1
|
Ma YD, Liu H, Chen Q, Zheng Y, Yan CR, Li YS, Wang YX, Dai YT, Jiang YH, Shi JM. Gallic acid and loganic acid attenuate amyloid-β oligomer-induced microglia damage via NF-КB signaling pathway. Neuropharmacology 2025; 263:110215. [PMID: 39536861 DOI: 10.1016/j.neuropharm.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Amyloid β peptide (Aβ) induces neurodegeneration in the early stage of Alzheimer's disease (AD), resulting in neuroinflammation, oxidative damage, and mitochondrial impaired function. These reactions were closely associated with the pathological changes of brain microglia. Therefore, it was crucial to investigate the precise process of neuroinflammation induced by Aβ in microglia and discover therapies to alleviate its harmful consequences. This study evaluated the toxicity detection of primary microglia generated by Aβ42 ADDL. identification of inflammatory markers, measurement of ROS, and assessment of mitochondrial energy metabolism, mitochondrial membrane potential damage and mitochondrial ROS to evaluate the reparative properties of natural small molecule compounds Gallic acid and Loganic acid on primary mouse microglia. The findings indicated that Gallic acid and Loganic acid exhibited diverse reparative effects on impaired microglia. Thus, it can be provisionally predicted that Aβ42 ADDL affects microglia and promotes modifications in the NF-кB signaling pathway. Gallic acid and Loganic acid were expected to initially restore the NF-кB signaling pathway, leading to a reduction in M1-microglia and an elevation in M2-microglia, thereby decreasing various inflammatory factors and increasing anti-inflammatory factors. The mitochondrial metabolism, mitochondrial membrane potential, and mitochondrial ROS of primary microglia were restored, leading to a reduction in neuroinflammation.
Collapse
Affiliation(s)
- Yan-Dong Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Hang Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Qian Chen
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yi Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao-Ren Yan
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yan-Song Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yi-Xuan Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yu-Ting Dai
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China
| | - Yang-Hua Jiang
- Laboratory Medical Center of the First People's Hospital of Chenzhou City, Chenzhou, Hunan province, 423000, China.
| | - Jing-Ming Shi
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province, 712082, China.
| |
Collapse
|
2
|
Fernández-Hernández E, Sánchez-Sánchez M, Torres-Cifuentes DM, Hernández-Carranza P, Ruiz-López II, Ochoa-Velasco CE. UV-C light-activated gallic acid and non-thermal technologies for inactivating Salmonella Typhimurium inoculated in aqueous solution and whole cow milk. Int J Food Microbiol 2025; 427:110944. [PMID: 39442341 DOI: 10.1016/j.ijfoodmicro.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
This study aimed to evaluate the effect of UV-C light-activated gallic acid (GA) alone and combined with ultrasound (US) or ultraviolet-C light (UV-C, 254 nm) on the inactivation of Salmonella Typhimurium in aqueous solution for being later applied to whole cow milk. First-order, Weibull, and Beta models were used to describe the inactivation kinetics of S. Typhimurium by GA alone and combined with non-thermal technologies. Results indicated that GA concentration, the UV-C light activation process, and the combination of US and UV-C light significantly affected (p < 0.05) the inactivation of S. Typhimurium in aqueous solution, which was properly described by the first order (R2 > 0.84), Weibull (R2 > 0.96), and Beta (R2 > 0.83) models. The activation process of GA increased its antimicrobial activity in the range of 40.87-101.44 %. Moreover, with the highest concentration of GA and the application of US or UV-C light, >5 log reductions were achieved. Nevertheless, although these combinations were applied to whole cow milk, a low reduction (2.0-log cycles) was obtained, regardless of the GA activation and non-thermal technologies. Therefore, the effect of GA, whether UV-C light activated or not, on S. Typhimurium depends on the food matrix. This highlights that in whole cow milk, this treatment was insufficient to ensure safety, even when combined with non-thermal technologies. INDUSTRIAL RELEVANCE: UV-C light and US are non-thermal technologies used as alternatives to thermal treatments. These technologies can be used on their own or in combination; however, in many cases, the necessary microbial reduction is not attained, thus the use of complementary techniques or processes is required. GA is a phenolic compound with low antimicrobial activity; however, UV-C light may activate its antimicrobial activity. In this sense, this study shows the potential application of GA and non-thermal technologies for inactivating S. Typhimurium in an aqueous solution and the first approach of this methodology in whole cow milk as a liquid food product.
Collapse
Affiliation(s)
- E Fernández-Hernández
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - M Sánchez-Sánchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - D M Torres-Cifuentes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - P Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - I I Ruiz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - C E Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico.
| |
Collapse
|
3
|
Ye J, Yu J, Zhao M, Zhang Y, Wang Z, Li S, Zhang B, Zhang H, Zhou T, Wang Y, Li X, He Z, Liu H, Wang Y. Galloyl-boosted gold nanorods: Unleashing personalized cancer immunotherapy potential. J Colloid Interface Sci 2025; 678:272-282. [PMID: 39298978 DOI: 10.1016/j.jcis.2024.09.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Cancer immunotherapy has emerged as a potent treatment strategy by harnessing the host immune system to target cancer cells. However, challenges including low tumor vaccine immunogenicity and tumor heterogeneity hinder its clinical efficacy. To address these issues, we propose a novel nanoplatform integrating photothermal material gold nanorods (GNRs) with polyphenols for enhanced immunotherapy efficacy via photothermal therapy. Polyphenols, natural compounds with phenolic hydroxyl groups, are known for their ability to bind tightly to various molecules, making them ideal for antigen capture. We synthesized GNRs modified with polyphenols (GNR-PA and GNR-GA) and demonstrated their ability to induce immunogenic cell death upon laser irradiation, releasing tumor-associated antigens (TAAs). The surface polyphenols on GNRs effectively captured released TAAs to shield them from clearance. In vivo studies confirmed increased accumulation of GNR-GA in lymph nodes and enhanced dendritic cell maturation, leading to promoted effector T cell infiltration into tumors. Furthermore, treatment combined with PD-1/PD-L1 pathway blockade demonstrated potent tumor regression and systemic immunotherapy efficacy. Our findings highlight the potential of this photothermal nanoplatform as a promising strategy to overcome the limitations of current cancer immunotherapy approaches and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Jianying Ye
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jiang Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Mingming Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yingxi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhaomeng Wang
- Department of Oncology, Innovative Cancer Drug Research and Engineering Center of Liaoning Province, Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Shuo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Baoyue Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Haolin Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tengfei Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yuhang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
4
|
Yang Y, Chen Q, Liu Z, Huang T, Hong Y, Li N, Ai K, Huang Q. Novel reduced heteropolyacid nanoparticles for effective treatment of drug-induced liver injury by manipulating reactive oxygen and nitrogen species and inflammatory signals. J Colloid Interface Sci 2025; 678:174-187. [PMID: 39243718 DOI: 10.1016/j.jcis.2024.08.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
With the rapid advancements in biomedicine, the use of clinical drugs has surged sharply. However, potential hepatotoxicity limits drug exploitation and widespread usage, posing serious threats to patient health. Hepatotoxic drugs disrupt liver enzyme levels and cause refractory pathological damage, creating a challenge in the application of diverse first-line drugs. The activation and deterioration of reactive oxygen and nitrogen species (RONS) and inflammatory signals are key pathological mechanisms of drug-induced liver injury (DILI). Herein, a novel reduced heteropolyacid nanoparticle (RNP) has been developed, possessing high RONS-scavenging ability, strong anti-inflammatory activity, and excellent biosafety. These features enable it to swiftly restore the redox and immune balance of the liver. Intravenous administration of RNP effectively scavenged RONS storm, reversing liver oxidative stress and restoring normal mitochondrial membrane potential and function. Furthermore, by inhibiting c-Jun-N-terminal kinase phosphorylation, RNP facilitated the restoration of nuclear factor erythroid 2-related factor 2-mediated endogenous antioxidant signaling, ultimately rescuing the liver function and tissue morphology in acetaminophen-induced DILI mice. Crucially, the high biocompatible RNP exhibited superior efficacy in the DILI mouse model compared to the clinical antioxidant N-acetylcysteine. This targeted therapeutic approach, tailored to address the onset and progression of DILI, offers valuable new insights into controlling the condition and restoring liver structure and function.
Collapse
Affiliation(s)
- Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Zerun Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Hong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Niansheng Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
5
|
Hou X, Zhang L, Chen Y, Liu Z, Zhao X, Lu B, Luo Y, Qu X, Musskaya O, Glazov I, Kulak AI, Chen F, Zhao J, Zhou Z, Zheng L. Photothermal switch by gallic acid-calcium grafts synthesized by coordination chemistry for sequential treatment of bone tumor and regeneration. Biomaterials 2025; 312:122724. [PMID: 39106818 DOI: 10.1016/j.biomaterials.2024.122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
The residual bone tumor and defects which is caused by surgical therapy of bone tumor is a major and important problem in clinicals. And the sequential treatment for irradiating residual tumor and repairing bone defects has wildly prospects. In this study, we developed a general modification strategy by gallic acid (GA)-assisted coordination chemistry to prepare black calcium-based materials, which combines the sequential photothermal therapy of bone tumor and bone defects. The GA modification endows the materials remarkable photothermal properties. Under the near-infrared (NIR) irradiation with different power densities, the black GA-modified bone matrix (GBM) did not merely display an excellent performance in eliminating bone tumor with high temperature, but showed a facile effect of the mild-heat stimulation to accelerate bone regeneration. GBM can efficiently regulate the microenvironments of bone regeneration in a spatial-temporal manner, including inflammation/immune response, vascularization and osteogenic differentiation. Meanwhile, the integrin/PI3K/Akt signaling pathway of bone marrow mesenchymal stem cells (BMSCs) was revealed to be involved in the effect of osteogenesis induced by the mild-heat stimulation. The outcome of this study not only provides a serial of new multifunctional biomaterials, but also demonstrates a general strategy for designing novel blacked calcium-based biomaterials with great potential for clinical use.
Collapse
Affiliation(s)
- Xiaodong Hou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Lei Zhang
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhiqing Liu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Qu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Olga Musskaya
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Ilya Glazov
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Anatoly I Kulak
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zifei Zhou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Longpo Zheng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Shanghai Trauma Emergency Center, Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
6
|
Kanika, Ahmad A, Kumar A, Rahul, Mishra RK, Ali N, Navik U, Parvez S, Khan R. Leveraging thiol-functionalized biomucoadhesive hybrid nanoliposome for local therapy of ulcerative colitis. Biomaterials 2025; 312:122747. [PMID: 39142219 DOI: 10.1016/j.biomaterials.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Rahul
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Rakesh Kumar Mishra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Ghudda, Punjab, 151401, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
7
|
Sripunya A, Chittasupho C, Mangmool S, Angerhofer A, Imaram W. Gallic Acid-Encapsulated PAMAM Dendrimers as an Antioxidant Delivery System for Controlled Release and Reduced Cytotoxicity against ARPE-19 Cells. Bioconjug Chem 2024; 35:1959-1969. [PMID: 39641479 DOI: 10.1021/acs.bioconjchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Poly(amidoamine) (PAMAM) dendrimers have gained significant attention in various research fields, particularly in medicinal compound delivery. Their versatility lies in their ability to conjugate with functional molecules on their surfaces and encapsulate small molecules, making them suitable for diverse applications. Gallic acid is a potent antioxidant compound that has garnered considerable interest in recent years. Our research aims to investigate if the gallic acid-encapsulated PAMAM dendrimer generations 4 (G4(OH)-Ga) and 5 (G5(OH)-Ga) could enhance radical scavenging, which could potentially slow down the progression of age-related macular degeneration (AMD). Encapsulation of gallic acid in PAMAM dendrimers is a feasible alternative to prevent its degradation and toxicity. In vitro investigation of antioxidant activity was carried out using the DPPH and ABTS radical scavenging assays, as well as the FRAP assay. The IC50 values for DPPH and ABTS assays were determined through nonlinear dose-response curves, correlating the inhibition percentage with the concentration (μg/mL) of the sample and the concentration (μM) of gallic acid within each sample. G4(OH)-Ga and G5(OH)-Ga possess significant antioxidant activities as determined by the DPPH, ABTS, and FRAP assays. Moreover, gallic acid-encapsulated PAMAM dendrimers inhibit H2O2-induced reactive oxygen species (ROS) production in the human retinal pigment epithelium ARPE-19 cells, thereby improving antioxidant characteristics and potentially retarding AMD progression caused by ROS. In an evaluation of cell viability of ARPE-19 cells using the MTT assay, G4(OH)-Ga was found to reduce cytotoxic effects on ARPE-19 cells.
Collapse
Affiliation(s)
- Aorada Sripunya
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand
| | - Alexander Angerhofer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Advanced Magnetic Resonance, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
8
|
El-Sherbiny GM, Alluqmani AJ, Elsehemy IA, Kalaba MH. Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Sci Rep 2024; 14:30485. [PMID: 39681592 DOI: 10.1038/s41598-024-80700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial resistance to antibiotics remains a significant clinical challenge, contributing to persistently high rates of morbidity and mortality. Achieving treatment success is increasingly difficult, necessitating the evaluation of new antibiotics and complementary approaches, including source control and alternative therapies. This study aimed to investigate the antibacterial, antioxidant, cytotoxic, and phytochemical properties of Moringa oleifera leaf extract using high-performance liquid chromatography (HPLC), and to evaluate the pharmacokinetic properties of its major compound. The extract demonstrated strong antibacterial activity against standard strains and foodborne bacterial species. It also showed significant antioxidant potential, supported by the presence of high concentrations of phenolic and flavonoid compounds. HPLC analysis identified multiple bioactive compounds, with quercetin as the predominant component. The cytotoxicity study confirmed the safety of the extract at low and moderate concentrations, and ADMET analysis indicated favorable pharmacokinetic characteristics of quercetin. In conclusion, Moringa oleifera exhibits promising potential for medical and food industry applications due to its significant antibacterial and antioxidant activities, combined with a strong safety profile and rich phytochemical content.
Collapse
Affiliation(s)
- Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Amira J Alluqmani
- Biology Department, Umm Al-Qura University, 21421, Makkah, Saudi Arabia
| | - Islam A Elsehemy
- Chemistry of Natural and Microbial Products, National Research Centre, Giza, Egypt
| | - Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
9
|
Buzdar JA, Shah QA, Khan MZ, Zaheer A, Shah T, Ataya FS, Fouad D. Hepatoprotective effects of olive leaf extract against carbon tetrachloride-induced oxidative stress: in vivo and in-silico insights into the Nrf2-NFκB pathway. J Mol Histol 2024; 56:42. [PMID: 39673562 DOI: 10.1007/s10735-024-10325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Olive Leaves Extract (OLE) holds therapeutic potential, traditionally used to treat hepatic ailments, though its molecular mechanisms remain unclear. This study evaluated the efficacy of ethanolic OLE against Carbon Tetrachloride (CCl4)-induced oxidative stress in a rat model. Phytochemical analysis was performed using High Performance Liquid Chromatography (HPLC). For this porous, thirty rats were divided into six groups (n = 5): Group 1 (negative control) received a standard diet, while Groups 2-6 were subjected to CCl4-induced toxicity. Group 2 served as the disease control, and Group 3 was treated with silymarin (100 mg/kg). Groups 4, 5, and 6 received OLE at 100 mg/kg, 200 mg/kg, and 300 mg/kg, respectively, for 21 days. OLE significantly modulated hepatic biomarkers (ALT, AST, ALP), increased Total Antioxidant Capacity (TAC), decreased Total Oxidation Capacity (TOC), and restored levels of SOD, GSH, and CAT compared to the CCl4 group. Malondialdehyde (MDA) levels, elevated in the disease group, however downregulated by OLE, particularly at 300 mg/kg. Histological examination revealed normal liver integrity in the OLE-treated groups. Additionally, OLE modulated the mRNA expression of IL-1β, IL-6, TNF-α, NF-kB, Bcl2, and p-53. Apoptotic markers such as Nrf2, HO-1, Cytochrome c, caspase 3, caspase 7, and Bax were normalized with OLE treatment. The inhibition of KEAP1-NRF2 protein-protein interaction showed OLE's superior efficacy compared to silymarin, with a better docking score. These findings suggest that OLE exerts significant hepatoprotective effects against CCl4-induced oxidative stress and inflammation via the Nrf2-NFκB pathway.
Collapse
Affiliation(s)
- Jameel Ahmed Buzdar
- Institute of Physiology and Pharmacology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
- Disease Investigation Laboratory, Livestock and Dairy Development Department, Quetta, Government of Baluchistan, Baluchistan, 08763, Pakistan.
| | - Qurban Ali Shah
- Institute of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Muzammil Zaman Khan
- Department of Pharmacy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Azka Zaheer
- Department of Epidemiology and Public Health, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Tahmina Shah
- Department of Veterinarian Physiology and Biochemistry, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
10
|
Oli P, Joshi K, Punetha S. Traditional uses, phytochemistry, pharmacology, and nutraceutical potential of horse gram (Macrotyloma uniflorum): A systematic review. J Food Sci 2024. [PMID: 39656760 DOI: 10.1111/1750-3841.17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Macrotyloma uniflorum is known for being a rich source of protein, fat, fiber, carbohydrates, vitamins, and micronutrients. Since ancient times, it has been used as a pulse and traditional remedy in the Himalayan Mountains for curing kidney and bladder stones, bronchitis, asthma, piles, leukoderma, and heart diseases. Horse gram contains bioactive compounds such as phenolic acids, flavonoids, and tannins, which contribute to its health advantages. These bioactive compounds demonstrated antioxidant, antidiabetic, anti-inflammatory, anticarcinogenic, antimicrobial, antidiarrheal, and neuroprotective effects. These horse gram products are now considered superfoods and are widely utilized in worldwide cuisines. Horse gram and its crude extracts or fractions have been shown to exhibit a wide range of in vivo and in vitro pharmacological and nutraceutical properties. However, there is currently a scarcity of structure-activity investigations of isolated compounds and mechanistic research on this species. This review demonstrates that horse gram, despite its traditional usage by diverse cultures, has a profusion of bioactive chemicals with a wide range of biological effects that might be employed as biopharmaceuticals and adopted by nutraceutical industries. This study focuses on the thorough phytochemistry, folk medicinal applications, and pharmacological properties of this versatile legume plant. Furthermore, we discussed the value of plants as a source of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Pooja Oli
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
| | - Kuldeep Joshi
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
- Centre for GMP Extraction Facility, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Shailaja Punetha
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
| |
Collapse
|
11
|
Balkrishna A, Tiwari A, Maity M, Tomer M, Varshney Y, Dev R, Sinha S, Varshney A. Co-administration of Ayurvedic medicines Arshogrit and Jatyadi Ghrit, attenuate croton oil-induced hemorrhoids in rat model of recto-anal inflammation by modulating TNF-α and IL-1β levels. Drug Dev Ind Pharm 2024:1-14. [PMID: 39565131 DOI: 10.1080/03639045.2024.2432595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/25/2024] [Accepted: 11/17/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE To study the efficacy of co-administration of Arshogrit (AG) and Jatyadi Ghrit (JG), two herb-based Ayurvedic medicines, in rat model of croton oil-induced hemorrhoids. SIGNIFICANCE Hemorrhoids refer to a pathological condition affecting the recto-anal region causing pain, swelling, bleeding and protrusion. The available therapies for hemorrhoids are symptomatic or invasive but are expensive and associated with adverse effects. Hence, there exists a need for efficacious and safer pharmacotherapies. METHODS Ultra high performance liquid chromatography detected nine phytocompounds in AG and seven in JG. Seven fatty acids were additionally identified in JG by Gas Chromatography-Mass Spectrometry analysis. The in-vivo efficacy of the co-administration of AG, which was administered orally at the doses of 20, 60 and 200 mg/kg/day and JG, which was topically applied (100 mg/animal/day) was evaluated in Wistar rats by inducing hemorrhoids development with the application of croton oil preparation (COP) in the recto-anal area. Prednisolone was employed as the standard drug and was administered orally at the dose of 1 mg/kg/day. RESULTS AG and JG were able to attenuate the croton oil-induced macro and microscopic anomalies. Gross pathological observation demonstrated remarkable decrease in croton oil-induced swelling, hemorrhage and formation of pseudomembrane, with the escalating doses of AG. Microscopic observation revealed alleviation in the histopathological lesions (necrosis, inflammation, hemorrhage/congestion, degeneration and dilatation of blood vessels). AG and JG additionally reduced COP-induced increase in the serum levels of pro-inflammatory cytokines. CONCLUSION This study convincingly demonstrates that co-administration of AG and JG is a potential therapy against hemorrhoids, warranting further investigations.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali UK Trust, Glasgow, United Kingdom
- Vedic Acharya Samaj Foundation, Inc., Groveland, FL, USA
| | - Aakanksha Tiwari
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Madhulina Maity
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Yash Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Sun Y, Lei C, Qiao R, Li C. Recent advances in carrier-free natural small molecule self-assembly for drug delivery. Biomater Sci 2024; 12:6237-6252. [PMID: 39513256 DOI: 10.1039/d4bm01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Natural small-molecule drugs have been used for thousands of years for the prevention and treatment of human diseases. Most of the natural products available on the market have been modified into various polymer materials for improving the solubility, stability, and targeted delivery of drugs. However, these nanomedicines formed based on polymer carriers would produce severe problems such as systemic toxicity and kidney metabolic stress. In contrast, the carrier-free nanomedicines formed by their self-assembly in water have inherent advantages such as low toxicity, good biocompatibility, and biodegradability. This review summarizes the assembly process and application of natural small-molecule products, which are mainly driven by multiple non-covalent interactions, and includes single-molecule assembly, bimolecular assembly, drug-modified assembly, and organogels. Meanwhile, the molecular mechanism involved in different self-assembly processes is also discussed. Self-assembly simulation and structural modification of natural small-molecule products or traditional Chinese medicine molecules using molecular dynamics simulation and computer-assisted methods are proposed, which will lead to the discovery of more carrier-free nanomedicine drug delivery systems. Overall, this review provides an important understanding and strategy to study single-molecule and multi-molecule carrier-free nanomedicines.
Collapse
Affiliation(s)
- Yehua Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Changyang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.
| |
Collapse
|
13
|
Ferjani W, Kouki A, Dang PMC, Fetoui H, Chtourou Y, Ghanem-Boughanmi N, Ben-Attia M, El-Benna J, Souli A. Opuntia ficus-indica cladodes extract inhibits human neutrophil pro-inflammatory functions and protects rats from acetic acid-induced ulcerative colitis. Inflammopharmacology 2024; 32:3825-3844. [PMID: 39369123 DOI: 10.1007/s10787-024-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
The increased production of reactive oxygen species (ROS) by human neutrophils can lead to oxidative imbalances and several diseases, such as inflammatory bowel disease (IBD). Opuntia ficus-indica (O. ficus-indica) is rich in bioactive substances with anti-inflammatory properties. This study aimed to identify the bioactive compounds present in aqueous cladodes extract (ACE) of O. ficus-indica using high-performance liquid chromatography (HPLC) and to test its effects on human neutrophil inflammatory functions and on ulcerative colitis (UC) induced by acetic acid (Aa) in rats. ROS production and degranulation by neutrophils were assessed by luminol-amplified chemiluminescence, enzymatic techniques, and western blotting. In vivo, the experiment involved seven groups of rats: a negative control group (NaCl), the acetic acid group (Aa), and groups treated with oral sulfasalazine (150 mg/kg) or various doses of ACE for 7 days. Colonic lesions were induced by an intra-rectal Aa injection, and inflammation was assessed. HPLC analysis identified gallic acid, catechin, caffeic acid, and ferulic acid as major compounds in ACE. In vitro, ACE inhibited neutrophil ROS production, including superoxide anion produced by NADPH oxidase, and significantly reduced myeloperoxidase activity and neutrophil degranulation. In vivo, ACE protected rats from Aa-induced histopathological damage of the colonic mucosa, significantly increased catalase, superoxide dismutase and reduced glutathione levels, and significantly suppressed the increases of plasma cytokines (TNF-α and IL-1β) observed in the Aa group. In conclusion, O. ficus-indica ACE has significant anti-inflammatory properties by restoring oxidative balance, indicating that it could be a potential source of therapeutic agents for inflammatory diseases, particularly UC.
Collapse
Affiliation(s)
- Wafa Ferjani
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, Inflamex Excellence Laboratory, X. Bichat Faculty of Medicine, University of Paris-Cité, 75018, Paris, France
- Environment Biomonitoring Laboratory (LR01/ES14), Sciences Faculty of Bizerte, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia
| | - Ahmed Kouki
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, Inflamex Excellence Laboratory, X. Bichat Faculty of Medicine, University of Paris-Cité, 75018, Paris, France
- Environment Biomonitoring Laboratory (LR01/ES14), Sciences Faculty of Bizerte, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia
| | - Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, Inflamex Excellence Laboratory, X. Bichat Faculty of Medicine, University of Paris-Cité, 75018, Paris, France
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (UR17/ES06), Sciences Faculty of Sfax, Soukra Street Km 3.5, 3000, BP1171, Sfax, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health (UR17/ES06), Sciences Faculty of Sfax, Soukra Street Km 3.5, 3000, BP1171, Sfax, Tunisia
| | - Néziha Ghanem-Boughanmi
- Environmental Stress Risks Unit (UR17/ES20), Sciences Faculty of Bizerta, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia
| | - Mossadok Ben-Attia
- Environment Biomonitoring Laboratory (LR01/ES14), Sciences Faculty of Bizerte, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Inflammation Research Center, Inflamex Excellence Laboratory, X. Bichat Faculty of Medicine, University of Paris-Cité, 75018, Paris, France
| | - Abdelaziz Souli
- Environment Biomonitoring Laboratory (LR01/ES14), Sciences Faculty of Bizerte, University of Carthage, Zarzouna, 7021, Bizerte, Tunisia.
| |
Collapse
|
14
|
Obaidur Rab S, Altalbawy FMA, Chandra M, Ariffin IA, Kaur P, Rathore G, Rizaev J, Aloraibi F, Najeeb MA, Abdulhussain MA, Zwamel AH. Targeting the lung tumor microenvironment by phytochemicals and their nanoformulations. Pathol Res Pract 2024; 264:155679. [PMID: 39500198 DOI: 10.1016/j.prp.2024.155679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Lung malignancies are among the most prevalent and foremost causes of tumor-related deaths. Despite significant advancements in the understanding and management of lung cancer, resistance to traditional treatments remains a significant challenge. Understanding and targeting tumor microenvironment (TME) have attracted interest in the recent decade for eliminating various solid tumors. The lung TME has a crucial position in tumor expansion and therapy failure, driving it an engaging target for novel medicinal interventions. Plant-derived products offer a promising avenue for targeting TME due to their diverse chemical structures and biological activities. However, their clinical use is hindered by insufficient bioavailability and also possible systemic toxicity. The use of nanoparticles as delivery vehicles for natural products can overcome these challenges and enhance their therapeutic efficacy. This review article explores the potential of plant-derived products as medicinal agents for targeting lung TME. We provide an outline of the present knowledge of lung TME and explain the mechanisms by which plant-derived products can modulate key components of this microenvironment. The promising impacts and properties of nanoparticles for the delivery of these derivatives into lung tumors will also be discussed. We also review the preclinical and clinical findings for supporting the usefulness of these agents in targeting lung TME. Additionally, we highlight the challenges and forthcoming trends in the development of plant-derived products as targeted therapies for lung cancer, with a particular focus on combination therapies.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Muktesh Chandra
- Department of Bioinformatics, Marwadi University Research Center, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - I A Ariffin
- Management and Science University, Shah Alam, Selangor, Malaysia
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Gulshan Rathore
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Farah Aloraibi
- Department of Density, Al-Manara College for Medical Sciences, Maysan, Iraq
| | - Maryam Ali Najeeb
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
15
|
Jin C, Chu C, Zhu X, Lu Y, Yu N, Ye Q, Jin Y, Meng X. Fractional extraction phenolics from C. oleifera seed kernels exhibited anti-inflammatory effect via PI3K/Akt/NF-κB signaling pathway under Caco-2/RAW264.7 co-culture cell model. Food Res Int 2024; 197:115268. [PMID: 39577932 DOI: 10.1016/j.foodres.2024.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Camellia oleifera Abel (C. oleifera) is a multifunctional oilseed, which is rich in many biological active substances with health-promoting properties, especially polyphenols. Previous research revealed that camellia oil phenolics exhibited anti-inflammatory effect, which originated from seed. Thus, we aimed to explore the components of camellia seed phenolics and its potential mechanism of anti-inflammation. Initially, fractional extraction was processed to prepare the phenolics from camellia seed kernels, and we compare four different fractions of phenolics under the LPS-induced Caco-2/RAW264.7 coculturing model. Results showed that free phenolics (FP) had best effect on alleviating pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α) compared to esterified-bound phenolics (EP), glycosylated-bound phenolics (GP) and insoluble-bound phenolics (IP). Furthermore, FP reduced inflammation by suppressing the PI3K/Akt/NF-κB signaling pathway and effectively inhibited LPS-induced intestinal permeability increase, tight junction related proteins loss (ZO-1, claudin-1). Same results obtained, as the transepithelial electrical resistance (TEER) and alkaline phosphatase (AKP) activity of high-dose FP treated group was high than model group. Finally, molecular docking was used for evaluating the anti-inflammatory effect for phenolic monomer. KGRG (kaempferol -3-O-(2-O-glucopyranosyl-6-O-rhamnopyranosyl)-glucopyranoside), KXR (kaempferol 3-O-(2''-xylopyranosyl)-rutinoside) and leucoside (kaempferol 3-O-sambubioside) show lower binding energy docking with NF-κB, PI3K and Akt protein, indicating better interactions, which might be effective constituents against inflammation. Subsequently, five major polyphenols were obtained to validate the docking results, especially, indicating the best anti-inflammatory activities of KGRG. Overall, this research sheds insights on the therapy of phenolics from C. oleifera seed towards LPS-induced intestinal inflammation model in vitro and its related mechanism.
Collapse
Affiliation(s)
- Chengyu Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Chu Chu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Qin Ye
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
16
|
N P D, Kondengadan MS, Sweilam SH, Rahman MH, Muhasina KM, Ghosh P, Bhargavi D, Palati DJ, Maiz F, Duraiswamy B. Neuroprotective role of coconut oil for the prevention and treatment of Parkinson's disease: potential mechanisms of action. Biotechnol Genet Eng Rev 2024; 40:3346-3378. [PMID: 36208039 DOI: 10.1080/02648725.2022.2122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neurodegenerative disease (ND) is a clinical condition in which neurons degenerate with a consequent loss of functions in the affected brain region. Parkinson's disease (PD) is the second most progressive ND after Alzheimer's disease (AD), which affects the motor system and is characterized by the loss of dopaminergic neurons from the nigrostriatal pathway in the midbrain, leading to bradykinesia, rigidity, resting tremor, postural instability and non-motor symptoms such as cognitive declines, psychiatric disturbances, autonomic failures, sleep difficulties, and pain syndrome. Coconut oil (CO) is an edible oil obtained from the meat of Cocos nucifera fruit that belongs to the palm family and contains 92% saturated fatty acids. CO has been shown to mediate oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and excitotoxicity-induced effects in PD in various in vitro and in vivo models as a multi-target bioagent. CO intake through diet has also been linked to a decreased incidence of PD in people. During digestion, CO is broken down into smaller molecules, like ketone bodies (KBs). The KBs then penetrate the blood-brain barrier (BBB) and are used as a source of energy its ability to cross BBB made this an important class of natural remedies for the treatment of ND. The current review describes the probable neuroprotective potential pathways of CO in PD, either prophylactic or therapeutic. In addition, we briefly addressed the important pathogenic pathways that might be considered to investigate the possible use of CO in neurodegeneration such as AD and PD.
Collapse
Affiliation(s)
- Deepika N P
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - K M Muhasina
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Puja Ghosh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Bhargavi
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Divya Jyothi Palati
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| | - Fathi Maiz
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia, P.O. Box 9004
- Laboratory of Thermal Processes, Center for Energy Research and Technology, Borj-Cedria, BP:95 Tunisia
| | - B Duraiswamy
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamilnadu, India
| |
Collapse
|
17
|
Recart VM, Spohr L, de Aguiar MSS, de Souza AA, Goularte KCM, Bona NP, Pedra NS, Teixeira FC, Stefanello FM, Spanevello RM. Gallic acid attenuates lipopolysaccharide - induced memory deficits, neurochemical changes, and peripheral alterations in purinergic signaling. Metab Brain Dis 2024; 40:43. [PMID: 39601942 DOI: 10.1007/s11011-024-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2024] [Indexed: 11/29/2024]
Abstract
Neuroinflammation is associated with many neurological disorders. Gallic acid (GA) has attracted significant attention due to its biological properties, such as neuroprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the effects of GA in memory, TNF-α levels, oxidative stress, and activities of acetylcholinesterase (AChE), Na+, K+-ATPase and Ca2+-ATPase in the brain of mice exposed to lipopolysaccharide (LPS). Additionally, we evaluated alterations in adenine nucleotides and nucleosides in the serum. Male mice were orally pretreated with vehicle or GA (50 or 100 mg/kg) for 14 days. Between days 8 and 14, the animals also received LPS injection (250 µg/kg) or saline. At the end of the experimental protocol, the animals were submitted to object recognition test, euthanized and cerebral cortex, hippocampus, striatum and blood were collected. LPS induced memory deficits, which were prevented by GA treatment. GA protected against LPS-induced oxidative damage in the cerebral cortex, hippocampus and striatum by reducing reactive oxygen species and nitrite levels, while increasing total thiol content and activities of antioxidant enzymes. GA also prevented LPS-induced alterations in AChE, Na+, K+-ATPase, and Ca2+-ATPase activities in brain structures. LPS elevated TNF-α levels in the hippocampus and cerebral cortex, which were attenuated by GA treatment. Furthermore, LPS caused a reduction in ADP and AMP hydrolysis and an increase in adenosine deamination in the serum, which were also prevented by GA. The effects of GA against neuroinflammation may be attributed to its potent antioxidant and anti-inflammatory properties, which modulate various pathways, including those involved in memory mechanisms.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Anita Avila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Kelen Cristiane Machado Goularte
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil.
| |
Collapse
|
18
|
Li P, Tan D, Su A, Xiong X, Gao S, Zhang H, Yang J, Jian J, Zheng J, Jiang Q. Gallic acid functionalized silk fibroin/gelatin composite wound dressing for enhanced wound healing. Biomed Mater 2024; 20:015002. [PMID: 39467383 DOI: 10.1088/1748-605x/ad8c09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
As the incidence of chronic wounds increases, the requirements for wound dressings are rising. The specific aim of this study is to propose a novel gallic acid (GA) functionalized silk fibroin (SF) and gelatin (Gel) composite wound dressing in which GA is used as an antibacterial and wound healing substance. Via electrospinning, SF, Gel, and GA mixed solutions could be conveniently fabricated into a composite nanofiber mat (SF-Gel-GA), consisting of uniform fibers with an average diameter around 134.57 ± 84 nm. The internal mesh structure of SF-Gel-GA provides sufficient drug loading capacity, proper moisture permeability, and proper degradation rate. SF-Gel-GA presents excellent biocompatibility. NIH-3T3 fibroblast cells could adhere and spread stably on the SF-Gel-GA surface with slightly promoted proliferation. In the presence of SF-Gel-GA, the growth of both Gram-positive and Gram-negative bacteria, includingStaphylococcus aureusandPseudomonas aeruginosa, is significantly inhibited in both plate and suspension cultures. A cutaneous excisional mouse wound model proves the efficient ability of SF-Gel-GA to promote wound healing. Compared with pure SF dressing and commercial Tegaderm Hydrocolloid3Mdressing, the wound closure rate with SF-Gel-GA treatment is significantly improved. The histological assessments further demonstrate SF-Gel-GA could facilitate collagen deposition, neovascularization, and epithelialization at wound sites to promote wound healing. In conclusion, a novel SF-Gel-GA composite wound dressing with efficient wound healing activities have been developed for chronic wound treatment with broad healing potential.
Collapse
Affiliation(s)
- Ping Li
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
- Banan Hospital Affiliated to Chongqing Medical University, Chongqing 401320, People's Republic of China
| | - Ding Tan
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Aihua Su
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xingliang Xiong
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shasha Gao
- Chongqing University Three Gorges Hospital, Chongqing 400000, People's Republic of China
| | - Haiyang Zhang
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jiaqi Yang
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Jian
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zheng
- Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qifeng Jiang
- Medical Information College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
19
|
Karatepe P, Akgöl M, Tekin A, Çalıcıoğlu M, İncili GK, Hayaloğlu AA. Effect of Rheum ribes L. pulp enriched with eugenol or thymol on survival of foodborne pathogens and quality parameters of chicken breast fillets. Int J Food Microbiol 2024; 424:110854. [PMID: 39111156 DOI: 10.1016/j.ijfoodmicro.2024.110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The aim of this study was to characterize the pulp of Rheum ribes L. and to determine the effect of the pulp enriched with eugenol (1 %) or thymol (1 %) on the microbiological and physico-chemical quality of chicken breast fillets. Chicken breast fillets, inoculated with Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium, and Escherichia coli O157:H7 (~6.0 log10), were marinated for 24 h in a mixture prepared from a combination of Rheum ribes L. pulp with eugenol or thymol. The quality parameters were analyzed for 15 days at +4 °C. The Rheum ribes L. pulp was found to have high antioxidant activity, high total phenolic content and contained 22 different phenolic substances, among which rutin ranked first. The pulp contained high levels of p-xylene and o-xylene as volatile substances and citric acid as an organic acid. The combination of Pulp + Eugenol + Thymol (PET) reduced the number of pathogens in chicken breast fillets by 2.03 to 3.50 log10 on day 0 and by 2.25 to 4.21 log10 on day 15, compared to the control group (P < 0.05). The marinating treatment significantly lowered the pH values of fillet samples on the first day of the study, compared to the control group (P < 0.05). During storage, TVB-N levels showed slower increase in the treatment groups compared to the control group (P < 0.05). In addition, the marinating process led to significant changes in physicochemical parameters such as water holding capacity, color, texture, cooking loss, and drip loss compared to the control group (P < 0.05). In conclusion, the results of this study showed that the pulp of Rheum ribes L., which has a high antioxidant capacity and contains various bioactive compounds. Furthermore, S. Typhimurium, E. coli O157:H7 and L. monocytogenes were inhibited considerably by marinating Rheum ribes L. pulp with a combination of eugenol and thymol.
Collapse
Affiliation(s)
- Pınar Karatepe
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Ali Tekin
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey; Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Çalıcıoğlu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey.
| |
Collapse
|
20
|
Hassanen EI, Mansour HA, Issa MY, Ibrahim MA, Mohamed WA, Mahmoud MA. Epigallocatechin gallate-rich fraction alleviates histamine-induced neurotoxicity in rats via inactivating caspase-3/JNK signaling pathways. Food Chem Toxicol 2024; 193:115021. [PMID: 39322001 DOI: 10.1016/j.fct.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Ingestion of prominent levels of histamine (HIS) leads to dangerous effects on biological systems. The most frequent and active catechin in green tea is epigallocatechin gallate which has strong antioxidant properties. Our research intended to investigate the possible neuroprotective effect of epigallocatechin gallate-rich fraction (EGCGR) against HIS-inducing neurotoxicity. Six groups of male rats (n = 5) were used as follows: (1) Distilled water, (2&3) EGCGR (100-200 mg/kg BWT/day, respectively), (4) HIS (1750 mg/kg BWT/week, (5&6) HIS + EGCGR. Administration of HIS for 14 days induced severe neurobehavioral changes including depression, incoordination, and loss of spatial memory. Extensive neuronal degeneration with diffuse gliosis was the prominent histopathological lesion observed and confirmed by strong immunostaining of casp-3, Cox-2, and GFAP. Additionally, the HIS group showed a significantly higher MDA level with lower CAT and GSH activity than the control group. Moreover, HIS promoted apoptosis, which is indicated by increasing JNK, and Bax and decreasing Bcl-2 gene expressions. Otherwise, the oral intake of EGCGR with HIS improved all neurotoxicological parameters induced by HIS. We concluded that HIS could cause neurotoxicity via an upset of the equilibrium between oxidants and antioxidants which trigger apoptosis through modulation of JNK signaling pathway. Furthermore, EGCGR has either direct or indirect antihistaminic effects.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Hayam A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa Y Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, 12211, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Wafaa A Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mahmoud A Mahmoud
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
21
|
Ospina-Posada AC, Porras O, Rincón-Cervera MA, Frias J, Zielinski AAF, Bridi R, Arias-Santé MF, de Camargo AC. Antioxidant properties of phenolic extracts of murtilla pomace: First report on the importance of soluble and insoluble-bound compounds. Food Res Int 2024; 196:115114. [PMID: 39614579 DOI: 10.1016/j.foodres.2024.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 12/01/2024]
Abstract
Some native Chilean berries, including murtilla, have gained attention for their high phenolic content which renders them attractive for the beverage industry. However, phenolic-rich by-products are generated during the production of murtilla juice (murtilla pomace), and there has been no scientific consideration of this by-product as a source of different forms of phenolic compounds. The aim of this study was thus to obtain phenolic extracts from the soluble fraction (free, esterified, and etherified) of murtilla pomace as well from the counterpart that contains insoluble-bound compounds, and evaluate their antioxidant properties. The fraction obtained from the insoluble-bound form (insoluble-bound phenolic hydrolysates) showed the highest total phenolic content, reducing power and antioxidant capacity, as evaluated by the FRAP and ORAC assay, respectively. The results revealed the presence of different compounds in each fraction, highlighting important levels of phenolic acids (e.g., gallic acid) and flavonoids (e.g., quercetin and its derivatives) as evaluated by UPLC-ESI-MS/MS. The most prominent fraction (released from the insoluble-bound form) exhibited antioxidant activity (in concentrations as low as 0.0025 μM of total phenolic acids and 0.0002 μM of total flavonoids) in Caco-2 cells. The necessary concentration of quercetin to protect Caco-2 cells against the hydrogen peroxide-induced oxidative stress was twenty times lower than the concentration needed for gallic acid to exert the same level of antioxidant protection. We can therefore suggest that the quercetin concentration would be a better-quality control indicator for functional ingredients, food supplements, and/or nutraceutical products generated from the insoluble-bound phenolic fraction of murtilla pomace.
Collapse
Affiliation(s)
| | - Omar Porras
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| | - Miguel Angel Rincón-Cervera
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; Department of Agronomy, University of Almería, Almería, Spain
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 6, 28040 Madrid, Spain
| | - Acácio Antonio Ferreira Zielinski
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| | | | | |
Collapse
|
22
|
Sousa JN, Sousa BVDO, Santos EPD, Ribeiro GHM, Pereira APM, Guimarães VHD, Queiroz LDRP, Motta-Santos D, Farias LC, Guimarães ALS, de Paula AMB, Santos SHS. Effects of gallic acid and physical training on liver damage, force, and anxiety in obese mice: Hepatic modulation of Sestrin 2 (SESN2) and PGC-α expression. Gene 2024; 926:148606. [PMID: 38788813 DOI: 10.1016/j.gene.2024.148606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.
Collapse
Affiliation(s)
- Jaciara Neves Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Berenilde Valéria de Oliveira Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Eduardo Pinheiro Dos Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Guilherme Henrique Mendes Ribeiro
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ana Paula Maciel Pereira
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Lorena Dos Reis Pereira Queiroz
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Sports Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Saadi FZ, Merghache D, Boucherit-Otmani Z, Benariba K, Rahmoun A, Ghanemi FZ, Yelles N, Sekkal N, Bellaoueur I, Hassani F, Rahmani Y. Antioxidant, anti-inflammatory, antiulcerogenic, and haemolytic properties of hydroethanolic and aqueous extracts from Tabernaemontana crassa Benth. fruit. Nat Prod Res 2024:1-7. [PMID: 39440605 DOI: 10.1080/14786419.2024.2418452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Anti-inflammatory, antioxidant, antiulcer, and cytotoxic properties of hydroethanolic and aqueous extracts from the fruits of Tabernaemontana crassa were investigated. Four phenolic compounds, including three phenolic acids (gallic, caffeic, and chlorogenic acids) and one flavonol (rutin), were detected by HPLC-PDA. The hydroethanol extract (HE) exhibited high antioxidant activity and inhibition of haemolysis against red blood cells. Administration of HE (200 mg kg-1) significantly decreased the paw edoema induced by carrageenan compared to diclofenac sodium (20 mg kg-1). At the same dose, HE exhibited appreciable gastric cytoprotective capacity compared to Lanzoprazole (20 mg kg-1). These results were further supported by the histological analysis. Crude fruit extracts demonstrated a low haemolytic effect against rat red blood cells. Our findings support the use of T. crassa fruit in pharmacological and therapeutic fields.
Collapse
Affiliation(s)
- Fatima Zahra Saadi
- Laboratory Antibiotics, Antifungal, Physico-Chemistry, Synthesis and Biological Activity, Department of Biology, Faculty of Natural Sciences and Life Sciences of the Earth and the Universe, Tlemcen University, Imama, Tlemcen, Algeria
| | - Djamila Merghache
- Laboratory Antibiotics, Antifungal, Physico-Chemistry, Synthesis and Biological Activity, Department of Biology, Faculty of Natural Sciences and Life Sciences of the Earth and the Universe, Tlemcen University, Imama, Tlemcen, Algeria
| | - Zahia Boucherit-Otmani
- Laboratory Antibiotics, Antifungal, Physico-Chemistry, Synthesis and Biological Activity, Department of Biology, Faculty of Natural Sciences and Life Sciences of the Earth and the Universe, Tlemcen University, Imama, Tlemcen, Algeria
| | - Kaddour Benariba
- Laboratory of Natural Products (LAPRONA), Department of Biology, Faculty of Natural Sciences, Life, Earth and Universe Sciences, Tlemcen University, Tlemcen, Algeria
| | - Asmaa Rahmoun
- Laboratory of Natural Products (LAPRONA), Department of Biology, Faculty of Natural Sciences, Life, Earth and Universe Sciences, Tlemcen University, Tlemcen, Algeria
| | - Fatima Zahra Ghanemi
- Laboratory of Natural Products (LAPRONA), Department of Biology, Faculty of Natural Sciences, Life, Earth and Universe Sciences, Tlemcen University, Tlemcen, Algeria
| | - Nabila Yelles
- Department of Medicine, Anatomical Pathology Laboratory, Tlemcen University Hospital, Algeria
| | - Nesrine Sekkal
- Department of Medicine, Anatomical Pathology Laboratory, Tlemcen University Hospital, Algeria
| | - Ibtissem Bellaoueur
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), Ouargla, Algeria
| | - Fayçal Hassani
- Laboratory of Ecology and Management of Natural Ecosystems, Department of Ecology and Environment, SNV-STU Faculty, Tlemcen University, Imama, Tlemcen, Algeria
| | - Youcef Rahmani
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), Ouargla, Algeria
| |
Collapse
|
24
|
Jeong SW, Yeo HJ, Ha NI, Kim KJ, Seo KS, Jin SW, Koh YW, Jeong HG, Park CH, Im SB. Metabolite Profiles and Biological Activities of Different Phenotypes of Beech Mushrooms ( Hypsizygus marmoreus). Foods 2024; 13:3325. [PMID: 39456387 PMCID: PMC11508092 DOI: 10.3390/foods13203325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Beech mushrooms (Hypsizygus marmoreus) are edible mushrooms commercially used in South Korea. They can be classified into white and brown according to their pigmentation. This study analyzed the metabolites and biological activities of these mushrooms. Specifically, 42 metabolites (37 volatiles, two phenolics, and three carbohydrates) were quantified in white beech mushrooms, and 47 (42 volatiles, two phenolics, and three carbohydrates) were detected in brown mushrooms. The major volatiles detected were hexanal, pentanal, 1-hexanol, and 1-pentanol. Brown mushrooms contained higher levels of hexanal (64%) than white mushrooms (35%), whereas white mushrooms had higher levels of pentanal (11%) and 1-pentanol (3%). Most volatiles were more abundant in white mushrooms than in brown mushrooms. Furthermore, brown beech mushrooms had a higher phenolic content than white mushrooms. Biological assays revealed that both types of mushroom demonstrated anti-microbial activities against bacterial and yeast pathogens and weak DPPH scavenging activity. The extracts from both mushrooms (50 μg/mL) also exhibited strong anti-inflammatory properties. Brown mushroom extracts showed higher antioxidant, anti-microbial, and anti-inflammatory properties than white mushroom extracts. This study reported that the differences in phenotype, taste, and odor were consistent with the metabolite differences between white and brown beech mushrooms, which have high nutritional and biofunctional values.
Collapse
Affiliation(s)
- Sang-Wook Jeong
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Hyeon Ji Yeo
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Neul-I Ha
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Kyung-Je Kim
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Kyoung-Sun Seo
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Seong Woo Jin
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Young-Woo Koh
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Hee Gyeong Jeong
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| | - Chang Ha Park
- Department of Smart Agriculture Management, Songho University, 210, Namsan-ro, Hoengseong-eup, Hoengseong-gun 24000, Republic of Korea
| | - Seung-Bin Im
- Jangheung Research Institute for Mushroom Industry, Jangheung 59338, Republic of Korea; (S.-W.J.); (N.-I.H.); (K.-J.K.); (K.-S.S.); (S.W.J.); (Y.-W.K.); (H.G.J.)
| |
Collapse
|
25
|
Wang M, Xiang YH, Liu M, Jiang S, Guo JY, Jin XY, Sun HF, Zhang N, Wang ZG, Liu JX. The application prospects of sacha inchi ( Plukenetia volubilis linneo) in rheumatoid arthritis. Front Pharmacol 2024; 15:1481272. [PMID: 39484157 PMCID: PMC11524839 DOI: 10.3389/fphar.2024.1481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis L) (SI) is a traditional natural medicine from tropical rainforests of Amazon region in South America. As a raw material for edible oil, it has various pharmacological effects such as antioxidant, anti-inflammatory, hypolipidemia, and blood pressure lowering, which have attracted increasing attentions of pharmacists. This has prompted researchers to explore its pharmacological effects for potential applications in certain diseases. Among these, the study of its anti-inflammatory effects has become a particularly interesting topic, especially in rheumatoid arthritis (RA). RA is a systemic autoimmune disease, and often accompanied by chronic inflammatory reactions. Despite significant progress in its treatment, there is still an urgent need to find effective anti-RA drugs in regard to safety. This review summarizes the potential therapeutic effects of SI on RA by modulating gut microbiota, targeting inflammatory cells and pathways, and mimicking biologic antibody drugs, predicting the application prospects of SI in RA, and providing references for research aimed at using SI to treat RA.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yin-Hong Xiang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jia-ying Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-yan Jin
- School of Pharmaceutical Sciences, Xinjiang medical University, Wulumuqi, Xinjiang, China
| | - Hui-feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhi-Gang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
26
|
Chen Z, Zhao X, Lin L, Cui Y, Cao D, Chen XL, Wang X. CaGA nanozymes with multienzyme activity realize multifunctional repair of acute wounds by alleviating oxidative stress and inhibiting cell apoptosis. Biomater Sci 2024. [PMID: 39412895 DOI: 10.1039/d4bm01155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Acute wounds result from damage to the skin barrier, exposing underlying tissues and increasing susceptibility to bacterial and other pathogen infections. Improper wound care increases the risk of exposure and infection, often leading to chronic nonhealing wounds, which cause significant patient suffering. Early wound repair can effectively prevent the development of chronic nonhealing wounds. In this study, Ca-Gallic Acid (CaGA) nanozymes with multienzyme catalytic activity were constructed for treating acute wounds by coordinating Ca ions with gallic acid. CaGA nanozymes exhibit high superoxide dismutase/catalase (SOD/CAT) catalytic activity and good antioxidant performance in vitro. In vitro experiments demonstrated that CaGA nanozymes can effectively promote cell migration, efficiently scavenge ROS, maintain mitochondrial homeostasis, reduce inflammation, and decrease cell apoptosis. In vivo, CaGA nanozymes promoted granulation tissue formation, accelerated collagen fiber deposition, and reconstructed skin appendages, thereby accelerating acute wound healing. CaGA nanozymes have potential clinical application value in wound healing treatment.
Collapse
Affiliation(s)
- Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yuyu Cui
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Dongsheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Xianwen Wang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
27
|
Renny A, Sidhic J, Tom A, Kuttithodi AM, Job JT, Rajagopal R, Alfarhan A, Narayanankutty A. Methanol Extract of Thottea siliquosa (Lam.) Ding Hou Leaves Inhibits Carrageenan- and Formalin-Induced Paw Edema in Mice. Molecules 2024; 29:4800. [PMID: 39459169 PMCID: PMC11510445 DOI: 10.3390/molecules29204800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Inflammation is a physiological condition that when unattended causes serious health concerns over the long term. Several phytocompounds have emerged as promising sources of anti-inflammatory agents. Thottea siliquosa is a traditional medicine for inflammatory and toxicity insults; however, this has not been scientifically confirmed. The purpose of this study is to evaluate the anti-inflammatory properties of T. siliquosa methanol leaf extract in a mouse model. This study investigates the anti-inflammatory activities of a plant extract obtained from leaves of T. siliquosa (TSE) with a focus on carrageenan- and formalin-induced paw oedema in mice. The extract's efficacy was assessed using well-established inflammation models, and the results showed a considerable reduction in paw edema in both cases. In the case of carrageenan model TSE at 50 mg/kg showed a 53.0 ± 2.5% reduction in edema, while those treated with TSM at 100 mg/kg exhibited a 60.0 ± 1.8% reduction (p < 0.01). In the case of a formalin model when a higher dose of TSE (100 mg/kg) was given, paw thickness decreased by 47.04 ± 1.9% on the fifth day and by 64.72 ± 2.2% on the tenth day. LC-MS analysis reported the presence of gallic acid, quinic acid, quercetin, clitorin, myricitrin, retronecine, batatasin II, gingerol, and coumaric acid in the extract. Overall, this study confirms that T. siliquosa extract exerts anti-inflammatory effects in animals and is possibly mediated through the combined effects of these phytochemicals.
Collapse
Affiliation(s)
- Aneeta Renny
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Jameema Sidhic
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India;
| | - Alby Tom
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Joice Tom Job
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.); (A.A.)
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut (Affiliated to University of Calicut) 673008, India; (A.R.); (A.T.); (A.M.K.)
| |
Collapse
|
28
|
Jing W, Yang Y, Shi Q, Wang Y, Liu F. Machine Learning-Based Nanozyme Sensor Array as an Electronic Tongue for the Discrimination of Endogenous Phenolic Compounds in Food. Anal Chem 2024; 96:16027-16035. [PMID: 39325964 DOI: 10.1021/acs.analchem.4c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The detection of endogenous phenolic compounds (EPs) in food is of great significance in elucidating their bioactivity and health effects. Here, a novel bifunctional vanillic acid-Cu (VA-Cu) nanozyme with peroxidase-like and laccase-like activities was successfully prepared. The peroxidase mimic behavior of VA-Cu nanozyme can catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to generate oxidized TMB (oxTMB). Owing to the high reducing power of EPs, this process can be inhibited, and the degree of inhibition increases with the increase of reaction time. Additionally, owing to the outstanding laccase mimic behavior of the VA-Cu, it can facilitate the oxidation of various EPs, resulting in the formation of colored quinone imines, and the degree of catalysis increases with the increase of reaction time. Based on the interesting experimental phenomena mentioned above, a six-channel nanozyme sensor array (2 enzyme-mimic activities × 3 time points = 6 sensing channels) was constructed, successfully achieving discriminant analysis of nine EPs. In addition, the combination of artificial neural network (ANN) algorithms and sensor arrays has successfully achieved accurate identification and prediction of nine EPs in black tea, honey, and grape juice. Finally, a portable method for identifying EPs in food has been proposed by combining it with a smartphone.
Collapse
Affiliation(s)
- Wenjie Jing
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Yajun Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Qihao Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Yu Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| |
Collapse
|
29
|
Grujičić M, Yayla S, Cetinkaya A, Hurkul MM, Jovanović S, Ozkan SA. A novel Co/Zn-ferrite molecularly imprinted polymer-based electrochemical assay for sensing of gallic acid in plant extracts, wine, and herbal supplement. Anal Bioanal Chem 2024:10.1007/s00216-024-05574-5. [PMID: 39367909 DOI: 10.1007/s00216-024-05574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
In this study, a new molecularly imprinted polymer (MIP)-based sensor platform was developed for the electrochemical determination of gallic acid (GAL) in plant extracts, wine, and herbal supplements. Gallic acid is known for its natural antioxidant properties, which play an important role in preventing cell deterioration that can lead to various diseases. In addition, gallic acid has therapeutic potential due to its anticancer, antiinflammatory, antimicrobial, and neuroprotective properties. Accurate analysis of gallic acid in complex matrices, in mixed samples where different components coexist, is necessary to evaluate the efficacy and safety of this compound. Cobalt ferrite-zinc-dihydro caffeic acid (CFO_Zn_DHCA) nanoparticles, sphere-like in shape and 5 ± 1 nm in size, were incorporated into the MIP-based electrochemical sensor design to enhance the active surface area and porosity of the glassy carbon electrode (GCE) surface. The functional monomer chosen for this study was aminophenyl boronic acid (3-APBA). In the GAL/CFO_Zn_DHCA/3-APBA@MIP-GCE sensor, which was developed using photopolymerization (PP), 3-APBA as a functional monomer was designed, and obtained in the presence of basic monomer (HEMA), cross-linker (EGDMA), and initiator (2-hydroxy-2-methyl propiophenone) by keeping it under a UV lamp at 365 nm. It aims to detect GAL in real samples such as Punica granatum (pomegranate) peel, Camellia sinensis (green and black tea leaves), wine, and herbal supplements. Morphological and electrochemical characterizations of the designed GAL/CFO_Zn_DHCA/3-APBA@MIP-GCE sensor were carried out using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The linear range for the determination of GAL using the indirect method (5.0 mM [Fe(CN)6]-3/-4) was found to be 1.0 × 10-13 M-1.0 × 10-12 M, and the limit of detection (LOD) and limit of quantification (LOQ) for standard solutions were calculated as 1.29 × 10-14 and 4.29 × 10-14 M, respectively. As a result of the study, the developed MIP-based electrochemical sensor was suitable for detecting GAL with high specificity, selectivity, and sensitivity. Recovery studies were performed to determine the practical applicability of the sensor, and the results were satisfactory. This innovative sensor platform stands out as a reliable and sensitive analytical tool for determining GAL.
Collapse
Affiliation(s)
- Marija Grujičić
- Laboratory of Physics, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Seyda Yayla
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - M Mesud Hurkul
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sonja Jovanović
- Laboratory of Physics, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Sibel A Ozkan
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey.
| |
Collapse
|
30
|
Mânica da Cruz IB, Chelotti ME, Turra BO, Cardoso de Afonso Bonotto N, Pulcinelli DF, Kerkhoff Escher AL, Klein C, de Azevedo Mello P, Bitencourt GR, Barbisan F. Achyrocline satureioides infusion, popularly prepared and consumed, has an in vitro protective effect on human neural cells exposed to rotenone. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118350. [PMID: 38763375 DOI: 10.1016/j.jep.2024.118350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional harvest of Achyrocline satureioides (AS) occurs at dawn on Good Friday in some South American countries. Inflorescences are traditionally used as infusions for several disorders, including neuropsychiatric disorders. Pillows and cushions are popularly filled with AS to attenuate the symptoms of depression, anxiety, and sleep disturbances. However, evidence for the potential beneficial effects of AS on human neural cells remains unclear. AIM OF THE STUDY An in vitro model of SH-SY5Y human neural cells was applied to evaluate the effect of AS infusion, prepared as commonly used, on cells exposed to rotenone and to investigate its potential for neuropsychiatric disorders. MATERIALS AND METHODS A hot aqueous extract was obtained from a traditionally prepared AS inflorescence infusion and chemically characterized by high-resolution mass spectrometry and spectrophotometric quantification of total polyphenols, tannins, and flavonoids. The SH-SY5Y cell cultures were treated with AS extract at concentrations of 1, 3, 5, 10, 50, 100, and 300 μL/mL to determine the potential cyto- and genotoxic effects of AS on neural cells using MTT, Neutral Red, and GEMO assays. Apoptosis modulation was assessed using flow cytometry and apoptosis-modulating genes were evaluated by qRT-PCR. The protective effect of AS on the neurotoxicity triggered by rotenone exposure (30 nM) was determined by analyzing cellular viability and oxidative markers such as lipid peroxidation and protein carbonylation, and DNA damage was assessed by micronucleus assay. RESULTS The AS extract, as traditionally prepared, had estimated concentrations of 409.973 ± 31.107 μg/mL, 0.1041 ± 0.0246 mg GAE/mL, and 63.309 ± 3.178 mg QE/mL of total tannins, total polyphenols, and flavonoids, respectively. At concentrations of 30 and 100 μl/mL, AS decreased apoptotic events, whereas the highest concentration (300 μl/mL) increased apoptosis compared to that in the control (p < 0.05). In cells exposed to rotenone, AS treatment induced cell proliferation, reduced DNA damage (as evaluated by micronuclei), and reduced lipid and protein oxidation. CONCLUSIONS The data indicate the non-cytotoxic and beneficial effects of AS extract on human neural cells by reducing cellular mortality and oxidative stress in neural cells triggered by rotenone exposure.
Collapse
Affiliation(s)
- Ivana Beatrice Mânica da Cruz
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Maria Eduarda Chelotti
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Barbara Osmarin Turra
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Nathália Cardoso de Afonso Bonotto
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Débora Felipetto Pulcinelli
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Ana Laura Kerkhoff Escher
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Caroline Klein
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Paola de Azevedo Mello
- Departamento de Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Gustavo Rossato Bitencourt
- Programa de Pós-Graduação em Química, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Fernanda Barbisan
- Laboratório Biogenômica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Gerontologia, Universidade Federal de Santa Maria, Avenida Roraima, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
31
|
Wang J, Zhang R, Wu C, Wang L, Liu P, Li P. Exploring potential targets for natural product therapy of DN: the role of SUMOylation. Front Pharmacol 2024; 15:1432724. [PMID: 39431155 PMCID: PMC11486755 DOI: 10.3389/fphar.2024.1432724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Diabetic nephropathy (DN) is a common and serious micro-vascular complication of diabetes and a leading cause of end-stage renal disease globally. This disease primarily affects middle-aged and elderly individuals, especially those with a diabetes history of over 10 years and poor long-term blood glucose control. Small ubiquitin-related modifiers (SUMOs) are a group of reversible post-translational modifications of proteins that are widely expressed in eukaryotes. SUMO proteins intervene in the progression of DN by modulating various signaling cascades, such as Nrf2-mediated oxidative stress, NF-κB, TGF-β, and MAPK pathways. Recent advancements indicate that natural products regulating SUMOylation hold promise as targets for intervening in DN. In a previous article published in 2022, we reviewed the mechanisms by which SUMOylation intervenes in renal fibrosis and presented a summary of some natural products with therapeutic potential. Therefore, this paper will focus on DN. The aim of this review is to elucidate the mechanism of action of SUMOylation in DN and related natural products with therapeutic potential, thereby summarising the targets and candidate natural products for the treatment of DN through the modulation of SUMOylation, such as ginkgolic acid, ginkgolide B, resveratrol, astragaloside IV, etc., and highlighting that natural product-mediated modulation of SUMOylation is a potential therapeutic strategy for the treatment of DN as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jingjing Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Rui Zhang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
32
|
Wang S, Zhu C, Zhang S, Ma S, Li B, Zhao S, Zhang W, Sun Z. The Combination of Gastrodin and Gallic Acid Synergistically Attenuates AngII-Induced Apoptosis and Inflammation via Regulation of Sphingolipid Metabolism. J Inflamm Res 2024; 17:6971-6988. [PMID: 39372584 PMCID: PMC11456272 DOI: 10.2147/jir.s477554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Background Hypertension (HTN) is closely related to endothelial damage. While tianma (TM) and gouqizi (GQZ) have the potential to be effective in the treatment of HTN in traditional Chinese medicine, their main active ingredients and whether its exert synergistic effects and the underlying mechanisms of synergistic effects are still unclear. Objective This study screened the active ingredients of TM and GQZ, investigated the synergistic effects of the active ingredients and explored possible mechanisms. Methods The potential targets and mechanisms of TM and GQZ were screened using network pharmacology, and gastrodin (GAS) and gallic acid (GA) were identified as compounds with significant antihypertensive activity. The synergistic effects of the combination of GAS and GA was assessed by measuring biomarkers of AngII-induced human umbilical vein endothelial cell (HUVECs) dysfunction model. Furthermore, the anti-apoptotic and anti-inflammatory effects were evaluated by measuring inflammatory cytokine secretion, and apoptosis-related markers. Finally, key targets of the sphingolipid signaling pathway were experimentally validated by Western blotting. Results In network pharmacology, the herb-pair exerted a synergetic effect by regulating sphingolipid pathways. The GAS and GA exerted synergistic protective effects in AngII-induced HUVECs injury by improving Nitric Oxide Content (NO) levels, alleviating lactate Endothelin-1 (ET-1), and Thromboxane B2 (TX-B2) release, reducing the secretion of inflammatory factors like interleukin-6 (IL-6), interleukin-1β (IL-1β), Tumor Necrosis Factor Alpha (TNF-α)), decreasing the pro-apoptotic protein BAX, and increasing the anti-apoptotic protein BCL-2. Furthermore, the results showed that the GAS and GA combination could elevate the level of S1PR1 and inhibit the expression of ROCK2 and the phosphorylation of NF-κB, which are key targets involved in sphingolipid pathways. Conclusion Our study revealed that the combination of GAS and GA could suppress inflammation and apoptosis, which are highly correlated with sphingolipid signaling pathways, making it a potential candidate for the treatment of HTN.
Collapse
Affiliation(s)
- Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shurui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Siyu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Baoshan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shengbo Zhao
- Ningqiang Tianma Research Institution Limited Liability Company, Hanzhong, Shaanxi, People’s Republic of China
| | - Wei Zhang
- Ningqiang County Traditional Chinese Medicinal Industry Development Center, Hanzhong, Shaanxi, People’s Republic of China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Ali G, Zeb A, Usman M, Al‐Babili S. Walnut extract protects against hepatic inflammation and toxicity induced by a high-fat diet. Food Sci Nutr 2024; 12:8340-8352. [PMID: 39479714 PMCID: PMC11521631 DOI: 10.1002/fsn3.4405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 11/02/2024] Open
Abstract
A high-fat diet (HFD) is one of the main causes of obesity and metabolic diseases. The liver is particularly affected by HFD causing metabolic dysfunction associated with fatty liver disease. Therefore, different strategies are used to mitigate the negative effects of HFD. This study aimed to assess the protective effects of walnut extract against HFD-induced toxicity in mice. The mice were fed HFD and walnut extract alone or in combination. The walnut extract was analyzed for composition using high-performance liquid chromatography with a diode array detector (HPLC-DAD) and ultra-high-performance liquid chromatography with mass spectrometry (UHPLC-MS/MS). Serum lipid profile; liver histology; hepatic antioxidants such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), lipid peroxidation (TBARS), and reduced glutathione (GSH); inflammatory markers like IL-6 and TNF-α; and phospholipids were determined. Results showed that phenolic acids, epicatechin, catechin, benzaldehyde, and juglone were the main constituents in the extract. The HFD group showed increased hepatic fat accumulation as evidenced by biochemical and histopathological examinations compared to the control animals. The HFD group mice also showed increased body and cardiac weights, modified lipid profiles, decreased antioxidant status, and increased levels of hepatic inflammatory markers. The weights of the body and heart, lipid profiles, antioxidant contents (CAT, SOD, GSH-Px, TBARS, and GSH), and pro-inflammatory cytokines (IL-6 and TNF-α) were all normalized by consuming walnut extract. Similarly, the HFD group had significantly high amounts of hepatic lipase, phospholipid, and lysophospholipid levels, which were improved by walnut extract. In conclusion, walnut extract has been shown to play a unique role in promoting the recovery of liver damage caused by a high-fat diet.
Collapse
Affiliation(s)
- Gauhar Ali
- Department of BiotechnologyUniversity of MalakandChakdaraPakistan
| | - Alam Zeb
- Bioactive Lab, Centre of Excellence for Sustainable Food SecurityKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
- Department of BiochemistryUniversity of MalakandChakdaraPakistan
| | - Muhammad Usman
- Department of Basic SciencesUniversity of Veterinary and Animals SciencesNarowalPakistan
| | - Salim Al‐Babili
- Bioactive Lab, Centre of Excellence for Sustainable Food SecurityKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
| |
Collapse
|
34
|
Harwansh RK, Deshmukh R, Shukla VP, Khunt D, Prajapati BG, Rashid S, Ali N, Elossaily GM, Suryawanshi VK, Kumar A. Recent Advancements in Gallic Acid-Based Drug Delivery: Applications, Clinical Trials, and Future Directions. Pharmaceutics 2024; 16:1202. [PMID: 39339238 PMCID: PMC11435332 DOI: 10.3390/pharmaceutics16091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gallic acid (GA) is a well-known herbal bioactive compound found in many herbs and foods like tea, wine, cashew nuts, hazelnuts, walnuts, plums, grapes, mangoes, blackberries, blueberries, and strawberries. GA has been reported for several pharmacological activities, such as antioxidant, inflammatory, antineoplastic, antimicrobial, etc. Apart from its incredible therapeutic benefits, it has been associated with low permeability and bioavailability issues, limiting their efficacy. GA belongs to BCS (Biopharmaceutics classification system) class III (high solubility and low probability). In this context, novel drug delivery approaches played a vital role in resolving these GA issues. Nanocarrier systems help improve drug moiety's physical and chemical stability by encapsulating them into a lipidic or polymeric matrix or core system. In this regard, researchers have developed a wide range of nanocarrier systems for GA, including liposomes, transfersomes, niosomes, dendrimers, phytosomes, micelles, nanoemulsions, metallic nanoparticles, solid lipid nanoparticles (SLNs), nanoparticles, nanostructured lipid carriers, polymer conjugates, etc. In the present review, different search engines like Scopus, PubMed, ScienceDirect, and Google Scholar have been referred to for acquiring recent information on the theme of the work. Therefore, this review paper aims to emphasize several novel drug delivery systems, patents, and clinical updates of GA.
Collapse
Affiliation(s)
- Ranjit K. Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Vijay Pratap Shukla
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India; (R.K.H.); (R.D.); (V.P.S.)
| | - Dignesh Khunt
- School of Pharmacy, Gujarat Technological University, Gandhinagar 382027, India;
| | - Bhupendra Gopalbhai Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | | | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
35
|
Bheemayya L, Kamble RR, Shettar AK, Metre TV, Kodasi B, Sannaikar MS, Inamdar SR, M MPK, Hoskeri JH. Design and Synthesis of Novel Fluorescent 2-(aryloxy)-3-(4,5-diaryl)-1H-imidazol-2-yl)quinolines: Solvatochromic, DFT, TD-DFT Studies, COX-1 and COX-2 Inhibition and Antioxidant Properties. J Fluoresc 2024; 34:2239-2262. [PMID: 37733111 DOI: 10.1007/s10895-023-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The present work focuses on the synthesis of novel heterocycles 2-(aryloxy)-3-(4,5-diaryl-1H-imidazol-2-yl)quinolines (6k-v) by an effective condensation reaction. These molecules exhibited fluorescent properties and hence for the proper understanding of their optical behavior and quantum yields, solvatochromic studies have been carried out. Further, frontier molecular orbitals, molecular electrostatic potential (MEP), and geometrical structure optimization have been investigated using the B3LYP/6-311G ++ (d, p) method. The energy gap between the HOMO, LUMO of the optical and energy band gap is determined by DFT and UV-visible spectra for TD-DFT studies are done. The screening of these compounds for in vitro COX-1 and COX-2 inhibition and DPPH free radical scavenging ability assays produced promising results. The binding interactions of these molecules against the COX-2 enzyme (PDB: 5IKR) were validated by docking studies.
Collapse
Affiliation(s)
- Lokesh Bheemayya
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Ravindra R Kamble
- Department of Chemistry, Karnatak University, Dharwad, 580003, India.
| | - Arun K Shettar
- Department of Preclinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd, Hubli, 580031, India
| | - Tukaram V Metre
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Barnabas Kodasi
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | | | - Sanjeev R Inamdar
- Department of Studies in Physics, Karnatak University, Dharwad, 580003, India
| | - Mussuvir Pasha K M
- Department of Chemistry, Karnatak Science College, Dharwad, 580 003, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura, 586108, India
| |
Collapse
|
36
|
Nah Y, Kim J, Lee S, Koh WG, Kim WJ. Tailored small molecule for inflammation treatment: Dual scavenger targeting nitric oxide and reactive oxygen species. J Control Release 2024; 374:525-537. [PMID: 39173954 DOI: 10.1016/j.jconrel.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Inflammation-related diseases are often marked by elevated levels of nitric oxide (NO) and reactive oxygen species (ROS), which play important roles in the modulation of inflammation. However, the development of organic materials effective in managing NO/ROS levels has remained a challenge. This study introduces a novel organic compound, NmeGA, engineered to scavenge both NO and ROS. NmeGA ingeniously integrates N-methyl-1,2,-phenylenediamine (Nme), a NO scavenger, with gallic acid (GA), a ROS scavenger, through an amide bond, endowing it with enhanced scavenging capabilities over its individual component. This compound exhibits reduced toxicity and increased lipophilicity value, underlining its increased biological applicability and highlighting its potential as an inflammation management tool. Through in vitro studies on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, NmeGA displayed remarkable scavenging efficiency for NO and ROS, coupled with significant anti-inflammatory effects. In an LPS-induced peritonitis model, administration of NmeGA substantially decreased mortality rates, NO and ROS levels, and inflammatory cytokine concentrations. These findings highlight NmeGA's versatility as a therapeutic agent against various inflammatory diseases.
Collapse
Affiliation(s)
- Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | - Jaekwang Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| | - Seohee Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; OmniaMed Co., Ltd, Pohang 37666, Republic of Korea.
| |
Collapse
|
37
|
Pashaei M, Hassanpour H. Phenolic, amino acids, and fatty acids profiles and the nutritional properties in the fresh and dried fruits of black rosehip (Rosa pimpinellifolia L.). Sci Rep 2024; 14:19665. [PMID: 39179627 PMCID: PMC11344089 DOI: 10.1038/s41598-024-70574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Recently, increased attention has been paid to the raw materials of plants as a source of biologically active substances. Black rosehip (Rosa pimpinellifolia L.) fruits could be a good resource for potential functional components in the food, cosmetic and pharmaceutical industries. Also, drying can influence the composition of heat-sensitive phytochemicals. However, less attention is given to comparing black rosehip bioactive compounds particularly compositions of fatty acid, amino acids, and phenolic content in fresh and dried fruits. So in this study, the amino acid constituents (by amino acid analyzer), fatty acids (by GC-MS), mineral elements (by atomic absorption spectrometer), antioxidant (by DPPH) and phenolic compounds (by HPLC) present in fresh and dried fruits of black rosehip naturally grown in Iran were comprehensively investigated. The results showed that dried fruits had a lower level moisture by 51.55%, and a higher level of total phenolic compounds and total sugar by 786.20 mg GAE/100 g and 15.77 g/100 g, respectively. Chlorogenic acid and gallic acid were the major phenolic compounds (109.3 mg/g). Whilst, linoleic acid, oleic acid, and arachidic acid (85.34%) were the most dominant fatty acids. The most dominant amino acids were glutamic acid, phenylalanine, and arginine (29.41 g/100 g). Also, Fe and Mn as micro-elements were the most dominant elements. In general, the results illustrated the potentials and differences of black rosehip fruits grown in the Arasbaran region as promising resources for food sources, pharmaceutics, cosmetics, and breeding programs. Also, these findings confirm that black rosehip fruits contain significant amounts of secondary metabolites that may positively affect human health.
Collapse
Affiliation(s)
- Milad Pashaei
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hamid Hassanpour
- Department of Horticultural Science, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
38
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
39
|
Liza, Hussain G, Malik A, Akhtar S, Anwar H. Artemisia vulgaris Extract as a Novel Therapeutic Approach for Reversing Diabetic Cardiomyopathy in a Rat Model. Pharmaceuticals (Basel) 2024; 17:1046. [PMID: 39204151 PMCID: PMC11358959 DOI: 10.3390/ph17081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
Diabetic cardiomyopathy, a severe diabetic complication, impairs heart function, leading to heart failure. Treatment that effectively addresses this condition without causing side effects is urgently needed. Current anti-hyperglycemic therapies are expensive, has side effects and do not effectively prevent cardiac remodeling. Therefore, it is important to explore natural products that may have the potential to reverse cardiac remodeling. That is why the aim of the current study was to determine the left ventricular remodeling potential of the methanolic extract of Artemisia vulgaris in a diabetic cardiomyopathy rat model. Following the initial comprehensive phytochemical evaluation of plant phenolic and flavonoid content, which showed strong anti-hyperglycemic and antioxidant activities, an extract of Artemisia vulgaris was administered in an in vivo experiment. Diabetic cardiomyopathy was induced in Wistar albino rats according to previously described protocols in the literature, and the effect of treatment was checked by serum and histopathological analysis after 45 days. Artemisia vulgaris treatment significantly (p ≤ 0.05) reduced fasting blood glucose (108.5 ± 1.75 mg/dL), glycated hemoglobin (4.03 ± 0.12 %), serum glucose (116.66 ± 3.28 mg/dL), insulin (15.66 ± 0.66 ng/mL), total oxidant status (54.66 ± 3.22 µmol H2O2Equiv.L-1), Malondialdehyde (0.20 ± 0.01 mmol/L), total cholesterol (91.16 ± 3.35 mg/dL), triglycerides (130.66 ± 3.15 mg/dL), low-density lipids (36.57 ± 1.02 mg/dL), sodium (140 ± 3.21 mmol/L), calcium (10.44 ± 0.24 mmol/L), creatine kinase MB (1227.5 ± 17.89 IU/L), lactate dehydrogenase (1300 ± 34.64 IU/L), C-reactive protein (30 ± 0.57 pg/mL), tumor necrosis factor-α (58.66 ± 1.76 pg/mL), atrial natriuretic peptide (2.53 ± 0.04 pg/mL), B-type natriuretic peptide (10.66 ± 0.44 pg/mL), aspartate aminotransferase (86.5 ± 4.99 U/L), Alanine Transaminase (55.33 ± 2.90 U/L), urea (25.33 ± 1.15 mg/dL) and creatinine (0.64 ± 0.02 mg/dL) but significantly increased (p ≤ 0.05) total antioxidant capacity (1.73 ± 0.07 mmol Trolox Equil./L), high-density lipids (40 ± 1.59 mg/dL) and potassium (3.82 ± 0.04 mmol/L) levels. ECG and histopathology confirmed the significant improvement in remodeling and the reversal of structural changes in the heart and pancreas. In conclusion, Artemisia vulgaris possesses significant left ventricular remodeling potential in course of diabetes-induced cardiomyopathy.
Collapse
Affiliation(s)
- Liza
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA;
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| |
Collapse
|
40
|
Ibrahim KM, Darwish SF, Mantawy EM, El-Demerdash E. Molecular mechanisms underlying cyclophosphamide-induced cognitive impairment and strategies for neuroprotection in preclinical models. Mol Cell Biochem 2024; 479:1873-1893. [PMID: 37522975 PMCID: PMC11339103 DOI: 10.1007/s11010-023-04805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/01/2023] [Indexed: 08/01/2023]
Abstract
Cyclophosphamide has drastically enhanced the expectancy and quality of life of cancer patients. However, it is accompanied by diverse neurological complications which are considered a dose-limiting adverse effect. Neurotoxicity caused by cyclophosphamide can manifest in numerous manners including anxiety, depression, motor dysfunction and cognitive deficits. This review article offers an overview on cyclophosphamide-induced neurotoxicity, providing a unified point of view on the possible underlying molecular mechanisms including oxidative brain damage, neuroinflammation, apoptotic neuronal cell death as well as disruption of the balance of brain neurotransmitters and neurotrophic factors. Besides, this review sheds light on the promising protective agents that have been investigated using preclinical animal models as well as their biological targets and protection mechanisms. Despite promising results in experimental models, none of these agents has been studied in clinical trials. Thus, there is lack of evidence to advocate the use of any neuroprotective agent in the clinical setting. Furthermore, none of the protective agents has been evaluated for its effect on the anticancer activity of cyclophosphamide in tumor-bearing animals. Therefore, there is a great necessity for adequate well-designed clinical studies for evaluation of the therapeutic values of these candidates. Conclusively, this review summarizes the molecular mechanisms accounting for cyclophosphamide-induced neurotoxicity together with the potential protective strategies seeking for downgrading this neurological complication, thus enhancing the quality of life and well-being of cancer patients treated with cyclophosphamide.
Collapse
Affiliation(s)
- Kamilia M Ibrahim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar F Darwish
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Eman M Mantawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Preclinical and Translational Research Center, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt.
| |
Collapse
|
41
|
Velaiyan M, Muthusamy R, Kativa M, Annamalai A, Govindhan A, Punniyakotti P, Balupillai A. Gallic acid-loaded chitosan nanoparticles enhance the DNA damage and apoptotic features through inhibiting flap endonuclease-1 in triple-negative breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:4171-4183. [PMID: 38666519 DOI: 10.1002/tox.24293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 07/14/2024]
Abstract
This study investigated the fabrication of gallic acid-loaded chitosan nanoparticles (Gal-Chi-NPs) that enhanced the DNA damage and apoptotic features by inhibiting FEN-1 expressions in MDA-MB 231 cells. Gal-Chi-NPs were fabricated by the ionic gelation method, and it was characterized by several studies such as dynamic light spectroscopy, Fourier-transforms infrared spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray, atomic force microscopy, and thermogravimetric analysis. We have obtained that Gal-Chi-NPs displayed 182.2 nm with crystal, smooth surface, and heat stability in nature. Gal-Chi-NPs induce significant toxicity in MDA-MB-231 cells that compared with normal NIH-3T3 cells. A significant reactive oxygen species (ROS) overproduction was observed in Gal-Chi-NPs treated MDA-MB-231. Flap endonuclease-1 (FEN-1) is a crucial protein involved in long patch base excision repair that is involved in repairing the chemotherapeutic mediated DNA-damaged base. Therefore, inhibition of FEN-1 protein expression is a crucial target for enhancing chemotherapeutical efficacy. In this study, we have obtained that Gal-Chi-NPs treatment enhanced the DNA damage by observing increased p-H2AX, PARP1; and suppressed the expression of FEN-1 in MDA-MB-231 cells. Moreover, Gal-Chi-NPs inhibited the expression of tumor proliferating markers p-PI3K, AKT, cyclin-D1, PCNA, and BCL-2; induced proapoptotic proteins (Bax and caspase-3) in MDA-MB 231 cells. Thus, Gal-Chi-NPs induce DNA damage and apoptotic features and inhibit tumor proliferation by suppressing FEN-1 expression in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Monica Velaiyan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rajasekar Muthusamy
- Central Research Laboratory, Vinayaka Mission's Kirupananda Variyar Medical College and Hospitals, Salem, Tamil Nadu, India
| | - Miguel Kativa
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Asaikkutti Annamalai
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Govindhan
- Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Parthipan Punniyakotti
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Agilan Balupillai
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
42
|
Tang M, You J, Yang T, Sun Q, Jiang S, Xu M, Pan X, Rao Z. Application of modern synthetic biology technology in aromatic amino acids and derived compounds biosynthesis. BIORESOURCE TECHNOLOGY 2024; 406:131050. [PMID: 38942210 DOI: 10.1016/j.biortech.2024.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production. With the advancement of synthetic biology, microbial production of AAA and derived compounds has been significantly facilitated. In this review, a comprehensive overview on the current progresses, challenges and corresponding solutions for AAA and derived compounds biosynthesis is provided. The most cutting-edge developments of synthetic biology technology in AAA and derived compounds biosynthesis, including CRISPR-based system, genetically encoded biosensors and synthetic genetic circuits, were highlighted. Finally, future prospects of modern strategies conducive to the biosynthesis of AAA and derived compounds are discussed. This review offers guidance on constructing microbial cell factory for aromatic compound using synthetic biology technology.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Qisheng Sun
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Shuran Jiang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
43
|
Sang H, Jin H, Song P, Xu W, Wang F. Gallic acid exerts antibiofilm activity by inhibiting methicillin-resistant Staphylococcus aureus adhesion. Sci Rep 2024; 14:17220. [PMID: 39060363 PMCID: PMC11282228 DOI: 10.1038/s41598-024-68279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a serious threat to patients with nosocomial infections, and infection is strongly associated with biofilm formation. Gallic acid (GA) is a natural bioactive compound found in traditional Chinese medicines that exerts potent antimicrobial activity. However, the anti-MRSA biofilm efficacy of GA remained to be determined. This study investigated the antimicrobial activities of GA against MRSA and the mechanisms involved. The results revealed the significant antibacterial and antibiofilm activities of GA. The minimal inhibitory concentration of GA against MRSA was 32 μg/mL and a growth curve assay confirmed the significant inhibitory effect of GA on planktonic MRSA. Crystal violet and XTT assays showed that 8 µg/mL GA effectively inhibited the formation of new biofilms and disrupted existing biofilms by reducing both biofilm biomass and metabolic activities. Alkaline phosphatase and β-galactosidase leakage assays and live/dead staining provided evidence that GA disrupted the integrity of bacterial cell walls and membranes within the biofilm. Scanning electron microscopy observations showed that GA significantly inhibited bacterial adhesion and aggregation, affecting the overall structure of the biofilm. Bacterial adhesion, polysaccharide intercellular adhesion (PIA) production and real-time quantitative PCR assay confirmed that GA inhibited bacterial adhesion, PIA synthesis, and the expression of icaAD and sarA. These results suggested that GA inhibited biofilm formation by inhibiting the expression of sarA, then downregulating the expression of icaA and icaD, thereby reducing the synthesis of PIA to attenuate the adhesion capacity of MRSA. GA is therefore a promising candidate for development as a pharmaceutical agent for the prevention and treatment of bacterial infections caused by MRSA.
Collapse
Affiliation(s)
- He Sang
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Han Jin
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Peng Song
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Wei Xu
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Fei Wang
- School of Life Science, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
44
|
Yousof SM, Shehata SA, Ismail EA, Abd El-moneam SM, Mansour BS, Farag MA, Elshamy AI, El-Nasser G. El Gendy A, Serag A, Abd El-Fadeal NM, Abdel-Karim RI, Mostafa MM, El-Sheikh DH, Zayed MA. Acacia saligna extract alleviates quetiapine-induced sexual toxicity in male albino rats: Insights from UPLC-MS/MS metabolite profiling, structural and PI3K/NF-κB pathway assessments. Heliyon 2024; 10:e33993. [PMID: 39071580 PMCID: PMC11280294 DOI: 10.1016/j.heliyon.2024.e33993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Quetiapine (QET) abuse has increased due to its anxiolytic and hedonic effects, necessitating protective adjunct treatments. Acacia saligna (A. saligna) flowers, used in traditional medicine, have potential health benefits. Aim To investigate the protective role of A. saligna flower extract against QET-induced sexual toxicity, and to elucidate the possible underlying mechanisms through metabolomic and physiological studies. Methods A. saligna extract was subjected to metabolite profiling via High-Resolution Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-ESI-qTOF-MS). Forty-eight adult male albino rats were assigned into six groups for 30 days. The intracavernosal pressure (ICP), semen, biochemical, hormonal, histological, genetic and Western blot (WB) analyses were determined. Results A. saligna extract is rich in phenolic compounds, flavonoids, tannins, and unsaturated fatty acids. QET significantly decreased ICP and negatively affected semen parameters. A. saligna mitigated decreased sperm motility and ameliorated overexpressed proinflammatory genes in QET-55 group. A. saligna ameliorated the reduction of the antioxidant biomarkers, testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), concurrent with downregulation of the nuclear factor kappa B (NF-κB) protein. A. saligna counteracted the disrupted testicular and prostatic structures revealed by histological examination. Conclusion The extract from A. saligna, which contains a high concentration of antioxidants and anti-inflammatory chemicals, effectively mitigates sexual toxicity caused by QET. This study provided the first known explanation of the hypothesized processes behind the protective properties of A. saligna through biological, biochemical, and histological parameters. The results emphasize the potential of A. saligna as a safeguarding agent against drug-induced sexual toxicity.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Medical Physiology Department, Faculty of Medicine, King Abdulaziz University, Rabigh Branch, 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Neuroscience and Geroscience Unit, King Fahad Research Centre, King Abdulaziz University, KSA
| | - Shaimaa A. Shehata
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine- Suez Canal University, Ismailia, 41522, Egypt
| | - Ezzat A. Ismail
- Urology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Samar M. Abd El-moneam
- Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Basma S.A. Mansour
- Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini, Giza 12613, Egypt
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Center, Dokki, Giza 12622, Egypt
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Noha M. Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Biochemistry Department, Ibn Sina National College for Medical Studies, Jeddah, 22421, Saudi Arabia
| | - Rehab Ibrahim Abdel-Karim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine- Suez Canal University, Ismailia, 41522, Egypt
| | - Mostafa M. Mostafa
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Rabigh Branch, 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Dina H. El-Sheikh
- Medical Physiology Department, Faculty of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj Branch, 16273, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini, Giza 12613, Egypt
| | - Mohamed A. Zayed
- Medical Physiology Department, Faculty of Medicine, King Abdulaziz University, Rabigh Branch, 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 13829, Egypt
- Neuroscience and Geroscience Unit, King Fahad Research Centre, King Abdulaziz University, KSA
| |
Collapse
|
45
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
46
|
Bassiony A, Peng Q, Baldermann S, Feng S, Yang K, Zhang Y, Fu J, Lv H, Lin Z, Shi J. Differential accumulation patterns of flavor compounds in Longjing 43 and Qunti fresh leaves and during processing responding to altitude changes. Food Res Int 2024; 187:114392. [PMID: 38763654 DOI: 10.1016/j.foodres.2024.114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Variations in cultivars and cultivation altitudes have significant impacts on tea flavour compounds however lack of comprehensive understanding. This study provided insights into differential accumulation of crucial flavour compounds in response to cultivars, cultivation altitudes, and processing. Twelve flavonoids (262.4 ∼ 275.4 mg•g-1) and 20 amino acids (AAs) (56.5 ∼ 64.8 mg•g-1) were comparative analyzed in 'Longjing 43' and 'Qunti' fresh leaves harvested at low (80 m, LA) and high (500 m, HA) altitudes. Additionally, an in-depth correlation unravelling of 31 alkaloids, 25 fatty acids, 31 saccharides, 8 organic acids, and 7 vitamins and flavonoids/AAs during green tea (GT) and black tea (BT) processing was performed. Enhenced flavonoid accumulation alongside higher AAs and saccharides in HA GT promoted a sweet/mellow flavour. Abundant flavonoids, AAs, and saccharides derivates in LA BT gave rise to a sweet aftertaste. The study presents an integrated illustration of major flavour compounds' differential accumulation patterns and their interrelations, providing new insights into the influence of cultivation conditions on tea flavour.
Collapse
Affiliation(s)
- A Bassiony
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Botany and Microbiology Department, Faculty of Science, South Valley University
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Susanne Baldermann
- University of Bayreuth, Food Metabolome, Faculty of Life Sciences: Food, Nutrition, Kulmbach, Germany
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, The Biomedical Research Core Facility, Westlake University, Hangzhou 310024, China
| | - Kangni Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongcheng Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyu Fu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
47
|
Zhang T, Zhang X, Fei Y, Lu J, Zhou D, Zhang L, Fan S, Zhou J, Liang C, Su Y. Gallic acid suppresses the progression of clear cell renal cell carcinoma through inducing autophagy via the PI3K/Akt/Atg16L1 signaling pathway. Int J Oncol 2024; 65:70. [PMID: 38818827 PMCID: PMC11173374 DOI: 10.3892/ijo.2024.5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/22/2023] [Indexed: 06/01/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common type of renal cell carcinoma (RCC), is not sensitive to traditional radiotherapy and chemotherapy. The polyphenolic compound Gallic acid (GA) can be naturally found in a variety of fruits, vegetables and plants. Autophagy, an intracellular catabolic process, regulates the lysosomal degradation of organelles and portions in cytoplasm. It was reported that autophagy and GA could affect the development of several cancers. Therefore, the aim of the present study was to evaluate the effects of GA on ccRCC development and clarify the role of autophagy in this process. In the present study, the effects of GA on the proliferation, migration and invasion of ccRCC cells were investigated in vitro by Cell Counting Kit‑8, colony formation, flow cytometry, wound healing and Transwell migration assays, respectively. Additionally, the effects of GA on ccRCC growth and metastasis were evaluated using hematoxylin‑eosin and immunohistochemical staining in vivo. Moreover, it was sought to explore the underlying molecular mechanisms using transmission electron microscopy, western blotting and reverse transcription‑quantitative PCR analyses. In the present study, it was revealed that GA had a more potent viability inhibitory effect on ccRCC cells (786‑O and ACHN) than the effect on normal renal tubular epithelial cell (HK‑2), which demonstrated that GA selectively inhibits the viability of cancer cells. Furthermore, it was identified that GA dose‑dependently inhibited the proliferation, migration and invasion of ccRCC cells in vitro and in vivo. It was demonstrated that GA promoted the release of autophagy markers, which played a role in regulating the PI3K/Akt/Atg16L1 signaling pathway. All the aforementioned data provided evidence for the great potential of GA in the treatment of ccRCC.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032
- State Key Laboratory of Systems Medicine for Cancer, Department of Urology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127
| | - Xi Zhang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yang Fei
- State Key Laboratory of Systems Medicine for Cancer, Department of Urology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127
| | - Jinsen Lu
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032
- Institute of Urology, Anhui Medical University, Hefei, Anhui 230032
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui 230032, P.R. China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032
- Institute of Urology, Anhui Medical University, Hefei, Anhui 230032
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui 230032, P.R. China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032
- Institute of Urology, Anhui Medical University, Hefei, Anhui 230032
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui 230032, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032
- Institute of Urology, Anhui Medical University, Hefei, Anhui 230032
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui 230032, P.R. China
| | - Yang Su
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032
- Institute of Urology, Anhui Medical University, Hefei, Anhui 230032
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
48
|
Ezim OE, Nebeolisa CE, Emeagwali-John IG, Obinna VC, Abarikwu SO. Effect of co-administration of gallic acid and quercetin or gallic acid and rutin on impaired spermatogenesis and oxidative damage in a busulfan-treated rat model. Drug Chem Toxicol 2024:1-14. [PMID: 38948945 DOI: 10.1080/01480545.2024.2369591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Gallic acid (GAL), rutin (RUT), and quercetin (QUE) are common antioxidant agents in fruits and vegetables with intriguing pharmacological effects. In the present study, we compared the therapeutic outcomes of GAL + QUE in comparison with GAL + RUT co-treatment in a busulfan (BUS) model of testicular injury in Wistar rats. BUS (4 mg kg-1 body weight (b.w) was injected intraperitoneally daily for 4 days. GAL + RUT or GAL + QUE (20 mg kg-1 b. w) was delivered by oral gavage for 52 days. Examination of the testes of BUS-treated rats both biochemically and under light microscopy revealed an increased level of lipid peroxidation, DNA fragmentation, glutathione-S-transferase, lactate dehydrogenase, gamma-glutamyl transpeptidase, alkaline phosphatase and acid phosphatase with a concomitant decrease in the level of antioxidants: glutathione, ascorbic acid, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities, suggesting testicular injury. Tissue sections confirmed the testicular injury-induced by BUS, including diminished spermatogenesis score index, tubular diameter, gonado-somatic index, testis weight, epithelia thickness and higher percentage of aberrant tubules. GAL + QUE co-administration had better recovery effects than GAL + RUT on the biochemical markers and protected against BUS-induced testicular damage. GAL + QUE treatment regimen has better capacity to maintain the antioxidant capacity of the testes and is more potent at reducing BUS-induced oxidative damage compared to GAL + RUT.
Collapse
Affiliation(s)
- Ogechukwu E Ezim
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | | | - Victoria C Obinna
- Department of Animal and Environmental Biology, University of Port Harcourt, Choba, Nigeria
| | - Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
49
|
Singh MP, Goel B, Kumar R, Rathor S. Phytochemical and pharmacological aspects of genus Amaranthus. Fitoterapia 2024; 176:106036. [PMID: 38801891 DOI: 10.1016/j.fitote.2024.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The variety of bioactive compounds found in different species of Amaranthus, an herb that is a staple food in many parts of India. The plethora of herb Amaranthus has been a rich source of bioactive compounds like essential oils, sesquiterpenes, diterpenes, triterpenes, phenolic acids, flavonoids, etc. The traditional uses of Amaranthus, spp. have been established scientifically and were shown due to the presence of different phytochemicals. Although the pharmacological activities of Amaranthus genus have been well-documented, further studies are needed to fully understand their mechanisms of action and clinical applications. In conclusion, the phytochemistry and pharmacological activity of genus Amaranthus make it a promising source of natural products for drug discovery and development. The present is review mainly concise to the ethnopharmacological relevance and pharmacological studies of Amaranthus species. This conclusive review work may on Amaranthus species provided the interconnection of bioactive molecules with its ethno pharmacological utility of plant species.
Collapse
Affiliation(s)
- Manish Pal Singh
- Department of Pharmacology, Sharda School of Pharmacy, Sharda University, Agra 282007, Uttar Pradesh, India.
| | - Bharat Goel
- Bond Life Sciences Center, MU Metabolomics Center, University of Missouri-Columbia, MO 65211, USA
| | - Rakesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sandeep Rathor
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala 133207, Haryana, India
| |
Collapse
|
50
|
Jiang R, Lv Y, Chen B, Wu X, Zou Y, Liang L. Antioxidant effect of gallic acid on retinal ganglion cells in glaucoma model. Sci Rep 2024; 14:14907. [PMID: 38942959 PMCID: PMC11213916 DOI: 10.1038/s41598-024-65965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
To evaluate the protective effect of gallic acid on the optic nerve by studying the inhibitory effect of gallic acid on oxidative stress in retinal ganglion cells. 100 male SD rats were randomly divided into four groups: normal control group, simple high IOP group, 0.5% gallic acid experimental group, and 1% gallic acid experimental group. HE staining, immunofluorescence, DHE staining, Western blot, and q-PCR were used to observe the antioxidant effect of gallic acid on the retina of acute ocular hypertension rats. HE staining of the retina of SD rats confirmed that the nucleus of RGCs was clear, the thickness of the RNFL was regular in the normal control group, and the nucleus of RGCs was ruptured and lysed in the simple high intraocular pressure (IOP) group and the gallic acid group, and the thickness of the RNFL was significantly thickened, but the thickness of the RNFL in the gallic acid group was significantly reduced compared with that in the simple high IOP group (p < 0.05). DHE staining showed that ROS content in the simple high IOP group was significantly increased compared with the normal control group, and ROS content was significantly decreased after the application of gallic acid (p < 0.05). Immunofluorescence staining with Brn-3a antibody confirmed that the number of RGCs was significantly reduced in the simple high IOP group compared with the normal control group, whereas after application of gallic acid, the number of RGCs was significantly more in the gallic acid group than in the simple high IOP group (p < 0.05). Western Blot and q-PCR confirmed that hypoxia-inducing factor 1α (HIF-1α) protein content and transcription level were significantly increased in the retinal tissue of the simple high IOP group, and gallic acid could inhibit HIF-1α protein content (p < 0.05) and reduce transcription factor level (p < 0.05). Gallic acid exerts a protective effect on RGC by inhibiting oxidative stress in rats with acute IOP elevation.
Collapse
Affiliation(s)
- Ruping Jiang
- Department of Ophthalmology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China
| | - Yao Lv
- Department of Ophthalmology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China
| | - Binlin Chen
- Department of Ophthalmology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China
| | - Xia Wu
- Department of Ophthalmology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China
| | - Yuan Zou
- Department of Ophthalmology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China
| | - Liang Liang
- Department of Ophthalmology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China.
| |
Collapse
|