriam Ben Youssef
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Hichem Sebai
- Unit of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| |
Collapse
|
7
|
A Status Review on Health-Promoting Properties and Global Regulation of Essential Oils. Molecules 2023; 28:molecules28041809. [PMID: 36838797 PMCID: PMC9968027 DOI: 10.3390/molecules28041809] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Since ancient times, essential oils (EOs) have been known for their therapeutic potential against many health issues. Recent studies suggest that EOs may contribute to the regulation and modulation of various biomarkers and cellular pathways responsible for metabolic health as well as the development of many diseases, including cancer, obesity, diabetes, cardiovascular diseases, and bacterial infections. During metabolic dysfunction and even infections, the immune system becomes compromised and releases pro-inflammatory cytokines that lead to serious health consequences. The bioactive compounds present in EOs (especially terpenoids and phenylpropanoids) with different chemical compositions from fruits, vegetables, and medicinal plants confer protection against these metabolic and infectious diseases through anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In this review, we have highlighted some targeted physiological and cellular actions through which EOs may exhibit anti-inflammatory, anti-cancer, and anti-microbial properties. In addition, it has been observed that EOs from specific plant sources may play a significant role in the prevention of obesity, diabetes, hypertension, dyslipidemia, microbial infections, and increasing breast milk production, along with improvements in heart, liver, and brain health. The current status of the bioactive activities of EOs and their therapeutic effects are covered in this review. However, with respect to the health benefits of EOs, it is very important to regulate the dose and usage of EOs to reduce their adverse health effects. Therefore, we specified that some countries have their own regulatory bodies while others follow WHO and FAO standards and legislation for the use of EOs.
Collapse
|
8
|
Iftikhar N, Hussain AI, Kamal GM, Manzoor S, Fatima T, Alswailmi FK, Ahmad A, Alsuwayt B, Abdullah Alnasser SM. Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise ( Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model. Antioxidants (Basel) 2022; 11:2240. [PMID: 36421427 PMCID: PMC9686881 DOI: 10.3390/antiox11112240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Star anise (Illicium verum Hook. fil.) is commonly utilized as a culinary and medicinal fruit and is most famous in indigenous systems of medicine. The present research work aims to appraise and validate the potential of polyphenol-rich star anise tea (SAT) on oxidative stress, obesity and related biochemical parameters in high-fat-sugar-diet (HFSD)-induced obesity model in rats. SAT was prepared using the traditional method in warm water. The Reverse Phase High Pressure Liquid Chromatography (RP-HPLC) analysis was performed for the simultaneous determination of phenolic acids and flavonoids in SAT. Two doses (250 and 500 mg/kg body weight) were selected to investigate the anti-obesity potential of SAT using HFSD-induced obese rat model. Major (>5 mg/100 mL) phenolic acids in SAT were p-coumeric acid, gallic aid, cinamic acid, chlorogenic acid and ferulic acid while catechin and rutin were the major flavonoids detected in the SAT. SAT exhibited 51.3% DPPH radical scavenging activity. In vivo study showed that higher doses of SAT (500 mg/kg body weight) significantly reduced the body weight increase (74.82%) and BMI (0.64 g/cm2). Moreover, significant reductions in the levels of serum total cholesterol, triglyceride, LDL and VLDL were recorded in all the treatment groups in comparison to the HFSDC group. Furthermore, SAT reduced the alterations in MDA, SOD and GSH levels of experimental groups thus showing the potential against oxidative stress. The SAT-500 group showed a significant decrease in the elevated kidney and liver weights and atherogenic index in comparison to the HFSDC group. The present study proved that SAT exhibited strong protective effects against obesity and oxidative stress, especially at higher doses.
Collapse
Affiliation(s)
- Neelam Iftikhar
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abdullah Ijaz Hussain
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Central Hi-Tech Lab, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Mustafa Kamal
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sidra Manzoor
- Natural Product and Synthetic Chemistry (NPSC) Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tabinda Fatima
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Farhan Khashim Alswailmi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia
| | | |
Collapse
|
9
|
Duan X, Li J, Cui J, Li H, Hasan B, Xin X. Chemical component and in vitro protective effects of Matricaria chamomilla (L.) against lipopolysaccharide insult. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115471. [PMID: 35716917 DOI: 10.1016/j.jep.2022.115471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chamomile (Matricaria chamomilla L.) is a popular herbal tea for the treatment of hepatitis and cholecystitis in traditional Uygur medicines. AIM OF THE STUDY To investigate the anti-inflammatory activity and chemical composition of M. chamomilla, and clarify its molecular mechanism. MATERIALS AND METHODS M. chamomilla was extracted with 75% ethanol and then extracted with different solvents to obtain five fractions, namely petroleum ether fraction (EOPE), dichloromethane fraction (EOD), ethyl acetate fraction (EOEA), n-butanol fraction (EOB), and water fraction (EOW). Cytotoxicity and the effect on the nitric oxide (NO) production of RAW264.7 cells induced by LPS of the five fractions were screened, and the most active one (EOD) was selected for further investigations. The components of EOD were identified by LC-MS/MS analysis in combination with comparison of retention time and UV absorption with authentic compounds by HPLC. In addition, five most abundant compounds of EOD were isolation by column chromatography and semi-preparative HPLC and their structures were further confirmed by HRMS and NMR data analysis and comparison with data in literatures. Then the underlying anti-inflammatory mechanism of EOD were predicted through Network pharmacology using the identified compounds from EOD, and further verified by Western Blot and ELISA experiments. RESULTS EOD showed the most significant inhibition ratio against NO in RAW264.7 cells without toxicity among the tested five fractions. Thirty-seven compounds including flavonoid-O-glycoside, flavonoid aglycone, methylated flavonoid aglycone, phenolic acid, coumarin, sesquiterpene, and triterpene were identified from EOD by LC-MS/MS and comparison with authentic compounds. The five most abundant compounds in EOD were isolated and determined to be axillarin (26), tricin (30), chrysoeriol (31), centaureidin (33) and chrysosplenetin (35). IL-6, NF-κB, ERK1 and ERK2 cascade, TNF were the most important anti-inflammatory targets of EOD predicted by Network pharmacology. Western Blot and ELISA experiments revealed that EOD significantly decreased the protein expression levels of inflammatory factors (PGE2, MCP-1, IL-6, TNF-α), iNOS, COX-2, NF-κB (p-P65 and p-IκBα), MAPKs (p-p38, p-ERK and p-JNK), and increased the protein expression levels of Nrf2, HO-1 and CYP2E1. In addition, EOD blocked the p65 protein into the nucleus and promoted the nuclear translocation of Nrf2 in RAW264.7 cells induced by LPS. CONCLUSION M. chamomilla exerted anti-inflammatory effect via NF-κB, MAPK and Nrf2/HO-1 pathways. It could be further applied as a safe anti-inflammatory agent from natural source.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongliang Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bilal Hasan
- Xinjiang Medical University Affiliated Traditional Chinese Medicine Hospital, Department of Cardiology, Laboratory of Pulmonary Hypertension, 116 Huanghe Rd, Urumqi, Xinjiang, China.
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing Road South 40-1, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Ismail Y, Fahmy DM, Ghattas MH, Ahmed MM, Zehry W, Saleh SM, Abo-elmatty DM. Integrating experimental model, LC-MS/MS chemical analysis, and systems biology approach to investigate the possible antidiabetic effect and mechanisms of Matricaria aurea (Golden Chamomile) in type 2 diabetes mellitus. Front Pharmacol 2022; 13:924478. [PMID: 36160451 PMCID: PMC9490514 DOI: 10.3389/fphar.2022.924478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heterogeneous disease with numerous abnormal targets and pathways involved in insulin resistance, low-grade inflammation, oxidative stress, beta cell dysfunction, and epigenetic factors. Botanical drugs provide a large chemical space that can modify various targets simultaneously. Matricaria aurea (MA, golden chamomile) is a widely used herb in Middle Eastern communities for many ailments, including diabetes mellitus, without any scientific basis to support this tradition. For the first time, this study aimed to investigate the possible antidiabetic activity of MA in a type 2 diabetic rat model, identify chemical constituents by LC-MS/MS, and then elucidate the molecular mechanism(s) using enzyme activity assays, q-RTPCR gene expression analysis, network pharmacology analysis, and molecular docking simulation. Our results demonstrated that only the polar hydroethanolic extract of MA had remarkable antidiabetic activity. Furthermore, it improved dyslipidemia, insulin resistance status, ALT, and AST levels. LC-MS/MS analysis of MA hydroethanolic extract identified 62 compounds, including the popular chamomile flavonoids apigenin and luteolin, other flavonoids and their glycosides, coumarin derivatives, and phenolic acids. Based on pharmacokinetic screening and literature, 46 compounds were chosen for subsequent network analysis, which linked to 364 candidate T2DM targets from various databases and literature. The network analysis identified 123 hub proteins, including insulin signaling and metabolic proteins: IRS1, IRS2, PIK3R1, AKT1, AKT2, MAPK1, MAPK3, and PCK1, inflammatory proteins: TNF and IL1B, antioxidant enzymes: CAT and SOD, and others. Subsequent filtering identified 40 crucial core targets (major hubs) of MA in T2DM treatment. Functional enrichment analyses of the candidate targets revealed that MA targets were mainly involved in the inflammatory module, energy-sensing/endocrine/metabolic module, and oxidative stress module. q-RTPCR gene expression analysis showed that MA hydroethanolic extract was able to significantly upregulate PIK3R1 and downregulate IL1B, PCK1, and MIR29A. Moreover, the activity of the antioxidant hub enzymes was substantially increased. Molecular docking scores were also consistent with the networks’ predictions. Based on experimental and computational analysis, this study revealed for the first time that MA exerted antidiabetic action via simultaneous modulation of multiple targets and pathways, including inflammatory pathways, energy-sensing/endocrine/metabolic pathways, and oxidative stress pathways.
Collapse
Affiliation(s)
- Yassin Ismail
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
- *Correspondence: Yassin Ismail,
| | - Dina M. Fahmy
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Maivel H. Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mai M. Ahmed
- Natural Products Unit, Department of Medicinal and Aromatic Plants, Desert Research Center, Cairo, Egypt
| | - Walaa Zehry
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M. Abo-elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Pharmacological and biological effects of alpha-bisabolol: An updated review of the molecular mechanisms. Life Sci 2022; 304:120728. [PMID: 35753438 DOI: 10.1016/j.lfs.2022.120728] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/30/2022]
Abstract
Alpha-bisabolol (α-bisabolol), an unsaturated monocyclic sesquiterpene alcohol, is known as one of the "most-used herbal constituents" in the world. Various therapeutic and biological properties of α-bisabolol in preventing oxidative stress, inflammatory disorders, infections, neurodegenerative diseases, cancers, and metabolic disorders have been reported. In this review, we evaluated new findings regarding the molecular mechanisms of α-bisabolol published from 2010 until 2021 in PubMed, Science Direct, and Scopus. The antioxidant mechanism of α-bisabolol is mainly associated with the reduction of ROS/RNS, MDA, and GSH depletion, MPO activity, and augmentation of SOD and CAT. Additionally, upregulating the expression of bcl-2 and suppression of bax, P53, APAF-1, caspase-3, and caspase-9 activity indicates the anti-apoptotic effects of α- bisabolol. It possesses anti-inflammatory effects via reduction of TNF-α, IL-1β, IL-6, iNOS, and COX-2 and suppresses the activation of ERK1/2, JNK, NF-κB, and p38. The antimicrobial effect is mediated by inhibiting the viability of infected cells and improves cognitive function via downregulation of bax, cleaved caspases-3 and 9 levels, β-secretase, cholinesterase activities, and upregulation of bcl-2 levels. Finally, due to multiple biological activities, α-bisabolol is worthy to be subjected to clinical trials to achieve new insights into its beneficial effects on human health.
Collapse
Affiliation(s)
- Elham Ramazani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Bayliak MM, Dmytriv TR, Melnychuk AV, Strilets NV, Storey KB, Lushchak VI. Chamomile as a potential remedy for obesity and metabolic syndrome. EXCLI JOURNAL 2021; 20:1261-1286. [PMID: 34602925 PMCID: PMC8481792 DOI: 10.17179/excli2021-4013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Obesity is an increasing health concern related to many metabolic disorders, including metabolic syndrome, diabetes type 2 and cardiovascular diseases. Many studies suggest that herbal products can be useful dietary supplements for weight management due to the presence of numerous biologically active compounds, including antioxidant polyphenols that can counteract obesity-related oxidative stress. In this review we focus on Matricaria chamomilla, commonly known as chamomile, and one of the most popular medicinal plants in the world. Thanks to a high content of phenolic compounds and essential oils, preparations from chamomile flowers demonstrate a number of pharmacological effects, including antioxidant, anti-inflammatory, antimicrobial and sedative actions as well as improving gastrointestinal function. Several recent studies have shown certain positive effects of chamomile preparations in the prevention of obesity and complications of diabetes. These effects were associated with modulation of signaling pathways involving the AMP-activated protein kinase, NF-κB, Nrf2 and PPARγ transcription factors. However, the potential of chamomile in the management of obesity seems to be underestimated. This review summarizes current data on the use of chamomile and its individual components (apigenin, luteolin, essential oils) to treat obesity and related metabolic disorders in cell and animal models and in human studies. Special attention is paid to molecular mechanisms that can be involved in the anti-obesity effects of chamomile preparations. Limitation of chamomile usage is also analyzed.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Tetiana R Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Antonina V Melnychuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia V Strilets
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.,I. Horbachevsky Ternopil National Medical University, 46002, Ternopil, Ukraine.,Research and Development University, Shota Rustaveli Str., 76018, Ivano-Frankivsk, Ukraine
| |
Collapse
|
13
|
Wahid RM, Samy W, El-Sayed SF. Cognitive impairment in obese rat model: role of glial cells. Int J Obes (Lond) 2021; 45:2191-2196. [PMID: 34140627 DOI: 10.1038/s41366-021-00880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity is a worldwide problem. Some studies revealed that it leads to deterioration of the cognitive function, regardless of age. AIM OF THE STUDY explore the effect of obesity on cognitive function in a rat model of obesity highlighting the role of glial cells. MATERIALS AND METHODS twenty adult male albino rats were assigned to two groups: group I: consumed normal diet, group II: consumed high-fat diet. Body Mass Index (BMI), serum glucose, insulin, HOMA IR and lipid profile were measured. Also, hippocampal expression of Brain derived neurotrophic factor (Bdnf), synapsin, Ionized calcium binding adaptor molecule 1 (Iba), nuclear factor erythroid -related factor 2 (Nrf2), Myelin basic protein (Mbp) were measured by real-time polymerase chain reaction. The Morris Water Maze is a test used to assess spatial learning and memory capacities of rats. RESULTS There was a high significant increase in lipid profile, serum glucose, insulin serum levels and HOMA-IR in obese groups with impaired Morris water maze performance compared to control group. There was a significant downregulation in hippocampal Bdnf and synapsin mRNA expression. In addition to decrease in Mbp mRNA expression (P < 0.001). This could be explained by oxidative stress through significant downregulation of Nrf2 mRNA, and inflammation observed in significant upregulation Iba mRNA gene expression in the obese group. CONCLUSION Many factors contribute to obesity associated cognitive impairment. In our study, we figured out the crucial roles of glial cells including microglial activation and oligodendrocytes affection with other underlying mechanisms including oxidative stress and hippocampal inflammation.
Collapse
Affiliation(s)
- Reham M Wahid
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherein F El-Sayed
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Sargin SA. Plants used against obesity in Turkish folk medicine: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113841. [PMID: 33460757 DOI: 10.1016/j.jep.2021.113841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is one of the growing public health problems in Turkey, as well as all over the world, threatening people of almost all ages. Turkey has a large potential for research on this topic due to owning broad ethnomedicinal experience and the richest flora (34% endemic) of Europe and the Middle East. Herbs that they have utilized for centuries to treat and prevent obesity can provide useful options to overcome this issue. AIM OF THE STUDY This survey was carried out to disclose the inventory of plant taxa that the people of Turkey have been using for a few centuries in treating obesity without any side effects or complications, and to compare them with experimental studies in the literature. MATERIALS AND METHODS The research was achieved in two phases on the matter above by using electronic databases, such as Web of Science, ScienceDirect, Scopus, ProQuest, Medline, Cochrane Library, EBSCO, HighWire Press, PubMed and Google Scholar. Both results were shown in separate tables as well as the regional comparative analysis. RESULTS 117 herbal taxa belonging to 45 families were identified among the selected 74 studies conducted in the seven regions of Turkey. However, only 49 (41.9%) of them were found to be subjected to worldwide in vitro and in vivo research conducted on anti-obesity activity. Quercetin (9.1%), gallic acid (6.1%) and ferulic acid and epigallocatechin gallate (4.5%) have been recorded as the most common active ingredients among the 66 active substances identified. Prunus avium (32.4%) and Rosmarinus officinalis (25.7%) were identified as the most common plants used in Turkey. Also, Portulaca oleracea and Brassica oleracea emerged as the most investigated taxa in the literature. CONCLUSION This is the first country-wide ethnomedical review conducted on obesity treatment with plants in Turkey. Evaluating the results of the experimental anti-obesity research conducted in the recent years in the literature, it was determined that forty-nine plants were verified. This clearly shows that these herbs have a high potential to be a pharmacological resource. Moreover, 68 (41.9%) taxa, which haven't been investigated yet, are likely to be a promising resource for national and international pharmacological researchers in terms of new natural medicine searches.
Collapse
Affiliation(s)
- Seyid Ahmet Sargin
- Alanya Alaaddin Keykubat University, Faculty of Education, Alanya, Antalya, 07400, Turkey.
| |
Collapse
|
15
|
Jabri MA, Rtibi K, Sebai H. Chamomile decoction mitigates high fat diet-induced anxiety-like behavior, neuroinflammation and cerebral ROS overload. Nutr Neurosci 2020; 25:1350-1361. [PMID: 33314994 DOI: 10.1080/1028415x.2020.1859727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An abundant literature suggests that obesity-associated with taking a high fat diet is related to an elevated risk of type 2 diabetes and metabolic syndrome. However, metabolic disorders may be involved in the induction of the anxiogenic-like symptoms. The current study was designed to elucidate the mechanisms by which a high fat diet (HFD) can cause several complications in the WISTAR rats (Rattus norvegicus) brain. Oxidative stress and inflammation as well as the putative protection afforded by chamomile decoction extract (CDE) were also studied.The results demonstrated that the increased body and brain weight, acetylcholinesterase and butyrylcholinesterase activities as well as hypercholezterolaemia in response to HFD taking were correlated with anxiogenic-like symptoms. Moreover, HFD feed caused a brain oxidative stress characterized by increased lipoperoxidation, inhibition of antioxidant enzyme activities such as SOD, CAT and GPx, depletion of a non-enzymatic antioxidant such as sulfhydryl groups and GSH. Importantly, the results also show that HFD also provoked a cerebral overload in reactive oxygen species such as OH•, H2O2 and O2∙- as well as brain inflammation assessed by the overproduction of cytokines such as IL-1β and IL-6.Interestingly, all neurobehavioral changes and all the biochemical and molecular disturbances were abolished in HFD-fed rats treated with CDE.Our results provide clear evidence that obesity and depression as well as anxiety are finely correlated and that M. recutita's decoction may prove to be a potential therapeutic agent to mitigate the behavioral disorders, the biochemical alterations and the neuroinflammation associated to the obesity.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Kaïs Rtibi
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Hichem Sebai
- Unité de Physiologie Fonctionnelle et Valorisation des Bio-Ressources - Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| |
Collapse
|
16
|
High-Fat Diet Induced Hedgehog Signaling Modifications during Chronic Kidney Damage. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8073926. [PMID: 33294454 PMCID: PMC7718043 DOI: 10.1155/2020/8073926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Abstract
Excessive consumption of dietary fats leads to the deposition of unnecessary metabolites and multiple organ damage. Lipids, important key regulators of Hedgehog signaling, are involved in triggering fibrotic chronic kidney disease. The present study encompasses the assessment of renal morphofunctional modifications and alteration of lipid metabolism influencing the changes in gene expression of hedgehog signaling pathway genes. Fifteen male Rattus norvegicus of 200 ± 25 grams weight were equally divided into three groups: control (standard rat chow), D-1 (unsaturated high-fat diet) and D-2 (saturated high-fat diet). Animals were provided with respective diets and were followed for 16 weeks. Both HFD-fed groups did not show overall body weight gain as compared to the control. While significant downregulation of hedgehog pathway genes was found in fatty diet groups. In comparison with the control group, Shh, Gli1, Gli2, and Gli3 were downregulated after the consumption of both unsaturated and saturated fatty diets. Ihh and Smo exhibit a similar downregulation in the D-1 group, but an upregulation was detected in the D-2 group. D-2 group also had an increased serum urea concentration as compared to the control (P = 0.0023). Furthermore, renal histopathology revealed tubular necrosis, glomerular edema, glomerular shrinkage, and hypocellularity. Collagen deposition in both HFD groups marks the extent of fibrosis summary figure. Extravagant intake of dietary fats impaired normal kidney functioning and morphofunctionally anomalous kidney triggers on Hh signaling in adult rats. These anomalies can be linked to an escalated risk of chronic kidney disease in adults strongly recommending the reduced uptake of fatty diets to prevent impaired metabolism and renal lipotoxicity.
Collapse
|
17
|
Hajji N, Wannes D, Jabri MA, Rtibi K, Tounsi H, Abdellaoui A, Sebai H. Purgative/laxative actions of Globularia alypum aqueous extract on gastrointestinal-physiological function and against loperamide-induced constipation coupled to oxidative stress and inflammation in rats. Neurogastroenterol Motil 2020; 32:e13858. [PMID: 32337785 DOI: 10.1111/nmo.13858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic constipation is a gastrointestinal functional disorder which affects patient quality of life. Therefore, many studies were oriented to search herbal laxative agents. In this study, we investigated the effect of Globularia alypum L. leaves aqueous extract (GAAE) against loperamide (LOP)-produced constipation. METHODS Animals were given LOP (3 mg/kg, b.w., i.p.) and GAAE (100, 200, and 400 mg/kg, b.w., p.o.) or yohimbine (2 mg/kg, b.w., i.p.), simultaneously, for 1 week. Gastric-emptying test and intestinal transit were determined. Colon histology was examined, and oxidative status was evaluated using biochemical-colorimetric methods. KEY RESULTS GAAE ameliorates significantly gastric emptying (64% to 76.5%) and intestinal transit (66.65% to 84.73%). LOP negatively influenced defecation parameters and generated a stress situation. GAAE administration in contrast ameliorated those parameters and re-established oxidative balance. CONCLUSION GAAE showed a modest action against oxidative stress and decreased LOP effect and thereby can be considered a pharmacological agent in constipation.
Collapse
Affiliation(s)
- Najla Hajji
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Dalanda Wannes
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Mohamed-Amine Jabri
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Kais Rtibi
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| | - Haifa Tounsi
- Laboratoire d'anatomie Pathologique Humaine et Expérimentalse, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Afifa Abdellaoui
- Laboratoire d'anatomie Pathologique Humaine et Expérimentalse, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources, Institut Supérieur de Biotechnologie de Béja, Université de Jendouba, Béja, Tunisia
| |
Collapse
|
18
|
Chamomile decoction modulates water, neutral NaCl and electrogenic ionic exchange in mice intestinal epithelium. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Chamomile (Matricaria recutita L.) and diabetes mellitus, current knowledge and the way forward: A systematic review. Complement Ther Med 2020; 48:102284. [PMID: 31987240 DOI: 10.1016/j.ctim.2019.102284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022] Open
Abstract
Chamomile, as a rich source of phenolic compounds and terpenoids, seems to be an effective approach in the management of chronic conditions such as diabetes mellitus. The aim of this systematic review was to evaluate evidence from animal and human studies of the effects of chamomile on metabolic risk markers and complications of diabetes mellitus. The literature search was conducted in PubMed, SCOPUS, Embase, ProQuest and Google Scholar electronic and were considered the articles published on April 2019. Original studies that investigated the effect of chamomile in diabetes mellitus which met the inclusion criteria were eligible. After screening 208 citations, 15 studies were included. The results of these studies demonstrated a significant effect of chamomile administration on metabolic profiles. All 12 studies that examined the impact of chamomile supplementation on glycemic control indicated this feature. Four of the five studies appraising the impact of chamomile on lipid profiles showed that it improved dyslipidemia. Six studies showed that chamomile markedly decreased oxidative stress particularly malondialdehyde. Altogether, four chamomile studies evaluating diabetes complications, including renal and hepatic profiles, found significant decreases compared to controls. These findings extend the novel functions of chamomile in the improvement of glycemic and lipid profiles and oxidative stress indicators in diabetes mellitus and related complications. In-depth studies focusing on underlying mechanisms are warranted to make useful conclusions.
Collapse
|
20
|
Jin M, Pan T, Tocher DR, Betancor MB, Monroig Ó, Shen Y, Zhu T, Sun P, Jiao L, Zhou Q. Dietary choline supplementation attenuated high-fat diet-induced inflammation through regulation of lipid metabolism and suppression of NFκB activation in juvenile black seabream ( Acanthopagrus schlegelii). J Nutr Sci 2019; 8:e38. [PMID: 32042405 PMCID: PMC6984006 DOI: 10.1017/jns.2019.34] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate whether dietary choline can regulate lipid metabolism and suppress NFκB activation and, consequently, attenuate inflammation induced by a high-fat diet in black sea bream (Acanthopagrus schlegelii). An 8-week feeding trial was conducted on fish with an initial weight of 8·16 ± 0·01 g. Five diets were formulated: control, low-fat diet (11 %); HFD, high-fat diet (17 %); and HFD supplemented with graded levels of choline (3, 6 or 12 g/kg) termed HFD + C1, HFD + C2 and HFD + C3, respectively. Dietary choline decreased lipid content in whole body and tissues. Highest TAG and cholesterol concentrations in serum and liver were recorded in fish fed the HFD. Similarly, compared with fish fed the HFD, dietary choline reduced vacuolar fat drops and ameliorated HFD-induced pathological changes in liver. Expression of genes of lipolysis pathways were up-regulated, and genes of lipogenesis down-regulated, by dietary choline compared with fish fed the HFD. Expression of nfκb and pro-inflammatory cytokines in liver and intestine was suppressed by choline supplementation, whereas expression of anti-inflammatory cytokines was promoted in fish fed choline-supplemented diets. In fish that received lipopolysaccharide to stimulate inflammatory responses, the expression of nfκb and pro-inflammatory cytokines in liver, intestine and kidney were all down-regulated by dietary choline compared with the HFD. Overall, the present study indicated that dietary choline had a lipid-lowering effect, which could protect the liver by regulating intrahepatic lipid metabolism, reducing lipid droplet accumulation and suppressing NFκB activation, consequently attenuating HFD-induced inflammation in A. schlegelii.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Choline
- HFD + C1, HFD + choline (3 g/kg)
- HFD + C2, HFD + choline (6 g/kg)
- HFD + C3, HFD + choline (12 g/kg)
- HFD, high-fat diet
- High-fat diets
- Inflammation
- LPS, lipopolysaccharide
- Lipid metabolism
- NFκB
- accα, acetyl-CoA carboxylase α
- cpt1a, carnitine palmitoyltransferase 1a
- fas, fatty acid synthase
- hsl, hormone-sensitive lipase
- qPCR, quantitative PCR
- srebp-1, sterol regulatory element-binding protein-1
- tgfβ-1, transforming growth factor β-1
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Tingting Pan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Douglas R. Tocher
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, StirlingFK9 4LA, UK
| | - Mónica B. Betancor
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, StirlingFK9 4LA, UK
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo315211, People's Republic of China
| |
Collapse
|
21
|
Tan BL, Norhaizan ME. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019; 11:nu11112579. [PMID: 31731503 PMCID: PMC6893649 DOI: 10.3390/nu11112579] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Cognitive dysfunction is linked to chronic low-grade inflammatory stress that contributes to cell-mediated immunity in creating an oxidative environment. Food is a vitally important energy source; it affects brain function and provides direct energy. Several studies have indicated that high-fat consumption causes overproduction of circulating free fatty acids and systemic inflammation. Immune cells, free fatty acids, and circulating cytokines reach the hypothalamus and initiate local inflammation through processes such as microglial proliferation. Therefore, the role of high-fat diet (HFD) in promoting oxidative stress and neurodegeneration is worthy of further discussion. Of particular interest in this article, we highlight the associations and molecular mechanisms of HFD in the modulation of inflammation and cognitive deficits. Taken together, a better understanding of the role of oxidative stress in cognitive impairment following HFD consumption would provide a useful approach for the prevention of cognitive dysfunction.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8947-2427
| |
Collapse
|
22
|
Plant Extracts and Reactive Oxygen Species as Two Counteracting Agents with Anti- and Pro-Obesity Properties. Int J Mol Sci 2019; 20:ijms20184556. [PMID: 31540021 PMCID: PMC6770307 DOI: 10.3390/ijms20184556] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.
Collapse
|
23
|
Dai YJ, Cao XF, Zhang DD, Li XF, Liu WB, Jiang GZ. Chronic inflammation is a key to inducing liver injury in blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:28-37. [PMID: 30910418 DOI: 10.1016/j.dci.2019.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The aim of this article is to investigate the mechanism of lipotoxicity induced by high-fat diets (HFD) in Megalobrama amblycephala. In the present study, fish (average initial weight 40.0 ± 0.35 g) were fed with two fat levels (6% and 11%) diets with four replicates for 60 days. At the end of the feeding trial, fish were challenged by thioacetamide (TAA) and survival rate was recorded for the next 96 h. The result showed that long-term HFD feeding induced a significant increase (P < 0.05) in the levels of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT) in plasma. In addition, liver histopathological analysis showed an increased dilation of the blood vessels, erythrocytes outside of the blood vessels and vacuolization in fish fed with high-fat diet. After TAA challenge, compared with group fed with normal-fat diets (NFD), fish fed with HFD showed a significantly (P < 0.05) low survival rate. After feeding Megalobrama amblycephala with HFD for 60 days, the protein content and gene expression of pro-inflammatory factors were significantly elevated (P < 0.05). The protein and gene relative expressions of a Caspase-3, Caspase-9 and CD68 were significantly increased (P < 0.05), while antioxidant-related enzyme activities were significantly reduced (P < 0.05) in the liver of fish fed with HFD. In addition, HFD feeding also induced genotoxicity. Comet assay showed a significantly (P < 0.05) elevated DNA damage in blunt snout bream fed with HFD. Compared with normal-fat diets (NFD) group, the protein expression of γH2AX and gene expressions involved in cell cycle arrest were significantly increased (P < 0.05) in fish fed with HFD. Data in this research showed that lipotoxicity induced by HFD was likely mediated by chronic inflammation regulating macrophage recruitment, apoptosis and DNA damage. The study was valuable to understand the mechanism by which liver injury is induced in fish fed with HFD.
Collapse
Affiliation(s)
- Yong-Jun Dai
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiu-Fei Cao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
24
|
Chamomile Methanolic Extract Mitigates Small Bowel Inflammation and ROS Overload Related to the Intestinal Nematodes Infection in Mice. Acta Parasitol 2019; 64:152-161. [PMID: 30671769 DOI: 10.2478/s11686-019-00027-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chamomile (Matricaria recutita L.) is a plant which has been reported to be effective in treating several parasitic and digestive diseases. The present study was conducted to evaluate the anthelmintic activity of chamomile methanolic extract (CME). METHODS In vitro, the anthelmintic activities of CME were investigated on the L3 larvae of Heligmosomoides polygyrus in comparison to albendazole. In vivo, Swiss albino mice were infected with infective third (L3) larval stage of H. polygyrus by intragastric administration. Moreover, the effect of CME and albendazole on worm eggs, adult worms, serum cytokine production, and oxidative stress was studied. RESULTS All used doses of CME showed a potent anthelmintic activity both in vitro and in vivo and the effect being similar to treatment with albendazole. Moreover, H. polygyrus infestation was accompanied by an intestinal oxidative stress status characterized by an increased lipoperoxidation, a depletion of antioxidant enzyme activity, as well as an overload of hydrogen peroxide. We have also recorded an increase of pro-inflammatory mediator (TNF-α, IL-6, and IL-1β) levels after treatment with CME (14 ± 0.8; 41 ± 2; 58 ± 4 pg/mg protein, respectively, with the concentration 800 mg/kg, body weight) when compared with infected control mice (20 ± 1; 59 ± 2, and 83 ± 4 pg/mg protein, respectively). However, extract treatment alleviated all the deleterious effects associated with H. polygyrus infection. CONCLUSION These findings suggest that CME can be used in the control of gastrointestinal helminthiasis and associated oxidative stress.
Collapse
|
25
|
Sharifi-Ardani M, Yekefallah L, Asefzadeh S, Nassiri-Asl M. Efficacy of topical chamomile on the incidence of phlebitis due to an amiodarone infusion in coronary care patients: a double-blind, randomized controlled trial. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 15:373-378. [PMID: 28844214 DOI: 10.1016/s2095-4964(17)60358-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Amiodarone is a useful antiarrhythmic drug. Phlebitis, caused by intravenous amiodarone, is common in patients in coronary care units (CCUs). OBJECTIVE The aim of this study was to evaluate the effect of topical chamomile on the incidence of phlebitis due to the administration of an amiodarone infusion into the peripheral vein. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS This was a randomized, double-blind clinical trial, conducted on 40 patients (n = 20 per group) in two groups-an intervention group (chamomile ointment) and a control group (lanoline, as a placebo), hospitalized in the CCUs and undergoing an amiodarone infusion into the peripheral vein over 24 h. Following the cannulation and commencement of the infusion, placebo or chamomile ointment was rubbed in, up to 10 cm superior to the catheter and repeated every eight hours for three days. The cannula site was then assessed based on the phlebitis checklist. MAIN OUTCOME MEASURES The incidence and time of occurrence of phlebitis, relative risk, severity of phlebitis were the main outcome measures. RESULTS Nineteen patients (19/20) in the control group had phlebitis on the first day of the study and one patient (20/20) on the second day. In the intervention group, phlebitis occurred in 13 cases (13/20) on the first day and another two (2/7) was found on the second day. The incidence of phlebitis was significantly different between two groups (P = 0.023). The cumulative incidence of phlebitis in the intervention group (15/20) is significantly later and lower than that in the control group (20/20) during two days (P = 0.008). Two patients in the intervention group did not develop phlebitis at all during the 3-day study. Also, the relative risk of phlebitis in the two groups was 0.68 (P = 0.008 5). A significant difference was not observed with regard to phlebitis severity in both groups. CONCLUSION It seems that phlebitis occurred to a lesser extent and at a later time frame in the intervention group compared to control group. Topical chamomile may be effective in decreasing the incidence of phlebitis due to an amiodarone infusion. TRIAL REGISTRATION This protocol was registered in the Iranian Registry of Clinical Trials (IRCT2014042017361N1).
Collapse
Affiliation(s)
- Maryam Sharifi-Ardani
- School of Nursing and Midwifery, Qazvin University of Medical Sciences, Qazvin 341197-5981, Iran
| | - Leili Yekefallah
- School of Nursing and Midwifery, Qazvin University of Medical Sciences, Qazvin 341197-5981, Iran
| | - Saeed Asefzadeh
- Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Qazvin 341197-5981, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, Qazvin University of Medical Sciences, Qazvin 341197-5981, Iran
| |
Collapse
|
26
|
Reduced expression of Twist 1 is protective against insulin resistance of adipocytes and involves mitochondrial dysfunction. Sci Rep 2018; 8:12590. [PMID: 30135600 PMCID: PMC6105588 DOI: 10.1038/s41598-018-30820-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/07/2018] [Indexed: 01/06/2023] Open
Abstract
Insulin resistance (IR) has become a global epidemic that represents a serious hazard to public health. However, the precise mechanisms modulating IR have not been fully elucidated. The present study aimed to investigate the role of transcriptional factor Twist 1 in adipocyte IR and to further explore the molecular mechanism. An in vitro IR model based on cultured 3T3-L1 adipocytes was established under high glucose/insulin stimulation and an in vivo IR model in C57/BL6J mice induced by a high fat diet (HFD) was also developed. Lentivirus targeting Twist 1 silencing was introduced. The relationships between Twist 1 expression and IR state, mitochondrial dysfunction and the downstream insulin signaling pathway were assayed. Our results firstly showed the elevation of Twist 1 in IR adipocytes, and Twist 1 silencing attenuated IR. Then mitochondrial ultra-structural damage, elevated ROS, decreased MMP and ATP, and changes in mitochondrial biosynthesis-related genes in IR group indicated mitochondrial dysfunction. Further, the downstream IRS/PI3K/AKT/GluT4 pathway was showed involved in Twist 1-mediated IR. In total, we provide evidence of a protective role of Twist 1 silencing in relieving the IR state of adipocytes. Mitochondrial dysfunction and the downstream IRS/PI3K/AKT/GluT4 pathway were involved in this Twist 1-mediated IR.
Collapse
|
27
|
Franco RR, da Silva Carvalho D, de Moura FBR, Justino AB, Silva HCG, Peixoto LG, Espindola FS. Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:140-146. [PMID: 29274842 DOI: 10.1016/j.jep.2017.12.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants preparations are used by traditional medicine in the treatment of various diseases, such as type-2 diabetes mellitus. Some medicinal plants are capable of controlling the complications of this metabolic disease at different levels, for example, providing antioxidant compounds that act against oxidative stress and protein glycation and others which are capable of inhibiting the catalysis of digestive enzymes and thus contribute to the reduction of hyperglycemia and hyperlipidemia. Our objective was to investigate the antioxidant and anti-glycation activities of some medicinal plants and their potential inhibitory against α-amylase, α-glucosidase and pancreatic lipase activities. MATERIAL AND METHODS Based on the ethnobotanical researches carried out by academic studies conducted at the Federal University of Uberlandia, ten plants traditionally used in the treatment of type-2 diabetes mellitus were selected. Ethanol (EtOH) and hexane (Hex) extracts of specific parts of these plants were used in enzymatic assays to evaluate their inhibitory potential against α-amylase, α-glucosidase and lipase, as well as their antioxidant (DPPH, ORAC and FRAP) and anti-glycation (BSA/fructose model) capacities. RESULTS The results indicate that EtOH extract of four of the ten analyzed plants exhibited more than 70% of antioxidant and anti-glycation capacities, and α-amylase and lipase inhibitory activities; no extract was able to inhibit more than 40% the α-glucosidase activity. The EtOH extracts of Bauhinia forficata and Syzygium. cumini inhibited α-amylase (IC50 8.17 ± 2.24 and 401.8 ± 14.7 μg/mL, respectively), whereas EtOH extracts of B. forficata, Chamomilla recutita and Echinodorus grandiflorus inhibited lipase (IC50 59.6 ± 10.8, 264.2 ± 87.2 and 115.8 ± 57.1 μg/mL, respectively). In addition, EtOH extracts of B. forficata, S. cumini, C. recutita and E. grandiflorus showed, respectively, higher antioxidant capacity (DPPH IC50 0.7 ± 0.1, 2.5 ± 0.2, 1.3 ± 0.2 and 35.3 ± 9.0 μg/mL) and anti-glycation activity (IC50 22.7 ± 4.4, 246.2 ± 81.7, 18.5 ± 2.8 and 339.0 ± 91.0 μg/mL). CONCLUSIONS EtOH extracts of four of the ten species popularly cited for treatment of type 2 diabetes mellitus have shown promising antioxidant and anti-glycation properties, as well as the ability to inhibit the digestive enzymes α-amylase and lipase. Thus, our results open new possibilities for further studies in order to evaluate the antidiabetic potential of these medicinal plants.
Collapse
Affiliation(s)
- Rodrigo Rodrigues Franco
- Institute of Biotechnology (IBTEC), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | | | | | - Allisson Benatti Justino
- Institute of Biotechnology (IBTEC), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | | | - Leonardo Gomes Peixoto
- Institute of Biotechnology (IBTEC), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | - Foued Salmen Espindola
- Institute of Biotechnology (IBTEC), Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil.
| |
Collapse
|
28
|
Hwang SH, Wang Z, Guillen Quispe YN, Lim SS, Yu JM. Evaluation of Aldose Reductase, Protein Glycation, and Antioxidant Inhibitory Activities of Bioactive Flavonoids in Matricaria recutita L. and Their Structure-Activity Relationship. J Diabetes Res 2018; 2018:3276162. [PMID: 29850602 PMCID: PMC5914092 DOI: 10.1155/2018/3276162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023] Open
Abstract
The inhibitory activities of Matricaria recutita L. 70% methanol extract were evaluated by isolating and testing 10 of its compounds on rat lens aldose reductase (RLAR), advanced glycation end products (AGEs), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. Among these compounds, apigenin-7-O-β-D-glucoside, luteolin-7-O-β-D-glucoside, apigenin-7-O-β-D-glucuronide, luteolin-7-O-β-D-glucuronide, 3,5-O-di-caffeoylquinic acid, apigenin, and luteolin showed potent inhibition, and their IC50 values in RLAR were 4.25, 1.12, 1.16, 0.85, 0.72, 1.72, and 1.42 μM, respectively. Furthermore, these compounds suppressed sorbitol accumulation in rat lens under high-glucose conditions, demonstrating their potential to prevent sorbitol accumulation ex vivo. Notably, luteolin-7-O-β-D-glucuronide and luteolin showed antioxidative as well as AGE-inhibitory activities (IC50 values of these compounds in AGEs were 3.39 and 6.01 μM). These results suggest that the M. recutita extract and its constituents may be promising agents for use in the prevention or treatment of diabetic complications.
Collapse
Affiliation(s)
- Seung Hwan Hwang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, Republic of Korea
| | - Zhiqiang Wang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, Republic of Korea
- College of Public Health, Hebei University, Baoding 071002, China
| | - Yanymee N. Guillen Quispe
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, Republic of Korea
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, Republic of Korea
- Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon, Republic of Korea
| | - Jae Myung Yu
- Hallym University Kangnam Sacred Heart Hospital, 1 Singil-ro, Yeoungdeungpo-gu, Seoul, Republic of Korea
| |
Collapse
|
29
|
Hajaji S, Jabri MA, Sifaoui I, López-Arencibia A, Reyes-Batlle M, B'chir F, Valladares B, Pinero JE, Lorenzo-Morales J, Akkari H. Amoebicidal, antimicrobial and in vitro ROS scavenging activities of Tunisian Rubus ulmifolius Schott, methanolic extract. Exp Parasitol 2017; 183:224-230. [DOI: 10.1016/j.exppara.2017.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2017] [Accepted: 09/11/2017] [Indexed: 02/08/2023]
|
30
|
The lemon balm extract ALS-L1023 inhibits obesity and nonalcoholic fatty liver disease in female ovariectomized mice. Food Chem Toxicol 2017; 106:292-305. [DOI: 10.1016/j.fct.2017.05.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/30/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
31
|
The Angiogenesis Inhibitor ALS-L1023 from Lemon-Balm Leaves Attenuates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease through Regulating the Visceral Adipose-Tissue Function. Int J Mol Sci 2017; 18:ijms18040846. [PMID: 28420164 PMCID: PMC5412430 DOI: 10.3390/ijms18040846] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
Similar to neoplastic tissues, growth and development of adipose tissue are thought to be angiogenesis-dependent. Since visceral adipose tissue (VAT) is associated with development and progression of nonalcoholic fatty liver disease (NAFLD), we hypothesized that angiogenesis inhibition would attenuate obesity-induced NAFLD. We fed C57BL/6J mice a low-fat diet (LFD, chow 10% kcal fat), a high-fat diet (HFD, 45% kcal fat) or HFD supplemented with the lemon-balm extract ALS-L1023 (HFD-ALS) for 15 weeks. ALS-L1023 reduced endothelial cell-tube formation in vitro. HFD increased VAT angiogenesis and induced weight gains including body weight, VAT mass and visceral adipocyte size compared with LFD. However, HFD-ALS led to weight reductions without affecting calorie intake compared with HFD. HFD-ALS also reduced serum ALT and AST levels and improved lipid metabolism. HFD-ALS suppressed steatosis, infiltration of inflammatory cells, and accumulation of collagen in livers. HFD-ALS modulated hepatic expression of genes involved in lipid metabolism, inflammation, fibrosis, antioxidation, and apoptosis. Concomitantly, analysis of VAT function revealed that HFD-ALS led to fewer CD68-positive macrophage numbers and lower expression of inflammatory cytokines compared with HFD. Our findings show that the anti-angiogenic herbal extract ALS-L1023 attenuates NAFLD by targeting VAT during obesity, suggesting that angiogenesis inhibitors could aid in the treatment and prevention of obesity-induced human NAFLD.
Collapse
|
32
|
Jabri MA, Hajji N, Wannes D, Tounsi H, Jridi M, Abdellaoui A, Nasri M, Marzouki L, Sebai H. HPLC/PDA/ESI-MS/MS analysis of chamomile decoction and mechanism of its protective effects on aspirin-induced small bowel injuries. RSC Adv 2017. [DOI: 10.1039/c7ra07339a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study is to evaluate the effect of chamomile (Matricaria recutitaL.) decoction extract (CDE) on aspirin-induced small bowel injuries.
Collapse
Affiliation(s)
- Mohamed-Amine Jabri
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 9000 Béja
- Tunisia
| | - Najla Hajji
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 9000 Béja
- Tunisia
| | - Dalanda Wannes
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 9000 Béja
- Tunisia
| | - Haifa Tounsi
- Laboratoire d'anatomie pathologique humaine et expérimentale
- Institut Pasteur de Tunis
- Tunis 1002
- Tunisia
| | - Mourad Jridi
- Laboratoire de Génie Enzymatique et de Microbiologie
- Ecole Nationale d’Ingénieurs de Sfax
- Université de Sfax
- 3038 Sfax
- Tunisia
| | - Afifa Abdellaoui
- Laboratoire d'anatomie pathologique humaine et expérimentale
- Institut Pasteur de Tunis
- Tunis 1002
- Tunisia
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie
- Ecole Nationale d’Ingénieurs de Sfax
- Université de Sfax
- 3038 Sfax
- Tunisia
| | - Lamjed Marzouki
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 9000 Béja
- Tunisia
| | - Hichem Sebai
- Laboratoire de Physiologie Fonctionnelle et Valorisation des Bio-Ressources
- Institut Supérieur de Biotechnologie de Béja
- Université de Jendouba
- 9000 Béja
- Tunisia
| |
Collapse
|