1
|
Cui D, Zhang C, Zhang L, Zheng J, Wang J, He L, Jin H, Kang Q, Zhang Y, Li N, Sun Z, Zheng W, Wei J, Zhang S, Feng Y, Tan W, Zhong Z. Natural anti-cancer products: insights from herbal medicine. Chin Med 2025; 20:82. [PMID: 40490812 DOI: 10.1186/s13020-025-01124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 05/05/2025] [Indexed: 06/11/2025] Open
Abstract
Herbal medicine exhibits a broad spectrum of potent anti-cancer properties, including the enhancement of tumor immune responses, reversal of multidrug resistance, regulation of autophagy and ferroptosis, as well as anti-proliferative, pro-apoptotic, and anti-metastatic effects. This review systematically explores recent advances (primarily documented since 2019) in research on key anti-cancer compounds derived from herbal medicine, such as apigenin, artemisinin, berberine, curcumin, emodin, epigallocatechin gallate (EGCG), ginsenosides, icariin, resveratrol, silibinin, triptolide, and ursolic acid (UA). These studies were sourced from scientific databases, including PubMed, Web of Science, Medline, Scopus, and Clinical Trials. The review focuses on the significant role that these natural products play in modern oncology, exploring their efficacy, mechanisms of action, and the challenges and prospects of integrating them into conventional cancer therapies. Furthermore, it highlights cutting-edge approaches in cancer research, such as the utilization of gut microbiota, omics technologies, synthetic derivatives, and advanced drug delivery systems (DDS). This review underscores the potential of these natural products to advance the development of novel anti-cancer treatments and support contemporary medicine. Additionally, recent multi-omics findings reveal how these compounds reshape transcriptional and metabolic networks, further broadening their therapeutic scope. Many natural products exhibit synergy with first-line chemotherapies or targeted therapies, thereby enhancing treatment efficacy and reducing side effects. Advanced nano-formulations and antibody-drug conjugates have also substantially improved their bioavailability, making them promising candidates for future translational research.
Collapse
Affiliation(s)
- Dianxin Cui
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., 999077, China
| | - Lili Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Jingbin Zheng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Jie Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Luying He
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Haochun Jin
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Na Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhenlong Sun
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wenying Zheng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 6/F, 3 Sassoon Road, Pokfulam, Hong Kong S.A.R., 999077, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao S.A.R., 999078, China.
| |
Collapse
|
2
|
Huang L, Li H, Han Y. Exploring the mechanism of Epimedium in treating diabetic nephropathy based on network pharmacology and experimental validation study. Cytotechnology 2025; 77:82. [PMID: 40151768 PMCID: PMC11937453 DOI: 10.1007/s10616-025-00748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by chronic inflammation, metabolic disturbances, and progressive renal damage. Natural perennial herb, such as Epimedium, has shown potential therapeutic effects on DN, but its underlying mechanisms remain unclear. This study aimed to explore the pharmacological mechanisms of Epimedium in the treatment of DN through network pharmacology, molecular docking, and experimental validation. Active components of Epimedium were identified using TCMSP and SwissTargetPrediction databases, while DN-related targets were retrieved from GeneCards, DisGeNET, OMIM, and TTD databases. Overlapping targets were analyzed via PPI network and Cytoscape's cytoHubba plugin to identify hub genes. GO and KEGG enrichment analyses were conducted to explore functional pathways. Molecular docking validated the binding affinity between key targets and active components. Finally, high-glucose-induced HK-2 cell injury models were used to verify the protective effects of Epimedium through RT-qPCR, western blotting, and mitochondrial function assays. A total of 224 overlapping targets were identified, with AKT1, TNF, HSP90AA1, and SRC serving as key hub genes. GO and KEGG analyses revealed significant enrichment in pathways such as the PI3K-Akt signaling pathway and lipid metabolism. Molecular docking demonstrated strong interactions between Epimedium components and hub targets. Experimental validation showed that Epimedium restored nephrin and WT1 protein levels, mitigated mitochondrial dysfunction, and reversed high-glucose-induced overexpression of key targets. Epimedium exerts therapeutic effects on DN through multi-target interactions, primarily via the PI3K-Akt pathway, highlighting its potential as a novel treatment for DN. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00748-0.
Collapse
Affiliation(s)
- Leyu Huang
- Department of Pharmacy, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong China
- Bao’an Clinical Institute of Shantou University Medical College, Shantou, Guangdong China
| | - Hui Li
- Department of Pharmacy, Huazhong University of Science and Technology Union Shenzhen Hospital (Former Nanshan District People’s Hospital), Shenzhen, Guangdong China
| | - Ying Han
- Department of Pharmacy, Huazhou Hospital of Traditional Chinese Medicine, Maoming, Guangdong China
| |
Collapse
|
3
|
Xue J, Cai Z, Yi D, Chen H, Zhou Y, Shi J, Chen C, Zou L, Yang W, Liu X, Cheng J. Qualitative and Comparative Analysis of Chemical Constituents in Epimedii Folium From Four Species Based on UPLC-ZenoTOF-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2025; 60:e5146. [PMID: 40421613 DOI: 10.1002/jms.5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
Epimedii Folium (EF) is frequently used in clinical as traditional Chinese medicine with a long history in China. The Pharmacopoeia of the People's Republic of China (2020 Version) contains four species of the plants of the genus Epimedium as its medicinal sources, namely, Epimedium brevicornu Maxim (EBM), E. sagittatum (Sieb. et Zucc) Maxim (ESM), E. pubescens Maxim (EPM), and E. koreanum Nakai (EKN). However, the available studies on a comprehensive analysis of the chemical constituents in the above four species are much scarce. The objective of this study is to establish a method which uses ultra-high performance liquid chromatography coupled with time-of-flight tandem mass spectrometry (UPLC-ZenoTOF-MS/MS) to identify and characterize the chemical constituents in samples from different species. At the same time, multivariate statistical analysis is applied to screen the differential chemical constituents among different species. A total of 116 constituents were identified from different species of EF; and the possible cleavage pathways of various types of constituents were preliminarily inferred based on the fragmentation behavior of the main constituents. Besides, 23 differential characteristic constituents were screened based on variable importance in projection (VIP) value and p-value, of which nine constituents were common differential constituents. The intrinsic quality of EF was thoroughly assessed in this work using metabolomic analysis based on UPLC-ZenoTOF-MS/MS, which provides basic information for the identification of different varieties of EF, and serves as an experimental foundation for the sensible use of EF from various variations in therapeutic practice.
Collapse
Affiliation(s)
- Jia Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongyang Yi
- Chongqing Three Gorges Medical College, Chongqing, China
| | - Haijie Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongyi Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cuihua Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lisi Zou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing, China
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing, China
| |
Collapse
|
4
|
Li JS, Yao RX, Lv Q, Wang G, Wang X, Wang YF, Yang FY, Liang GB, Miao Z. Biotransformation and activity identification of icariin in human intestinal fungus Pichia occidentalis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-12. [PMID: 40396926 DOI: 10.1080/10286020.2025.2493937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Compared to icariin, icariside II demonstrates superior absorption and metabolic properties along with enhanced bioactivity. In this study, using DXM-Glc fluorescence assay, Pichia occidentalis was identified as an intestinal fungus expressing functional glucosidase, which could efficiently convert icariin to icariside II via glycosidic bond hydrolysis, revealing the fungus-mediated intestinal glycoside metabolism pathway and determining the optimal conditions for the conversion, including temperature, drug loading, pH and reaction time. Meanwhile, icariside II exhibited anti-glioma activity, and its mechanism of action involved the inhibition of the activation of NF-κB signaling pathway in glioma cells.
Collapse
Affiliation(s)
- Jia-Shuo Li
- Graduate School, Dalian Medical University, Dalian116000, China
| | - Ru-Xin Yao
- School of Pharmacy, Dalian Medical University, Dalian116000, China
| | - Qing Lv
- Laboratory Animal Center, Dalian Medical University, Dalian116000, China
| | - Gang Wang
- Graduate School, Dalian Medical University, Dalian116000, China
| | - Xue Wang
- School of Pharmacy, Dalian Medical University, Dalian116000, China
| | - Yu-Fei Wang
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang110000, China
| | - Fang-Yu Yang
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang110000, China
| | - Guo-Biao Liang
- Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang110000, China
| | - Zhuang Miao
- Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian116000, China
| |
Collapse
|
5
|
Xie S, Zhan F, Zhu J, Xu S, Xu J. The latest advances with natural products in drug discovery and opportunities for the future: a 2025 update. Expert Opin Drug Discov 2025. [PMID: 40391763 DOI: 10.1080/17460441.2025.2507382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTION The landscape of drug discovery is rapidly evolving, with natural products (NPs) playing a pivotal role in the development of novel therapeutics. Despite their historical significance, challenges persist in fully harnessing their potential in the development of modern medicine. AREAS COVERED This perspective discusses the recent advances and opportunities in NP-based drug discovery. This includes exploration of the recently approved representative NP-derived drugs, innovative target identification strategies and advancements in hybrid NP molecules for addressing complex diseases. Moreover, the authors also discuss the role of NP-derived payloads in antibody-drug conjugates (ADCs) for targeted cancer therapy. This article is based on searches using the FDA and DrugBank database as well the Derwent Innovations Index from Web of Science between the period of 2017 to 2025. EXPERT OPINION NPs remain vital to drug discovery, demonstrating adaptability in tackling complex medical challenges. Future efforts should focus on integrating advanced methodologies, such as artificial intelligence (AI), high-throughput screening, chemical biology, bioinformatics, gene regulation, the highly accurate non-labeling chemical proteomics approach to explore novel NPs targets. Emphasizing these developments will be crucial for maximizing the therapeutic potential of NPs in combating unmet medical needs.
Collapse
Affiliation(s)
- Shaowen Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangyi Zhan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingjie Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Shi M, Kan H, Tang Y, Tian L, Guo X, Chen W, Geng J, Zong Y, Bi Y, He Z. Icariin Ameliorates Cyclophosphamide-Induced Renal Encephalopathy by Modulating the NF-κB and Keap1-Nrf2 Signaling Pathways. Int J Mol Sci 2025; 26:4838. [PMID: 40429978 PMCID: PMC12111934 DOI: 10.3390/ijms26104838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 05/29/2025] Open
Abstract
Chemotherapy-induced renal encephalopathy (RE) is a disease characterized by cognitive impairment of the brain caused by impaired kidney function for which there is no definitive treatment. Icariin (ICA), the main active component of Epimedium, has a good nervous system protection and anti-neuroinflammation effect, but its effect on the brain injury caused by renal insufficiency as a result of chemotherapy remains unclear. In this study, we demonstrated that 100 mg/kg ICA can not only successfully interface with serotonin and regulate hormone levels but also ameliorates kidney damage and cognitive impairment in cyclophosphamide (CTX)-induced RE mouse models and inhibits inflammation, oxidation, and apoptosis by regulating NF-κB, keap1-Nrf2, and apoptosis pathways. In order to further study the protective effect of ICA on RE, we used CTX-induced HT22 and HEK293 cell injury models, and the ICA intervention showed that ICA could prevent apoptosis by regulating the expression of the apoptosis-related proteins caspase-3, Bcl-2, Bax and BDNF. Overall, our study provides a basis for further investigation of the therapeutic potential of ICA in the treatment of neurodegenerative diseases in the context of renal dysfunction, and further studies are needed at a later stage to fully elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Meiling Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Yijia Tang
- School of Life Sciences, Jilin University, Changchun 130118, China;
| | - Lanshi Tian
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Xiangjuan Guo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| | - Yunfeng Bi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (M.S.); (H.K.); (L.T.); (X.G.); (W.C.); (J.G.); (Y.Z.)
| |
Collapse
|
7
|
Zheng H, Chen Y, Luo W, Han S, Sun M, Lin M, Wu C, Gao L, Xie T, Kong N. Integration of active ingredients from traditional Chinese medicine with nano-delivery systems for tumor immunotherapy. J Nanobiotechnology 2025; 23:357. [PMID: 40382641 PMCID: PMC12085060 DOI: 10.1186/s12951-025-03378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025] Open
Abstract
Tumor immune escape presents a significant challenge in cancer treatment, characterized by the upregulation of immune inhibitory molecules and dysfunction of immune cells. Tumor immunotherapy seeks to restore normal anti-tumor immune responses to control and eliminate tumors effectively. The active ingredients of traditional Chinese medicine (TCM) demonstrate a variety of anti-tumor activities and mechanisms, including the modulation of immune cell functions and inhibiting tumor-related suppressive factors, thereby potentially enhancing anti-tumor immune responses. Furthermore, nano-delivery systems function as efficient carriers to enhance the bioavailability and targeted delivery of TCM active ingredients, augmenting therapeutic efficacy. This review comprehensively analyzes the impact of TCM active ingredients on the immune system and explores the synergistic application of nano-delivery systems in combination with TCM active ingredients for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yiquan Chen
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Mengjuan Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Min Lin
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Chenghan Wu
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China
| | - Lili Gao
- Department of Neurology, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, China.
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
8
|
Wu J, Ge Y, Huang W, Zhang L, Huang J, Huang N, Luo Y. Natural bioactive compounds modified with mesenchymal stem cells: new hope for regenerative medicine. Front Bioeng Biotechnol 2025; 13:1446537. [PMID: 40416310 PMCID: PMC12098461 DOI: 10.3389/fbioe.2025.1446537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/25/2025] [Indexed: 05/27/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into various cell types, providing important sources of cells for the development of regenerative medicine. Although MSCs have various advantages, there are also various problems, such as the low survival rate of transplanted cells and poor migration and homing; therefore, determining how to reform MSCs to improve their utilization is particularly important. Although many natural bioactive compounds have shown great potential for improving MSCs, many mechanisms and pathways are involved; however, in the final analysis, natural bioactive compounds promoted MSC proliferation, migration and homing and promoted differentiation and antiaging. This article reviews the regulatory effects of natural bioactive compounds on MSCs to provide new ideas for the therapeutic effects of modified MSCs on diseases.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ying Ge
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Wendi Huang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Li Zhang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
- Department of Gerontology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
- Department of Gerontology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
9
|
Zeng J, Cheng J, Zhu L, Tang S. The effects of various nutritional supplements in patients with chronic obstructive pulmonary disease: a network meta-analysis. BMC Pulm Med 2025; 25:220. [PMID: 40340688 PMCID: PMC12060334 DOI: 10.1186/s12890-025-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/14/2025] [Indexed: 05/10/2025] Open
Abstract
OBJECTIVE To evaluate the effectiveness of various nutritional supplements as interventions for patients with Chronic Obstructive Pulmonary Disease (COPD) using network meta-analysis. METHODS We searched PubMed, Embase, Cochrane Library, and Web of Science databases for randomized controlled trials on nutritional supplements for COPD patients, with the search updated to March 24, 2025. The risk of bias for each included study was assessed using appropriate tools, and the certainty of evidence was evaluated according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Data synthesis was performed using R software, employing network meta-analysis methods to compare the relative efficacy of different nutritional interventions. RESULTS Thirty-seven studies involving 1975 COPD patients and 21 different nutritional supplements were analyzed. Butyrate [MD = 2.7, 95% CrI (1.0, 4.4)], Nanocurcumin [MD = 13, 95% CrI (5.4, 21)], and probiotics [MD = 7.1, 95% CrI (5.2, 9.1)] significantly improved Forced Expiratory Volume in One Second (FEV1). Nanocurcumin also slowed the decline in the ratio of Forced Expiratory Volume in One Second to Forced Vital Capacity (FEV1/FVC) [MD = 12, 95% CrI (5.5, 18)]. For exercise endurance, coenzyme Q10 combined with creatine [MD = 63, 95% CrI (36, 90)], Melatonin (MLT) [MD = 46, 95% CrI (1.3, 92)], Nitrate [MD = 30, 95% CrI (19, 41)], and whey proteins [MD = 11, 95% CrI (9.2, 13)] significantly improved 6-minute walk distance (6MWD). Regarding dyspnea reduction, MLT [MD = -0.90, 95% CrI (-1.6, -0.21)] and Yam-Epimedium [MD = -1.3, 95% CrI (-1.9, -0.67)] significantly lowered modified Medical Research Council (mMRC) scores. In terms of quality of life, MLT [MD = -8, 95% CrI (-12, -4.2)], Vitamin D (VD) [MD = -2.5, 95% CrI (-3.1, -1.9)], and whey proteins [MD = -0.70, 95% CrI (-0.99, -0.41)] reduced COPD Assessment Test (CAT) scores. Additionally, AKL1 [MD = -9.2, 95% CrI (-18, -0.41)], creatine [MD = -9.6, 95% CrI (-17, -2.8)], and Yam-Epimedium [MD = -24, 95% CrI (-34, -13)] lowered St. George's Respiratory Questionnaire (SGRQ) scores. The Surface Under the Cumulative Ranking Curve (SUCRA) analysis showed Nanocurcumin ranked highest for improving FEV1/FVC, coenzyme Q10 combined with creatine for 6MWD, Yam-Epimedium for reducing dyspnea and SGRQ, and MLT for lowering CAT scores. CONCLUSION This analysis indicates that various nutritional supplements, including Nanocurcumin, butyrate, probiotics, coenzyme Q10 combined with creatine, MLT, nitrate, whey proteins, VD, AKL1, creatine, and Yam-Epimedium, can potentially benefit COPD patients, demonstrating differing levels of effectiveness. Specifically, Nanocurcumin may be the best choice for improving lung function; coenzyme Q10 combined with creatine may be the most effective for enhancing exercise endurance; Additionally, Yam-Epimedium is the most likely supplement to reduce the symptoms of dyspnea in COPD patients. Yam-Epimedium and MLT may be the most effective for improving quality of life and overall health status.
Collapse
Affiliation(s)
- Jia Zeng
- The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou City, Guangdong, Yuexiu District, China
| | - Jing Cheng
- The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou City, Guangdong, Yuexiu District, China
| | - Liangdong Zhu
- The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Sufang Tang
- The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou City, Guangdong, Yuexiu District, China
| |
Collapse
|
10
|
Zhai T, Wang J, Chen Y, Su J, Feng W. Icariin Induces Chondrocyte Degeneration via Activation of the NF-κB Signalling Pathway and Reduces the Inflammation Factor Expression Induced by Lipopolysaccharide. Immunology 2025; 175:76-83. [PMID: 39949189 DOI: 10.1111/imm.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 04/11/2025] Open
Abstract
To investigate the effect of icariin on chondrocytes by activating the nuclear factor kappa-B (NF-κB) signalling pathway and the mechanism of icariin in inducing chondrocytes degeneration. Chondrocytes were cultured in vitro and treated with icariin at concentrations of 0, 0.01, 0.1, 10 and 20 μm. Cell proliferation was evaluated by cell counting kit-8 (CCK8) method, apoptosis was detected by TUNEL method and the expression of NF-κB was detected by Western blotting (WB) and RT-PCR. The nuclear localization of NF-κB p65 protein was observed by immunofluorescence staining. Lipopolysaccharide (LPS) was used to establish the inflammatory model, and WB and RT-PCR were used to detect the expression levels of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). After treatment with icariin, the proliferation ability of chondrocytes was markedly enhanced, and the apoptosis rate (AR) was markedly decreased (p < 0.05). In addition, icariin could inhibit the nuclear translocation of NF-κB p65 protein, promote the gene expression of Collagen II (Col-II) and Aggrecan in chondrocytes, and reduce the expression of NF-κB. Moreover, icariin markedly reduced the expression of IL-6 and TNF-α in LPS-induced inflammation (p < 0.05). Icariin can enhance chondrocyte proliferation, promote phenotypic gene expression by inhibiting the NF-κB signal transduction pathways, thus suppressing the chondrocyte degeneration, and can reduce the inflammation factor expression induced by LPS.
Collapse
Affiliation(s)
- Tianjun Zhai
- Department of TCM, The Second Rehabilitation Hospital of Shanghai, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- Department of TCM, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yeping Chen
- Department of Clinical Investigation Center, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Jianqing Su
- Department of Rehabilitation, The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Wei Feng
- Department of TCM, The Second Rehabilitation Hospital of Shanghai, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Sun WZ, Wang X, Fu MY, Liu LF, Zhang P, Yin BC, Liu WB, Ye BC. Metabolic Engineering of Yarrowia lipolytica for Enhanced De Novo Biosynthesis of Icaritin. ACS Synth Biol 2025; 14:1142-1151. [PMID: 40106718 DOI: 10.1021/acssynbio.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Icaritin (ICT) is a naturally occurring flavonoid compound with notable anticancer properties, recently recognized for its efficacy in treating advanced hepatic carcinoma. Traditional methods of ICT production, including plant extraction and chemical synthesis, face challenges such as low yield and environmental concerns. This study leverages synthetic biology to construct a microbial cell factory using Yarrowia lipolytica for de novo ICT synthesis. We engineered the yeast by integrating the ICT synthesis pathway involving EsPT from Epimedium sagittatum and OsOMTm from Oryza sativa. By optimizing the metabolic pathways, including enhancing the supply of DMAPP via mevalonate pathway modifications, and fine-tuning the expression and catalytic efficiency of EsPT through truncation strategies, we significantly improved ICT yield to 247.02 mg/L─the highest microbial ICT titer reported to date. These findings lay a solid foundation for the large-scale industrial production of ICT and offer valuable insights into the biosynthesis of other flavonoid plant natural products.
Collapse
Affiliation(s)
- Wen-Zhuo Sun
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Wang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng-Yu Fu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le-Fan Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Bing Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Zhou P, Liu X, Tian Y, Ren S, Liang H. High-throughput metabolomics exploring the pharmacological effects and mechanism of icariin on rheumatoid arthritis rat based on ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Front Mol Biosci 2025; 12:1514882. [PMID: 40270592 PMCID: PMC12015166 DOI: 10.3389/fmolb.2025.1514882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Metabolomics could provide insights into the pharmacological effects and action mechanisms of drugs through assessment of the changes in relevant biomarkers and biological pathways. Icariin (ICA) is a promising ffavonoid compound known to have significant anticancer activity; however, the pharmacological mechanisms of ICA in the treatment of rheumatoid arthritis (RA) need to be explored further. Methods The changes in the metabolic profiles of serum samples were revealed using non-targeted metabolomics based on ultrahigh-performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry. Tissue histopathology, physical parameters, and biochemical indicators were also measured and analyzed to reveal the mechanisms of ICA in the treatment of RA. Results and discussion Thirty-one potential biomarkers were identified to highlight the metabolic disorders in an RA animal model, out of which twenty-three were regulated by ICA treatment. These biomarkers were mainly involved in alanine, aspartate, and glutamate metabolism; arachidonic acid metabolism; citrate cycle; pyruvate metabolism; and glycolysis/gluconeogenesis pathways. The anticancer mechanism of ICA on RA may be attributed to amelioration of the amino acid metabolism, unsaturated fatty acid metabolism, citrate cycle, pyruvate metabolism, and others, which in turn regulate the oxidative stress state and inflammatory effects. Thus, metabolomics is a promising approach for revealing the biomarker distribution and pathways of RA to determine the effects and mechanisms of ICA, which can benefit the development of natural medicines.
Collapse
Affiliation(s)
- Peng Zhou
- School of Continuing Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xixi Liu
- Beijing Mentougou District of Traditional Chinese Medicine, Beijing, China
| | - Yushi Tian
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shouze Ren
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Liang
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Yuan D, Guo T, Zhu X, Song W, Nie D, Yu H. Icariside II induces ferroptosis through the down-regulation of SLC7A11 in ovarian cancer. J Ovarian Res 2025; 18:71. [PMID: 40186304 PMCID: PMC11971851 DOI: 10.1186/s13048-025-01650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/16/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Ovarian cancer (OV) is the leading cause of death among gynecological malignancies. This study aimed to investigate the influence of Icariside II on OV in vitro and in vivo and to elucidate whether Icariside II induces ferroptosis in OV cells by regulating SLC7A11 expression. METHODS SKOV3 cells and OV nude mice were treated with Icariside II, a control-plasmid or an SLC7A11-plasmid. EdU assay, flow cytometry, wound-healing assay, and Transwell assays were used to assess cell proliferation, apoptosis, migration, and invasion respectively. Total iron, Fe2+ levels, and intracellular lipid reactive oxygen species (ROS) stimulation were evaluated in both cells and tissues. Levels of cysteine (Cys), glutathione (GSH), and glutathione peroxidase 4 (GPX4) were also analyzed. Ferroptosis markers, including Ptgs2, Chac1, SLC7A11, and apoptosis-associated genes (Bax and Bcl-2), were detected using qRT-PCR, western blotting, and immunohistochemistry (IHC). SLC7A11 expression in OV was explored using data from The Cancer Genome Atlas (TCGA), and validated with IHC staining. RESULTS Icariside II-induced ferroptosis in OV cells was confirmed by elevated Fe2+ and total iron levels, enhanced lipid ROS levels, higher Ptgs2 and Chac1 mRNA levels, and reduced levels of SLC7A11, Cys, GSH, and GPX4 in both in vitro and in vivo models. These effects were partially reversed by the SLC7A11-plasmid. Moreover, Icariside II suppressed SKOV3 cell proliferation, inhibited cells migration and invasion, and promoted apoptosis by downregulating SLC7A11 expression. Furthermore, we found that SLC7A11 expression was upregulated in OV tissues compared to adjacent non-tumor tissues. CONCLUSION Icariside II induces ferroptosis in OV by downregulating SLC7A11 expression in vitro and in vivo. Our study identified Icariside II as a promising therapeutic agent for the treatment of OV.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Obstetrics and Gynecology, Affiliated Taizhou People's Hospital of Nanjing University of Traditional Chinese Medicine, Taizhou, 225300, China
| | - Ting Guo
- Center for Molecular Medicine, Affiliated Taizhou People's Hospital of Nanjing University of Traditional Chinese Medicine, Taizhou, 225300, China
| | - Xiaotong Zhu
- Department of Obstetrics and Gynecology, Affiliated Taizhou People's Hospital of Nanjing University of Traditional Chinese Medicine, Taizhou, 225300, China
| | - Weiwei Song
- Department of Traditional Chinese Medicine, Affiliated Taizhou People's Hospital of Nanjing University of Traditional Chinese Medicine, Taizhou, 225300, China
| | - Dengyun Nie
- Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, China
| | - Hong Yu
- Department of Pathology, Affiliated Taizhou People's Hospital of Nanjing University of Traditional Chinese Medicine, Taizhou, 225300, China.
- Affiliated Taizhou People's Hospital of Nanjing University of Traditional Chinese Medicine, No. 399 Hailing Road, Taizhou, 225300, China.
| |
Collapse
|
14
|
Feng KP, Liu JM, Chen RD, Fei QM, Xie KB, Chen DW, Dai JG. A regio-specific 4 '- O-methyltransferase from Epimedium pseudowushanense regiospecifically catalyzing 8-prenylkeampferol to icaritin. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:568-576. [PMID: 39373698 DOI: 10.1080/10286020.2024.2411710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Epimedium is widely used in traditional Chinese medicine and contains rich bioactive compounds. These compounds often have a methyl group at their 4'-OH position catalyzed by methyltransferases. Therefore, studying methyltransferases in Epimedium plants is of great significance. In this study, a flavonol methyltransferase, EpOMT4, was isolated from Epimedium pseudowushanense B.L. Guo. The recombinant enzyme regiospecifically transferred a methyl group to the 4'-OH position of 8-prenylkaempferol forming icaritin. The study demonstrates that enzymatic methylation of flavonoids in Epimedium plants holds significant potential and could provide a promising alternative method for the biosynthetic production of bioactive methylated prenylflavonoids.
Collapse
Affiliation(s)
- Ke-Ping Feng
- National-Local Joint Engineering Research Center of Biodiagnostic & Biotherapy, Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an710004, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Ji-Mei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Ri-Dao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Qiao-Man Fei
- National-Local Joint Engineering Research Center of Biodiagnostic & Biotherapy, Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an710004, China
| | - Ke-Bo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Da-Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Jun-Gui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs; and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| |
Collapse
|
15
|
Zhao D, Ge A, Yan C, Liu X, Yang K, Yan Y, Hao M, Chen J, Daga P, Dai CC, Li C, Cao H. T helper cell 17/regulatory T cell balance regulates ulcerative colitis and the therapeutic role of natural plant components: a review. Front Med (Lausanne) 2025; 11:1502849. [PMID: 40196424 PMCID: PMC11973383 DOI: 10.3389/fmed.2024.1502849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease characterized by progressive mucosal damage. The incidence rate of UC is rising rapidly, which makes the burden of medical resources aggravated. In UC, due to various pathogenic factors such as mucosal immune system disorders, gene mutations and environmental factors disrupting the mucosal barrier function, the midgut pathogenic bacteria and exogenous antigens translocate into the lamina propria, thereby aggravating the inflammatory response and further damages the mucosal barrier. During the progression of UC, Th17 populations that cause inflammation generally increase, while Tregs that suppress Th17 activity decrease. Among them, Th17 mediates immune response, Treg mediates immunosuppression, and the coordinated balance of the two plays a key role in the inflammation and immune process of UC. Natural plant components can regulate biological processes such as immune inflammation from multiple levels of proinflammatory cytokines and signaling pathways. These characteristics have unique advantages and broad prospects in the treatment of UC. In immunomodulation, there is substantial clinical and experimental evidence for the modulatory role of natural plant products in restoring balance between Th17/Treg disturbances in UC. This review summarizes the previous studies on the regulation of Th17/Treg balance in UC by natural plant active ingredients, extracts, and traditional Chinese medicine prescriptions, and provides new evidence for the development and design of lead compounds and natural new drugs for the regulation of Th17/Treg balance in the future, and then provides ideas and evidence for future clinical intervention in the treatment of UC immune disorders and clinical trials.
Collapse
Affiliation(s)
- Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Cong Yan
- Department of Urology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Xingci Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Cardiometabolic Science, Division of Environmental Medicine, Christina Lee Brown Envirome Insttitute, University of Louisville, Louisville, KY, United States
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, James Clark Hall, College Park, MD, United States
| | - Changping Li
- School of Mechanical Engineering and Automation, Fuyao University of Science and Technology, Fuzhou, China
| | - Hui Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Fu J, Wang X. Improvement of RSV-Induced Asthma in Mice: A Study Based on Icariin-Mediated PD-1. FRONT BIOSCI-LANDMRK 2025; 30:26061. [PMID: 40152372 DOI: 10.31083/fbl26061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Infection with respiratory syncytial virus (RSV) has the potential to exacerbate asthma by causing prolonged inflammation in the airways. Mounting evidence has revealed the significant involvement of programmed cell death protein-1 (PD-1) in the development of asthma. Although icariin (IC) has shown potential in improving airway remodeling in ovalbumin (OVA)-induced asthma, its impact and underlying mechanisms in cases of asthma aggravated by RSV infection are not thoroughly understood. OBJECTIVE To explore the effect of IC on RSV-infected asthmatic mice and the mechanism involving PD-1. METHODS A model of asthmatic mice infected with RSV was developed. To evaluate the effects of IC treatment, general behavioral characterization, histopathologic analysis, bronchoalveolar lavage fluid (BALF) analysis, and enzyme-linked immunosorbent assays (ELISA) were performed to assess the frequency of sneezing and nose scratching, the content of OVA-specific IgE, oxidative stress and airway inflammation in mice. Apoptosis was also assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Finally, the expression levels of apoptosis protein, oxidative stress-related protein, and PD-1 were assessed by western blot. RESULTS IC significantly ameliorated the sneezing and nose-scratching frequency (p < 0.001) and decreased OVA-specific IgE levels in asthmatic mice infected with RSV (p < 0.01). IC treatment remarkably reduced the infiltration of inflammatory cells around the alveoli and lowered the overall inflammation score. It also notably decreased the levels of inflammatory cytokines interleukin-4 (IL-4), IL-13, and IL-5, and decreased the numbers of neutrophils, eosinophils, and macrophages in the bronchoalveolar lavage fluid (BALF) (p < 0.001). IC ameliorated oxidative stress in RSV-infected asthmatic mice (p < 0.001). In addition, IC reduced apoptosis while increasing PD-1 expression in asthmatic mice infected with RSV (p < 0.001). Interestingly, si-PD-1 significantly reversed IC inhibition of inflammatory cytokines and apoptosis-related proteins, and promoted PD-1 protein expression (p < 0.01). The findings suggested that IC might be effective in alleviating asthma triggered by RSV in mice by regulating the expression of PD-1. CONCLUSION IC ameliorated RSV-induced asthma in mice by regulating PD-1 expression, and may hold promise as a potential therapeutic agent for RSV-induced asthma in mice. These findings provide valuable insights into the possibility of using IC as a treatment option for asthma caused by RSV.
Collapse
Affiliation(s)
- Jiayao Fu
- The First Clinical Medical School, Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Xiaohong Wang
- Department of Pediatrics, First Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| |
Collapse
|
17
|
Liu D, Zhao Y, Liu R, Qiao B, Lu X, Bei Y, Niu Y, Yang X. Traditional Chinese medicine as a viable option for managing vascular cognitive impairment: A ray of hope. Medicine (Baltimore) 2025; 104:e41694. [PMID: 40101029 PMCID: PMC11922442 DOI: 10.1097/md.0000000000041694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Vascular cognitive impairment (VCI) is a prevalent cognitive disorder resulting from cerebrovascular disease and encompasses a spectrum of cognitive deficits, ranging from mild impairment to vascular dementia (VD). VCI is responsible for a minimum of 20% to 40% of all cases of dementia, with its prevalence ranking second only to Alzheimer's disease on a global scale. The pathogenesis of VCI is complex and includes a lack of cholinergic nerve cells, inflammation, oxidative stress, alterations in the blood-brain barrier, and cell apoptosis. Current guideline-recommended drugs have unsatisfactory therapeutic effects. However, traditional Chinese medicine (TCM) has long been associated with treating dementia, and numerous studies regarding treating dementia with TCM have been conducted. The etiology and pathogenesis of VaD are linked to deficiencies in the spleen and kidney, as well as phlegm turbidity. Treatment involves benefiting the spleen and kidney, improving blood circulation, removing blood stasis, and dispelling phlegm. Moreover, TCM presents benefits such as few adverse effects, low cost, long-term use suitability, and preventive effects. This review outlines the pathogenesis of VCI in both modern medicine and TCM, examines traditional prescriptions and single-agent ingredients with their pharmacological effects, emphasizes TCM's unique features, and explores its multi-targeted approach to treating VCI.
Collapse
Affiliation(s)
- Di Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - YueYu Zhao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - RunFeng Liu
- Department of Traditional Chinese Medicine, Weifang People’s Hospital, Weifang, China
| | - BaoGuang Qiao
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - XinRu Lu
- College of Medical, Shandong Yingcai University, Jinan, China
| | - YuanYuan Bei
- Shandong Jiaotong College Hospital, Jinan, China
| | - Yin Niu
- Department of Endocrinology, People’s Hospital of Dingtao District, Heze, China
| | - XiaoNi Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
18
|
Wu Z, Zhang P, Huang W, Zhou Y, Cao Z, Wu C. Qufeng epimedium decoction alleviates rheumatoid arthritis through CYLD-antagonized NF-kB activation by deubiquitinating Sirt1. Immunobiology 2025; 230:152875. [PMID: 39908772 DOI: 10.1016/j.imbio.2025.152875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/20/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease that markedly limits the patients´ day-to-day functional abilities and life quality. Currently, there is no known cure for RA. Qufeng epimedium decoction, a traditional Chinese medicine, is widely used in China to treat RA. However, its underlying mechanism remains elusive. METHODS The RA animal model was established to investigate the anti-RA effect and regulatory effect on fibroblast-like synoviocytes (FLS) pyroptosis, qRT-PCR, Western blot, flow cytometry, histology staining, and ELISA were utilized to confirm the gene and protein expressions. The interactions between Sirt1 and CYLD were validated through Co-immunoprecipitation (Co-IP) and RNA-FISH assay. RESULTS Administration with Qufeng epimedium decoction attenuated inflammatory damage, excessive proliferation, and FLSs pyroptosis in an RA rat model. Moreover, treatment of Qufeng epimedium decoction reduced the ubiquitination modification level of Sirt1 in FLSs isolated from an RA rat model. Mechanistically, CYLD, an intermediation for linking Qufeng epimedium decoction and RA, was responsible for Sirt1 deubiquitination to its protein stabilization, thereby deactivating the NF-kB /GSDMD signaling pathway. CONCLUSION Our findings indicate that Qufeng epimedium decoction suppresses FLSs pyroptosis and RA progression via CYLD-mediated Sirt1 deubiquitination and deactivation of the NF-kB /GSDMD signaling pathway. This study sheds light on the underlying mechanism of Qufeng epimedium decoction's effectiveness in RA treatment.
Collapse
Affiliation(s)
- Zhiming Wu
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China.
| | - Peng Zhang
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Wenyan Huang
- Day Surgery Center, Jiangxi Maternal and Child Health Care Hospital, Nanchang 330000, Jiangxi Province, PR China
| | - Yifen Zhou
- Chinese Medicine Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Zhengliu Cao
- Chinese Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| | - Chunhong Wu
- Outpatient Department, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi Province, PR China
| |
Collapse
|
19
|
Zhu BY, Liu ZC, Zhao ZX, Huang HP, Zhang N, Xia J, Chen WW. Pharmacological Mechanism of Chinese Medicine in Systemic Lupus Erythematosus: A Narrative Review. Chin J Integr Med 2025; 31:157-169. [PMID: 39240290 DOI: 10.1007/s11655-024-3762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 09/07/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder affecting multiple systems, characterized by the development of harmful autoantibodies and immune complexes that lead to damage in organs and tissues. Chinese medicine (CM) plays a role in mitigating complications, enhancing treatment effectiveness, and reducing toxicity of concurrent medications, and ensuring a safe pregnancy. However, CM mainly solves the disease comprehensively through multi-target and multi-channel regulation process, therefore, its treatment mechanism is often complicated, involving many molecular links. This review introduces the research progress of pathogenesis of SLE from the aspects of genetics, epigenetics, innate immunity and acquired immunity, and then discusses the molecular mechanism and target of single Chinese herbal medicine and prescription that are commonly used and effective in clinic to treat SLE.
Collapse
Affiliation(s)
- Bo-Yu Zhu
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhi-Chao Liu
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhen-Xi Zhao
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hui-Ping Huang
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Na Zhang
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia Xia
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wei-Wei Chen
- Department of Rheumatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
20
|
Ma M, Yang Z, Li K, Yang L, Chen B, Chen M, Du H, Zhou Y, He X, He Y. Molecular insights into the therapeutic mechanisms of Bushen-Qiangdu-Zhilv decoction for ankylosing spondylitis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119269. [PMID: 39710158 DOI: 10.1016/j.jep.2024.119269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ankylosing spondylitis (AS) is a chronic rheumatic immune disease characterized by high disability rates, significantly affecting patients' quality of life. BuShen-QiangDu-ZhiLv Decoction (BQZD), developed by the renowned traditional Chinese medicine practitioner Jiao Shude, has been traditionally used for AS treatment. However, the bioactive components and the precise mechanisms underlying BQZD's therapeutic effects remain largely unexplored. AIM OF THE STUDY To investigate the protective effects and elucidate the molecular mechanisms of BQZD in treating ankylosing spondylitis. MATERIALS AND METHODS Ultra Performance Liquid Chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was used to identify active compounds in BQZD. Bulk RNA-seq and Gene Set Variation Analysis (GSVA) were conducted to assess changes in pathway activity in AS patients before and after three months of BQZD treatment. We also utilized network pharmacology and molecular docking analyses to predict potential mechanisms, identifying key target genes such as IL-6, NFATc1, and c-FOS. Animal experiments were performed to validate these findings. RESULTS UPLC-MS/MS identified 28 active compounds in BQZD capable of entering the bloodstream, with potential anti-inflammatory, immunomodulatory, and bone metabolism-regulating effects. BQZD treatment led to a significant reduction in ESR, CRP, and ASDAS-CRP scores, indicating clinical improvement in AS patients. RNA-seq analysis showed decreased GSVA scores for the ossification pathway, with moderate reductions in inflammatory response and RANKL signaling pathways. Positive correlations were found between pathway activity and clinical indicators. Network pharmacology and transcriptomic analysis identified IL-6, NFATc1, and c-FOS as key targets. In vivo experiments confirmed that BQZD reduced TNF-α and IL-1β levels, inhibited ectopic ossification, and modulated the expression of DKK-1, MMP-9, and OPN in the CAIA model. CONCLUSIONS BQZD exerts therapeutic effects in AS by regulating inflammation and abnormal ossification through multi-pathway, multi-target mechanisms. The identification of key target genes such as IL-6, NFATc1, and c-FOS provides a solid foundation for future research and clinical applications of BQZD in AS management.
Collapse
Affiliation(s)
- Mengyang Ma
- Luoyang Orthopedic Hospital of Henan Province & Orthopedic Hospital of Henan Province, Luoyang, 471002 Henan, China; Guangzhou University of Chinese Medicine, 510006 Guangzhou, China
| | - Zhihua Yang
- Department of Internal Medicine V Hematology Oncology Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany; Guangzhou University of Chinese Medicine, 510006 Guangzhou, China
| | - Ke Li
- Guangzhou University of Chinese Medicine, 510006 Guangzhou, China
| | - Lu Yang
- Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China
| | - Bozhen Chen
- Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China
| | - Meiqi Chen
- Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China
| | - Haifang Du
- Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, 510120 Guangzhou, China
| | - Yingyan Zhou
- Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, 510120 Guangzhou, China
| | - Xiaohong He
- Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, 510120 Guangzhou, China.
| | - Yiting He
- Guangzhou University of Chinese Medicine, 510006 Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) 510120 Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research Guangzhou University of Chinese Medicine, 510120 Guangzhou, China.
| |
Collapse
|
21
|
Xia Z, Li G, Zhai Y, Tong L, Ru Y, Wu M, Hu J, Wang M, Meng Y, Sun B, Wang C, Luo X, Liu Y, Zhao Y, Zheng X, Jia P. Immunomodulatory effects and multi-omics analysis of Codonopsis Pilosula Extract in septic rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118847. [PMID: 39368762 DOI: 10.1016/j.jep.2024.118847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codonopsis Pilosula (CP), as a well-known traditional Chinese medicine (TCM) with medicinal and edible herb, is one of the most representative tonic Chinese herbal medicine. It has been widely used for regulating immune function with hardly any adverse effects in clinical practice. AIM OF THE STUDY This study aimed to elucidate the immunomodulatory effect and to explore probable mechanism of Codonopsis Pilosula Extract (CPE) in septic rats. MATERIALS AND METHODS The model of septic rat was established by cecal ligation and perforation (CLP). The thymus index, spleen index and cerebral index were calculated. Histological changes were observed by Hematoxylin-eosin (HE). The positive expression of CD4+ T cells was determined in the thymus and spleen by immunohistochemical (IHC). The expression level of 24 h CD4 was corroborated by real-time quantitative polymerase chain reaction (RT-QPCR). Infectious factors, immune factors and inflammatory factors were determined by enzyme-linked immunosorbent assay (ELISA). Blood cells were detected by automatic biochemical analyzer. The metabolite changes and gene expression levels, the potential targets and pathways of CPE in regulating immune function of thymus were analyzed by integrative analysis of transcriptomic and metabolomic methods. RESULTS High dose of CPE increased the thymus index and spleen index of septic rats at different stages, and the brain index at different stages could be increased at medium dose and high dose. Medium and high doses of CPE reduced the pathological changes of thymus, spleen and brain tissue. CPE promoted the expression levels of CD4 in the thymus and spleen. CPE improved the levels of red blood cells (RBC), lymphocytes (LYM) and hemoglobin (HGB), and decreased the levels of neutrophils (NEUT), NLR (NEUT/LYM) and PLR (PLT/LYM). CPE dynamically regulated the levels of white blood cells (WBC) and PLT (platelet). CPE dynamically regulated the expression levels of infectious factors, immune factors, and inflammatory factors related to disease severity. CONCLUSION CPE has the ability to dynamically modulate the expression levels of infectious factors, immune factors, and inflammatory factors related to disease severity, and alleviate the damages of immune organs. The research has provided a global view of the integration of metabolomics and transcriptomics to elucidate the immunomodulatory effects and mechanisms of CPE. CPE could affect a series of biological processes in glycerophospholipid metabolism by interfering with the B cell receptor (BCR) signaling pathway in the thymus, to maintain immune homeostasis of septic rats on the whole, especially humoral immunity.
Collapse
Affiliation(s)
- Zhaodi Xia
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Gufeng Li
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yufei Zhai
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Liguo Tong
- Shanxi Academy of Traditional Chinese Medicine, Taiyuan, Shanxi, 030012, PR China
| | - Yilin Ru
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Mengyao Wu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Jinming Hu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Mengyuan Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yaxi Meng
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Bao Sun
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China; Department of Pharmacy, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Chunliu Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China; Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, PR China
| | - Xianlin Luo
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Yidi Liu
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Ye Zhao
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China
| | - Xiaohui Zheng
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| | - Pu Jia
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, PR China.
| |
Collapse
|
22
|
Guo R, Yan Z, Wang R, Guo T, Li H, Kong M, Guo W. Advances in Pharmacological Research on Icaritin: A Comprehensive Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:179-203. [PMID: 39880661 DOI: 10.1142/s0192415x25500089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Epimedium has been widely used in traditional Chinese medicine for several thousands of years. This plant is known for tonifying kidney Yang, strengthening muscles and bones, and dispelling wind and dampness. It is worth noting that icaritin, a prenylated flavonoid isolated from Epimedium, has received increasing attention in recent years due to its wide range of pharmacological activities. Icaritin exhibits significant therapeutic potential against various diseases, such as osteoporosis, tumors (hepatocellular carcinoma, stomach cancer, breast cancer, and glioblastoma), cerebral ischemia skin injury, thrombocytopenia, and systemic lupus erythematosus. We review the pharmacological activities of icaritin and its potential molecular mechanisms for the treatment of related diseases. The data suggest that icaritin can have the pharmacological effects of mediating Wnt/[Formula: see text]-catenin, IL-6/JAK2/STAT3, AMPK/mTOR, PTEN/AKT, MAPK, NF-[Formula: see text]B, and other signaling pathways. This paper also discusses the progress of clinical trials of icaritin. Icaritin was approved by the State Food and Drug Administration in January 2022 for the treatment of advanced HCC, and has various clinical drug prospects. Although it has some disadvantages, including poor solubility, and low bioavailability, icaritin is still a prospective candidate for the development of naturally derived drugs, especially in the treatment of tumors and inflammatory diseases. This review aims to update and deepen the understanding of icaritin, and provide a theoretical basis for its further study.
Collapse
Affiliation(s)
- Ran Guo
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhiping Yan
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Rui Wang
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Tongxuan Guo
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Hao Li
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Minyu Kong
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Wenzhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
23
|
Xie S, Yang Q, Ying Z, Cai M, Fan W, Gao H, Feng X, Wu Y. Dietary supplementation with Epimedium contributes to the improvement of hormone levels, gut microbiota, and serum metabolite composition in the Chinese forest musk deer ( Moschus berezovskii). Front Vet Sci 2025; 11:1497115. [PMID: 39911481 PMCID: PMC11794312 DOI: 10.3389/fvets.2024.1497115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025] Open
Abstract
The Chinese forest musk deer (Moschus berezovskii) is a small ruminant animal with special economic value. It is listed as a National Level I key protected species in China. However, these animals are prone to stress responses in captive environments. Epimedium, a traditional Chinese herb with aphrodisiac and anti-stress properties, may have potential benefits for the health of the captive Chinese forest musk deer, though its efficacy requires further investigation. This study aimed to evaluate the effects of dietary supplementation with Epimedium on the hormone levels, gut microbiota composition, and serum metabolism of the Chinese forest musk deer. The fourteen adult male Chinese forest musk deer with similar initial body weights (7.0 ± 0.3 kg) and an average age of 4.5 years were randomly divided into two groups, each containing seven animals. The control group was fed a standard diet without Epimedium, while the Epimedium group received the standard diet supplemented with 15 g Epimedium /kg DM. The results indicated that the inclusion of Epimedium in the diet increased dry matter intake (DMI) and improved the ratio of feed to gain (F/G), with an increase in fecal testosterone levels (p < 0.05). 16S rDNA sequencing analysis revealed that Epimedium enhanced the richness and diversity of the gut microbiota in the Chinese forest musk deer, increasing the relative abundance of beneficial bacteria such as Firmicutes, while reducing the relative abundance of the potentially pathogenic Proteobacteria (p < 0.05). A widely targeted metabolomics analysis identified 25 differential metabolites between the two groups. Significant alterations were observed in key metabolic pathways related to lipid metabolism, hormone regulation, and antioxidation, such as ovarian steroidogenesis, tyrosine metabolism, and glycerophospholipid metabolism. Furthermore, correlation analysis between gut microbiota and serum differential metabolites showed that the relative abundances of Clostridia_vadinBB60_group and UCG-010 were positively correlated with anserine and 7-ketocholesterol, respectively (p < 0.05). In conclusion, Epimedium positively influenced feed intake and hormone levels in the Chinese forest musk deer by modulating gut microbiota composition and serum metabolism.
Collapse
Affiliation(s)
- Shan Xie
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Qinlin Yang
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China
| | - Zaixiang Ying
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Mingcheng Cai
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Wenqiao Fan
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Hanyu Gao
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Xiaolan Feng
- Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, China
| | - Yongjiang Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Yongchuan, China
| |
Collapse
|
24
|
Liu J, Li B, Zhou X, Liu G, Li C, Hu Z, Peng R. Uncovering the mechanisms of Zhubi decoction against rheumatoid arthritis through an integrated study of network pharmacology, metabolomics, and intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118736. [PMID: 39186991 DOI: 10.1016/j.jep.2024.118736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhubi Decoction (ZBD) is a modified formulation derived from the classic traditional Chinese medicine prescription "Er-Xian Decoction" documented in the esteemed "Clinical Manual of Chinese Medical Prescription". While the utilization of ZBD has exhibited promising clinical outcomes in treating rheumatoid arthritis (RA), the precise bioactive chemical constituents and the underlying mechanisms involved in its therapeutic efficacy remain to be comprehensively determined. AIM OF THE STUDY This study aims to systematically examine ZBD's pharmacological effects and molecular mechanisms for RA alleviation. MATERIALS AND METHODS Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of ZBD in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. The UPLC-MS/MS technique was utilized to analyze the compounds of ZBD. The potential therapeutic targets and signaling pathways of ZBD in the management of RA were predicted using network pharmacology. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. Key targets and predicted pathways were further validated using immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16 S rDNA sequencing and investigated the effects of ZBD on the microbiota of CIA rats through bioinformatics and statistical methods. RESULTS ZBD exhibited remarkable efficacy in alleviating RA symptoms in CIA rats without notable side effects. This included reduced paw redness and swelling, minimized joint damage, improved the histopathology of cartilage and synovium, mitigated the inflammatory state, and lowered serum concentrations of cytokines TNF-α, IL-1β and IL-6. Notably, the effectiveness of ZBD was comparable to MTX. Network pharmacology analysis revealed inflammation and immunity-related signaling pathways, such as PI3K/AKT, MAPK, IL-17, and TNF signaling pathways, as vital mediators in the effectual mechanisms of ZBD. Immunofluorescence analysis validated ZBD's ability to inhibit PI3K/AKT pathway proteins. Serum metabolomics studies revealed that ZBD modulates 170 differential metabolites, partially restored disrupted metabolic profiles in CIA rats. With a notable impact on amino acids and their metabolites, and lipids and lipid-like molecules. Integrated analysis of metabolomics and network pharmacology identified 6 pivotal metabolite pathways and 3 crucial targets: PTGS2, GSTP1, and ALDH2. Additionally, 16 S rDNA sequencing illuminated that ZBD mitigated gut microbiota dysbiosis in the CIA group, highlighting key genera such as Ligilactobacillus, Prevotella_9, unclassified_Bacilli, and unclassified_rumen_bacterium_JW32. Correlation analysis disclosed a significant link between 47 distinct metabolites and specific bacterial species. CONCLUSION ZBD is a safe and efficacious TCM formulation, demonstrates efficacy in treating RA through its multi-component, multi-target, and multi-pathway mechanisms. The regulation of inflammation and immunity-related signaling pathways constitutes a crucial mechanism of ZBD's efficacy. Furthermore, ZBD modulates host metabolism and intestinal flora. The integrated analysis presents experimental evidence of ZBD for the management of RA.
Collapse
Affiliation(s)
- Jing Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Bocun Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Xiaohong Zhou
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Chao Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Zhaoduan Hu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Rui Peng
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
25
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
26
|
Haoyue W, Kexiang S, Shan TW, Jiamin G, Luyun Y, Junkai W, Wanli D. Icariin promoted ferroptosis by activating mitochondrial dysfunction to inhibit colorectal cancer and synergistically enhanced the efficacy of PD-1 inhibitors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156224. [PMID: 39642461 DOI: 10.1016/j.phymed.2024.156224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND A controlled type of cell death called ferroptosis is linked to increased reactive oxygen species (ROS), lipid peroxidation, and iron buildup. Furthermore, evidence indicates that ferroptosis may act as an immunogenic form of cell death with potential physiological functions in tumors and immunosuppression. Inducing ferroptosis in tumor cells may have the potential to complement cancer immunotherapy strategies. The development of colorectal cancer (CRC) and the poor efficacy of immunotherapy are associated with the crosstalk of cellular ferroptosis. Currently, Icariin (ICA), the main bioactive component extracted from Epimedium, has been shown to inhibit a variety of cancers. However, the specific role and potential mechanism of ICA in regulating ferroptosis in CRC remains unclear. PURPOSE The aim of this investigation was to clarify the mechanism underlying the anti-CRC cancer properties of ICA and how it induces ferroptosis to enhance immunotherapy. METHODS To evaluate cell viability, the Cell Counting Kit-8 (CCK-8) test was utilized. The transwell test and the wound healing assay were used to assess cell migration. A subcutaneous graft tumor model was constructed with C57BL/6 mice using MC38 colorectal cancer cell lines. The inhibitory effect of ICA on CRC, ferroptosis level and immunomodulatory effects were detected by serum biochemical assay, cytokine assay, hematoxylin-eosin (H&E) staining, immunofluorescence staining, CyTOF mass spectrometry flow screening and Western blotting. Western blotting, proteomics, molecular docking and microscale thermophoresis (MST) were used to forecast and confirm ICA's binding and interaction with HMGA2, STAT3, and HIF-1α. Moreover, the levels of lipid peroxidation and ferroptosis were assessed through the use of the C11-BODIPY fluorescent probe, the FerroOrange fluorescent probe, the iron level, the malondialdehyde (MDA) and reduced glutathione (GSH) assay kit, and Western blotting analysis. To assess alterations in mitochondrial structure and membrane potential, transmission electron microscopy (TEM) and JC-1 immunofluorescence were employed. RESULTS It was demonstrated in the current study that ICA treatment inhibits CRC and enhances anti-PD-1 therapy efficacy by inciting ferroptosis. As shown in vitro, ICA inhibits CRC cell proliferation, migration, and apoptosis. As demonstrated in vivo, ICA has a dose-dependent tumor suppressor effect when combined with anti-PD-1, it can significantly inhibit tumor growth, increase the expression of serum TNF-α, IFN-γ, and granzyme B, and promote CD69+CD8+ T, CD69+CD8+Tem, CD69+CD8+Teff, TCRβ+CD8+ T, TCRβ+CD8+ T, TCRβ+CD8+Tem, TCRβ+CD8+Teff. The inhibitory effect of ICA on CRC was associated with the binding of HMGA2, STAT3, and HIF-1α proteins, which inhibited CRC by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), promoting the accumulation of iron (Fe2+), depletion of reduced glutathione (GSH), inhibiting SLC7A11 and GPX4 expressions, thereby inducing ferroptosis in CRC. As a consequence of ICA-induced ferroptosis, mitochondria are dysfunctional, with increased ROS production, membrane potential depolarization (MMP), and ATP production reduced. This process can be efficiently reversed by the mitochondria-targeted antioxidant Mito-Q. It is noteworthy that the ferroptosis inhibitor liproxstatin-1 (lip-1), anti-CD8, and anti-IFN-γ exhibited a significant inhibitory effect on the level of ferroptosis and antitumor capacity of ICA combined with anti-PD-1. This finding suggests that the antitumor immunopotentiating effect of ICA on anti-PD-1 is dependent on the secretion of IFN-γ-induced ferroptosis of CRC cells by the CD8+ T cell. CONCLUSION Our study represents the inaugural demonstration of the mechanism whereby ICA exerts anti-CRC effects and synergistically enhances the efficacy of anti-PD-1, inducing mitochondrial damage and leading to ferroptosis. ICA promotes ferroptosis of CRC cells by inducing mitochondrial dysfunction, and ICA combined with anti-PD-1 significantly promotes CD69, TCRβ signalling, activates effector CD8+ T cells to secrete IFN-γ, and achieves immunopotentiation by promoting ferroptosis of CRC cells, thus inhibiting CRC development. This study is built upon existing research into the pharmacodynamic mechanisms of ICA in the context of CRC, and offers a novel therapeutic approach in addressing the issue of CRC immunotherapy potentiation.
Collapse
Affiliation(s)
- Wang Haoyue
- Department of Traditional Chinese Medicine and Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sun Kexiang
- Department of Traditional Chinese Medicine and Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tan Wei Shan
- Department of Traditional Chinese Medicine and Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Gao Jiamin
- Department of Traditional Chinese Medicine and Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Luyun
- Department of Traditional Chinese Medicine and Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wen Junkai
- Department of Traditional Chinese Medicine and Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Deng Wanli
- Department of Traditional Chinese Medicine and Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
27
|
Cui Y, Huai J, Cai Y, Li S, Zhang W, Zhou T, Song Y, Zhang H, Li S, Zhuang L, Zhang J. Continuous chromatography system with 6-zone and 18-column dynamic tandem connection technique for the enrichment of total flavonoids from Epimedium koreanum Nakai. Anal Bioanal Chem 2025; 417:583-598. [PMID: 39607507 DOI: 10.1007/s00216-024-05669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Natural flavonoids have been shown to have many pharmacological activities. Efficient and continuous enrichment of total flavonoids with high content and low mobile phase usage from complex natural products is greatly needed at the moment. In this study, a new continuous chromatography system (CCS) with 6 zones and the 18-column dynamic tandem connection technique was developed and used to enrich total flavonoids from Epimedium koreanum Nakai (EKN). The 18 columns were divided into 6 zones, and the principle of a dynamic series of three columns was adopted for each zone to achieve continuous automatic separation and enrichment of total flavonoids under the control of a logic control valve. The CCS separation conditions were established based on single-column chromatography and a theoretical calculation model of the CCS. By means of the self-designed device and method, 485.11±3.16 g of total flavonoids were isolated from 16.2 kg of EKN. It is worth noting that the total content of 18 types of flavonoids in the samples enriched by the CCS was increased from 2.84±0.07% to 88.29±0.22%, the total recovery rate was 92.20±0.38%, and the RSD of each flavonoid was less than 5.0%. Furthermore, compared with single-column chromatography filled with the same volume of chromatography filler, the entire process saved about 2/3 of the mobile phase usage. In summary, the developed device and method could efficiently and continuously enrich total flavonoids from EKN with high-content and low mobile phase usage and would have a wide application prospect in the separation and enrichment of natural products.
Collapse
Affiliation(s)
- Yi Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Jie Huai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Yiting Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Shuai Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Weiye Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Taoyulin Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Yujie Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Han Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Shengfu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Linwu Zhuang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
- Jiangsu Institute of Marine Resources Development, Lianyungang, 222005, PR China.
| | - Junjie Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
- Jiangsu Institute of Marine Resources Development, Lianyungang, 222005, PR China.
| |
Collapse
|
28
|
Yang L, Zhang S, Zhang Y, Wan J, Zhou S, Gu X, Dong C, Feng W. Spraying methyl jasmonate before harvesting can significantly increase the content of icariin in an important leaf medicinal herb, Epimedium sagittatum, by activating the expression of genes involved in flavonoid synthesis pathways. BMC PLANT BIOLOGY 2024; 24:1248. [PMID: 39722017 DOI: 10.1186/s12870-024-05966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Increased icariin content during the harvesting period is one of the factors limiting the quality improvement of Epimedium sagittatum, and there is currently a lack of scientific and effective biotechnological measures. RESULTS In this study, we carried out experiments involving spraying different concentrations (0 µmol·L- 1 as control group, 500 µmol·L- 1, 1000 µmol·L- 1 and 1500 µmol·L- 1) of methyl jasmonate (MeJA) solution on E. sagittatum leaves. To explore an effective measure to increase flavonoid content (icariin A, B, C, and II) at harvest time during cultivation and production. High concentrations of MeJA solution (1500 µmol·L- 1) have a stronger stimulating effect on flavonoids in E. sagittatum leaves, especially after 24 h of treatment, the total flavonoid content increased by 44.18%, and the icariin content reached 14.36 mg·g- 1, which increased by 39.6%. Principal component analysis also showed that high-concentration MeJA treatment effectively increased total flavonoid content, with the best effect observed after 24 h of high-concentration MeJA treatment. Transcriptome analysis revealed 41,468 unigenes, of which 6,920 (16.69%) showed significant differences, including 4,168 unigenes whose expressions were significantly upregulated (10.05%) and 2,752 with significantly downregulated (6.64%) expressions. We enriched the 17 most important KEGG pathways and found that they were more active following the MeJA treatment. Further analysis revealed that MeJA treatment upregulated the expression of flavonoid biosynthesis pathway genes, particularly PAL2, 4CL1, 4CL2, CHS2, CHI2, F3H, and FLS1. In addition, 37 differentially expressed transcription factors were found to be involved in the hypothetical regulatory network of the flavonoid synthesis pathway under the MeJA treatment. CONCLUSIONS We recommend spraying a solution of MeJA at a concentration of 1500 µmol·L- 1 before harvesting E. sagittatum leaves, and harvesting after 24 h can achieve a rapid increase in the content of active components in a short period of time. This study confirmed the effectiveness of MeJA treatment in enhancing the icariin content and herb quality of E. sagittatum and provided a feasible biotechnological solution for enhancing the quality of E. sagittatum during the harvesting period.
Collapse
Affiliation(s)
- Linlin Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi herbs, Zhengzhou, 450046, China
- Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Shaoke Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi herbs, Zhengzhou, 450046, China
- Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Yanyan Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi herbs, Zhengzhou, 450046, China
- Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Jie Wan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Shengwei Zhou
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi herbs, Zhengzhou, 450046, China
- Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Xupeng Gu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi herbs, Zhengzhou, 450046, China
- Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Chengming Dong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi herbs, Zhengzhou, 450046, China.
- Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, China.
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China.
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Provincial Ecological Planting Engineering Technology Research Center of Daodi herbs, Zhengzhou, 450046, China.
- Co-construction Collaborative Innovation Centre for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Zhengzhou, 450046, China.
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
29
|
Cui D, Li M, Liu M, Shen M, Liu Y, Wang K, Tang H, Lu X, Li S, Yao J, Zhang G. Synergistic effect and mechanism of monoacylglycerol lipase inhibitor and Icaritin in the treatment of ulcerative colitis. Int Immunopharmacol 2024; 142:113155. [PMID: 39276456 DOI: 10.1016/j.intimp.2024.113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Ulcerative colitis (UC) is a chronic, relapsing nonspecific intestinal inflammatory disease. It is difficult for a single drug to treat UC effectively and maintain long-term efficacy. There is an urgent need to find new drugs and treatment strategies. MAGL11 is a new kind of single acylglycerol lipase (MAGL) inhibitor. Icaritin (Y003) is the major metabolite of icariin in vivo. Several studies have confirmed the role of MAGL inhibitors and icariin in anti-inflammatory and regulation of intestinal stability. Therefore, this study adopted a new strategy of combining MAGL inhibitor with Icaritin to further explore the role and mechanism of drugs in the treatment of UC. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining (HE), immunohistochemical (IHC) and Western blot were used to detect the synergistic protective effects of MAGL11 and Y003 on intestinal pathological injury, intestinal mucosal permeability and inflammation in UC mice. 16S rDNA sequencing was used to detect the synergistic effect of MAGL11 and Y003 on gut microbiota. The effects of MAGL11 and Y003 combined therapy on serum and fecal metabolism of UC mice were analyzed by untargeted metabolomics. Proteomics method was applied to investigate the molecular mechanisms underlying MAGL11 and Y003 synergy in the treatment of UC. The results showed that MAGL11 and Y003 could synergistically improve the clinical symptoms, reduce intestinal inflammation and pathological damage, and improve intestinal mucosal permeability in UC mice. The mechanism study found that MAGL11 and Y003 could synergistically inhibit Toll-like receptors 4 (TLR4) / Myeloid differentiation primary response gene (Myd88)/Nuclear factor kappa-B (NF-κB) pathway and further regulate gut microbiota imbalance and metabolic disorders to treat UC.
Collapse
Affiliation(s)
- Deyu Cui
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meng Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China
| | - Yifan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kun Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongguang Tang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China
| | - Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China.
| | - Guimin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China.
| |
Collapse
|
30
|
Li X, Sun Z, Shang X, Chen L, Shi X, Xu W, Fu S, He Q, Liang Q, Ma J, Sun X, Lu J, Jin W. Sequential delivery of IL-10 and icariin using nanoparticle/hydrogel hybrid system for prompting bone defect repair. Mater Today Bio 2024; 29:101374. [PMID: 39717024 PMCID: PMC11664418 DOI: 10.1016/j.mtbio.2024.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/11/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
The treatment of large bone defects remains challenging due to the lack of spatiotemporal management of the immune microenvironment, inflammation response and bone remodeling. To address these issues, we designed and developed a nanoparticle/hydrogel hybrid system that can achieve the combined and sequential delivery of an anti-inflammatory factor (IL-10) and osteogenic drug (icariin, ICA). A photopolymerizable composite hydrogel was prepared by combining gelatin methacryloyl (GelMA) and heparin-based acrylated hyaluronic acid (HA) hydrogels containing IL-10, and poly(dl-lactide-co-glycolide) (PLGA)-HA nanoparticles loaded with ICA were incorporated into the composite hydrogels. The nanoparticle/hydrogel hybrid system demonstrates an array of features including mechanical strength, injectability and photo-crosslinking. The rapid release of IL-10 from the hydrogel effectively exerts immunomodulatory activity, whereas the long-term sustained release of icariin from the PLGA-HA nanoparticles significantly triggers the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Notably, the combined delivery of IL-10 and ICA from the hybrid system exhibit a synergistic effect for bone remodeling in a critical cranial defect rat model. Our findings indicate the importance of the immunomodulatory microenvironment and osteogenic differentiation for high-quality skull remodeling, and thus the dual-factor releasing nanoparticle/hydrogel hybrid system could be a promising candidate for repairing bone defects.
Collapse
Affiliation(s)
- Xiaojun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zeyue Sun
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiushuai Shang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Liuting Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaofeng Shi
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wei Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qingling He
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qihao Liang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jie Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xin Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jiaju Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenjie Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
31
|
Dai Y, Guan X, Guo F, Kong X, Ji S, Shang D, Bai C, Zhang Q, Zhao L. Botanical drugs and their natural compounds: a neglected treasury for inhibiting the carcinogenesis of pancreatic ductal adenocarcinoma. PHARMACEUTICAL BIOLOGY 2024; 62:853-873. [PMID: 39520705 PMCID: PMC11552278 DOI: 10.1080/13880209.2024.2421759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
CONTEXT Pancreatic ductal adenocarcinoma (PDAC), which is characterized by its malignant nature, presents challenges for early detection and is associated with a poor prognosis. Any strategy that can interfere with the beginning or earlier stage of PDAC greatly delays disease progression. In response to this intractable problem, the exploration of new drugs is critical to reduce the incidence of PDAC. OBJECTIVE In this study, we summarize the mechanisms of pancreatitis-induced PDAC and traditional Chinese medicine (TCM) theory and review the roles and mechanisms of botanical drugs and their natural compounds that can inhibit the process of pancreatitis-induced PDAC. METHODS With the keywords 'chronic pancreatitis', 'TCM', 'Chinese medicinal formulae', 'natural compounds', 'PDAC' and 'pancreatic cancer', we conducted an extensive literature search of the PubMed, Web of Science, and other databases to identify studies that effectively prevent PDAC in complex inflammatory microenvironments. RESULTS We summarized the mechanism of pancreatitis-induced PDAC. Persistent inflammatory microenvironments cause multiple changes in the pancreas itself, including tissue damage, abnormal cell differentiation, and even gene mutation. According to TCM, pancreatitis-induced PDAC is the process of 'dampness-heat obstructing the spleen and deficiency due to stagnation' induced by a variety of pathological factors. A variety of botanical drugs and their natural compounds, such as Chaihu classical formulae, flavonoids, phenolics, terpenoids, etc., may be potential drugs to interfere with the development of PDAC via reshaping the inflammatory microenvironment by improving tissue injury and pancreatic fibrosis. CONCLUSIONS Botanical drugs and their natural compounds show great potential for preventing PDAC in complex inflammatory microenvironments.
Collapse
Affiliation(s)
- Yunfei Dai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xi Guan
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Kong
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of pharmacy, Dalian Medical University, Dalian, China
| | - Shuqi Ji
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changchuan Bai
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingkai Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Tian H, Pan Q, Wu J, Liao J, Wan Y, Pei K, Liu Q, Zeng L, Cao Y, Shi Q, Kuang N, Sun L, Yu X, Huang X. Icariin ameliorates Coxsackievirus B3-induced viral myocarditis by modulating the S100 calcium binding protein A6/β-catenin/c-Myc signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156214. [PMID: 39522251 DOI: 10.1016/j.phymed.2024.156214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/08/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Coxsackievirus B3 (CVB3) is a leading cause of viral myocarditis and is currently lacking specific pharmacological treatments, highlighting the critical need for therapeutic development. Icariin (ICA), a prenylated flavonol glycoside, was previously found to exhibit several pharmacological effects, but its potential to combat CVB3 remains uninvestigated. PURPOSE This study aimed to elucidate the anti-CVB3 efficacy of ICA and elucidate its molecular mechanisms. METHODS CVB3-infected HeLa cells, H9C2 cells and neonate rat ventricular cardiomyocytes (NRVCs) were selected as in vitro models, and were treated with ICA at 1 and 10 μM. Additionally, BALB/c mice that were infected with CVB3 via intraperitoneal injection were chosen as in vivo model and were treated with ICA or ribavirin over 3 days. The effect of ICA against CVB3 was determined by Cell Counting Kit-8 (CCK-8) assay, western blot, real-time fluorescence quantitative PCR (RT-qPCR), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC) and flow cytometry. RESULTS In this study, it was found that ICA is capable of reducing CVB3 viral load both in vitro and in vivo. Mechanistic studies suggested that ICA prevents cardiomyocyte apoptosis by attenuating the S100 calcium binding protein A6 (S100A6)/β-catenin/c-Myc signaling pathway. Additionally, ICA inhibits the secretion of proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β) and CXC motif chemokine ligand 2 (CXCL2) in heart tissue, thereby mitigating CVB3-induced myocarditis. Moreover, ICA also regulates the immune response of CD4+ T, CD8+ T and Treg cells by changing the cells numbers in spleen tissue. Lastly, ICA can reduce the load of other enteroviruses (such as CVA6, CVA16 and EV71) in rhabdomyosarcoma (RD) cells as well. CONCLUSION Our findings indicate that ICA provides significant protection against CVB3 infection by modulating the S100A6/β-catenin/c-Myc signaling pathway, suggesting its potential use as a novel drug against CVB3 infection in clinical application.
Collapse
Affiliation(s)
- Huizhen Tian
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qigang Pan
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jianfeng Wu
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Juanjuan Liao
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuwei Wan
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ke Pei
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qiong Liu
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China; Medical Experimental teaching center, School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yanli Cao
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qiaofa Shi
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nanzhen Kuang
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - LiJuan Sun
- Department of Tuberculosis, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Xiaomin Yu
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China; Medical Experimental teaching center, School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Xiaotian Huang
- The First Affiliated Hospital of Nanchang University and School of Basic Medical sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
33
|
Wang J, Bi H, Xu J, Zhou X, Yang B, Wen L. Formation mechanism and stability of ternary nanoparticles based on Mesona chinensis polysaccharides-walnut protein hydrolysates for icariin delivery. Int J Biol Macromol 2024; 283:137913. [PMID: 39577545 DOI: 10.1016/j.ijbiomac.2024.137913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Polysaccharide-protein complexes have proven to be effective nano-carrier with high stability. In this work, walnut protein hydrolysates (WPH) prepared through limited enzymolysis were considered as encapsulation carriers to solve the limited water solubility and bioavailability of icariin, a bioactive compound in functional foods. The pH-driven method was employed to prepare WPH-icariin nanoparticles (WPHI). Their characterization, formation, digestive properties, and immunomodulatory activity were investigated. The results showed that WPHI possessed superior encapsulation efficiency (82.35 %) and loading capacity (137.2 μg/mg) for icariin. Its water solubility (1647 μg/mL) and bioavailability (94.86 %) were significantly improved, by over 80 and 30 times, respectively. The combination of WPH with icariin resulted in the formation of irregular lamellar structure through hydrophobic, electrostatic, and disulfide bonds interactions. Moreover, WPHI demonstrated significant immunomodulatory activity, and thermal and digestive stabilities (> 93 %), but extremely poor pH and salt tolerance. To address these issues, Mesona chinensis polysaccharide (MCP)-WPHI was prepared. The incorporation of MCP significantly improved the physicochemical stability of nanoparticles. Compared to WPHI, MCP-WPHI showed improved pH, thermal, salt tolerance (0-250 mM), and storage stability. This study expanded the application of WPH and MCP in delivering icariin while providing new insights for developing multifunctional high-nutritional-quality food ingredients.
Collapse
Affiliation(s)
- Jinping Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Key State Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Jucai Xu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co., Ltd., Guangzhou 510530, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Key State Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Key State Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Li Q, Wu A, Zhang M, Zhang X, Zang H. Adaptive covalently assembled thymopentin/hyaluronic acid based anti-inflammatory drug carrier with injectability and controlled release. Int J Biol Macromol 2024; 282:136923. [PMID: 39490872 DOI: 10.1016/j.ijbiomac.2024.136923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Developing bioactive delivery carriers with anti-inflammatory functions, long-term administration, and controlled release of multiple drugs is highly desirable owing to disease persistence over an extended period. In this study, a dynamically induced covalent assembly approach was used to fabricate thymopentin (TP5)-based carrier particles (TGCP) with biocompatibility and autofluorescence. The size and dispersibility of TGCP can be modulated by non-covalent interactions with hyaluronic acid (HA), endowing the system with excellent injectability and synergistic anti-inflammatory activity. Interestingly, the carrier can load a wide range of guest molecules with varying solubilities and achieve controlled gradient release in pathological and physiological environments. In addition, traditional Chinese-medicine-loaded TGCP/HA can effectively reduce the level of the inflammatory factor IL-6, indicating its potential anti-inflammatory properties. The TP5/HA-based material possesses excellent carrier properties and immunoreactivity, making it attractive for reducing inflammation at disease sites and long-term drug delivery in various chronic diseases.
Collapse
Affiliation(s)
- Qin Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Mengqi Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoming Zhang
- School of Science, Optoelectronics Research Center, Minzu University of China, Beijing 100081, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
35
|
Liu G, Jia D, Li W, Huang Z, Shan R, Huang C. Trifluoro-Icaritin Ameliorates Neuroinflammation Against Complete Freund's Adjuvant-Induced Microglial Activation by Improving CB2 Receptor-Mediated IL-10/β-endorphin Signaling in the Spinal Cord of Rats. J Neuroimmune Pharmacol 2024; 19:53. [PMID: 39387998 DOI: 10.1007/s11481-024-10152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The underlying pathogenesis of chronic inflammatory pain is greatly complex, but the relevant therapies are still unavailable. Development of effective candidates for chronic inflammatory pain is highly urgent. We previously identified that trifluoro-icaritin (ICTF) exhibited a significant therapeutic activity against complete Freund's adjuvant (CFA)-induced chronic inflammatory pain, however, the precise mechanisms remain elusive. Here, the paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and CatWalk gait analysis were used to determine the pain-related behaviors. The expression and co-localization of pain-related signaling molecules were detected by Western blot and immunofluorescence staining. Our results demonstrated that ICTF (3.0 mg/kg, i.p.) effectively attenuated mechanical allodynia, thermal hyperalgesia and improved motor dysfunction induced by CFA, and the molecular docking displayed that CB2 receptor may be the therapeutic target of ICTF. Furthermore, ICTF not only up-regulated the levels of CB2 receptor, IL-10, β-endorphin and CD206, but also reduced the expression of P2Y12 receptor, NLRP3, ASC, Caspase-1, IL-1β, CD11b, and iNOS in the spinal cord of CFA rats. Additionally, the immunofluorescence staining from the spinal cord showed that ICTF significantly increased the co-expression between the microglial marker Iba-1 and CB2 receptor, IL-10, β-endorphin, respectively, but markedly decreased the co-localization between Iba-1 and P2Y12 receptor. Conversely, intrathecal administration of CB2 receptor antagonist AM630 dramatically reversed the inhibitory effects of ICTF on CFA-induced chronic inflammatory pain, leading to a promotion of pain hypersensitivity, abnormal gait parameters, microglial activation, and up-regulation of P2Y12 receptor and NLRP3 inflammasome, as well as the inhibition of CB2 receptor and IL-10/β-endorphin cascade. Taken together, these findings highlighted that ICTF alleviated CFA-induced neuroinflammation by enhancing CB2 receptor-mediated IL-10/β-endorphin signaling and suppressing microglial activation in the spinal cord, and uncovered that CB2 receptor may be exploited as a novel and promising target for ICTF treatment of chronic inflammatory pain.
Collapse
Grants
- NO. 2021B614 Science and Technology Project of Administration of Chinese Medicine, Jiangxi Province, China
- NO. HX202207 Horizontal Project of Gannan Medical University, Jiangxi Province, China
- No.ZD201904 University-level Key Project of Gannan Medical University, Jiangxi Province, China
- No. 20204469 Health Commission General Science and Technology Program, Jiangxi Province, China
- No. 31160213 National Natural Science Foundation of China
- No. 20142BCBC22008 Talent Project of Department of Scientific and Technology, Jiangxi Province, China
Collapse
Affiliation(s)
- Guangsen Liu
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Dandan Jia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Weiwei Li
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Reai Shan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Jiangxi, 341000, P. R. China.
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, 341000, P. R. China.
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China.
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China.
| |
Collapse
|
36
|
Wang J, Bi H, Zhou X, Yang B, Wen L. Enhancing functionality and bioactivity of walnut protein through limited enzyme digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8321-8331. [PMID: 38899487 DOI: 10.1002/jsfa.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Walnut protein (WP) is recognized as a valuable plant protein. However, the poor solubility and functional properties limit its application in the food industry. It is a great requirement to improve the physicochemical properties of WP. RESULTS Following a 90 min restricted enzymatic hydrolysis period, the solubility of WP significantly increased from 3.24% to 54.54%, with the majority of WP hydrolysates (WPHs) possessing a molecular weight exceeding 50 kDa. Circular dichroism spectra showed that post-hydrolysis, the structure of the protein became more flexible, while the hydrolysis time did not significantly alter the protein's secondary structure. After hydrolysis, WP's surface hydrophobicity significantly increased from 2279 to 6100. Furthermore, WPHs exhibited a strong capacity for icariin loading and micelle formation with critical micelle concentration values of 0.71, 0.99 and 1.09 mg mL-1, respectively. Moreover, similar immuno-enhancement activities were observed in WPHs. After exposure to WPHs, the pinocytosis of RAW264.7 macrophages was significantly improved. WPH treatment also increased the production of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in macrophages. Up-regulation of mRNA expressions of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α was observed in a dose-dependent manner. CONCLUSION The enhancement of functionality and bioactivity in WP can be achieved through the application of limited enzyme digestion with trypsin. This process effectively augments the nutritional value and utility of the protein, making it a valuable component in various dietary applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinping Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co. Ltd, Guangzhou, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Li F, Wang W, Zhai Y, Fan J, Jiang Q, Zhang T. Simultaneous quantification of icaritin and its novel 3-methylcarbamate prodrug in rat plasma using HPLC-MS/MS and its application to pharmacokinetic study. Biomed Chromatogr 2024; 38:e5976. [PMID: 39126342 DOI: 10.1002/bmc.5976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
A sensitive, rapid, and simple HPLC-MS/MS method was first developed and fully validated to determine the icaritin (ICT) and its novel 3-methylcarbamate prodrug (3N) simultaneously in rat plasma. Analytes were extracted from rat plasma using a liquid-liquid extraction (LLE) method. Chromatographic separation was performed on ACE Excel 2 C18-Amide column. Quantitation of analytes was conducted on an LCMS-8060 triple-quadrupole tandem mass spectrometer. The quantitation mode was the multiple reaction monitoring via positive electrospray ionization. The calibration curve was linear over the concentration range of 1 to 200 ng/ml for ICT with a correlation coefficient of r = 0.9950 and 1 to 400 ng/ml for 3N with a correlation coefficient of r = 0.9956. The intra-precision RSDs were ≤12% for ICT and 3N. The inter-day precision RSDs were ≤10% for ICT and 3N. The accuracy RE was between -2.6% and 7.8% for ICT and 3N. The average ICT, 3N and IS recoveries were 87.9%, 83.6%, and 84.3%. The plasma matrix of ICT and 3N complied with the guidelines. ICT and 3N were stable in rat plasma under various tested conditions. This work has been successfully applied to studying the pharmacokinetics of ICT and 3N.
Collapse
Affiliation(s)
- Fengxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weiping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yixiu Zhai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaqi Fan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
38
|
Zhang M, Jia G, Weng J, Zhu Y, Lin J, Yang Q, Fang C, Zeng H, Yuan G, Yang J, Yu F. A Novel Scaffold of Icariin/Porous Magnesium Alloy-Repaired Knee Cartilage Defect in Rat by Wnt/β-Catenin Signaling Pathway. ACS Biomater Sci Eng 2024; 10:5796-5806. [PMID: 39155687 DOI: 10.1021/acsbiomaterials.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Cartilage defects caused by joint diseases are difficult to treat clinically. Tissue engineering materials provide a new means to promote the repair of cartilage defects. The purpose of this study is to design a novel scaffold of porous magnesium alloy loaded with icariin and sustained release in order to explore the effect and possible mechanism of this scaffold in repairing SD rat knee articular cartilage defect. We constructed a novel type of icariin/porous magnesium alloy scaffold, observed the structure of the scaffold by electron microscope, detected the drug release of icariin in the scaffold and the biological safety, and established an animal model of cartilage defect in the femoral intercondylar fossa of the knee joint in rats; the scaffold was placed in the defect. After 12 weeks of repair, the rat knee articular cartilage repair was evaluated by gross specimens and micro-CT, HE, safranin O-fast green, and toluidine blue staining combined with the modified Mankin's score. The protein expressions of the Wnt/β-catenin signaling pathway-related factors (β-catenin, Wnt5a, Wnt1, sFRP1) and chondrogenic differentiation-related factors (Sox9, Aggrecan, Col2α1) were detected by immunohistochemical staining. We found that the novel scaffold of icariin/porous magnesium alloy can release icariin slowly and has biosafety in rats. Compared with other groups, icariin/porous magnesium alloy can significantly promote the repair of cartilage defects and the expressions of β-catenin, Wnt5a, Wnt1, Sox9, Aggrecan, and Col2α1 (P < 0.05). This novel scaffold can promote the repair of rat knee cartilage defects, and this process may be achieved by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Mengwei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Gaozhi Jia
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yuanchao Zhu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianjin Lin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chongzhou Fang
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Orthopedics, Shenzhen Second Peoples Hospital, Shenzhen 518000, China
| | - Guangyin Yuan
- Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
39
|
Mou Z, Chen Y, Hu J, Hu Y, Zou L, Chen X, Liu S, Yin Q, Gong J, Li S, Mao S, Xu C, Jiang H. Icaritin inhibits the progression of urothelial cancer by suppressing PADI2-mediated neutrophil infiltration and neutrophil extracellular trap formation. Acta Pharm Sin B 2024; 14:3916-3930. [PMID: 39309483 PMCID: PMC11413672 DOI: 10.1016/j.apsb.2024.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor relapse and metastasis are the major causes of mortality associated with urothelial cancer. In the tumor microenvironment, negative regulatory molecules and various immune cell subtypes suppress antitumor immunity. The inflammatory microenvironment, associated with neutrophils and neutrophil extracellular traps (NETs), promotes tumor metastasis. However, no drugs are currently available to specifically inhibit neutrophils and NETs. In this study, we first demonstrated that icaritin (ICT), a Chinese herbal remedy that is a first-line treatment for advanced and incurable hepatocellular carcinoma, reduces NETs caused by suicidal NETosis and prevents neutrophil infiltration in the tumor microenvironment. Mechanistically, ICT binds to and inhibits the expression of PADI2 in neutrophils, thereby suppressing PADI2-mediated histone citrullination. Moreover, ICT inhibits ROS generation, suppresses the MAPK signaling pathway, and inhibits NET-induced tumor metastasis. Simultaneously, ICT inhibits tumoral PADI2-mediated histone citrullination, which consequently suppresses the transcription of neutrophil-recruiting genes such as GM-CSF and IL-6. The downregulation of IL-6 expression, in turn, forms a regulatory feedback loop through the JAK2/STAT3/IL-6 axis. Through a retrospective study of clinical samples, we found a correlation between neutrophils, NETs, UCa prognosis, and immune evasion. Combining ICT with immune checkpoint inhibitors may have synergistic effects. In summary, our study demonstrated that ICT could be a novel inhibitor of NETs and a novel UCa treatment.
Collapse
Affiliation(s)
- Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Jinzhong Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Qiuping Yin
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jian Gong
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
- Fudan Institute of Urology, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|
40
|
Yu CY, Cong YJ, Wei JX, Guo BL, Liu CY, Liao YH. Pulmonary delivery of icariin-phospholipid complex prolongs lung retention and improves therapeutic efficacy in mice with acute lung injury/ARDS. Colloids Surf B Biointerfaces 2024; 241:113989. [PMID: 38838444 DOI: 10.1016/j.colsurfb.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Icariin has been shown the promising therapeutic potential to treat inflammatory airway diseases, yet its poor lung distribution and retention restrict the clinical applications. To this end, this work aimed to prepare an icariin-phospholipid complex (IPC) formulation for sustained nebulization delivery that enabled excellent inhalability, improved lung exposure and prolonged duration of action. Icariin was found to react with soybean phospholipid to form supramolecular IPC, which was able to self-assemble into nanoparticle suspension. The suspension was stable during steam sterilization and nebulization processes, and its aerosols generated by a commercial nebulizer exhibited excellent aerodynamic properties and delivery efficiency. In vitro studies showed that the formation of complex sustained drug release, enhanced lung affinity and slowed lung clearance. The drug distribution in lung epithelial lining fluid (ELF) also demonstrated in vivo sustained release after intratracheal administration to mice. In addition, compared to free icariin, IPC improved the drug exposure to lung tissues and immune cells in the ELF by 4.61-fold and 39.5-fold, respectively. This resulted in improved and prolonged local anti-inflammatory effects up to 24 h in mice with lipopolysaccharide (LPS)-induced acute lung injury. Moreover, IPC improved survival rate of mice with acute respiratory distress syndrome (ARDS). Overall, the present phospholipid complex represented a promising formulation of icariin for the treatment of acute lung injury/ARDS by nebulization delivery.
Collapse
Affiliation(s)
- Chen-Yang Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yi-Jun Cong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jia-Xing Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Bao-Lin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Chun-Yu Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yong-Hong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
41
|
Sánchez-Gutiérrez M, Izquierdo-Vega AJ, Madrigal-Santillán EO, Velázquez-González C, Izquierdo-Vega JA. Icariin as a Treatment Proposal in Mammalian Reproduction. Pharmaceuticals (Basel) 2024; 17:1104. [PMID: 39338269 PMCID: PMC11434857 DOI: 10.3390/ph17091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Icariin (ICA), one of the main active components of Herba Epimedii, is a natural prenylated flavonol glycoside that possesses a wide range of pharmacological effects, including antioxidant, antiosteoporotic, anti-aging, neuroprotective, immunomodulatory, antitumor, and aphrodisiac effects, and prevents numerous health disorders, such as cardiovascular diseases, osteoporosis, cancer, sexual dysfunction, menstrual disorders, neurodegenerative diseases, asthma, chronic inflammation, and diabetes. In the reproductive system, it has been observed that ICA may play a role in preserving fertility by regulating different signalling pathways, such as PI3K/AKT, which improves ovarian function, and ERα/Nrf2, which enhances testicular function and prevents ROS generation. In contrast, regulating the NF/kB signalling pathway causes anti-inflammatory effects, reducing spontaneous abortions. In this study, we review and examine the relevant literature on the therapeutic potential of ICA in reproduction, highlight the various mechanisms of action and limitations for the therapeutic applications of ICA, and summarise and highlight the existing preclinical research on its effects on male and female reproduction.
Collapse
Affiliation(s)
- Manuel Sánchez-Gutiérrez
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico (A.J.I.-V.); (E.O.M.-S.)
| | - Aleli Julieta Izquierdo-Vega
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico (A.J.I.-V.); (E.O.M.-S.)
| | - Eduardo Osiris Madrigal-Santillán
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico (A.J.I.-V.); (E.O.M.-S.)
| | - Claudia Velázquez-González
- Academic Area of Pharmacy, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico;
| | - Jeannett Alejandra Izquierdo-Vega
- Academic Area of Medicine, Institute of Health Sciences, Autonomous University of the State of Hidalgo, Ex-Hacienda la Concepción, Tilcuautla 42160, Mexico (A.J.I.-V.); (E.O.M.-S.)
| |
Collapse
|
42
|
Wang X, Wang J, Tian L. Icariin ameliorates TNF-α/IFN-γ-induced oxidative stress, inflammatory response and apoptosis of human immortalized epidermal cells through the WTAP/SERPINB4 axis. Arch Dermatol Res 2024; 316:557. [PMID: 39177922 DOI: 10.1007/s00403-024-03281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by increased sensitivity to environmental allergens and irritants. Icariin, a natural compound extracted from the herb Epimedium, has been traditionally used for its potential anti-inflammatory and antioxidant properties. This study aimed to investigate the regulatory effects of icariin on AD-like symptoms and to elucidate its underlying mechanisms. The effects of icariin on TNF-α/IFN-γ-induced HaCaT cell injury were assessed using various assays, including cell counting kit-8 for cell viability, flow cytometry for reactive oxygen species (ROS) levels, and colorimetric assays for malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. In addition, the study performed enzyme-linked immunosorbent assays to assess cytokines (IL-1β, IL-6, and IL-8) and chemokines (MDC, TARC, and RANTES) levels. Flow cytometry was used to quantify apoptotic rate, while a wound-healing assay was conducted to assess cell migration. The expression of WT1 associated protein (WTAP) and serpin family B member 4 (SERPINB4) at the mRNA and protein levels was determined using qRT-PCR and western blotting, respectively. The associations between WTAP and SERPINB4 were analyzed using RNA immunoprecipitation assay and m6A RNA immunoprecipitation assay. Icariin treatment significantly mitigated TNF-α/IFN-γ-induced oxidative stress, inflammatory response, and apoptosis in HaCaT cells, while also reversing the inhibitory effect on cell migration. Icariin reduced the expression of WTAP in TNF-α/IFN-γ-stimulated HaCaT cells. Overexpression of WTAP reversed the effects of icariin in TNF-α/IFN-γ-stimulated HaCaT cells. WTAP silencing inhibited the mRNA stability of SERPINB4 through the m6A modification. SERPINB4 overexpression attenuated the effects of WTAP silencing on oxidative stress, inflammatory response, apoptosis, and migration of TNF-α/IFN-γ-stimulated HaCaT cells. Icariin treatment downregulated SERPINB4 expression by regulating WTAP in TNF-α/IFN-γ-stimulated HaCaT cells. Icariin ameliorated TNF-α/IFN-γ-induced human immortalized epidermal cell injury through the WTAP/SERPINB4 axis, highlighting the potential for targeted interventions in AD pathogenesis.
Collapse
Affiliation(s)
- Xincheng Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo Xincheng West District, Jinghai District, Tianjin City, 301617, China
| | - Jun Wang
- Department of Dermatology, Tianjin Third Central Hospital, Tianjin City, 300170, China
| | - Lu Tian
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Tuanbo Xincheng West District, Jinghai District, Tianjin City, 301617, China.
| |
Collapse
|
43
|
Jiao Y, Li W, Yang W, Wang M, Xing Y, Wang S. Icaritin Exerts Anti-Cancer Effects through Modulating Pyroptosis and Immune Activities in Hepatocellular Carcinoma. Biomedicines 2024; 12:1917. [PMID: 39200381 PMCID: PMC11351763 DOI: 10.3390/biomedicines12081917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Icaritin (ICT), a natural compound extracted from the dried leaves of the genus Epimedium, possesses antitumor and immunomodulatory properties. However, the mechanisms through which ICT modulates pyroptosis and immune response in hepatocellular carcinoma (HCC) remain unclear. This study demonstrated that ICT exhibits pyroptosis-inducing and anti-hepatocarcinoma effects. Specifically, the caspase1-GSDMD and caspase3-GSDME pathways were found to be involved in ICT-triggered pyroptosis. Furthermore, ICT promoted pyroptosis in co-cultivation of HepG2 cells and macrophages, regulating the release of inflammatory cytokines and the transformation of macrophages into a proinflammatory phenotype. In the Hepa1-6+Luc liver cancer model, ICT treatment significantly increased the expression of cleaved-caspase1, cleaved-caspase3, and granzyme B, modulated cytokine secretion, and stimulated CD8+ T cell infiltration, resulting in a reduction in tumor growth. In conclusion, the findings in this research suggested that ICT may modulate cell pyroptosis in HCC and subsequently regulate the immune microenvironment of the tumor. These observations may expand the understanding of the pharmacological mechanism of ICT, as well as the therapy of liver cancer.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Poyanghu Road, Jinghai District, Tianjin 301617, China;
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Wenqian Li
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Daxue Road, Jinan 250355, China
| | - Wen Yang
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Mingyu Wang
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Yaling Xing
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| | - Shengqi Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Poyanghu Road, Jinghai District, Tianjin 301617, China;
- Bioinformatics Center of AMMS, Taiping Road, Haidian District, Beijing 100850, China; (W.L.); (W.Y.); (M.W.)
| |
Collapse
|
44
|
Tang X, Wang Y, Liu N, Deng X, Zhou Z, Yu C, Wang Y, Fang K, Wu T. Methacrylated Carboxymethyl Chitosan Scaffold Containing Icariin-Loaded Short Fibers for Antibacterial, Hemostasis, and Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5181-5193. [PMID: 38935742 DOI: 10.1021/acsbiomaterials.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bone defects typically result in bone nonunion, delayed or nonhealing, and localized dysfunction, and commonly used clinical treatments (i.e., autologous and allogeneic grafts) have limited results. The multifunctional bone tissue engineering scaffold provides a new treatment for the repair of bone defects. Herein, a three-dimensional porous composite scaffold with stable mechanical support, effective antibacterial and hemostasis properties, and the ability to promote the rapid repair of bone defects was synthesized using methacrylated carboxymethyl chitosan and icariin-loaded poly-l-lactide/gelatin short fibers (M-CMCS-SFs). Icariin-loaded SFs in the M-CMCS scaffold resulted in the sustained release of osteogenic agents, which was beneficial for mechanical reinforcement. Both the porous structure and the use of chitosan facilitate the effective absorption of blood and fluid exudates. Moreover, its superior antibacterial properties could prevent the occurrence of inflammation and infection. When cultured with bone mesenchymal stem cells, the composite scaffold showed a promotion in osteogenic differentiation. Taken together, such a multifunctional composite scaffold showed comprehensive performance in antibacterial, hemostasis, and bone regeneration, thus holding promising potential in the repair of bone defects and related medical treatments.
Collapse
Affiliation(s)
- Xunmeng Tang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Yawen Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Na Liu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xinyuan Deng
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Ziyi Zhou
- Department of Plastic, Reconstructive and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Chenghao Yu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Kuanjun Fang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, State Key Laboratory for Biofibers and Eco-textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Tong Wu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| |
Collapse
|
45
|
Zhu Z, Luo Y, Liao H, Guo R, Hao D, Lu Z, Huang M, Sun C, Yao J, Wei N, Zeng K, Tu P, Zhang G. Icaritin Sensitizes Thrombin- and TxA2-Induced Platelet Activation and Promotes Hemostasis via Enhancing PLCγ2-PKC Signaling Pathways. Thromb Haemost 2024; 124:753-769. [PMID: 38224965 DOI: 10.1055/a-2245-8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
BACKGROUND Vascular injury results in uncontrollable hemorrhage in hemorrhagic diseases and excessive antithrombotic therapy. Safe and efficient hemostatic agents which can be orally administered are urgently needed. Platelets play indispensable roles in hemostasis, but there is no drug exerting hemostatic effects through enhancing platelet function. METHODS The regulatory effects of icaritin, a natural compound isolated from Herba Epimedii, on the dense granule release, thromboxane A2 (TxA2) synthesis, α-granule release, activation of integrin αIIbβ3, and aggregation of platelets induced by multiple agonists were investigated. The effects of icaritin on tail vein bleeding times of warfarin-treated mice were also evaluated. Furthermore, we investigated the underlying mechanisms by which icaritin exerted its pharmacological effects. RESULTS Icaritin alone did not activate platelets, but significantly potentiated the dense granule release, α-granule release, activation of integrin αIIbβ3, and aggregation of platelets induced by thrombin and U46619. Icaritin also shortened tail vein bleeding times of mice treated with warfarin. In addition, phosphorylated proteome analysis, immunoblotting analysis, and pharmacological research revealed that icaritin sensitized the activation of phospholipase Cγ2 (PLCγ2)-protein kinase C (PKC) signaling pathways, which play important roles in platelet activation. CONCLUSION Icaritin can sensitize platelet activation induced by thrombin and TxA2 through enhancing the activation of PLCγ2-PKC signaling pathways and promote hemostasis, and has potential to be developed into a novel orally deliverable therapeutic agent for hemorrhages.
Collapse
Affiliation(s)
- Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanggan Luo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanjing Liao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Guo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Doudou Hao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Lu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manjing Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi City, Shandong Province, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi City, Shandong Province, China
| | - Ning Wei
- Department of Oncology and Cancer Therapeutics Program, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi City, Shandong Province, China
| |
Collapse
|
46
|
Shen P, Xue M, Hu Z, Han L, Deng X. Direct targeting of S100A9 with Icariin counteracted acetaminophen‑induced hepatotoxicity. Int Immunopharmacol 2024; 136:112296. [PMID: 38810310 DOI: 10.1016/j.intimp.2024.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 μM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, China; Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Mei Xue
- Department of Endocrinology, Zhongnan Hospital, Wuhan University, China.
| | - Zhishuo Hu
- Department of Emergency, Wuhan No.1 Hospital, China.
| | - Liang Han
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital, Wuhan University, China.
| |
Collapse
|
47
|
Zhou ZY, Ma J, Zhao WR, Shi WT, Zhang J, Hu YY, Yue MY, Zhou WL, Yan H, Tang JY, Wang Y. Qiangxinyin formula protects against isoproterenol-induced cardiac hypertrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155717. [PMID: 38810550 DOI: 10.1016/j.phymed.2024.155717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024]
Abstract
Heart failure is a life-threatening cardiovascular disease and characterized by cardiac hypertrophy, inflammation and fibrosis. The traditional Chinese medicine formula Qiangxinyin (QXY) is effective for the treatment of heart failure while the underlying mechanism is not clear. This study aims to identify the active ingredients of QXY and explore its mechanisms protecting against cardiac hypertrophy. We found that QXY significantly protected against isoproterenol (ISO)-induced cardiac hypertrophy and dysfunction in zebrafish. Eight compounds, including benzoylmesaconine (BMA), atractylenolide I (ATL I), icariin (ICA), quercitrin (QUE), psoralen (PRN), kaempferol (KMP), ferulic acid (FA) and protocatechuic acid (PCA) were identified from QXY. PRN, KMP and icaritin (ICT), an active pharmaceutical ingredient of ICA, prevented ISO-induced cardiac hypertrophy and dysfunction in zebrafish. In H9c2 cardiomyocyte treated with ISO, QXY significantly blocked the calcium influx, reduced intracellular lipid peroxidative product MDA, stimulated ATP production and increased mitochondrial membrane potential. QXY also inhibited ISO-induced cardiomyocyte hypertrophy and cytoskeleton reorganization. Mechanistically, QXY enhanced the phosphorylation of Smad family member 2 (SMAD2) and myosin phosphatase target subunit-1 (MYPT1), and suppressed the phosphorylation of myosin light chain (MLC). In conclusion, PRN, KMP and ICA are the main active ingredients of QXY that protect against ISO-induced cardiac hypertrophy and dysfunction largely via the blockage of calcium influx and inhibition of mitochondrial dysfunction as well as cytoskeleton reorganization.
Collapse
Affiliation(s)
- Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong Special Administrative Regions of China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Regions of China
| | - Jie Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wai-Rong Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Yan Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mei-Yan Yue
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Long Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yu Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong Special Administrative Regions of China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong Special Administrative Regions of China.
| |
Collapse
|
48
|
Duan S, Ding Z, Liu C, Wang X, Dai E. Icariin suppresses nephrotic syndrome by inhibiting pyroptosis and epithelial-to-mesenchymal transition. PLoS One 2024; 19:e0298353. [PMID: 38995910 PMCID: PMC11244770 DOI: 10.1371/journal.pone.0298353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2024] [Indexed: 07/14/2024] Open
Abstract
CONTEXT Nephrotic syndrome(NS) has emerged as a worldwide public health problem. Renal fibrosis is the most common pathological change from NS to end-stage renal failure, seriously affecting the prognosis of renal disease. Although tremendous efforts have been made to treat NS, specific drug therapies to delay the progression of NS toward end-stage renal failure are limited. Epimedium is generally used to treat kidney disease in traditional Chinese medicine. Icariin is a principal active component of Epimedium. METHODS We used Sprague Dawley rats to establish NS models by injecting doxorubicin through the tail vein. Then icariin and prednisone were intragastric administration. Renal function was examined by an automatic biochemical analyzer. Pathology of the kidney was detected by Hematoxylin-Eosin and Masson staining respectively. Furthermore, RT-PCR, Enzyme-Linked Immunosorbent Assay, Immunohistochemistry, Western Blot and Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling staining were employed to detect the proteins related to pyroptosis and EMT. HK-2 cells exposed to doxorubicin were treated with icariin, and cell viability was assessed using the MTT. EMT was assessed using Enzyme-Linked Immunosorbent Assay and Western Blot. RESULTS The study showed that icariin significantly improved renal function and renal fibrosis in rats. In addition, icariin effectively decreased NOD-like receptor thermal protein domain associated protein 3,Caspase-1, Gasdermin D, Ly6C, and interleukin (IL)-1β. Notably, treatment with icariin also inhibited the levels of TGF-β, α-SMA and E-cadherin. DISCUSSION AND CONCLUSIONS It is confirmed that icariin can improve renal function and alleviate renal fibrosis by inhibiting pyroptosis and the mechanism may be related to epithelial-to-mesenchymal transition. Icariin treatment might be recommended as a new approach for NS.
Collapse
Affiliation(s)
- Shuwen Duan
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhaoran Ding
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Can Liu
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaohui Wang
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Enlai Dai
- Department of Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
49
|
Liu L, Zhong Y, Zheng T, Zhao J, Ding S, Lv J, Xu Q, Zhang Y. Epimedin B exerts an anti-inflammatory effect by regulating the MAPK/NF-κB/NOD-like receptor signalling pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109657. [PMID: 38801842 DOI: 10.1016/j.fsi.2024.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Epimedin B (EB), a predominant compound found in Herba Epimedii, has been shown to be effective in the treatment of osteoporosis and peripheral neuropathy. However, the anti-inflammatory effect of EB has not yet been reported. The anti-inflammatory activity of EB was evaluated in a zebrafish inflammation model induced by copper sulfate (CuSO4) and tail cutting. Our findings demonstrated that EB effectively inhibited acute inflammation, mitigated the accumulation of reactive oxygen species (ROS), and ameliorated the neuroinflammation-associated impairment of locomotion in zebrafish. Moreover, EB regulates several genes related to the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB)/Nod-like receptor signalling pathways (mapk8b, src, mmp9, akt1, mapk14a, mapk14b, mapk1, egfra, map3k4, nfκb2, iκbαa, pycard, nlrp3 and caspase1) and inflammatory cytokine (stat6, arg1, irfɑ, stat1ɑ, il-1β, il-4, il-6, il-8, cox-2, ptges, tnf-α and tgf-β). Therefore, our findings indicate that EB could serve as a promising therapeutic candidate for treating inflammation.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Yayun Zhong
- School of Pharmacy, Changzhou University, Changzhou, 213164, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Te Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Shumin Ding
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Qian Xu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
50
|
Kciuk M, Garg A, Rohilla M, Chaudhary R, Dhankhar S, Dhiman S, Bansal S, Saini M, Singh TG, Chauhan S, Mujwar S, Gielecińska A, Kontek R. Therapeutic Potential of Plant-Derived Compounds and Plant Extracts in Rheumatoid Arthritis-Comprehensive Review. Antioxidants (Basel) 2024; 13:775. [PMID: 39061843 PMCID: PMC11274232 DOI: 10.3390/antiox13070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune disorder that is characterized by joint inflammation, discomfort, and impairment. Despite the existence of several therapeutic approaches, their effectiveness is often restricted and may be linked to unfavorable side effects. Consequently, there has been growing interest in investigating naturally derived compounds as plausible therapeutic agents for RA disease. The objective of this review is to summarize the existing preclinical and clinical evidence regarding the efficacy of naturally extracted compounds and plant extracts in the treatment of RA, focusing on their anti-inflammatory, anti-oxidative, and immunomodulatory properties. Some of the problems with using natural chemicals are the uneven quality of commercially available preparations and the poor bioavailability of these compounds. Future investigations should focus on improving the formulations, conducting thorough clinical trials, and exploring different techniques to fully utilize the intrinsic potential of naturally derived chemicals in treating RA.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula 134118, Haryana, India
| | - Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
| | - Rishabh Chaudhary
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur 140601, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133206, Haryana, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|