1
|
Taleahmad F, Khalili M, Haddadzadeh-Niri N, Joneidi E, Taleahmad S, Roghani M. Therapeutic potential of diosgenin against methotrexate-induced testicular damage in the rat. Reprod Biol 2024; 24:100966. [PMID: 39500087 DOI: 10.1016/j.repbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 12/10/2024]
Abstract
This study evaluated diosgenin effects on methotrexate-induced testicular injury in the rats. A single dose of methotrexate (MTX) (20 mg/kg, i.p) was administered, followed by two weeks of diosgenin treatment via gavage starting one day before methotrexate injection. Testicular damage was evaluated through histological examination of seminiferous tubules, as well as analysis of serum testosterone level, oxidative stress and inflammation biomarkers, and antioxidant levels. The results of this study showed that in the MTX-exposed group, oxidative stress indices of malondialdehyde (MDA), reactive oxygen species (ROS), nitrite and indices of inflammation consisting of tumor necrosis factor α (TNFα), and interleukin 6 (IL-6) have a significant increase compared to the control group. Additionally, reductions were observed in antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). In addition, testosterone level decreased and signs of testicular damage were observed in the MTX group. Conversely, in the group treated with diosgenin alongside MTX at a dosage of 50 mg/kg, there was a significant decrease in oxidative stress markers (MDA, ROS, nitrite) and inflammatory markers (TNFα and IL-6). Moreover, there was a significant increase in the levels of antioxidant enzymes (SOD, CAT, and GSH). Diosgenin appears to have the potential to protect testicular tissue from damage caused by the toxic effects of MTX through the reduction of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fatemeh Taleahmad
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mohsen Khalili
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Ensyie Joneidi
- School of Basic Sciences, Shahed University, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
2
|
Reza Naghdi M, Ahadi R, Motamed Nezhad A, Sadat Ahmadi Tabatabaei F, Soleimani M, Hajisoltani R. The neuroprotective effect of Diosgenin in the rat Valproic acid model of autism. Brain Res 2024; 1838:148963. [PMID: 38705555 DOI: 10.1016/j.brainres.2024.148963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIM Autism spectrum disorder (ASD) is a neurodevelopmental disorder with two core behavioral symptoms restricted/repetitive behavior and social-communication deficit. The unknown etiology of ASD makes it difficult to identify potential treatments. Valproic acid (VPA) is an anticonvulsant drug with teratogenic effects during pregnancy in humans and rodents. Prenatal exposure to VPA induces autism-like behavior in both humans and rodents. This study aimed to investigate the protective effects of Diosgenin in prenatal Valproic acid-induced autism in rats. METHOD pregnant Wister female rats were given a single intraperitoneal injection of VPA (600 mg/kg, i.p.) on gestational day 12.5. The male offspring were given oral Dios (40 mg/kg, p.o.) or Carboxymethyl cellulose (5 mg/kg, p.o.) for 30 days starting from postnatal day 23. On postnatal day 52, behavioral tests were done. Additionally, biochemical assessments for oxidative stress markers were carried out on postnatal day 60. Further, histological evaluations were performed on the prefrontal tissue by Nissl staining and Immunohistofluorescence. RESULTS The VPA-exposed rats showed increased anxiety-like behavior in the elevated plus maze (EPM). They also demonstrated repetitive and grooming behaviors in the marble burying test (MBT) and self-grooming test. Social interaction was reduced, and they had difficulty detecting the novel object in the novel object recognition (NOR) test. Also, VPA-treated rats have shown higher levels of oxidative stress malondialdehyde (MDA) and lower GPX, TAC, and superoxide dismutase (SOD) levels. Furthermore, the number of neurons decreased and the ERK signaling pathway upregulated in the prefrontal cortex (PFC). On the other hand, treatment with Dios restored the behavioral consequences, lowered oxidative stress, and death of neurons, and rescued the overly activated ERK1/2 signaling in the prefrontal cortex. CONCLUSION Chronic treatment with Dios restored the behavioral, biochemical, and histological abnormalities caused by prenatal VPA exposure.
Collapse
Affiliation(s)
| | - Reza Ahadi
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Mansoureh Soleimani
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rusli N, Ng CF, Makpol S, Wong YP, Mohd Isa IL, Remli R. Antioxidant Effect in Diabetic Peripheral Neuropathy in Rat Model: A Systematic Review. Antioxidants (Basel) 2024; 13:1041. [PMID: 39334700 PMCID: PMC11428735 DOI: 10.3390/antiox13091041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is a contributing factor that leads to the vascular complications of diabetes mellitus. Diabetic peripheral neuropathy (DPN) is one of the microvascular complications with rising concern as the disease progresses despite strict glucose control and monitoring. Thus, there is an ongoing need for an early intervention that is effective in halting or slowing the progression of DPN where antioxidants have been proposed as potential therapeutic agents. This systematic review aims to evaluate the existing evidence on the antioxidant effect in DPN and provide insight on the role of antioxidants in the progression of DPN in a rat model. A comprehensive literature search was conducted on Web of Science, EBSCOhost, and Scopus to identify the effects and role of antioxidants in DPN. Data extraction was performed and SYRCLE's risk of bias (RoB) tool was used for risk assessment. This systematic review was written following the PRISMA 2020 statements. From the literature search, 1268 articles were screened, and a total of 101 full-text articles were further screened before 33 were analyzed. These findings collectively suggest that antioxidants can play a crucial role in managing and potentially reversing the effects of diabetic neuropathy by targeting oxidative stress and improving nerve function.
Collapse
Affiliation(s)
- Noradliyanti Rusli
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Chen Fei Ng
- Department of Neurology, Sunway Medical Centre, Subang Jaya 47500, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
- CÚRAM, SFI Research Centre for Medical Devices, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Rabani Remli
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
4
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Balali-Dehkordi S, Habibian-Dehkordi S, Amini-Khoei H, Mohajerian R. Ferulic acid via attenuation of oxidative stress and neuro-immune response utilizes antinociceptive effect in mouse model of formalin test. IBRO Neurosci Rep 2024; 16:51-56. [PMID: 38145175 PMCID: PMC10733636 DOI: 10.1016/j.ibneur.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Plenty evidences suggests that neuroinflammation and oxidative stress augmented the neural sensitivity specifying that neuro-immune response is involved in the pathophysiology of pain. Ferulic acid (FA), a natural antioxidant found in various fruits, has various pharmacological properties. The purpose of the current study was to assess the antinociceptive effect of FA in a mouse model of formalin test with focus on its anti-neuroinflammatory and antioxidative stress effects. Methods The injection of FA (40 mg/kg), piroxicam (2 mg/kg), and saline (0.9% NaCl) (1 ml/kg) was done intraperitoneally and after one hour, formalin injected into the plantar surface of the hind paw of mice. Then pain behavior was documented during 60 min. Then mice were euthanized and prefrontal cortex (PFC) samples were taken. Malondialdehyde (MDA) level, antioxidant capacity and expression of inflammatory genes, counting tumor necrosis factor (TNF-) and interleukine 1 (IL-1) evaluated in the PFC. Results exhibited that FA declined the pain behavior following injection of formalin. Besides, FA significantly diminished the MDA level and increased the antioxidant capacity in the PFC. We revealed that FA diminished the expression of TNF-α and IL-1β genes in the PFC. Conclusion We conclude that FA exerted antinociceptive effects in the formalin test in mice, at least partially, by reducing oxidative stress and neuroimmune response in the PFC.
Collapse
Affiliation(s)
- Shima Balali-Dehkordi
- Department of Basic Sciences, Veterinary Faculty, Shahrekord University, Shahrekord, Iran
| | | | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahil Mohajerian
- Department of Basic Sciences, Veterinary Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Man S, Zhang X, Xie L, Zhou Y, Wang G, Hao R, Gao W. A new insight into material basis of rhizoma Paridis saponins in alleviating pain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117642. [PMID: 38151180 DOI: 10.1016/j.jep.2023.117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris polyphylla, as a traditional Chinese herbal medicine, was often used to relieve inflammation and pain. Rhizoma Paridis saponins (RPS) as the main active components of Paris polyphylla have excellent analgesic effects. AIM OF THE STUDY Determine the analgesic material basis of RPS. MATERIALS AND METHODS LC-MS/MS was used to analyze RPS, plasma after intravenous injection of RPS, and oral administration of RPS. H22 plantar pain model was established to explore the analgesic material basis of RPS. Moreover, correlation analysis, network pharmacology, RT-PCR and molecular docking were applied in this research. RESULTS RPS had dose-dependently analgesic effects in acetic acid- and formalin-induced pain models. LC-MS/MS detection indicated that diosgenin as the metabolite of RPS mainly distributed in brain tissues. The addition of antibiotics increased the anti-tumor effect of RPS, but reduced its analgesic effect. Network pharmacology, RT-PCR and molecular docking showed that diosgenin exerted its analgesic effect through SRC and Rap1 signaling pathway. CONCLUSION Diosgenin exhibited analgesic effects, while saponins had good anti-tumor effects in RPS. This discovery provided a better indication for the later application of RPS in anti-tumor and analgesic settings.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Xinghao Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lu Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yaxue Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Genbei Wang
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Ruijia Hao
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Ghosian-Moghaddam MH, Mohseni-Moghaddam P, Roghani M. Therapeutic Potential of Diosgenin in Amelioration of Carbon Tetrachloride-Induced Murine Liver Injury. Drug Res (Stuttg) 2024; 74:156-163. [PMID: 38458224 DOI: 10.1055/a-2263-1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Diosgenin is a sapogenin with antidiabetic, antioxidant, and anti-inflammatory properties. The current study investigated whether diosgenin could ameliorate carbon tetrachloride (CCL4)-induced liver injury. To cause liver injury, CCL4 was injected intraperitoneally twice a week for 8 weeks. Daily oral administration of diosgenin at doses of 20, 40, and 80 mg/kg was started one day before CCL4 injection and continued for 8 weeks. Finally, serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and also albumin were assessed. Catalase and superoxide dismutase (SOD) activities in addition to glutathione (GSH) and malondialdehyde (MDA) levels were also quantified in the liver homogenate and routine histological evaluation was also conducted. Elevated serum levels of liver enzymes and decreased serum level of albumin caused by CCL4 were significantly restored following diosgenin administration at doses of 40 and 80 mg/kg. Long-term administration of CCL4 increased inflammatory and apoptotic factors such as IL-1β, caspase 3, TNF-α, and IL-6 and decreased SOD and catalase activities as well as GSH level in liver homogenates; while MDA level was increased. Treatment with diosgenin increased SOD and catalase activities and GSH levels in the liver of injured animals. In addition, liver MDA, IL-1β, caspase 3, TNF-α, and IL-6 level or activity decreased by diosgenin treatment. Additionally, diosgenin aptly prevented aberrant liver histological changes. According to obtained results, diosgenin can dose-dependently diminish CCl4-induced liver functional deficits and histological changes in a dose-dependent manner, possibly due to its antioxidant and anti-inflammation properties, and its beneficial effect is comparable to known hepatoprotective agent silymarin.
Collapse
Affiliation(s)
| | - Parvaneh Mohseni-Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
8
|
Xiaoqin S, Yi T, Xiaoyu L, Ya B, Jingwen S, Yin L. Research progress of traditional Chinese medicine monomer in treating diabetic peripheral neuropathy: A review. Medicine (Baltimore) 2024; 103:e37767. [PMID: 38552033 PMCID: PMC10977546 DOI: 10.1097/md.0000000000037767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Diabetes peripheral neuropathy is one of the most common complications of diabetes. Early symptoms are insidious, while late symptoms mainly include numbness, pain, swelling, and loss of sensation in the limbs, which can lead to disability, foot ulcers, amputation, and so on. At present, the pathogenesis is also complex and diverse, and it is not yet clear. Western medicine treatment mainly focuses on controlling blood sugar and nourishing nerves, but the effect is not ideal. In recent years, it has been found that many drug monomers have shown good therapeutic and prognostic effects in the prevention and treatment of diabetes peripheral neuropathy, and related research has become a hot topic. To understand the specific mechanism of action of traditional Chinese medicine monomers in treatment, this article provides a review of their mechanism research and key roles. It mainly includes flavonoids, phenols, terpenes, saponins, alkaloids, polysaccharides, etc. By nuclear factor-κB (NF-κB), the signaling pathways of adenosine monophosphate-activated protein kinase (AMPK), Nrf2/ARE, SIRT1/p53, etc, can play a role in lowering blood sugar, antioxidant, anti-inflammatory, inhibiting cell apoptosis, and autophagy, promoting sciatic nerve regeneration, and have great potential in the prevention and treatment of this disease. A systematic summary of its related mechanisms of action was conducted, providing ideas for in-depth research and exploration of richer traditional Chinese medicine components, and also providing a relatively complete theoretical reference for clinical research on diabetes peripheral neuropathy treatment.
Collapse
Affiliation(s)
- Shi Xiaoqin
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Tian Yi
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Liu Xiaoyu
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Bu Ya
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shui Jingwen
- Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Liping Yin
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
9
|
Dong P, Zhou L, Wang X, Xue L, Du Y, Cui R. Study on the effect and mechanism of Zhenzhu Tongluo pills in treating diabetic peripheral neuropathy injury. Eur J Med Res 2024; 29:149. [PMID: 38429764 PMCID: PMC10908044 DOI: 10.1186/s40001-024-01744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND As a traditional Mongolian medicine, Zhenzhu Tongluo pills has played a good neuroprotective function in clinic. However, the key mechanisms by which it works are poorly studied. OBJECTIVES To study the effect and mechanism of Zhenzhu Tongluo pills in treating diabetic peripheral neuropathy injury. METHODS Diabetic peripheral neuropathy model was established by injecting STZ into rats. Physiological, behavioral, morphological and functional analyses were used to evaluate that the overall therapeutic effect of rats, ELISA, qRT-PCR, Western blot, immunohistochemical staining, HE staining and TUNEL staining were used to further study the related mechanism. RESULTS Zhenzhu Tongluo pills can significantly improve the physiological changes, behavioral abnormalities, structural and functional damage in diabetic peripheral neuropathy rats, which may be related to the anti-inflammatory and anti-apoptotic effects that realized by regulating PI3K/AKT, MAPK, NF-κB signaling pathways. CONCLUSIONS Zhenzhu Tongluo pills has neuroprotective effect, and anti-inflammatory and anti-apoptosis may be the important way of its function.
Collapse
Affiliation(s)
- Pengfei Dong
- Department of Chinese Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaohui Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Du
- Second Ward of Internal Medicine, Rehabilitation Hospital of Zhengzhou Cigarette Factory, Zhengzhou, 450000, China
| | - Rui Cui
- Department of Ultrasonography, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| |
Collapse
|
10
|
Impellizzeri D, Siracusa R, D'Amico R, Fusco R, Cordaro M, Cuzzocrea S, Di Paola R. Açaí berry ameliorates cognitive impairment by inhibiting NLRP3/ASC/CASP axis in STZ-induced diabetic neuropathy in mice. J Neurophysiol 2023; 130:671-683. [PMID: 37584088 DOI: 10.1152/jn.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Diabetes complications such as diabetic peripheral neuropathy (DPN) are linked to morbidity and mortality. Peripheral nerve damages in DPN are accompanied by discomfort, weakness, and sensory loss. Some drugs may demonstrate their therapeutic promise by reducing neuroinflammation, but they have side effects. Based on these considerations, the objective of this study was to examine the beneficial properties of açaí berry in a mouse model of DPN generated by injection of streptozotocin (STZ). Açaí berry was given orally to diabetic and control mice every day beginning 2 wk after STZ injection. The animals were euthanized after 16 wk, and tissues from the spinal cord and sciatic nerve and urine were taken. Our findings showed that daily treatment of açaí berry at a dose of 500 mg/kg was able to prevent behavioral changes as well as mast cell activation and nerve deterioration via NOD-like receptor family pyrin-domain-containing-3 (NLRP3)/apoptosis-associated speck-like protein containing a card (ASC)/caspase (CASP) regulation after diabetes induction.NEW & NOTEWORTHY Our research shows that açaí berry reduces mast cells degranulation and histological damage in diabetic neuropathy, improves physiological defense against reactive oxygen species, modulates the NLRP3/ASC/CASP axis, and ameliorates inflammation and oxidative stress. Diet could help treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Malik H, Usman M, Arif M, Ahmed Z, Ali G, Rauf K, Sewell RDE. Diosgenin normalization of disrupted behavioral and central neurochemical activity after single prolonged stress. Front Pharmacol 2023; 14:1232088. [PMID: 37663254 PMCID: PMC10468593 DOI: 10.3389/fphar.2023.1232088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Post-traumatic stress disorder (PTSD) is a chronic mental illness triggered by traumatic experiences such as wars, natural disasters, or catastrophes, and it is characterized by anxiety, depression and cognitive impairment. Diosgenin is a steroidal sapogenin with known neuroprotective and antioxidant properties. This study aimed to assess the pharmacological potential of diosgenin in a single prolonged stress (SPS) model of PTSD, plus other behavioral models along with any consequent alterations in brain neurochemistry in male mice. Methodology: SPS was induced by restraining animals for 2 h, followed by 20 min of forced swim, recuperation for 15 min, and finally, exposure to ether to induce anesthesia. The SPS-exposed animals were treated with diosgenin (20, 40, and 60 mg/kg) and compared with the positive controls, fluoxetine or donepezil, then they were observed for any changes in anxiety/depression-like behaviors, and cognitive impairment. After behavioral screening, postmortem serotonin, noradrenaline, dopamine, vitamin C, adenosine and its metabolites inosine and hypoxanthine were quantified in the frontal cortex, hippocampus, and striatum by high-performance liquid chromatography. Additionally, animal serum was screened for changes in corticosterone levels. Results: The results showed that diosgenin reversed anxiety- and depression-like behaviors, and ameliorated cognitive impairment in a dose-dependent manner. Additionally, diosgenin restored monoamine and vitamin C levels dose-dependently and modulated adenosine and its metabolites in the brain regions. Diosgenin also reinstated otherwise increased serum corticosterone levels in SPS mice. Conclusion: The findings suggest that diosgenin may be a potential candidate for improving symptoms of PTSD.
Collapse
Affiliation(s)
- Hurmat Malik
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Muhammad Usman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Gavahian M, Bannikoppa AM, Majzoobi M, Hsieh CW, Lin J, Farahnaky A. Fenugreek bioactive compounds: A review of applications and extraction based on emerging technologies. Crit Rev Food Sci Nutr 2023; 64:10187-10203. [PMID: 37303155 DOI: 10.1080/10408398.2023.2221971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fenugreek (Trigonella foenum-graecum L.) is a pharmaceutically significant aromatic crop with health benefits linked to its phytochemicals. This article aims to overview progress in using emerging technologies to extract its bioactive compounds and extraction mechanisms. Also, the trends in the applications of this herb in the food industry and its therapeutical effects were explained. Fenugreek's flavor is the primary reason for its applications in the food industry. At the same time, it has antimicrobial, antibacterial, hepatoprotection, anticancer, lactation, and antidiabetic effects. Phytochemicals responsible for these effects include galactomannans, saponins, alkaloids, and polyphenols. Besides, data showed that emerging technologies boost fenugreek extracts' yield and biological activity. Among these, ultrasound (55.6%) is the most studied technology, followed by microwave (37.0%), cold plasma (3.7%), and combined approaches (3.7%). Processing conditions (e.g., treatment time and intensity) and solvent (type, ratio, and concentration) are significant parameters that affect the performance of these novel extraction technologies. Extracts obtained by sustainable energy-saving emerging technologies can be used to develop value-added health-promoting products.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Asha Mahesh Bannikoppa
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan
| | - Jenshin Lin
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung, Taiwan
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Lin Q, Li K, Chen Y, Xie J, Wu C, Cui C, Deng B. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment. Mol Neurobiol 2023:10.1007/s12035-023-03342-7. [PMID: 37115404 DOI: 10.1007/s12035-023-03342-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a major complication of diabetes mellitus with a high incidence. Oxidative stress, which is a crucial pathophysiological pathway of DPN, has attracted much attention. The distortion in the redox balance due to the overproduction of reactive oxygen species (ROS) and the deregulation of antioxidant defense systems promotes oxidative damage in DPN. Therefore, we have focused on the role of oxidative stress in the pathogenesis of DPN and elucidated its interaction with other physiological pathways, such as the glycolytic pathway, polyol pathway, advanced glycosylation end products, protein kinase C pathway, inflammation, and non-coding RNAs. These interactions provide novel therapeutic options targeting oxidative stress for DPN. Furthermore, our review addresses the latest therapeutic strategies targeting oxidative stress for the rehabilitation of DPN. Antioxidant supplements and exercise have been proposed as fundamental therapeutic strategies for diabetic patients through ROS-mediated mechanisms. In addition, several novel drug delivery systems can improve the bioavailability of antioxidants and the efficacy of DPN.
Collapse
Affiliation(s)
- Qingxia Lin
- Department of Psychiatry, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chunxue Wu
- Department of Neurology, Wencheng County People's Hospital, Wenzhou, People's Republic of China
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
14
|
Exploring the possible mechanism involved in the anti-nociceptive effect of β-sitosterol: modulation of oxidative stress, nitric oxide and IL-6. Inflammopharmacology 2023; 31:517-527. [PMID: 36574096 DOI: 10.1007/s10787-022-01122-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/28/2022]
Abstract
Β-sitosterol is a phytosterol, documented to possess various activities including protection against inflammation, diabetes and Alzheimer's disease. The current investigation was designed to explore the analgesic potential of β-sitosterol and the possible molecular mechanism involved in the observed effect. β-sitosterol was administered at varying doses of 10, 20, and 40 mg/kg before subjecting the mice to acetic acid and formalin challenges. The number of writhings in acetic acid and the number of flinchings and foot tappings were quantified in the formalin test. For mechanistic studies, substance P (cyclooxygenase-2 (COX-2) stimulator) and L-Nitro arginine methyl ester (L-NAME) (nitric oxide synthetases (NOS) inhibitor) and L-arginine (nitric oxide precursor) were administered before β-sitosterol treatment. β-sitosterol (10, 20, 40 mg/kg) treatment significantly reduced acetic acid-induced writhings and ameliorated the formalin-induced inflammatory phase dose-dependently. Whereas, 40 mg/kg dose of β-sitosterol abrogated the formalin-induced neurogenic phase. Substance-P abrogated the effect of β-sitosterol in both neurogenic and inflammatory phases. Whereas, L-arginine only abrogated the inflammatory phase. In biochemical analysis, β-sitosterol treatment reduced the level of interleukin-6 (IL-6), thiobarbituric acid reactive substances (TBARS) and increased the level of reduced glutathione (GSH). Furthermore, L-arginine and substance-P abrogated the GSH increasing and TBARS lowering effect of β-sitosterol (40 mg/kg). Overall, the current study delineated that β-sitosterol may induce an anti-nociceptive effect via inhibiting the IL-6, oxidative stress, cyclo-oxygenase and nitric oxide.
Collapse
|
15
|
Chang Y, Wang S, Xu J, Zhu T, Ma S, Zhou A, Song Y, Liu M, Tian C. Optimization of extraction process of Dioscorea nipponica Makino saponins and their UPLC-QTOF-MS profiling, antioxidant, antibacterial and anti- inflammatory activities. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
16
|
Elhessy HM, Habotta OA, Eldesoqui M, Elsaed WM, Soliman MFM, Sewilam HM, Elhassan YH, Lashine NH. Comparative neuroprotective effects of Cerebrolysin, dexamethasone, and ascorbic acid on sciatic nerve injury model: Behavioral and histopathological study. Front Neuroanat 2023; 17:1090738. [PMID: 36816518 PMCID: PMC9928760 DOI: 10.3389/fnana.2023.1090738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Background The majority of the suggested experimental modalities for peripheral nerve injury (PNI) result in varying degrees of recovery in animal models; however, there are not many reliable clinical pharmacological treatment models available. To alleviate PNI complications, research on approaches to accelerate peripheral nerve regeneration is encouraged. Cerebrolysin, dexamethasone, and ascorbic acid (vitamin C) drug models were selected in our study because of their reported curative effects of different mechanisms of action. Methodology A total of 40 adult male albino rats were used in this study. Sciatic nerve crush injury was induced in 32 rats, which were divided equally into four groups (model, Cerebrolysin, dexamethasone, and vitamin C groups) and compared to the sham group (n = 8). The sciatic nerve sensory and motor function regeneration after crushing together with gastrocnemius muscle histopathological changes were evaluated by the sciatic function index, the hot plate test, gastrocnemius muscle mass ratio, and immune expression of S100 and apoptosis cascade (BAX, BCL2, and BAX/BCL2 ratio). Results Significant improvement of the behavioral status and histopathological assessment scores occurred after the use of Cerebrolysin (as a neurotrophic factor), dexamethasone (as an anti-inflammatory), and vitamin C (as an antioxidant). Despite these seemingly concomitant, robust behavioral and pathological changes, vitamin C appeared to have the best results among the three main outcome measures. There was a positive correlation between motor and sensory improvement and also between behavioral and histopathological changes, boosting the effectiveness, and implication of the sciatic function index as a mirror for changes occurring on the tissue level. Conclusion Vitamin C is a promising therapeutic in the treatment of PNI. The sciatic function index (SFI) test is a reliable accurate method for assessing sciatic nerve integrity after both partial disruption and regrowth.
Collapse
Affiliation(s)
- Heba M. Elhessy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,*Correspondence: Heba M. Elhessy,
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mamdouh Eldesoqui
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyadh, Saudi Arabia
| | - Wael M. Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona F. M. Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Haitham M. Sewilam
- Department of Histology and Cell Biology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Y. H. Elhassan
- Department of Anatomy, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Nermeen H. Lashine
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Man S, Xie L, Liu X, Wang G, Liu C, Gao W. Diosgenin relieves oxaliplatin-induced pain by affecting TLR4/NF-κB inflammatory signaling and the gut microbiota. Food Funct 2023; 14:516-524. [PMID: 36520071 DOI: 10.1039/d2fo02877h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diosgenin extracted from fenugreek, yam and other foods exhibits a wide range of pharmacological activities, especially for the treatment of pain and other nervous system diseases. However, its role in oxaliplatin-induced peripheral neuropathy (OIPN) is unclear. To explore its detailed mechanism on the pain caused by chemotherapy, we carried out this experiment. In this study, the effects of diosgenin on injured PC12 cells and OIPN mice were examined. The results showed that diosgenin not only protected PC12 from injury, but also reduced the mechanical withdrawal threshold and cold hyperalgesia in OIPN mice. Diosgenin inhibited oxidative stress, the cell glial fibrillary acidic protein, and the pro-inflammatory cytokines such as tumor necrosis factor-α, toll-like receptor 4 and nuclear factor-κB in the brain. Furthermore, the fecal microbiota transplantation experiment indicated that diosgenin improved OIPN through regulation of the gut microbiota. All in all, diosgenin ameliorates peripheral neuropathy and is worthy of further study in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Lu Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Xuanshuo Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Genbei Wang
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Holding Group Co., Ltd, Tianjin 300410, China
| | - Changxiao Liu
- State Key Laboratory of Drug Release Technology and Pharmacokinetics. Tianjin Institute of Pharmaceutical Research Co., Ltd, Tianjin 300462, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
18
|
Rahman MM, Jo HJ, Park CK, Kim YH. Diosgenin Exerts Analgesic Effects by Antagonizing the Selective Inhibition of Transient Receptor Potential Vanilloid 1 in a Mouse Model of Neuropathic Pain. Int J Mol Sci 2022; 23:ijms232415854. [PMID: 36555495 PMCID: PMC9784430 DOI: 10.3390/ijms232415854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Diosgenin is a botanical steroidal saponin with immunomodulatory, anti-inflammatory, anti-oxidative, anti-thrombotic, anti-apoptotic, anti-depressant, and anti-nociceptive effects. However, the effects of diosgenin on anti-nociception are unclear. Transient receptor potential vanilloid 1 (TRPV1) plays an important role in nociception. Therefore, we investigated whether TRPV1 antagonism mediates the anti-nociceptive effects of diosgenin. In vivo mouse experiments were performed to examine nociception-related behavior, while in vitro experiments were performed to examine calcium currents in dorsal root ganglion (DRG) and Chinese hamster ovary (CHO) cells. The duration of capsaicin-induced licking (pain behavior) was significantly reduced following oral and intraplantar administration of diosgenin, approaching levels observed in mice treated with the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide. Additionally, oral administration of diosgenin blocked capsaicin-induced thermal hyperalgesia. Further, diosgenin reduced capsaicin-induced Ca2+ currents in a dose-dependent manner in both DRG and CHO cells. Oral administration of diosgenin also improved thermal and mechanical hyperalgesia in the sciatic nerve constriction injury-induced chronic pain model by reducing the expression of TRPV1 and inflammatory cytokines in DRG cells. Collectively, our results suggest that diosgenin exerts analgesic effects via antagonism of TRPV1 and suppression of inflammation in the DRG in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
| | | | - Chul-Kyu Park
- Correspondence: (C.-K.P.); (Y.H.K.); Tel.: +82-32-899-6692 (C.-K.P.); +82-32-899-6691 (Y.H.K.)
| | - Yong Ho Kim
- Correspondence: (C.-K.P.); (Y.H.K.); Tel.: +82-32-899-6692 (C.-K.P.); +82-32-899-6691 (Y.H.K.)
| |
Collapse
|
19
|
Phạm TL, Noh C, Neupane C, Sharma R, Shin HJ, Park KD, Lee CJ, Kim HW, Lee SY, Park JB. MAO-B Inhibitor, KDS2010, Alleviates Spinal Nerve Ligation-induced Neuropathic Pain in Rats Through Competitively Blocking the BDNF/TrkB/NR2B Signaling. THE JOURNAL OF PAIN 2022; 23:2092-2109. [PMID: 35940543 DOI: 10.1016/j.jpain.2022.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
MAO-B inhibitors have been implicated to reverse neuropathic pain behaviors. Our previous study has demonstrated that KDS2010 (KDS), a newly developed reversible MAO-B inhibitor, could attenuate Paclitaxel (PTX)-induced tactile hypersensitivity in mice through suppressing reactive oxidant species (ROS)-decreased inhibitory GABA synaptic transmission in the spinal cord. In this study, we evaluated the analgesic effect of KDS under a new approach, in which KDS acts on dorsal horn sensory neurons to reduce excitatory transmission. Oral administration of KDS effectively enhanced mechanical thresholds in the spinal nerve ligation (SNL) induced neuropathic pain in rats. Moreover, we discovered that although treatment with KDS increased brain-derived neurotrophic factor (BDNF) levels, KDS inhibited Tropomyosin receptor kinase B (TrkB) receptor activation, suppressing increased p-NR2B-induced hyperexcitability in spinal dorsal horn sensory neurons after nerve injury. In addition, KDS showed its anti-inflammatory effects by reducing microgliosis and astrogliosis and the activation of MAPK and NF-ᴋB inflammatory pathways in these glial cells. The levels of ROS production in the spinal cords after the SNL procedure were also decreased with KDS treatment. Taken together, our results suggest that KDS may represent a promising therapeutic option for treating neuropathic pain. PERSPECTIVE: Our study provides evidence suggesting the mechanisms by which KDS, a novel MAO-B inhibitor, can be effective in pain relief. KDS, by targeting multiple mechanisms involved in BDNF/TrkB/NR2B-related excitatory transmission and neuroinflammation, may represent the next future of pain medicine.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Histo-Pathology, Hai Phong University of Medicine & Pharmacy, Hai Phong 042-12, Vietnam
| | - Chan Noh
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Chiranjivi Neupane
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramesh Sharma
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jin Shin
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Hyun-Woo Kim
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Bong Park
- Department of Medical Science, Graduate School, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Physiology, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
20
|
Arya P, Kumar P. Diosgenin: An ingress towards solving puzzle for diabetes treatment. J Food Biochem 2022; 46:e14390. [PMID: 36106684 DOI: 10.1111/jfbc.14390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 01/13/2023]
Abstract
The consumption and composition of food in daily life predict our health in long run. The relation of diabetes to sweets is quite popular. Diabetes hampers the glucose and insulin regulation in the human body by damaging pancreatic β cells. Diabetes has a strong potential towards altering cellular mechanisms of organs causing unlawful performance. Diabetes alters pathways like TLR4, AChE, NF-ĸB, LPL, and PPAR at different sites that affect the normal cellular machinery and cause damage to the local tissue and organ. The long-lasting effect of diabetes was observed in vascular, cardia, nervous, skeletal, reproductive, hepatic, ocular, and renal systems. The increasing awareness of diabetes and its concern has awakened the common people more enthusiastically. Due to rising harm from diabetes, scientific researchers tend to have more eyes toward it. While searching for diabetes solutions, fenugreek diosgenin could pop up with some positive effects in curing the same. Diosgenin helps to lower the scathe of diabetes by modifying cellular pathways in favor of healthy bodily functions. Diosgenin altered the pathways for renewal of pancreatic β cells for better insulin secretion, initiate GLUT4, enhanced DHEA, modify ER-α-mediated PI3K/Akt pathways. Diosgenin can be an appropriate insult for diabetes in a much evolving way for a healthy lifestyle. PRACTICAL APPLICATIONS: Diabetes is one of the most death causing diseases in the medical world. Regrettably the cure of diabetes is yet to be found. Various scientific team working on the same to look after the most appropriate way for diabetes treatment. There is enormous growth of nutraceutical in the market claiming for cure of different metabolic disorders. Among various bioactive compound fenugreek's diosgenin could took a leap over other in curing and preventing the damage caused by diabetes to different organs. The role of diosgenin in curing various metabolic disorders is quite popular from some time. This article also emphasizes over beneficiary effect of diosgenin in curing the damages caused by diabetes by altering cellular metabolism processes. Hence diosgenin could be a better way for researchers to develop a method for diabetes treatment.
Collapse
Affiliation(s)
- Prajya Arya
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Pradyuman Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| |
Collapse
|
21
|
Jingxuan L, Litian M, Yanyang T, Jianfang F. Knockdown of CLC-3 may improve cognitive impairment caused by diabetic encephalopathy. Diabetes Res Clin Pract 2022; 190:109970. [PMID: 35792204 DOI: 10.1016/j.diabres.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Diabetic encephalopathy(DE) is a neurological complication of diabetes, and its pathogenesis is unclear. Current studies indicate that insulin receptors and downstream signaling pathways play a key role in the occurrence and development of DE. Additionally, CLC-3, a member of the CLC family of anion channels and transporters, is closely related to the secretion and processing of insulin. Here, we investigated the changes and putative roles of CLC-3 in diabetic encephalopathy. RESULTS To this aim, we combined lentivirus and adeno-associated virus gene transfer to change the expression level of CLC-3 in the HT-22 hippocampal cell line and hippocampal CA1. We studied the role of CLC-3 in DE through the Morris water maze test.CLC-3 expression increased significantly in HT-22 cells cultured with high glucose and STZ-induced DE model hippocampus. Moreover, Insulin receptor(IR) and downstream PI3K/AKT/GSK3β signaling pathways were also dysfunctional. After knocking down CLC-3, impaired cell proliferation, apoptosis, IR and the downstream PI3K/AKT/GSK3β signaling pathways were significantly improved. However, when CLC-3 was overexpressed, the neurotoxicity induced by high glucose was further aggravated. Rescue experiments found that through the use of inhibitors such as GSK3β, the PI3K/AKT/GSK3β signaling pathways pathway changes with the use of inhibition, and the expression of related downstream signaling molecules such as Tau and p-Tau also changes accordingly. Using adeno-associated virus gene transfer to knock down CLC-3 in the hippocampal CA1 of the DE model, the IR caused by DE and the dysfunction of the downstream PI3K/AKT/GSK3β signaling pathway were significantly improved. In addition, the impaired spatial recognition of DE was partially restored. CONCLUSION Our study proposes that CLC-3, as a key molecule, may regulate insulin receptor signaling and downstream PI3K/AKT/GSK3β signaling pathways and affect the pathogenesis of diabetic encephalopathy.
Collapse
Affiliation(s)
- Lian Jingxuan
- Department of Endocrinology, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China
| | - Ma Litian
- Department of Gastroenterology, Tangdu Hospital, The Air Force Medical University, Xi'an 710038, China
| | - Tu Yanyang
- The Air Force Medical University, Xi'an 710032, China.
| | - Fu Jianfang
- Department of Endocrinology, Xijing Hospital, The Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
22
|
Das R, Khurana N, Sharma N. Development, optimization, and validation of Inflammatory Bowel Disease rat model using isotretinoin. Chem Biol Interact 2022; 363:110026. [PMID: 35752295 DOI: 10.1016/j.cbi.2022.110026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND and Purpose: Inflammatory Bowel Disease (IBD) is a persistent bio-psychological disorder with the absence of actual pathological reason. Association between IBD and isotretinoin has been reported by many human and in vitro studies. However, in this study, our focus is on finding the causal relationship between IBD and isotretinoin for the development of a new animal model. METHODS Twenty-eight Sprague Dawley rats were taken for this study and divided into five groups (i.e. Group 1: Normal control, Group 2: Standard IBD Model Group (Indomethacin treated), Group 3: Isotretinoin low dose (7 mg/kg), Group 4: Isotretinoin medium dose (35 mg/kg), Group 5: Isotretinoin high dose (70 mg/kg). The rats were treated according to assigned treatment and observed on different days to evaluate the severity of IBD with the help of symptomatical (nausea, diarrhea, stool consistency, etc.) activity, biochemical parameters, macroscopy, and histological analyses. KEY RESULTS During the entire study period, body weight, stool consistency and frequency of the animals had been observed daily. No significant reduction in body weight was observed between the disease induced and normal control animals; however, it was observed that the stool consistency of the animals became less (mucus in stool) day by day and stool frequency increased (frequent defecation) in the different isotretinoin groups compared to the control group. There was statistically significant increase in TBARS levels of isotretinoin low (p < 0.05), medium (p < 0.001) and high dose (p < 0.01) treated group was observed, as compared to control group. Similarly, statistically significant effects of isotretinoin on GSH level (p < 0.01), CAT activity (p < 0.01), and SOD (p < 0.01) were also observed. Increase in TNF-α levels found significantly higher in isotretinoin medium dose (35 mg/kg) treated group (p < 0.001) as compared with control group as well as standard IBD model group. All the three-isotretinoin treated groups (Isotretinoin low dose: p < 0.001; Isotretinoin medium dose: p < 0.001; Isotretinoin high dose: p < 0.001) depicted significant difference in macroscopic scores as compared with control group; these results are comparable with standard IBD model group. Histological analyses revealed that, among three-dose groups of isotretinoin, there was excessive amount of crypt abscesses, infiltration of inflammatory cells, and formation of ulceration observed in isotretinoin medium dose treated group. CONCLUSION As standard indomethacin treated group, isotretinoin also caused significant damage to intestinal mucosa, and form ulceration in gastrointestinal tract. Compared to control group, isotretinoin significantly worsens the disease condition, which were comparable to the indomethacin-treated group; however, isotretinoin at the dose of 35 mg/kg caused maximum severe damage to the intestinal mucosa.
Collapse
Affiliation(s)
- Ranit Das
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
23
|
Tan B, Wu X, Yu J, Chen Z. The Role of Saponins in the Treatment of Neuropathic Pain. Molecules 2022; 27:molecules27123956. [PMID: 35745079 PMCID: PMC9227328 DOI: 10.3390/molecules27123956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a chronic pain caused by tissue injury or disease involving the somatosensory nervous system, which seriously affects the patient's body function and quality of life. At present, most clinical medications for the treatment of neuropathic pain, including antidepressants, antiepileptic drugs, or analgesics, often have limited efficacy and non-negligible side effects. As a bioactive and therapeutic component extracted from Chinese herbal medicine, the role of the effective compounds in the prevention and treatment of neuropathic pain have gradually become a research focus to explore new analgesics. Notably, saponins have shown analgesic effects in a large number of animal models. In this review, we summarized the most updated information of saponins, related to their analgesic effects in neuropathic pain, and the recent progress on the research of therapeutic targets and the potential mechanisms. Furthermore, we put up with some perspectives on future investigation to reveal the precise role of saponins in neuropathic pain.
Collapse
Affiliation(s)
- Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Xueqing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (B.T.); (X.W.); (J.Y.)
- Correspondence: ; Tel.: +86-571-88208228
| |
Collapse
|
24
|
Paeonol exerts neuroprotective and anticonvulsant effects in intrahippocampal kainate model of temporal lobe epilepsy. J Chem Neuroanat 2022; 124:102121. [PMID: 35718291 DOI: 10.1016/j.jchemneu.2022.102121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023]
Abstract
Temporal lobe epilepsy (TLE) is presented the most common form of focal epilepsy with involvement of oxidative stress and neuroinflammation as important factors in its development. About one third of epileptic patients are intractable to currently available medications. Paeonol isolated from some herbs with traditional and medicinal uses has shown anti-oxidative and anti-inflammatory effects in different models of neurological disorders. In this research, we tried to evaluate the possible protective effect of paeonol in intrahippocampal kainate murine model of TLE. To induce TLE, kainate was microinjected into CA3 area of the hippocampus and paeonol was administered at two doses of 30 or 50mg/kg. The results of this study showed that paeonol at the higher dose significantly reduces incidence of status epilepticus, hippocampal aberrant mossy fiber sprouting and also preserves neuronal density. Beneficial protective effect of paeonol was in parallel with partial reversal of some hippocampal oxidative stress markers (reactive oxygen species and malondialdehyde), caspase 1, glial fibrillary acidic protein, heme oxygenase 1, DNA fragmentation, and inflammation-associated factors (nuclear factor-kappa B, toll-like receptor 4, and tumor necrosis factor α). Our obtained data indicated anticonvulsant and neuroprotective effects of paeonol which is somewhat attributed to its anti-oxidative and anti-inflammation properties besides its attenuation of apoptosis, pyroptosis, and astrocyte activity.
Collapse
|
25
|
Tang L, Fan M, Pan Z, Cheng Q, Feng L, Wu H, Zhou H. Efficient Alcoholysis of Saponins from Dioscorea zingiberensis by Solid Acids Derived from Diethylenetriamine. Catal Letters 2022. [DOI: 10.1007/s10562-022-04058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Khan H, Nazir S, Farooq RK, Khan IN, Javed A. Fabrication and Assessment of Diosgenin Encapsulated Stearic Acid Solid Lipid Nanoparticles for Its Anticancer and Antidepressant Effects Using in vitro and in vivo Models. Front Neurosci 2022; 15:806713. [PMID: 35221890 PMCID: PMC8866708 DOI: 10.3389/fnins.2021.806713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory cascade plays a pivotal role in the onset and progression of major depressive disorder (MDD) and glioblastoma multiforme (GBM). Therefore, questing natural compounds with anti-inflammatory activity such as diosgenin can act as a double-edged sword targeting cancer and cancer-induced inflammation simultaneously. The blood–brain barrier limits the therapeutic efficiency of the drugs against intracranial pathologies including depression and brain cancers. Encapsulating a drug molecule in lipid nanoparticles can overcome this obstacle. The current study has thus investigated the anticancer and antidepressant effect of Tween 80 (P80) coated stearic acid solid lipid nanoparticles (SLNPs) encapsulating the diosgenin. Physio-chemical characterizations of SLNPs were performed to assess their stability, monodispersity, and entrapment efficiency. In vitro cytotoxic analysis of naked and drug encapsulated SLNPs on U-87 cell line indicated diosgenin IC50 value to be 194.4 μM, while diosgenin encapsulation in nanoparticles slightly decreases the toxicity. Antidepressant effects of encapsulated and non-encapsulated diosgenin were comprehensively evaluated in the concanavalin-A–induced sickness behavior mouse model. Behavior test results indicate that diosgenin and diosgenin encapsulated nanoparticles significantly alleviated anxiety-like and depressive behavior. Diosgenin incorporated SLNPs also improved grooming behavior and social interaction as well as showed normal levels of neutrophils and leukocytes with no toxicity indication. In conclusion, diosgenin and diosgenin encapsulated solid lipid nanoparticles proved successful in decreasing in vitro cancer cell proliferation and improving sickness behavioral phenotype and thus merit further exploration.
Collapse
Affiliation(s)
- Hina Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Nazir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ishaq N. Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Aneela Javed,
| |
Collapse
|
27
|
Passos FRS, Araújo-Filho HG, Monteiro BS, Shanmugam S, Araújo AADS, Almeida JRGDS, Thangaraj P, Júnior LJQ, Quintans JDSS. Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: A review of pre-clinical research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153842. [PMID: 34952766 DOI: 10.1016/j.phymed.2021.153842] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Saponins are glycosides which, after acid hydrolysis, liberate sugar(s) and an aglycone (sapogenin) which can be triterpenoid or steroidal in nature. Steroidal saponins and sapogenins have attracted significant attention as important natural anti-inflammatory compounds capable of acting on the activity of several inflammatory cytokines in various inflammatory models. PURPOSE The aim of this review is to collect preclinical in vivo studies on the anti-inflammatory activity of steroidal saponins through the modulation of inflammatory cytokines. STUDY DESIGN AND METHODS This review was carried out through a specialized search in three databases, that were accessed between September and October, 2021, and the publication period of the articles was not limited. Information about the name of the steroidal saponins, the animals used, the dose and route of administration, the model of pain or inflammation used, the tissue and experimental method used in the measurement of the cytokines, and the results observed on the levels of cytokines was retrieved. RESULTS Forty-five (45) articles met the inclusion criteria, involving the saponins cantalasaponin-1, α-chaconine, dioscin, DT-13, lycoperoside H, protodioscin, α-solanine, timosaponin AIII and BII, trillin, and the sapogenins diosgenin, hecogenin, and ruscogenin. The surveys were carried out in seven different countries and only articles between 2007 and 2021 were found. The studies included in the review showed that the saponins and sapogenins were anti-inflammatory, antinociceptive and antioxidant and they modulate inflammatory cytokines mainly through the Nf-κB, TLR4 and MAPKs pathways. CONCLUSION Steroidal saponins and sapogenins are promising compounds in handling of pain and inflammation for the development of natural product-derived drugs. However, it is necessary to increase the methodological quality of preclinical studies, mainly blinding and sample size calculation.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Heitor Gomes Araújo-Filho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | - Lucindo José Quintans Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil
| | - Jullyana de Souza Siqueira Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory of Neurosciences and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, São Cristóvão, Brazil.
| |
Collapse
|
28
|
Ma L, Zhang C, Wu L, Qin L, Liu T. Diosgenin reduces phosphodiesterase 3B (PDE3B) through AMP-activated protein kinase/ mechanistic target of rapamycin (AMPK/mTOR) signaling pathway to ameliorate streptozotocin-induced pancreatic β-cell apoptosis and dysfunction. Bioengineered 2022; 13:2217-2225. [PMID: 35030973 PMCID: PMC8973619 DOI: 10.1080/21655979.2021.2023996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Diabetes mellitus is a metabolic disease caused by defective insulin secretion and/or insulin action. And insulin is the main hormone released by the pancreatic β-cells. Diosgenin (DG) is a phytochemical with pharmacological activity that increases insulin secretion in streptozotocin (STZ)-induced pancreatic β-cells of diabetic rats. In this paper, we investigated the effect and mechanism of DG on cell apoptosis and dysfunction in STZ-induced pancreatic β-cells. Cell viability was detected by CCK-8, apoptosis by flow cytometry, and apoptosis-related protein expression by Western blot. Western blot and RT-qPCR were performed to detect the expression of related genes. The results showed that in STZ-induced INS-1 cells, DG could improve cell viability, inhibit apoptosis, attenuate oxidative stress levels and increase insulin secretion. Notably, PDE3B was highly expressed in STZ-induced INS-1 cells, while DG could significantly inhibit PDE3B expression in a dose-dependent manner. More importantly, overexpression PDE3B remarkably reversed the effect of DG on STZ-induced INS-1 cells. It is thus clear that DG might inhibit STZ-treated pancreatic β-cell apoptosis and reduce dysfunction via downregulating PDE3B, which provided a more reliable theoretical basis for the treatment of diabetes mellitus with DG.
Collapse
Affiliation(s)
- Lijie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China.,School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, P.R. China
| | - Chengfei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Lili Wu
- Key Laboratory of Tcm Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Tonghua Liu
- Key Laboratory of Tcm Health Cultivation of Beijing, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
29
|
Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, Mitra S, Emran TB, Sharifi-Rad J, Calina D, Cho WC. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1035441. [PMID: 35677108 PMCID: PMC9168095 DOI: 10.1155/2022/1035441] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Plants including Rhizoma polgonati, Smilax china, and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.
Collapse
Affiliation(s)
- Prabhakar Semwal
- 1Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Sakshi Painuli
- 1Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Tareq Abu-Izneid
- 2Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain 64141, UAE
| | - Abdur Rauf
- 3Department of Chemistry, University of Swabi, Swabi, Anbar-23561, K.P .K, Pakistan
| | - Anshu Sharma
- 4Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230, India
| | - Sevgi Durna Daştan
- 5Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- 6Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Manoj Kumar
- 7Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- 8Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yasaman Taheri
- 9Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajib Das
- 10Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- 10Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- 11Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- 12Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Javad Sharifi-Rad
- 9Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- 13Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Daniela Calina
- 14Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 15Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
30
|
Mironov ME, Borisov SA, Rybalova TV, Baev DS, Tolstikova TG, Shults EE. Synthesis of Anti-Inflammatory Spirostene-Pyrazole Conjugates by a Consecutive Multicomponent Reaction of Diosgenin with Oxalyl Chloride, Arylalkynes and Hydrazines or Hydrazones. Molecules 2021; 27:molecules27010162. [PMID: 35011399 PMCID: PMC8746855 DOI: 10.3390/molecules27010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid sapogenin diosgenin is of significant interest due to its biological activity and synthetic application. A consecutive one-pot reaction of diosgenin, oxalyl chloride, arylacetylenes, and phenylhydrazine give rise to steroidal 1,3,5-trisubstituted pyrazoles (isolated yield 46–60%) when the Stephens–Castro reaction and heterocyclization steps were carried out by heating in benzene. When the cyclization step of alkyndione with phenylhydrazine was performed in 2-methoxyethanol at room temperature, steroidal α,β-alkynyl (E)- and (Z)-hydrazones were isolated along with 1,3,5-trisubstituted pyrazole and the isomeric 2,3,5-trisubstituted pyrazole. The consecutive reaction of diosgenin, oxalyl chloride, phenylacetylene and benzoic acid hydrazides efficiently forms steroidal 1-benzoyl-5-hydroxy-3-phenylpyrazolines. The structure of new compounds was unambiguously corroborated by comprehensive NMR spectroscopy, mass-spectrometry, and X-ray structure analyses. Performing the heterocyclization step of ynedione with hydrazine monohydrate in 2-methoxyethanol allowed the synthesis of 5-phenyl substituted steroidal pyrazole, which was found to exhibit high anti-inflammatory activity, comparable to that of diclofenac sodium, a commercial pain reliever. It was shown by molecular docking that the new derivatives are incorporated into the binding site of the protein Keap1 Kelch-domain by their alkynylhydrazone or pyrazole substituent with the formation of more non-covalent bonds and have higher affinity than the initial spirostene core.
Collapse
Affiliation(s)
- Maksim E. Mironov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Department of Natural Sciences, Novosibirsk State University, Piragova Str., 1, 630090 Novosibirsk, Russia
| | - Sergey A. Borisov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Tatyana V. Rybalova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Dmitry S. Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Tatyana G. Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Department of Natural Sciences, Novosibirsk State University, Piragova Str., 1, 630090 Novosibirsk, Russia
| | - Elvira E. Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Correspondence: ; Tel.: +7-(383)-3308-533
| |
Collapse
|
31
|
Mahmoudi N, Kiasalari Z, Rahmani T, Sanaierad A, Afshin-Majd S, Naderi G, Baluchnejadmojarad T, Roghani M. Diosgenin Attenuates Cognitive Impairment in Streptozotocin-Induced Diabetic Rats: Underlying Mechanisms. Neuropsychobiology 2021; 80:25-35. [PMID: 32526752 DOI: 10.1159/000507398] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 03/19/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Prolonged diabetes mellitus causes impairments of cognition and attentional dysfunctions. Diosgenin belongs to a group of steroidal saponins with reported anti-diabetic and numerous protective properties. This research aimed to assess the effect of diosgenin on beneficially ameliorating learning and memory decline in a rat model of type 1 diabetes caused by streptozotocin (STZ) and to explore its modes of action including involvement in oxidative stress and inflammation. METHODS Rats were assigned to one of four experimental groups, comprising control, control under treatment with diosgenin, diabetic, and diabetic under treatment with diosgenin. Diosgenin was given daily p.o. (40 mg/kg) for 5 weeks. RESULTS The administration of diosgenin to the diabetic group reduced the deficits of functional performance in behavioral tests, consisting of Y-maze, passive avoidance, radial arm maze, and novel object discrimination tasks (recognitive). Furthermore, diosgenin treatment attenuated hippocampal acetylcholinesterase activity and malon-dialdehyde, along with improvement of antioxidants such as superoxide dismutase and glutathione. Meanwhile, the hippocampal levels of inflammatory indicators, namely interleukin 6, nuclear factor-κB, toll-like receptor 4, tumor necrosis factor α, and astrocyte-specific biomarker glial fibrillary acidic protein, were lower and, on the other hand, tissue levels of nuclear factor (erythroid-derived 2)-related factor 2 were elevated upon diosgenin administration. Besides, the mushroom-like spines of the pyramidal neurons of the hippocampal CA1 area decreased in the diabetic group, and this was alleviated following diosgenin medication. CONCLUSIONS Taken together, diosgenin is capable of ameliorating cognitive deficits in STZ-diabetic animals, partly due to its amelioration of oxidative stress, inflammation, astrogliosis, and possibly improvement of cholinergic function in addition to its neuroprotective potential.
Collapse
Affiliation(s)
- Narges Mahmoudi
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Tayebeh Rahmani
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | - Ashkan Sanaierad
- Department of Physiology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Gholamali Naderi
- Department of Biochemistry, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran,
| |
Collapse
|
32
|
Ren C, Zhou X, Bao X, Zhang J, Tang J, Zhu Z, Zhang N, Bai Y, Xi Y, Zhang Q, Ma B. Dioscorea zingiberensis ameliorates diabetic nephropathy by inhibiting NLRP3 inflammasome and curbing the expression of p66Shc in high-fat diet/streptozotocin-induced diabetic mice. J Pharm Pharmacol 2021; 73:1218-1229. [PMID: 34061184 DOI: 10.1093/jpp/rgab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a severe diabetic complication. Dioscorea zingiberensis (DZ) possesses excellent pharmacological properties with lower toxicity. The purpose of this study was to investigate the efficacy and mechanism of DZ in DN. METHODS DN was established by the high-fat diet combining intraperitoneal injection of streptozotocin in mice. The DZ (125 and 250 mg/kg/day) were intragastrical administered for 8 consecutive weeks. After treatment, blood, urine and kidney tissue were collected for biological detection, renal morphology, fibrosis and molecular mechanism research, respectively. KEY FINDINGS This study has shown that DZ significantly ameliorated kidney hypertrophy, renal structural damage and abnormal function of the kidney indicators (creatinine, urinary protein and blood urea nitrogen). Further molecular mechanism data suggested that the NLRP3/Cleaved-caspase-1 signal pathway was remarkably activated in DN, and DZ treatment reversed these changes, which indicated that it effectively attenuated inflammatory response caused by hyperglycaemia. In addition, DN inhibits hyperglycaemia-induced activation of oxidative stress by suppressing the expression of p66Shc proteins. CONCLUSIONS DZ could efficiently suppress oxidative stress and inflammatory responses to postpone the development of DN, and its mechanism might be related to inhibition of NLRP3 and p66Shc activities. Thus, DZ could be developed into a new therapeutic agent for DN.
Collapse
Affiliation(s)
- Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowei Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Tang
- Jiangsu Huanghe Pharmaceutical Co., Ltd, Yancheng, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
- School of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yu Bai
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Youli Xi
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
33
|
Shahrajabian MH, Sun W, Marmitt DJ, Cheng Q. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diosgenin is an isospirostane derivative, which is a steroidal sapogenin and the product of acids or enzymes hydrolysis process of dioscin and protodioscin. Galactomannans are heteropolysaccharides composed of D-mannose and D-galactose, which are major sources of locust bean, guar, tara and fenugreek.
Methods
Literature survey was accomplished using multiple databases including PubMed, Science Direct, ISI web of knowledge and Google Scholar.
Results
Four major sources of seed galactomannans are locust bean (Ceratonia siliqua), guar (Cyamopsis tetragonoloba), tara (Caesalpinia spinosa Kuntze), and fenugreek (T.foenum-graecum). Diosgenin has effect on immune system, lipid system, inflammatory and reproductive systems, caner, metabolic process, blood system, blood glucose and calcium regulation. The most important pharmacological benefits of galactomannan are antidiabetic, antioxidant, anticancer, anticholinesterase, antiviral activities, and appropriate for dengue virus and gastric diseases.
Conclusions
Considering the importance of diosgenin and galactomannans, the obtained findings suggest potential of diosgenin and galactomannans as natural products in pharmaceutical industries.
Collapse
|
34
|
Nazıroğlu M, Öz A, Yıldızhan K. Selenium and Neurological Diseases: Focus on Peripheral Pain and TRP Channels. Curr Neuropharmacol 2021; 18:501-517. [PMID: 31903884 PMCID: PMC7457405 DOI: 10.2174/1570159x18666200106152631] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 01/04/2020] [Indexed: 12/18/2022] Open
Abstract
Pain is a complex physiological process that includes many components. Growing evidence supports the idea that oxidative stress and Ca2+ signaling pathways participate in pain detection by neurons. The main source of endogenous reactive oxygen species (ROS) is mitochondrial dysfunction induced by membrane depolarization, which is in turn caused by Ca2+ influx into the cytosol of neurons. ROS are controlled by antioxidants, including selenium. Selenium plays an important role in the nervous system, including the brain, where it acts as a cofactor for glutathione peroxidase and is incorporated into selenoproteins involved in antioxidant defenses. It has neuroprotective effects through modulation of excessive ROS production, inflammation, and Ca2+ overload in several diseases, including inflammatory pain, hypersensitivity, allodynia, diabetic neuropathic pain, and nociceptive pain. Ca2+ entry across membranes is mediated by different channels, including transient receptor potential (TRP) channels, some of which (e.g., TRPA1, TRPM2, TRPV1, and TRPV4) can be activated by oxidative stress and have a role in the induction of peripheral pain. The results of recent studies indicate the modulator roles of selenium in peripheral pain through inhibition of TRP channels in the dorsal root ganglia of experimental animals. This review summarizes the protective role of selenium in TRP channel regulation, Ca2+ signaling, apoptosis, and mitochondrial oxidative stress in peripheral pain induction.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analysis and Innovation Ltd. Inc. Teknokent, Isparta, Turkey
| | - Ahmi Öz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Kenan Yıldızhan
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
35
|
Antihypernociceptive and Neuroprotective Effects of the Aqueous and Methanol Stem-Bark Extracts of Nauclea pobeguinii (Rubiaceae) on STZ-Induced Diabetic Neuropathic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6637584. [PMID: 33603820 PMCID: PMC7872765 DOI: 10.1155/2021/6637584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The greatest common and devastating complication of diabetes is painful neuropathy that can cause hyperalgesia and allodynia. It can disturb psychosocial functioning by increasing levels of anxiety and depression. This work was designed to evaluate the antihyperalgesic, antidepressant, and anxiolytic-like effects of the aqueous and methanol extracts of Nauclea pobeguinii stem-bark in diabetic neuropathy induced by streptozotocin in mice. Diabetic neuropathy was induced in mice by the intraperitoneal administration of 200 mg/kg streptozotocin (STZ) to provoke hyperglycemia. Nauclea pobeguinii aqueous and methanol extracts at the doses of 150 and 300 mg/kg were administered by oral route, and their effects were evaluated on antihyperalgesic activity (Von Frey filaments, hot plate, acetone, and formalin tests), blood glucose levels, body weight, serum, sciatic nerve proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and sciatic nerve growth factor (IGF and NGF) rates, depression (open field test, forced swimming test, tail suspension test), and anxiety (elevated plus maze, light-dark box test, social interaction). Oral administration of Nauclea pobeguinii stem-bark aqueous and methanol extracts (150 and 300 mg/kg) produced antihyperalgesic, antidepressant, and anxiolytic-like effects in STZ-induced diabetic neuropathic mice. Extracts also triggered a decrease in glycaemia and increased body weight in treated animals. They also significantly (p <0.001) reduced tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 and significantly (p <0.001) increased nerve growth factor (NGF) and insulin-like growth factor (IGF) in sciatic nerves. The results of this study confirmed that Nauclea pobeguinii aqueous and methanol extracts possess antihyperalgesic, antidepressant, and anxiolytic activities and could be beneficial therapeutic agents.
Collapse
|
36
|
Khan A, Khan A, Khalid S, Shal B, Kang E, Lee H, Laumet G, Seo EK, Khan S. 7β-(3-Ethyl- cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro- Z Notonipetranone Attenuates Neuropathic Pain by Suppressing Oxidative Stress, Inflammatory and Pro-Apoptotic Protein Expressions. Molecules 2021; 26:E181. [PMID: 33401491 PMCID: PMC7795484 DOI: 10.3390/molecules26010181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid obtained from a natural source has proved to be effective in minimizing various side effects associated with opioids and nonsteroidal anti-inflammatory drugs. The current study focused on investigating the effects of ECN on neuropathic pain induced by partial sciatic nerve ligation (PSNL) by mainly focusing on oxidative stress, inflammatory and apoptotic proteins expression in mice. ECN (1 and 10 mg/kg, i.p.), was administered once daily for 11 days, starting from the third day after surgery. ECN post-treatment was found to reduce hyperalgesia and allodynia in a dose-dependent manner. ECN remarkably reversed the histopathological abnormalities associated with oxidative stress, apoptosis and inflammation. Furthermore, ECN prevented the suppression of antioxidants (glutathione, glutathione-S-transferase, catalase, superoxide dismutase, NF-E2-related factor-2 (Nrf2), hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase) by PSNL. Moreover, pro-inflammatory cytokines (tumor necrotic factor-alpha, interleukin 1 beta, interleukin 6, cyclooxygenase-2 and inducible nitric oxide synthase) expression was reduced by ECN administration. Treatment with ECN was successful in reducing the caspase-3 level consistent with the observed modulation of pro-apoptotic proteins. Additionally, ECN showed a protective effect on the lipid content of myelin sheath as evident from FTIR spectroscopy which showed the shift of lipid component bands to higher values. Thus, the anti-neuropathic potential of ECN might be due to the inhibition of oxidative stress, inflammatory mediators and pro-apoptotic proteins.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Eunwoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Hwaryeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| |
Collapse
|
37
|
Chang X, Zhang W, Zhao Z, Ma C, Zhang T, Meng Q, Yan P, Zhang L, Zhao Y. Regulation of Mitochondrial Quality Control by Natural Drugs in the Treatment of Cardiovascular Diseases: Potential and Advantages. Front Cell Dev Biol 2020; 8:616139. [PMID: 33425924 PMCID: PMC7793684 DOI: 10.3389/fcell.2020.616139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double-membraned cellular organelles that provide the required energy and metabolic intermediates to cardiomyocytes. Mitochondrial respiratory chain defects, structure abnormalities, and DNA mutations can affect the normal function of cardiomyocytes, causing an imbalance in intracellular calcium ion homeostasis, production of reactive oxygen species, and apoptosis. Mitochondrial quality control (MQC) is an important process that maintains mitochondrial homeostasis in cardiomyocytes and involves multi-level regulatory mechanisms, such as mitophagy, mitochondrial fission and fusion, mitochondrial energy metabolism, mitochondrial antioxidant system, and mitochondrial respiratory chain. Furthermore, MQC plays a role in the pathological mechanisms of various cardiovascular diseases (CVDs). In recent years, the regulatory effects of natural plants, drugs, and active ingredients on MQC in the context of CVDs have received significant attention. Effective active ingredients in natural drugs can influence the production of energy-supplying substances in the mitochondria, interfere with the expression of genes associated with mitochondrial energy requirements, and regulate various mechanisms of MQC modulation. Thus, these ingredients have therapeutic effects against CVDs. This review provides useful information about novel treatment options for CVDs and development of novel drugs targeting MQC.
Collapse
Affiliation(s)
- Xing Chang
- China Academy of Chinese Medical Sciences, Beijing, China.,Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenjin Zhang
- China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhenyu Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Meng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuping Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Cong S, Tong Q, Peng Q, Shen T, Zhu X, Xu Y, Qi S. In vitro anti‑bacterial activity of diosgenin on Porphyromonas gingivalis and Prevotella intermedia. Mol Med Rep 2020; 22:5392-5398. [PMID: 33174005 PMCID: PMC7647021 DOI: 10.3892/mmr.2020.11620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Diosgenin (Dios), a natural steroidal sapogenin, is a bioactive compound extracted from dietary fenugreek seeds. It has a wide range of applications, exhibiting anti-oxidant, anti-inflammatory and anti-cancer activities. However, whether the extracts have beneficial effects on periodontal pathogens has so far remained elusive. The aim of the present study was to investigate the anti-bacterial effects of Dios on Porphyromonas gingivalis (P. gingivalis) and Prevotella intermedia (P. intermedia) in vitro. The anti-microbial effect of Dios on P. gingivalis and P. intermedia was assessed by a direct contact test (DCT) and the Cell Counting Kit (CCK)-8 assay at 60, 90 and 120 min. In addition, counting of colony-forming units (CFU) and live/dead cell staining were used to evaluate the anti-bacterial effects. The results of the DCT and CCK-8 assays indicated that Dios had beneficial dose-dependent inhibitory effects on P. gingivalis and P. intermedia. The CFU counting results also indicated that Dios had dose-dependent anti-bacterial effects on P. gingivalis and P. intermedia. Of note, Dios had significant anti-bacterial effects on the biofilms of P. gingivalis and P. intermedia in vitro as visualized by the live/dead cell staining method. In conclusion, the present results demonstrated that Dios had a marked anti-bacterial activity against P. gingivalis and P. intermedia in vitro, both in suspension and on biofilms. The present study highlighted the potential applications of Dios as a novel natural agent to prevent and treat periodontitis through its anti-bacterial effects.
Collapse
Affiliation(s)
- Shaohua Cong
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Qingchun Tong
- Department of Stomatology, Jiading Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201800, P.R. China
| | - Qian Peng
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Tao Shen
- School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xueqin Zhu
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Shengcai Qi
- Department of Stomatology, Shanghai 10th People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
39
|
Zhao Z, Xiao Q, Tchivelekete GM, Reilly J, Jiang H, Shu X. Quantification of computational fluid dynamics simulation assists the evaluation of protection by Gypenosides in a zebrafish pain model. Physiol Behav 2020; 229:113223. [PMID: 33127465 DOI: 10.1016/j.physbeh.2020.113223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/02/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
In recent years, due to its rapid reproduction rate and the similarity of its genetic structure to that of human, the zebrafish has been widely used as a pain model to study chemical influences on behavior. Swimming behaviors are mediated by motoneurons in the spinal cord that drive muscle contractions, therefore a knowledge of internal muscle mechanics can assist the understanding of the effects of drugs on swimming activity. To demonstrate that the technique used in our study can supplement biological observations by quantifying the contribution of muscle effects to altered swimming behaviours, we have evaluated the pain/damage caused by 0.1% acetic acid to the muscle of 5 dpf zebrafish larvae and the effect of protection from this pain/damage with the saponin Gypenosides (GYP) extracted from Gynostemma pentaphyllum. We have quantified the parameters related to muscle such as muscle power and the resultant hydrodynamic force, proving that GYP could alleviate the detrimental effect of acetic acid on zebrafish larvae, in the form of alleviation from swimming debility, and that the muscle status could be quantified to represent the degree of muscle damage due to the acetic acid and the recovery due to GYP. We have also linked the behavioral changes to alteration of antioxidant and inflammation gene expression. The above results provide novel insights into the reasons for pain-related behavioral changes in fish larvae, especially from an internal muscle perspective, and have quantified these changes to help understand the protection of swimming behaviors and internal muscle by GYP from acetic acid-induced damage.
Collapse
Affiliation(s)
- Zhenkai Zhao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK
| | - Qing Xiao
- Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK.
| | - Gabriel Mbuta Tchivelekete
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Huirong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow G4 0RE, United Kingdom
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P. R. China.
| |
Collapse
|
40
|
Huang LJ, Jia SS, Sun XH, Li XY, Wang FF, Li W, Jin QS. Baicalin relieves neuropathic pain by regulating α 2-adrenoceptor levels in rats following spinal nerve injury. Exp Ther Med 2020; 20:2684-2690. [PMID: 32765762 PMCID: PMC7401858 DOI: 10.3892/etm.2020.9019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/02/2019] [Indexed: 11/06/2022] Open
Abstract
In the present study, the ability of baicalin to relieve neuropathic pain due to spinal nerve ligation in rats was explored, and the relationship between baicalin and α2-adrenoceptors (α2-AR) was determined. The neuropathic pain model was established by ligating the L5-L6 spinal nerves in Sprague-Dawley rats. Several α2-AR antagonists were injected into the intramedullary sheath to evaluate the role of baicalin in neuropathic pain. The antagonists included nonselective α2-AR antagonist idazoxan, α2a-AR antagonist BRL 44408, α2b-AR antagonist ARC 239 and α2c-AR antagonist JP 1302. The rats were divided into an untreated control group, saline group, baicalin group and baicalin + α2-AR antagonist groups. Paw withdrawal threshold (PWT) was tested to assess the level of pain felt by the rats. The levels of α2-AR mRNA were tested by reverse transcription-quantitative PCR. Inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-17 and IL-1β, were analyzed by ELISA. The histopathological changes were assessed by hematoxylin and eosin staining. Flow cytometry was used to examine the percentage of CD4+ peripheral blood mononuclear cells (PBMCs). Compared with the saline group, the PWT value increased after treating with baicalin. However, intrathecal injection of α2-AR antagonist reversed the antinociceptive effects of baicalin. Compared with the saline group, the expression of α2a-AR and α2c-AR mRNA was upregulated significantly in the baicalin group (P<0.05). Levels of α2-AR mRNA were also decreased in the baicalin + idazoxan group compared with the baicalin group (P<0.05). The levels of TNF-α, IL-6, IL-17 and IL-1β were raised after treatment with baicalin. In addition, baicalin treatment ameliorated the histological damage in the spinal cord. The percentage of CD4+ PBMCs was increased in the saline group compared with the control group (P<0.05). Compared with the baicalin group, the percentage of CD4+ PBMCs was raised after treatment with the α2-AR antagonists. In conclusion, intrathecal injection of baicalin produced an antiallodynic effect in a spinal nerve ligation-induced neuropathic pain model. The mechanism may be related to the regulation of a2-AR expression.
Collapse
Affiliation(s)
- Lan-Ji Huang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Shu-Shan Jia
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Xue-Hua Sun
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Xin-You Li
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Fei-Fei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Wei Li
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Qing-Song Jin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
41
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
42
|
Beneficial effects of ferulic acid alone and in combination with insulin in streptozotocin induced diabetic neuropathy in Sprague Dawley rats. Life Sci 2020; 255:117856. [DOI: 10.1016/j.lfs.2020.117856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
|
43
|
Leng J, Li X, Tian H, Liu C, Guo Y, Zhang S, Chu Y, Li J, Wang Y, Zhang L. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/HO-1 pathway. BMC Complement Med Ther 2020; 20:126. [PMID: 32336289 PMCID: PMC7184706 DOI: 10.1186/s12906-020-02930-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/16/2020] [Indexed: 12/04/2022] Open
Abstract
Background Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes. Diosgenin is a natural steroidal saponin with a variety of beneficial effects, including antidiabetic effects, and is a raw material for the synthesis of carrier hormones. In our study, we aimed to assess the antioxidant effects of diosgenin in diabetic mice. Methods Male C57 mice were fed a high-fat diet for 8 weeks and intraperitoneally injected with streptozotocin (STZ) at a dose of 100 mg/kg for 2 consecutive days. Eligible mice were divided into the normal control group (CON), diabetic group (DM), low-dose diosgenin (50 mg/kg) group (DIO50) and high-dose diosgenin (100 mg/kg) group (DIO100). Treatment was started 6 weeks after the induction of diabetes by STZ and continued for 8 weeks. Blood sugar and body weight were monitored dynamically. The behavioural effects of diosgenin were detected by a hot tail immersion test and paw tactile responses. HE staining was used to evaluate edema and degeneration of the sciatic nerve. The levels of SOD, MDA and GPx were tested according to the instructions of the respective kits. The levels of Nrf2, HO-1 and NQO1 were detected by immunofluorescence and Western blotting. Statistical analysis was performed using SPSS, and P < 0.05 was considered statistically significant. Results Diosgenin decreased the blood glucose levels and increased the body weight of diabetic mice. There was a significant increase in the tail withdrawal latency of diabetic animals, and mechanical hyperalgesia was significantly alleviated after diosgenin treatment. Histopathological micrographs of HE-stained sciatic nerves showed improvement after diosgenin treatment. Diosgenin attenuated the level of MDA but increased the activities of SOD and GPx. Diosgenin increased the expression of Nrf2, HO-1 and NQO1. Conclusions Our results demonstrate that diosgenin can ameliorate behavioural and morphological changes in DPN by reducing oxidative stress. The Nrf2/HO-1 signalling pathway was involved in its neuroprotective effects.
Collapse
Affiliation(s)
- Jinhong Leng
- Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Xiaohua Li
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - He Tian
- Department of Histology and Embryology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| | - Chang Liu
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China.
| | - Yining Guo
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Su Zhang
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Yang Chu
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Jian Li
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Ying Wang
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| | - Ling Zhang
- Department of Traditional Chinese Medicine Clinical Endocrinology, Liaoning University of Traditional Chinese Medicine Graduate School, Shenyang, 110847, Liaoning, China
| |
Collapse
|
44
|
Gan Q, Wang J, Hu J, Lou G, Xiong H, Peng C, Zheng S, Huang Q. The role of diosgenin in diabetes and diabetic complications. J Steroid Biochem Mol Biol 2020; 198:105575. [PMID: 31899316 DOI: 10.1016/j.jsbmb.2019.105575] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus is a chronic and common metabolic disease that seriously endangers human health. Hyperglycemia and long-term metabolic disorders in diabetes will cause damage to the whole body tissues and organs, resulting in serious complications. Nowadays, drugs for treating diabetes on the market has strong side effects, new treatments thus are urgently needed. Natural therapy of natural ingredients is a promising avenue, this is because natural ingredients are safer and they also show strong activity in the treatment of diabetes. Diosgenin is such a very biologically active natural steroidal sapogenin. The research of diosgenin in the treatment of diabetes and its complications has been widely reported. This article reviews the effects of diosgenin through multiple targets and multiple pathways in diabetes and its complications which including diabetic nephropathy, diabetic liver disease, diabetic neuropathy, diabetic vascular disease, diabetic cardiomyopathy, diabetic reproductive dysfunction, and diabetic eye disease.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Guanhua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Haijun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Chengyi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Song Zheng
- Sichuan Kaimei Chinese Medicine Co., Ltd, No.155, Section 1, Fuxing Road, Longmatan District, Luzhou, 646000, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
45
|
Cai B, Zhang Y, Wang Z, Xu D, Jia Y, Guan Y, Liao A, Liu G, Chun C, Li J. Therapeutic Potential of Diosgenin and Its Major Derivatives against Neurological Diseases: Recent Advances. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3153082. [PMID: 32215172 PMCID: PMC7079249 DOI: 10.1155/2020/3153082] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Diosgenin (DG), a well-known steroidal sapogenin, is present abundantly in medicinal herbs such as Dioscorea rhizome, Dioscorea villosa, Trigonella foenum-graecum, Smilax China, and Rhizoma polgonati. DG is utilized as a major starting material for the production of steroidal drugs in the pharmaceutical industry. Due to its wide range of pharmacological activities and medicinal properties, it has been used in the treatment of cancers, hyperlipidemia, inflammation, and infections. Numerous studies have reported that DG is useful in the prevention and treatment of neurological diseases. Its therapeutic mechanisms are based on the mediation of different signaling pathways, and targeting these pathways might lead to the development of effective therapeutic agents for neurological diseases. The present review mainly summarizes recent progress using DG and its derivatives as therapeutic agents for multiple neurological disorders along with their various mechanisms in the central nervous system. In particular, those related to therapeutic efficacy for Parkinson's disease, Alzheimer's disease, brain injury, neuroinflammation, and ischemia are discussed. This review article also critically evaluates existing limitations associated with the solubility and bioavailability of DG and discusses imperatives for translational clinical research. It briefly recapitulates recent advances in structural modification and novel formulations to increase the therapeutic efficacy and brain levels of DG. In the present review, databases of PubMed, Web of Science, and Scopus were used for studies of DG and its derivatives in the treatment of central nervous system diseases published in English until December 10, 2019. Three independent researchers examined articles for eligibility. A total of 150 articles were screened from the above scientific literature databases. Finally, a total of 46 articles were extracted and included in this review. Keywords related to glioma, ischemia, memory, aging, cognitive impairment, Alzheimer, Parkinson, and neurodegenerative disorders were searched in the databases based on DG and its derivatives.
Collapse
Affiliation(s)
- Bangrong Cai
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ying Zhang
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Zengtao Wang
- Department of Medicinal Chemistry, College of Pharmacy JiangXi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dujuan Xu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongyan Jia
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanbin Guan
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Aimei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Gaizhi Liu
- Henan Research Center for Special Processing Technology of Chinese Medicine, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - ChangJu Chun
- Research Institute of Drug Development, College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Jiansheng Li
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, China
| |
Collapse
|
46
|
Wu S, Zhao M, Sun Y, Xie M, Le K, Xu M, Huang C. The potential of Diosgenin in treating psoriasis: Studies from HaCaT keratinocytes and imiquimod-induced murine model. Life Sci 2020; 241:117115. [DOI: 10.1016/j.lfs.2019.117115] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
|
47
|
Jamali-Raeufy N, Baluchnejadmojarad T, Roghani M, keimasi S, goudarzi M. Isorhamnetin exerts neuroprotective effects in STZ-induced diabetic rats via attenuation of oxidative stress, inflammation and apoptosis. J Chem Neuroanat 2019; 102:101709. [DOI: 10.1016/j.jchemneu.2019.101709] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
|
48
|
CGRP Reduces Apoptosis of DRG Cells Induced by High-Glucose Oxidative Stress Injury through PI3K/AKT Induction of Heme Oxygenase-1 and Nrf-2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2053149. [PMID: 31885775 PMCID: PMC6899316 DOI: 10.1155/2019/2053149] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023]
Abstract
Dorsal root ganglion (DRG) neurons, which are sensitive to oxidative stress due to their anatomical and structural characteristics, play a complex role in the initiation and progression of diabetic bladder neuropathy. We investigated the hypothesis that the antioxidant and antiapoptotic effects of CGRP may be partly related to the expression of Nrf2 and HO-1, via the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, thus reducing apoptosis and oxidative stress responses. This study shows that CGRP activates the PI3K/AKT pathway, thereby inducing increased expression of Nrf2 and HO-1 and resulting in the decrease of reactive oxygen species and malondialdehyde levels and reduced neuronal apoptosis. These effects were suppressed by LY294002, an inhibitor of the PI3K/AKT pathway. Therefore, regulation of Nrf2 and HO-1 expression by the PI3K/AKT pathway plays an important role in the regulation of the antioxidant and antiapoptotic responses in DRG cells in a high-glucose culture model.
Collapse
|
49
|
Huang H, Nie C, Qin X, Zhou J, Zhang L. Diosgenin inhibits the epithelial-mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncol Lett 2019; 18:4278-4287. [PMID: 31579425 DOI: 10.3892/ol.2019.10780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Diosgenin is an important basic raw material for the production of steroid hormone drugs. It can be isolated and purified from a variety of traditional Chinese medicines or plants. Modern molecular biological studies have shown that diosgenin inhibits various tumor cells migration and invasion ability to varying degrees in vitro and in vivo. The aim of the present study was to observe the inhibitory effects of diosgenin on the invasive and metastatic capabilities of osteosarcoma cells and to determine the association between the effects of diosgenin on the epithelial-mesenchymal transition (EMT). Wound healing and Transwell assays were used to observe the inhibitory effects of diosgenin on the invasion and migration of two osteosarcoma cell lines. Immunofluorescence was used to observe changes in transforming growth factor β1 (TGF-β1) protein expression levels in the osteosarcoma cells following drug administration. EMT-associated proteins, including TGFβ1, E-cadherin and vimentin were detected by western blotting, which demonstrated that the drug may inhibit the initiation of EMT in osteosarcoma cells. Western blot analysis of the expression of all the proteins in the mitogen-activated protein kinase (MAPK) pathway demonstrated that the drug inhibited the MAPK signaling pathway. The primary mechanism of action of diosgenin was the inhibition of the phosphorylated p38 (pP38) protein. Through a combination of inhibitors of the p38MAPK signaling pathway and detection of the downstream EMT marker protein E-cadherin by quantitative PCR, pP38 was confirmed to be a target of diosgenin in the inhibition of EMT in the osteosarcoma cells via the MAPK molecular signaling pathway. Diosgenin may exhibit utility as an auxiliary drug for the clinical reduction of metastasis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Huaming Huang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China.,Department of Orthopedics, Xishan People's Hospital of Wuxi, Wuxi, Jiangsu 214015, P.R. China
| | - Chao Nie
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Xiaokang Qin
- Jiangsu KeyGEN BioTECH Co., Ltd., Nanjing, Jiangsu 211100, P.R. China
| | - Jie Zhou
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Lei Zhang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| |
Collapse
|
50
|
Early Phase of Type 1 Diabetes Decreases the Responsiveness of C-Fiber Nociceptors in the Temporomandibular Joint of Rats. Neuroscience 2019; 416:229-238. [DOI: 10.1016/j.neuroscience.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
|