1
|
Oh-Nishi A, Nagai Y, Seki C, Suhara T, Minamimoto T, Higuchi M. Imaging extra-striatal dopamine D2 receptors in a maternal immune activation rat model. Brain Behav Immun Health 2022; 22:100446. [PMID: 35496774 PMCID: PMC9043973 DOI: 10.1016/j.bbih.2022.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
Maternal immune activation (MIA) is a risk factor for schizophrenia in the offspring. MIA in pregnant rodents can be induced by injection of synthetic polyriboinosinic-polyribocytidilic acid (Poly I:C), which causes decreased striatal dopamine D2 receptor (D2R) expression and behavioral dysfunction mediated by the dopaminergic system in the offspring. However, previous studies did not determine whether Poly I:C induced cortical dopamine D2R abnormality in an MIA rat model. In this study, we performed micro-positron emission tomography (micro-PET) in vivo imaging and ex vivo neurochemical analyses of cortical D2Rs in MIA. In the micro-PET analyses, the anterior cingulate cortex (ACC) region in the offspring showed significantly reduced binding potential for [11C]FLB457, a high affinity radio-ligand toward D2Rs. Neurochemical analysis showed reduction of D2Rs and augmentation of dopamine turnover in the ACC of the rat offspring. Thus, MIA induces dopaminergic dysfunction in the ACC of offspring, similar to the neuronal pathology reported in patients with schizophrenia. Maternal immune activation (MIA) is a risk factor for schizophrenia. Improving extra-striatal Dopamine D2 receptors(D2Rs) thought to be important for the treatment of schizophrenia. In vivo imaging showed that the anterior cingulate cortex region in MIA model rat had reduced D2Rs density. The findings were similar to those of several publications regarding patients with schizophrenia.
Collapse
Affiliation(s)
- Arata Oh-Nishi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
- Division of Immune-Neuropsychiatry, Faculty of Medicine, Shimane University, Shimane, 693-8501, Japan
- RESVO Inc., Kawasaki, 210-007, Japan
- Corresponding author. Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555 Japan.
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Feng A, Luo N, Zhao W, Calhoun VD, Jiang R, Zhi D, Shi W, Jiang T, Yu S, Xu Y, Liu S, Sui J. Multimodal brain deficits shared in early-onset and adult-onset schizophrenia predict positive symptoms regardless of illness stage. Hum Brain Mapp 2022; 43:3486-3497. [PMID: 35388581 PMCID: PMC9248316 DOI: 10.1002/hbm.25862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Incidence of schizophrenia (SZ) has two predominant peaks, in adolescent and young adult. Early‐onset schizophrenia provides an opportunity to explore the neuropathology of SZ early in the disorder and without the confound of antipsychotic mediation. However, it remains unexplored what deficits are shared or differ between adolescent early‐onset (EOS) and adult‐onset schizophrenia (AOS) patients. Here, based on 529 participants recruited from three independent cohorts, we explored AOS and EOS common and unique co‐varying patterns by jointly analyzing three MRI features: fractional amplitude of low‐frequency fluctuations (fALFF), gray matter (GM), and functional network connectivity (FNC). Furthermore, a prediction model was built to evaluate whether the common deficits in drug‐naive SZ could be replicated in chronic patients. Results demonstrated that (1) both EOS and AOS patients showed decreased fALFF and GM in default mode network, increased fALFF and GM in the sub‐cortical network, and aberrant FNC primarily related to middle temporal gyrus; (2) the commonly identified regions in drug‐naive SZ correlate with PANSS positive significantly, which can also predict PANSS positive in chronic SZ with longer duration of illness. Collectively, results suggest that multimodal imaging signatures shared by two types of drug‐naive SZ are also associated with positive symptom severity in chronic SZ and may be vital for understanding the progressive schizophrenic brain structural and functional deficits.
Collapse
Affiliation(s)
- Aichen Feng
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wentao Zhao
- Department of Psychiatry, First Clinical Medical College/ First Hospital of Shanxi Medical University, Taiyuan, China
| | - Vince D Calhoun
- Tri-Institutional Centre for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Rongtao Jiang
- Department of Radiology and Biomedical imaging, Yale University, New Haven, Connecticut, USA
| | - Dongmei Zhi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Weiyang Shi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Yu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Xu
- Department of Psychiatry, First Clinical Medical College/ First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Clinical Medical College/ First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Sui
- Tri-Institutional Centre for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Zhang L, Verwer RWH, Zhao J, Huitinga I, Lucassen PJ, Swaab DF. Changes in glial gene expression in the prefrontal cortex in relation to major depressive disorder, suicide and psychotic features. J Affect Disord 2021; 295:893-903. [PMID: 34706460 DOI: 10.1016/j.jad.2021.08.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/17/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND To establish whether major depressive disorder (MDD), suicidal behaviors and psychotic features contribute to glial alterations in the human prefrontal cortex. MATERIALS AND METHODS We compared mRNA expression using real-time qPCR of 17 glia related genes in the dorsolateral prefrontal cortex (DLPFC) and the anterior cingulate cortex (ACC) between 24 patients with MDD and 12 well-matched controls without psychiatric or neurological diseases. The MDD group was subdivided into i) MDD who died of suicide (MDD-S) or natural causes (MDD-NS) and ii) MDD with or without psychotic features (MDD-P and MDD-NP). The results were followed up with confounder factor analysis. RESULTS Astrocyte gene aldehyde dehydrogenase-1 L1 (ALDH1L1) showed an increased expression in the DLPFC of MDD-NS and the ACC of MDD-NP. S100 calcium-binding protein B (S100B) was upregulated in the DLPFC of MDD compared to the controls. Microglial markers CD11B and purinergic receptor 12 (P2RY12) both showed decreased expression in the ACC of MDD-NS. CD68 was increased in the DLPFC of MDD in both, MDD-S and MDD-P, compared to the controls. In addition, there was increased translocator protein (TSPO) expression in the DLPFC of MDD, especially MDD-NS. In the ACC, this gene had a lower expression in MDD-P than in MDD-NP. Myelin basic protein (MBP) mRNA in the DLPFC increased in MDD, in relation to psychotic features, but not to suicide. LIMITATIONS Sample volumes are relatively small. CONCLUSIONS Different glial functions in MDD were related to specific brain area, suicide or psychotic features.
Collapse
Affiliation(s)
- Lin Zhang
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands
| | - Juan Zhao
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Dick F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands.
| |
Collapse
|
4
|
Brown RW, Varnum CG, Wills LJ, Peeters LD, Gass JT. Modulation of mGlu5 improves sensorimotor gating deficits in rats neonatally treated with quinpirole through changes in dopamine D2 signaling. Pharmacol Biochem Behav 2021; 211:173292. [PMID: 34710401 PMCID: PMC9176413 DOI: 10.1016/j.pbb.2021.173292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022]
Abstract
This study analyzed whether the positive allosteric modulator of metabotropic glutamate receptor type 5 (mGlu5) 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) would alleviate deficits in prepulse inhibition (PPI) and affect dopamine (DA) D2 signaling in the dorsal striatum and prefrontal cortex (PFC) in the neonatal quinpirole (NQ) model of schizophrenia (SZ). Male and female Sprague-Dawley rats were neonatally treated with either saline (NS) or quinpirole HCL (1 mg/kg; NQ), a DAD2 receptor agonist, from postnatal days (P) 1-21. Rats were raised to P44 and behaviorally tested on PPI from P44-P48. Before each trial, rats were subcutaneous (sc) administered saline or CDPPB (10 mg/kg or 30 mg/kg). On P50, rats were given a spontaneous locomotor activity test after CDPPB or saline administration. On P51, the dorsal striatum and PFC were evaluated for both arrestin-2 (βA-2) and phospho-AKT protein levels. NQ-treated rats demonstrated a significant deficit in PPI, which was alleviated to control levels by the 30 mg/kg dose of CDPPB. There were no significant effects of CDPPB on locomotor activity. NQ treatment increased βA-2 and decreased phospho-AKT in both the dorsal striatum and PFC, consistent with an increase DAD2 signaling. The 30 mg/kg dose of CDPPB significantly reversed changes in βA-2 in the dorsal striatum and PFC and phospho-AKT in the PFC equivalent to controls. Both doses of CDPPB produced a decrease of phospho-AKT in the PFC compared to controls. This study revealed that a mGlu5 positive allosteric modulator was effective to alleviate PPI deficits and striatal DAD2 signaling in the NQ model of SZ.
Collapse
Affiliation(s)
- Russell W Brown
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America.
| | - Christopher G Varnum
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America
| | - Liza J Wills
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America
| | - Loren D Peeters
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America
| | - Justin T Gass
- Department of Biomedical Sciences James H. Quillen College of Medicine, East Tennessee State University Johnson City, TN 37614, United States of America
| |
Collapse
|
5
|
Larijani B, Parhizkar Roudsari P, Hadavandkhani M, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Sayahpour FA, Mohamadi-Jahani F, Arjmand B. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank 2021; 22:207-223. [PMID: 33387152 DOI: 10.1007/s10561-020-09888-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Szűcs E, Ducza E, Büki A, Kekesi G, Benyhe S, Horvath G. Characterization of dopamine D2 receptor binding, expression and signaling in different brain regions of control and schizophrenia-model Wisket rats. Brain Res 2020; 1748:147074. [DOI: 10.1016/j.brainres.2020.147074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023]
|
7
|
Xia J, Fan J, Liu W, Du H, Zhu J, Yi J, Tan C, Zhu X. Functional connectivity within the salience network differentiates autogenous- from reactive-type obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109813. [PMID: 31785320 DOI: 10.1016/j.pnpbp.2019.109813] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. To better understand and treat patients, symptomatology of OCD has been categorized into more homogenous symptom dimensions. The autogenous-reactive classification model has proven helpful in the elucidation of the neurobiological substrates for clinical heterogeneity in OCD. The purpose of the current study was to systematically compare regional and network functional alterations between OCD subtypes based on the autogenous-reactive model. METHODS Autogenous-type OCD patients (OCD-AO, n = 40), reactive-type patients (OCD-RO, n = 42), and healthy controls (HC, n = 70) underwent functional magnetic resonance imaging (fMRI) scans. The amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were compared among subjects. Areas of abnormal local spontaneous brain activity that differentiated OCD-AO and OCD-RO patients were identified and entered as seeds in functional connectivity (FC) analysis. RESULTS Compared to OCD-RO patients and HC participants, OCD-AO patients showed increased ALFF in the left anterior insula (AI), increased ReHo in the right AI, and hyperconnectivity between bilateral AI and anterior cingulate cortex (ACC). Both OCD-AO and OCD-RO patients shared regional function deficits in several areas within the prefrontal cortex, and stronger FC between bilateral AI and major nodes of the default mode network (DMN) compared to healthy controls. CONCLUSION The current results suggest that aberrant functional interaction between the salience network (SN) and the DMN may represent a common substrate in the pathophysiology of OCD, while impaired functional coupling within the SN is distinct to autogenous-type OCD patients. These findings provide further neurobiological evidence to support the autogenous-reactive classification model and contribute to the understanding of the neurobiological basis for clinical heterogeneity in OCD.
Collapse
Affiliation(s)
- Jie Xia
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wanting Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongyu Du
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiang Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jinyao Yi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
8
|
Ye J, Ji F, Jiang D, Lin X, Chen G, Zhang W, Shan P, Zhang L, Zhuo C. Polymorphisms in Dopaminergic Genes in Schizophrenia and Their Implications in Motor Deficits and Antipsychotic Treatment. Front Neurosci 2019; 13:355. [PMID: 31057354 PMCID: PMC6479209 DOI: 10.3389/fnins.2019.00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dopaminergic system dysfunction is involved in schizophrenia (SCZ) pathogenesis and can mediate SCZ-related motor disorders. Recent studies have gradually revealed that SCZ susceptibility and the associated motor symptoms can be mediated by genetic factors, including dopaminergic genes. More importantly, polymorphisms in these genes are associated with both antipsychotic drug sensitivity and adverse effects. The study of genetic polymorphisms in the dopaminergic system may help to optimize individualized drug strategies for SCZ patients. This review summarizes the current progress about the involvement of the dopamine system in SCZ-associated motor disorders and the motor-related adverse effects after antipsychotic treatment, with a special focus on polymorphisms in dopaminergic genes. We hypothesize that the genetic profile of the dopaminergic system mediates both SCZ-associated motor deficits associated and antipsychotic drug-related adverse effects. The study of dopaminergic gene polymorphisms may help to predict drug efficacy and decrease adverse effects, thereby optimizing treatment strategies.
Collapse
Affiliation(s)
- Jiaen Ye
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Feng Ji
- Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China
| | - Deguo Jiang
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Wei Zhang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Peiwei Shan
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Joo YH, Kim JH, Son YD, Kim HK, Shin YJ, Lee SY, Kim JH. The relationship between excitement symptom severity and extrastriatal dopamine D 2/3 receptor availability in patients with schizophrenia: a high-resolution PET study with [ 18F]fallypride. Eur Arch Psychiatry Clin Neurosci 2018. [PMID: 28623450 DOI: 10.1007/s00406-017-0821-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to investigate the relationship between specific symptom severity and D2/3 receptor availability in extrastriatal regions in outpatients with schizophrenia to shed light on the role of extrastriatal dopaminergic neurotransmission in the pathophysiology of symptoms of schizophrenia. Sixteen schizophrenia patients receiving relatively low-dose maintenance atypical antipsychotics and seventeen healthy controls underwent 3-Tesla magnetic resonance imaging and high-resolution positron emission tomography with [18F]fallypride. For D2/3 receptor availability, the binding potential with respect to non-displaceable compartment (BPND) was derived using the simplified reference tissue model. The BPND values were lower in patients on antipsychotic treatment than in controls across all regions with large effect sizes (1.03-1.42). The regions with the largest effect size were the substantia nigra, amygdala, and insula. Symptoms of schizophrenia were assessed using a five-factor model of the Positive and Negative Syndrome Scale (PANSS). The region of interest-based analysis showed that PANSS excitement factor score had a significant positive correlation with the [18F]fallypride BPND in the insula. The equivalent dose of antipsychotics was not significantly correlated with PANSS factor scores or regional BPND values. The voxel-based analysis also revealed a significant positive association between the PANSS excitement factor and the [18F]fallypride BPND in the insula. The present study revealed a significant association between excitement symptom severity and D2/3 receptor availability in the insula in schizophrenia, suggesting a possible important role of D2/3 receptor-mediated neurotransmission in the insula and related limbic system in the pathophysiology of this specific symptom cluster.
Collapse
Affiliation(s)
- Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Jeong-Hee Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Research Institute for Advanced Industrial Technology, Korea University, Sejong, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Yeon-Jeong Shin
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Radiological Science, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea. .,Department of Psychiatry, Neuroscience Research Institute, Gil Medical Center, Gachon University School of Medicine, Gachon University, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, Republic of Korea.
| |
Collapse
|
10
|
Noseda R, Borsook D, Burstein R. Neuropeptides and Neurotransmitters That Modulate Thalamo-Cortical Pathways Relevant to Migraine Headache. Headache 2018; 57 Suppl 2:97-111. [PMID: 28485844 DOI: 10.1111/head.13083] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological, and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective, and cognitive functions. This review defines a chemical framework for thinking about the complexity of factors that modulate the response properties of relay trigeminovascular thalamic neurons. Following the presentation of scientific evidence for monosynaptic connections between thalamic trigeminovascular neurons and axons containing glutamate, GABA, dopamine, noradrenaline, serotonin, histamine, orexin, and melanin-concentrating hormone, this review synthesizes a large body of data to propose that the transmission of headache-related nociceptive signals from the thalamus to the cortex is modulated by potentially opposing forces and that the so-called 'decision' of which system (neuropeptide/neurotransmitter) will dominate the firing of a trigeminovascular thalamic neuron at any given time is determined by the constantly changing physiological (sleep, wakefulness, food intake, body temperature, heart rate, blood pressure), behavioral (addiction, isolation), cognitive (attention, learning, memory use), and affective (stress, anxiety, depression, anger) adjustment needed to keep homeostasis.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Vyas NS, Buchsbaum MS, Lehrer DS, Merrill BM, DeCastro A, Doninger NA, Christian BT, Mukherjee J. D2/D3 dopamine receptor binding with [F-18]fallypride correlates of executive function in medication-naïve patients with schizophrenia. Schizophr Res 2018; 192:442-456. [PMID: 28576546 DOI: 10.1016/j.schres.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 11/19/2022]
Abstract
Converging evidence indicates that the prefrontal cortex is critically involved in executive control and that executive dysfunction is implicated in schizophrenia. Reduced dopamine D2/D3 receptor binding potential has been reported in schizophrenia, and the correlations with neuropsychological test scores have been positive and negative for different tasks. The aim of this study was to examine the relation between dopamine D2/D3 receptor levels with frontal and temporal neurocognitive performance in schizophrenia. Resting-state 18F-fallypride positron emission tomography was performed on 20 medication-naïve and 5 previously medicated for brief earlier periods patients with schizophrenia and 19 age- and sex-matched healthy volunteers. Striatal and extra-striatal dopamine D2/D3 receptor levels were quantified as binding potential using fallypride imaging. Magnetic resonance images in standard Talairach position and segmented into gray and white matter were co-registered to the fallypride images, and the AFNI stereotaxic atlas was applied. Two neuropsychological tasks known to activate frontal and temporal lobe function were chosen, specifically the Wisconsin Card Sorting Test (WCST) and the California Verbal Learning Test (CVLT). Images of the correlation coefficient between fallypride binding and WCST and CVLT performance showed a negative correlation in contrast to positive correlations in healthy volunteers. The results of this study demonstrate that lower fallypride binding potential in patients with schizophrenia may be associated with better performance. Our findings are consistent with previous studies that failed to find cognitive improvements with typical dopamine-blocking medications.
Collapse
Affiliation(s)
- Nora S Vyas
- Kingston University London, Department of Psychology, Penrhyn Road, Kingston upon Thames, Surrey, KT1 2EE, UK; Imperial College Healthcare NHS Trust, Charing Cross Hospital, Department of Nuclear Medicine, Fulham Palace Road, W6 8RF, UK.
| | - Monte S Buchsbaum
- University of California, San Diego, NeuroPET Center, Department of Psychiatry, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA; University of California, San Diego, School of Medicine, Department of Radiology, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA
| | - Douglas S Lehrer
- Wright State University, Boonshoft School of Medicine, Department of Psychiatry, East Medical Plaza, Dayton, OH 45408, USA
| | - Brian M Merrill
- Wright State University, Boonshoft School of Medicine, Department of Psychiatry, East Medical Plaza, Dayton, OH 45408, USA
| | - Alex DeCastro
- University of California, San Diego, NeuroPET Center, Department of Psychiatry, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA
| | - Nicholas A Doninger
- Wright State University, Boonshoft School of Medicine, Department of Psychiatry, Wallace-Kettering Neuroscience Institute, Kettering, OH 45429, USA
| | - Bradley T Christian
- University of Wisconsin-Madison, Waisman Laboratory for Brain Imaging and Behavior, Madison, WI 53705, USA
| | - Jogeshwar Mukherjee
- University of California, Irvine, Preclinical Imaging, Department of Radiological Sciences, CA 92697-5000, USA
| |
Collapse
|
12
|
Takano H. Cognitive Function and Monoamine Neurotransmission in Schizophrenia: Evidence From Positron Emission Tomography Studies. Front Psychiatry 2018; 9:228. [PMID: 29896132 PMCID: PMC5987676 DOI: 10.3389/fpsyt.2018.00228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Positron emission tomography (PET) is a non-invasive imaging technique used to assess various brain functions, including cerebral blood flow, glucose metabolism, and neurotransmission, in the living human brain. In particular, neurotransmission mediated by the monoamine neurotransmitters dopamine, serotonin, and norepinephrine, has been extensively examined using PET probes, which specifically bind to the monoamine receptors and transporters. This useful tool has revealed the pathophysiology of various psychiatric disorders, including schizophrenia, and the mechanisms of action of psychotropic drugs. Because monoamines are implicated in various cognitive processes such as memory and executive functions, some PET studies have directly investigated the associations between monoamine neurotransmission and cognitive functions in healthy individuals and patients with psychiatric disorders. In this mini review, I discuss the findings of PET studies that investigated monoamine neurotransmission under resting conditions, specifically focusing on cognitive functions in patients with schizophrenia. With regard to the dopaminergic system, some studies have examined the association of dopamine D1 and D2/D3 receptors, dopamine transporters, and dopamine synthesis capacity with various cognitive functions in schizophrenia. With regard to the serotonergic system, 5-HT1A and 5-HT2A receptors have been studied in the context of cognitive functions in schizophrenia. Although relatively few PET studies have examined cognitive functions in patients with psychiatric disorders, these approaches can provide useful information on enhancing cognitive functions by administering drugs that modulate monoamine transmission. Moreover, another paradigm of techniques such as those exploring the release of neurotransmitters and further development of radiotracers for novel targets are warranted.
Collapse
Affiliation(s)
- Harumasa Takano
- Department of Clinical Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
13
|
Brandt AS, Unschuld PG, Pradhan S, Lim IAL, Churchill G, Harris AD, Hua J, Barker PB, Ross CA, van Zijl PCM, Edden RAE, Margolis RL. Age-related changes in anterior cingulate cortex glutamate in schizophrenia: A (1)H MRS Study at 7 Tesla. Schizophr Res 2016; 172:101-5. [PMID: 26925800 PMCID: PMC4821673 DOI: 10.1016/j.schres.2016.02.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/27/2022]
Abstract
The extent of age-related changes in glutamate and other neurometabolites in the anterior cingulate cortex (ACC) in individuals with schizophrenia remain unclear. Magnetic resonance spectroscopy (MRS) at 7 T, which yields precise measurements of various metabolites and can distinguish glutamate from glutamine, was used to determine levels of ACC glutamate and other metabolites in 24 individuals with schizophrenia and 24 matched controls. Multiple regression analysis revealed that ACC glutamate decreased with age in patients but not controls. No changes were detected in levels of glutamine, N-acetylaspartate, N-acetylaspartylglutamic acid, myo-inositol, GABA, glutathione, total creatine, and total choline. These results suggest that age may be an important modifier of ACC glutamate in schizophrenia.
Collapse
Affiliation(s)
- Allison S Brandt
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul G Unschuld
- Laboratory for Aging Neuroscience and Neuroimaging, Division of Psychiatry Research and Psychogeriatric Medicine, University of Zürich, Zurich, Switzerland
| | - Subechhya Pradhan
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Issel Anne L Lim
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Gregory Churchill
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley D Harris
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jun Hua
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher A Ross
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Russell L Margolis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Mice Lacking the Serotonin Htr2B Receptor Gene Present an Antipsychotic-Sensitive Schizophrenic-Like Phenotype. Neuropsychopharmacology 2015; 40:2764-73. [PMID: 25936642 PMCID: PMC4864652 DOI: 10.1038/npp.2015.126] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/08/2015] [Accepted: 04/25/2015] [Indexed: 11/09/2022]
Abstract
Impulsivity and hyperactivity share common ground with numerous mental disorders, including schizophrenia. Recently, a population-specific serotonin 2B (5-HT2B) receptor stop codon (ie, HTR2B Q20*) was reported to segregate with severely impulsive individuals, whereas 5-HT2B mutant (Htr2B(-/-)) mice also showed high impulsivity. Interestingly, in the same cohort, early-onset schizophrenia was more prevalent in HTR2B Q*20 carriers. However, the putative role of 5-HT2B receptor in the neurobiology of schizophrenia has never been investigated. We assessed the effects of the genetic and the pharmacological ablation of 5-HT2B receptors in mice subjected to a comprehensive series of behavioral test screenings for schizophrenic-like symptoms and investigated relevant dopaminergic and glutamatergic neurochemical alterations in the cortex and the striatum. Domains related to the positive, negative, and cognitive symptom clusters of schizophrenia were affected in Htr2B(-/-) mice, as shown by deficits in sensorimotor gating, in selective attention, in social interactions, and in learning and memory processes. In addition, Htr2B(-/-) mice presented with enhanced locomotor response to the psychostimulants dizocilpine and amphetamine, and with robust alterations in sleep architecture. Moreover, ablation of 5-HT2B receptors induced a region-selective decrease of dopamine and glutamate concentrations in the dorsal striatum. Importantly, selected schizophrenic-like phenotypes and endophenotypes were rescued by chronic haloperidol treatment. We report herein that 5-HT2B receptor deficiency confers a wide spectrum of antipsychotic-sensitive schizophrenic-like behavioral and psychopharmacological phenotypes in mice and provide first evidence for a role of 5-HT2B receptors in the neurobiology of psychotic disorders.
Collapse
|
15
|
Xu J, Qin W, Liu B, Jiang T, Yu C. Interactions of genetic variants reveal inverse modulation patterns of dopamine system on brain gray matter volume and resting-state functional connectivity in healthy young adults. Brain Struct Funct 2015; 221:3891-3901. [PMID: 26498330 PMCID: PMC5065899 DOI: 10.1007/s00429-015-1134-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022]
Abstract
Different genotypic combinations of COMT and DRD2 can generate multiple subgroups with different levels of dopamine signaling. Its modulations on brain properties can be investigated by analyzing the combined gene effects of COMT and DRD2. However, the inherent association between modulation patterns of the dopamine system on structural and functional properties of the brain remains unknown. In 294 healthy young adults, we investigated both additive and non-additive interactions of COMT and DRD2 on gray matter volume (GMV) and resting-state functional connectivity (rsFC) using a voxel-based analysis. We found a significant non-additive COMT × DRD2 interaction in the right dorsal anterior cingulate cortex (dACC), exhibiting an inverted U-shape modulation by dopamine signaling. We also found a significant non-additive COMT × DRD2 interaction in the rsFC between the right dACC and precuneus, displaying a U-shape modulation by dopamine signaling. Moreover, this rsFC was negatively correlated with the GMV of the right dACC. Although the additive interaction did not pass corrections for multiple comparisons, we also found a trend towards an inverse modulation pattern and a negative correlation between the GMV and rsFC of the right inferior frontal gyrus. No genotypic differences were detected in any assessments of the cognition, mood and personality. These findings suggest that healthy young adults without optimal dopamine signaling may maintain their normal behavioral performance via a functional compensatory mechanism in response to structural deficit due to genetic variation.
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Bing Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
16
|
Pyramidal cell selective ablation of N-methyl-D-aspartate receptor 1 causes increase in cellular and network excitability. Biol Psychiatry 2015; 77:556-68. [PMID: 25156700 PMCID: PMC4297754 DOI: 10.1016/j.biopsych.2014.06.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/05/2014] [Accepted: 06/22/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuronal activity at gamma frequency is impaired in schizophrenia (SZ) and is considered critical for cognitive performance. Such impairments are thought to be due to reduced N-methyl-D-aspartate receptor (NMDAR)-mediated inhibition from parvalbumin interneurons, rather than a direct role of impaired NMDAR signaling on pyramidal neurons. However, recent studies suggest a direct role of pyramidal neurons in regulating gamma oscillations. In particular, a computational model has been proposed in which phasic currents from pyramidal cells could drive synchronized feedback inhibition from interneurons. As such, impairments in pyramidal neuron activity could lead to abnormal gamma oscillations. However, this computational model has not been tested experimentally and the molecular mechanisms underlying pyramidal neuron dysfunction in SZ remain unclear. METHODS In the present study, we tested the hypothesis that SZ-related phenotypes could arise from reduced NMDAR signaling in pyramidal neurons using forebrain pyramidal neuron specific NMDA receptor 1 knockout mice. RESULTS The mice displayed increased baseline gamma power, as well as sociocognitive impairments. These phenotypes were associated with increased pyramidal cell excitability due to changes in inherent membrane properties. Interestingly, mutant mice showed decreased expression of GIRK2 channels, which has been linked to increased neuronal excitability. CONCLUSIONS Our data demonstrate for the first time that NMDAR hypofunction in pyramidal cells is sufficient to cause electrophysiological, molecular, neuropathological, and behavioral changes related to SZ.
Collapse
|
17
|
Early life arsenic exposure and brain dopaminergic alterations in rats. Int J Dev Neurosci 2014; 38:91-104. [DOI: 10.1016/j.ijdevneu.2014.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/09/2014] [Accepted: 08/23/2014] [Indexed: 11/21/2022] Open
|
18
|
Edut S, Rubovitch V, Rehavi M, Schreiber S, Pick CG. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice. J Mol Neurosci 2014; 54:684-97. [PMID: 25124230 DOI: 10.1007/s12031-014-0399-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.
Collapse
Affiliation(s)
- S Edut
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel,
| | | | | | | | | |
Collapse
|
19
|
Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. PLoS One 2014; 9:e103929. [PMID: 25090640 PMCID: PMC4121288 DOI: 10.1371/journal.pone.0103929] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022] Open
Abstract
Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective and cognitive functions. Our overall goal is to define an anatomical framework for conceptualizing how a ‘decision’ is made on whether a trigeminovascular thalamic neuron fires, for how long, and at what frequency. To begin answering this question, we determine which neuropeptides/neurotransmitters are in a position to modulate thalamic trigeminovascular neurons. Using a combination of in-vivo single-unit recording, juxtacellular labeling with tetramethylrhodamine dextran (TMR) and in-vitro immunohistochemistry, we found that thalamic trigeminovascular neurons were surrounded by high density of axons containing biomarkers of glutamate, GABA, dopamine and serotonin; moderate density of axons containing noradrenaline and histamine; low density of axons containing orexin and melanin concentrating hormone (MCH); but not axons containing CGRP, serotonin 1D receptor, oxytocin or vasopressin. In the context of migraine, the findings suggest that the transmission of headache-related nociceptive signals from the thalamus to the cortex may be modulated by opposing forces (i.e., facilitatory, inhibitory) that are governed by continuous adjustments needed to keep physiological, behavioral, cognitive and emotional homeostasis.
Collapse
|
20
|
Brisch R, Saniotis A, Wolf R, Bielau H, Bernstein HG, Steiner J, Bogerts B, Braun K, Jankowski Z, Kumaratilake J, Henneberg M, Gos T, Henneberg M, Gos T. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 2014; 5:47. [PMID: 24904434 PMCID: PMC4032934 DOI: 10.3389/fpsyt.2014.00047] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
Dopamine is an inhibitory neurotransmitter involved in the pathology of schizophrenia. The revised dopamine hypothesis states that dopamine abnormalities in the mesolimbic and prefrontal brain regions exist in schizophrenia. However, recent research has indicated that glutamate, GABA, acetylcholine, and serotonin alterations are also involved in the pathology of schizophrenia. This review provides an in-depth analysis of dopamine in animal models of schizophrenia and also focuses on dopamine and cognition. Furthermore, this review provides not only an overview of dopamine receptors and the antipsychotic effects of treatments targeting them but also an outline of dopamine and its interaction with other neurochemical models of schizophrenia. The roles of dopamine in the evolution of the human brain and human mental abilities, which are affected in schizophrenia patients, are also discussed.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Arthur Saniotis
- School of Medical Sciences, The University of Adelaide , Adelaide, SA , Australia ; Centre for Evolutionary Medicine, University of Zurich , Zurich , Switzerland
| | - Rainer Wolf
- Department of Psychiatry and Psychotherapy, Ruhr University Bochum , Bochum , Germany
| | - Hendrik Bielau
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Katharina Braun
- Department of Zoology, Institute of Biology, Otto-von-Guericke-University of Magdeburg , Magdeburg , Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, School of Biomedical Sciences, The University of Adelaide , Adelaide, SA , Australia
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk , Gdańsk , Poland
| |
Collapse
|
21
|
Tsukada H, Ohba H, Kanazawa M, Kakiuchi T, Harada N. Evaluation of 18F-BCPP-EF for mitochondrial complex 1 imaging in the brain of conscious monkeys using PET. Eur J Nucl Med Mol Imaging 2013; 41:755-63. [PMID: 24258008 DOI: 10.1007/s00259-013-2628-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/31/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE We have reported on the development of a novel PET probe, (18)F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ((18)F-BCPP-EF), for quantitative imaging of mitochondrial complex 1 (MC-1) activity in the brain of the living rat. For clinical application in humans, translational research in the monkey was conducted. METHODS PET measurements with (18)F-BCPP-EF were performed in young and old monkeys (Macaca mulatta) in a conscious state with arterial blood sampling. The binding specificity of (18)F-BCPP-EF was evaluated with rotenone, a specific MC-1 inhibitor, in young animals. The binding (total distribution volume, V T) of (18)F-BCPP-EF was calculated using Logan graphical analysis, and one-tissue compartment model (1-TC) and two-tissue compartment model (2-TC) analyses using a metabolite-corrected plasma input function. RESULTS F-BCPP-EF was rapidly taken up into the brain just after intravenous injection, peaked between 10 and 20 min after injection, and was then gradually eliminated. The 2-TC analysis provided a better fit than the 1-TC analysis, and the V T values from the 2-TC analysis correlated well with those from the Logan plot. With predosing with rotenone, (18)F-BCPP-EF showed a higher uptake peak in the brain, followed by more rapid elimination thereafter than in the vehicle condition, resulting in significant reductions in 2-TC V T values in all regions. In old animals, the kinetics of (18)F-BCPP-EF were slightly slower with lower peak levels than in young animals, resulting age-related reductions in (18)F-BCPP-EF binding in all brain regions. CONCLUSION The present study demonstrated that (18)F-BCPP-EF may be a potential PET probe for quantitative imaging MC-1 activity in the living brain using PET.
Collapse
Affiliation(s)
- Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita, Hamamatsu, Shizuoka, 434-8601, Japan,
| | | | | | | | | |
Collapse
|
22
|
Nogo and Nogo receptor: relevance to schizophrenia? Neurobiol Dis 2013; 54:150-7. [PMID: 23369871 DOI: 10.1016/j.nbd.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/14/2022] Open
Abstract
The membrane protein Nogo-A and its receptor NgR have been extensively characterized for their role in restricting axonal growth, regeneration, and plasticity in the central nervous system. Recent evidence suggests that Nogo and NgR might constitute candidate genes for schizophrenia susceptibility. In this article, we critically review the possibility that dysfunctions related to Nogo-A and NgR might contribute to increased risk for schizophrenia. To this end, we consider the most important insights that have emerged from human genetic and pathological studies and from experimental animal work. Furthermore, we discuss potential mechanisms of Nogo/NgR involvement in neural circuit development and stability, and how mutations or changes in expression levels of these proteins could be developmental risk factors contributing to schizophrenia.
Collapse
|
23
|
Fitzgerald ML, Mackie K, Pickel VM. The impact of adolescent social isolation on dopamine D2 and cannabinoid CB1 receptors in the adult rat prefrontal cortex. Neuroscience 2013; 235:40-50. [PMID: 23333674 DOI: 10.1016/j.neuroscience.2013.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 12/11/2022]
Abstract
Adolescent experiences of social deprivation result in profound and enduring perturbations in adult behavior, including impaired sensorimotor gating. The behavioral deficits induced by adolescent social isolation in rats can be ameliorated by antipsychotic drugs blocking dopamine D2 receptors in the prefrontal cortex (PFC) or by chronic administration of a cannabinoid CB1 receptor antagonist. The patterning and abundance of D2 receptors in the PFC evolves concurrently with CB1 receptors through the period of adolescence. This evidence suggests that mature expression and/or surface distribution of D2 and CB1 receptors may be influenced by the adolescent social environment. We tested this hypothesis using electron microscopic immunolabeling to compare the distribution of CB1 and D2 receptors in the PFC of adult male Sprague-Dawley rats that were isolated or socially reared throughout the adolescent transition period. Prepulse inhibition (PPI) of acoustic startle was assessed as a measure of sensorimotor gating. Social isolation reduced PPI and selectively decreased dendritic D2 immunogold labeling in the PFC. However, the decrease was only evident in dendrites that were not contacted by axon terminals containing CB1. There was no apparent change in the expression of CB1 or D2 receptors in presynaptic terminals. The D2 deficit therefore may be tempered by local CB1-mediated retrograde signaling. This suggests a biological mechanism whereby the adolescent social environment can persistently influence cortical dopaminergic activity and resultant behavior.
Collapse
Affiliation(s)
- M L Fitzgerald
- Department of Neuroscience, Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, United States
| | | | | |
Collapse
|
24
|
Effects of sports participation on psychiatric symptoms and brain activations during sports observation in schizophrenia. Transl Psychiatry 2012; 2:e96. [PMID: 22832861 PMCID: PMC3316153 DOI: 10.1038/tp.2012.22] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Weight gain has been identified as being responsible for increased morbidity and mortality rates of schizophrenia patients. For the management of weight gain, exercise is one of the most acknowledged interventions. At the same time, exercise and sports have been recognized for their positive impact on psychiatric symptoms of schizophrenia. However, the neurobiological basis for this remains poorly understood. We aimed to examine the effect of sports participation on weight gain, psychiatric symptoms and brain activation during sports observation in schizophrenia patients. Thirteen schizophrenia patients who participated in a 3-month program, including sports participation and 10 control schizophrenia patients were studied. In both groups, body mass index (BMI), Positive and Negative Syndrome Scale (PANSS), and brain activation during observation of sports-related actions measured by functional magnetic resonance imaging were accessed before and after a 3-month interval. BMI and general psychopathology scale of PANSS were significantly reduced in the program group but not in the control group after a 3-month interval. Compared with baseline, activation of the body-selective extrastriate body area (EBA) in the posterior temporal-occipital cortex during observation of sports-related actions was increased in the program group. In this group, increase in EBA activation was associated with improvement in the general psychopathology scale of PANSS. Sports participation had a positive effect not only on weight gain but also on psychiatric symptoms in schizophrenia. EBA might mediate these beneficial effects of sports participation. Our findings merit further investigation of neurobiological mechanisms underlying the therapeutic effect of sports for schizophrenia.
Collapse
|
25
|
Seth AK, Suzuki K, Critchley HD. An interoceptive predictive coding model of conscious presence. Front Psychol 2012; 2:395. [PMID: 22291673 PMCID: PMC3254200 DOI: 10.3389/fpsyg.2011.00395] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/20/2011] [Indexed: 12/30/2022] Open
Abstract
We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness.
Collapse
Affiliation(s)
- Anil K Seth
- Sackler Centre for Consciousness Science, University of Sussex Brighton, UK
| | | | | |
Collapse
|
26
|
Palaniyappan L, Liddle PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci 2012; 37:17-27. [PMID: 21693094 PMCID: PMC3244495 DOI: 10.1503/jpn.100176] [Citation(s) in RCA: 386] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The insular cortex is one of the brain regions that show consistent abnormalities in both structural and functional neuroimaging studies of schizophrenia. In healthy individuals, the insula has been implicated in a myriad of physiologic functions. The anterior cingulate cortex (ACC) and insula together constitute the salience network, an intrinsic large-scale network showing strong functional connectivity. Considering the insula as a functional unit along with the ACC provides an integrated understanding of the role of the insula in information processing. In this review, we bring together evidence from imaging studies to understand the role of the salience network in schizophrenia and propose a model of insular dysfunction in psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Division of Psychiatry, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.
| | | |
Collapse
|
27
|
Du X, Jansen BH. A neural network model of normal and abnormal auditory information processing. Neural Netw 2011; 24:568-74. [PMID: 21421295 DOI: 10.1016/j.neunet.2011.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/26/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
The ability of the brain to attenuate the response to irrelevant sensory stimulation is referred to as sensory gating. A gating deficiency has been reported in schizophrenia. To study the neural mechanisms underlying sensory gating, a neuroanatomically inspired model of auditory information processing has been developed. The mathematical model consists of lumped parameter modules representing the thalamus (TH), the thalamic reticular nucleus (TRN), auditory cortex (AC), and prefrontal cortex (PC). It was found that the membrane potential of the pyramidal cells in the PC module replicated auditory evoked potentials, recorded from the scalp of healthy individuals, in response to pure tones. Also, the model produced substantial attenuation of the response to the second of a pair of identical stimuli, just as seen in actual human experiments. We also tested the viewpoint that schizophrenia is associated with a deficit in prefrontal dopamine (DA) activity, which would lower the excitatory and inhibitory feedback gains in the AC and PC modules. Lowering these gains by less than 10% resulted in model behavior resembling the brain activity seen in schizophrenia patients, and replicated the reported gating deficits. The model suggests that the TRN plays a critical role in sensory gating, with the smaller response to a second tone arising from a reduction in inhibition of TH by the TRN.
Collapse
Affiliation(s)
- X Du
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA
| | | |
Collapse
|
28
|
Developmental exposure to methylmercury and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) affects cerebral dopamine D1-like and D2-like receptors of weanling and pubertal rats. Arch Toxicol 2011; 85:1281-94. [DOI: 10.1007/s00204-011-0660-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
|
29
|
Calcium-related signaling pathways contributed to dopamine-induced cortical neuron apoptosis. Neurochem Int 2011; 58:281-94. [DOI: 10.1016/j.neuint.2010.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 11/24/2022]
|
30
|
Boot E, Booij J, Zinkstok JR, de Haan L, Linszen DH, Baas F, van Amelsvoort TA. Striatal D₂ receptor binding in 22q11 deletion syndrome: an [¹²³I]IBZM SPECT study. J Psychopharmacol 2010; 24:1525-31. [PMID: 19406852 DOI: 10.1177/0269881109104854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been hypothesised that in subjects with 22q11 deletion syndrome (22q11DS) disturbances of the dopamine (DA) system contribute to their increased risk for cognitive deficits and psychiatric problems. However, central DAergic neurotransmission in 22q11DS has not been investigated. We measured striatal D₂ receptor binding potential (D₂R BP(ND)) using (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl)methyl] benzamide-single photon emission computed tomography ([¹²³I]IBZM SPECT) in 12 adults with 22q11DS and 12 matched controls. Correlations between D₂R BP(ND) and plasma prolactin (pPRL) levels were also determined. 22q11DS subjects and controls had similar D₂R BP( ND). There was a positive correlation between D₂R BP( ND) and pPRL values in controls, but no such relation was found in 22q11DS subjects. This study suggests that a 22q11 deletion does not affect striatal DAergic neurotransmission in the living human brain. However, the disturbed relationship between D₂R BP(ND) and pPRL values suggests DAergic dysfunction at a different level. Further studies on DAergic function in extra-striatal brain regions and under challenged conditions are needed.
Collapse
Affiliation(s)
- E Boot
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, the Netherlands, Ipse de Bruggen, Centre for People with Intellectual Disability, Zwammerdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Govindaiah G, Wang T, Gillette MU, Crandall SR, Cox CL. Regulation of inhibitory synapses by presynaptic D₄ dopamine receptors in thalamus. J Neurophysiol 2010; 104:2757-65. [PMID: 20884758 DOI: 10.1152/jn.00361.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) receptors are the principal targets of drugs used in the treatment of schizophrenia. Among the five DA receptor subtypes, the D(4) subtype is of particular interest because of the relatively high affinity of the atypical neuropleptic clozapine for D(4) compared with D(2) receptors. GABA-containing neurons in the thalamic reticular nucleus (TRN) and globus pallidus (GP) express D(4) receptors. TRN neurons receive GABAergic afferents from globus pallidus (GP), substantia nigra pars reticulata (SNr), and basal forebrain as well as neighboring TRN neuron collaterals. In addition, TRN receives dopaminergic innervations from substantia nigra pars compacta (SNc); however, the role of D(4) receptors in neuronal signaling at inhibitory synapses is unknown. Using whole cell recordings from in vitro pallido-thalamic slices, we demonstrate that DA selectively suppresses GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) evoked by GP stimulation. The D(2)-like receptor (D(2,3,4)) agonist, quinpirole, and selective D(4) receptor agonist, PD168077, mimicked the actions of DA. The suppressive actions of DA and its agonists were associated with alterations in paired pulse ratio and a decrease in the frequency of miniature IPSCs, suggesting a presynaptic site of action. GABA(A) receptor agonist, muscimol, induced postsynaptic currents in TRN neurons were unaltered by DA or quinpirole, consistent with the presynaptic site of action. Finally, DA agonists did not alter intra-TRN inhibitory signaling. Our data demonstrate that the activation of presynaptic D(4) receptors regulates GABA release from GP efferents but not TRN collaterals. This novel and selective action of D(4) receptor activation on GP-mediated inhibition may provide insight to potential functional significance of atypical antipsychotic agents. These findings suggest a potential heightened TRN neuron activity in certain neurological conditions, such as schizophrenia and attention deficit hyperactive disorders.
Collapse
Affiliation(s)
- Gubbi Govindaiah
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
32
|
18F-fallypride binding potential in patients with schizophrenia compared to healthy controls. Schizophr Res 2010; 122:43-52. [PMID: 20655709 PMCID: PMC3278159 DOI: 10.1016/j.schres.2010.03.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Molecular imaging of dopaminergic parameters has contributed to the dopamine hypothesis of schizophrenia, expanding our understanding of pathophysiology, clinical phenomenology and treatment. Our aim in this study was to compare (18)F-fallypride binding potential BP(ND) in a group of patients with schizophrenia-spectrum illness vs. controls, with a particular focus on the cortex and thalamus. METHODS We acquired (18)F-fallypride positron emission tomography images on 33 patients with schizophrenia spectrum disorder (28 with schizophrenia; 5 with schizoaffective disorder) and 18 normal controls. Twenty-four patients were absolutely neuroleptic naïve and nine were previously medicated, although only four had a lifetime neuroleptic exposure of greater than two weeks. Parametric images of (18)F-fallypride BP(ND) were calculated to compare binding across subjects. RESULTS Decreased BP(ND) was observed in the medial dorsal nucleus of the thalamus, prefrontal cortex, lateral temporal lobe and primary auditory cortex. These findings were most marked in subjects who had never previously received medication. CONCLUSIONS The regions with decreased BP(ND) tend to match brain regions previously reported to show alterations in metabolic activity and blood flow and areas associated with the symptoms of schizophrenia.
Collapse
|
33
|
Govindaiah G, Wang Y, Cox CL. Dopamine enhances the excitability of somatosensory thalamocortical neurons. Neuroscience 2010; 170:981-91. [PMID: 20801197 DOI: 10.1016/j.neuroscience.2010.08.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/17/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
Abstract
The thalamus conveys sensory information from peripheral and subcortical regions to the neocortex in a dynamic manner that can be influenced by several neuromodulators. Alterations in dopamine (DA) receptor function in thalami of Schizophrenic patients have recently been reported. In addition, schizophrenia is associated with sensory gating abnormalities and sleep-wake disturbances, thus we examined the role of DA on neuronal excitability in somatosensory thalamus. The ventrobasal (VB) thalamus receives dopaminergic innervation and expresses DA receptors; however, the action of DA on VB neurons is unknown. In the present study, we performed whole cell current- and voltage-clamp recordings in rat brain slices to investigate the role of DA on excitability of VB neurons. We found that DA increased action potential discharge and elicited membrane depolarization via activation of different receptor subtypes. Activation of D2-like receptors (D(2R)) leads to enhanced action potential discharge, whereas the membrane depolarization was mediated by D1-like receptors (D(1R)). The D(2R-mediated) increase in spike discharge was mimicked and occluded by α-dendrotoxin (α-DTX), indicating the involvement of a slowly inactivating K(+) channels. The D1R-mediated membrane depolarization was occluded by barium, suggesting the involvement of a G protein-coupled K(+) channel or an inwardly rectifying K(+) channel. Our results indicate that DA produces dual modulatory effects acting on subtypes of DA receptors in thalamocortical relay neurons, and likely plays a significant role in the modulation of sensory information.
Collapse
Affiliation(s)
- G Govindaiah
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
34
|
de Manzano O, Cervenka S, Karabanov A, Farde L, Ullén F. Thinking outside a less intact box: thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS One 2010; 5:e10670. [PMID: 20498850 PMCID: PMC2871784 DOI: 10.1371/journal.pone.0010670] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 04/11/2010] [Indexed: 11/29/2022] Open
Abstract
Several lines of evidence support that dopaminergic neurotransmission plays a role in creative thought and behavior. Here, we investigated the relationship between creative ability and dopamine D2 receptor expression in healthy individuals, with a focus on regions where aberrations in dopaminergic function have previously been associated with psychotic symptoms and a genetic liability to schizophrenia. Scores on divergent thinking tests (Inventiveness battery, Berliner Intelligenz Struktur Test) were correlated with regional D2 receptor densities, as measured by Positron Emission Tomography, and the radioligands [11C]raclopride and [11C]FLB 457. The results show a negative correlation between divergent thinking scores and D2 density in the thalamus, also when controlling for age and general cognitive ability. Hence, the results demonstrate that the D2 receptor system, and specifically thalamic function, is important for creative performance, and may be one crucial link between creativity and psychopathology. We suggest that decreased D2 receptor densities in the thalamus lower thalamic gating thresholds, thus increasing thalamocortical information flow. In healthy individuals, who do not suffer from the detrimental effects of psychiatric disease, this may increase performance on divergent thinking tests. In combination with the cognitive functions of higher order cortical networks, this could constitute a basis for the generative and selective processes that underlie real life creativity.
Collapse
Affiliation(s)
- Orjan de Manzano
- Neuropediatric Research Unit, Department of Women's and Children's Health and Stockholm Brain Institute, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
35
|
Schlagenhauf F, Dinges M, Beck A, Wüstenberg T, Friedel E, Dembler T, Sarkar R, Wrase J, Gallinat J, Juckel G, Heinz A. Switching schizophrenia patients from typical neuroleptics to aripiprazole: effects on working memory dependent functional activation. Schizophr Res 2010; 118:189-200. [PMID: 20189356 DOI: 10.1016/j.schres.2010.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/04/2010] [Accepted: 01/28/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Deficits in working memory (WM) are a core symptom of schizophrenia patients and have been linked to dysfunctional prefrontal activation, which might be caused by a mesocortical hypodopaminergic state. Aripiprazole--a partial dopamine antagonist--is a novel antipsychotic, which increases frontal dopamine concentrations in preclinical studies. However, little is known about specific medication effects on the modulation of frontal activation during WM performance. METHODS We measured BOLD-response during a WM task in a longitudinal fMRI-study in eleven schizophrenia patients first when they received conventional antipsychotics (T1) and a second time after they had been switched to aripiprazole (T2). A healthy control group matched for age, handedness and gender was investigated at two corresponding time points. Data was analyzed with SPM5 in a 2 x 2 x 2 design (groupxsessionxtask). RESULTS Schizophrenia patients showed fewer correct responses compared to healthy controls at T1 and a trend-wise normalization at T2. The task activated the fronto-parietal network during the contrast 2-back>0-back in all participants. At T1 patients revealed a hypoactivation in the dorsal anterior cingulate cortex (ACC), which normalized after switch to aripiprazole and correlated with improved task performance. This was due to a significant increase in the patients group while the control group did not change, as corroborated by a significant groupxtime interaction in this region. CONCLUSIONS This study showed for the first time that the partial dopamine antagonist aripiprazole increases BOLD-signal during a WM task in the cognitive part of the ACC in schizophrenia patients, which may reflect its beneficial effect on cognitive deficits.
Collapse
Affiliation(s)
- Florian Schlagenhauf
- Department of Psychiatry, Charité-Universitaetsmedizin Berlin, Campus Mitte, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Patel NH, Vyas NS, Puri BK, Nijran KS, Al-Nahhas A. Positron emission tomography in schizophrenia: a new perspective. J Nucl Med 2010; 51:511-20. [PMID: 20237027 DOI: 10.2967/jnumed.109.066076] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED PET is an important functional imaging technique that can be used to investigate neurotransmitter receptors and transporters directly by mapping human brain function. PET is increasingly being used greatly to advance our understanding of the neurobiology and pathophysiology of schizophrenia. METHODS This review focuses on the use of PET tracers and kinetic modeling in identifying regional brain abnormalities and regions associated with cognitive functioning in schizophrenia. A variety of PET tracers have been used to identify brain abnormalities, including (11)C, (15)O-water, (18)F-fallypride, and L-3,4-dihydroxy-6-(18)F-fluorophenylalanine ((18)F-FDOPA). RESULTS Some studies have used compartmental modeling to determine tracer binding kinetics. The most consistent findings show a difference in the dopamine content in the prefrontal cortex, anterior cingulate gyrus, and hippocampus between healthy controls and patients with schizophrenia. Studies also show a higher density of D(2) receptors in the striatum and neural brain dysconnectivity. CONCLUSION Future investigations integrating clinical, imaging, genetic, and cognitive aspects are warranted to gain a better understanding of the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Neva H Patel
- Radiological Sciences Unit, Imperial College Healthcare NHS Trust, London, United Kingdom.
| | | | | | | | | |
Collapse
|
37
|
Constitutive genetic deletion of the growth regulator Nogo-A induces schizophrenia-related endophenotypes. J Neurosci 2010; 30:556-67. [PMID: 20071518 DOI: 10.1523/jneurosci.4393-09.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The membrane protein Nogo-A, which is predominantly expressed by oligodendrocytes in the adult CNS and by neurons mainly during development, is well known for limiting neurite outgrowth and regeneration in the injured mammalian CNS. In addition, it has recently been proposed that abnormal Nogo-A expression or Nogo receptor (NgR) mutations may confer genetic risks for neuropsychiatric disorders of presumed neurodevelopmental origin, such as schizophrenia. We therefore evaluated whether Nogo-A deletion may lead to schizophrenia-like abnormalities in a mouse model of genetic Nogo-A deficiency. Here, we show that systemic, lifelong knock-out of the Nogo-A gene can lead to specific behavioral abnormalities resembling schizophrenia-related endophenotypes: deficient sensorimotor gating, disrupted latent inhibition, perseverative behavior, and increased sensitivity to the locomotor stimulating effects of amphetamine. These behavioral phenotypes were accompanied by altered monoaminergic transmitter levels in specific striatal and limbic structures, as well as changes in dopamine D2 receptor expression in the same brain regions. Nogo-A deletion was further associated with elevated expression of growth-related markers. In contrast, acute antibody-mediated Nogo-A neutralization in adult wild-type mice failed to produce such phenotypes, suggesting that the phenotypes observed in the knock-out mice might be of developmental origin, and that Nogo-A normally subserves critical functions in neurodevelopment. This study provides the first experimental demonstration that Nogo-A bears neuropsychiatric relevance, and alterations in its expression may be one etiological factor in schizophrenia and related disorders.
Collapse
|
38
|
Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 2010; 113:287-302. [PMID: 20089137 DOI: 10.1111/j.1471-4159.2010.06604.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in the brain and the target of anti-psychotic drugs. In this review, we will start with an overview of basal ganglia anatomy emphasizing dopamine circuitry. Then, we will review the major deficits in dopamine function in schizophrenia, emphasizing the role of excessive dopamine in the basal ganglia and the link to psychosis.
Collapse
Affiliation(s)
- Emma Perez-Costas
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
39
|
Abstract
Recent advances in the development and applications of neurochemical brain imaging methods have improved the ability to study the neurochemistry of the living brain in normal processes as well as psychiatric disorders. In particular, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have been used to determine neurochemical substrates of schizophrenia and to uncover the mechanism of action of antipsychotic medications. The growing availability of radiotracers for monoaminergic neurotransmitter synthesis, transporters and receptors, has enabled the evaluation of hypotheses regarding neurotransmitter function in schizophrenia derived from preclinical and clinical observations. This chapter reviews the studies using neurochemical brain imaging methods for (1) detection of abnormalities in indices of dopamine and serotonin transmission in patients with schizophrenia compared to controls, (2) development of new tools to study other neurotransmitters systems, such as gamma-aminobutyric acid (GABA) and glutamate, and (3) characterization of target occupancy by antipsychotic drugs, as well as its relationship to efficacy and side effects. As more imaging tools become available, this knowledge will expand and will lead to better detection of disease, as well as better therapeutic approaches.
Collapse
Affiliation(s)
- Nina Urban
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
40
|
Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 2009; 15:2550-9. [PMID: 19689327 DOI: 10.2174/138161209788957528] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular imaging studies have generated important in vivo insights into the etiology of schizophrenia and treatment response. This article first reviews the PET and SPECT evidence implicating dopaminergic dysfunction, especially presynaptic dysregulation, as a mechanism for psychosis. Second, it summarises the neurochemical imaging studies of antipsychotic action, focussing on D2/3 receptors. These studies show that all currently licensed antipsychotic drugs block striatal D2/3 receptors in vivo- a site downstream of the likely principal dopaminergic pathophysiology in schizophrenia- and that D2/3 occupancy above a threshold is required for antipsychotic treatment response. However, adverse events, such as extra-pyramidal side-effects or hyperprolactinemia, become much more likely at higher occupancy levels, which indicates there is an optimal 'therapeutic window' for D2/3 occupancy, and questions the use of high doses of antipsychotic treatment in clinical practice and trials. Adequate D2/3 blockade by antipsychotic drugs is necessary but not always sufficient for antipsychotic response. Molecular imaging studies of clozapine, the one antipsychotic licensed for treatment resistant schizophrenia, have provided insights into the mechanisms underlying its unique efficacy. To link this pharmacology to the phenomenology of the illness, we discuss the role of dopamine in motivational salience and show how i) psychosis could be viewed as a process of aberrant salience, and ii) antipsychotics might provide symptomatic relief by blocking this aberrant salience. Finally, we discuss the implications of these PET and SPECT findings for new avenues of drug development.
Collapse
Affiliation(s)
- O D Howes
- PET Psychiatry-MRC Clinical Sciences Centre, Imperial College Hammersmith Campus, Hammersmith Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Arakawa R, Ichimiya T, Ito H, Takano A, Okumura M, Takahashi H, Takano H, Yasuno F, Kato M, Okubo Y, Suhara T. Increase in thalamic binding of [(11)C]PE2I in patients with schizophrenia: a positron emission tomography study of dopamine transporter. J Psychiatr Res 2009; 43:1219-23. [PMID: 19457493 DOI: 10.1016/j.jpsychires.2009.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/05/2009] [Accepted: 04/21/2009] [Indexed: 11/26/2022]
Abstract
Previous in vivo imaging studies reported no difference in dopamine transporter (DAT) bindings in the striatum between control subjects and patients with schizophrenia. However, as the signals of radioligands with moderate affinity were insufficient for allowing the evaluation of small amounts of DAT, DAT binding in extrastriatal regions has not been determined. Positron emission tomography scanning using [(11)C]PE2I was performed on eight patients with schizophrenia and twelve normal control subjects. Binding potential (BP(ND)) for DAT in the caudate, putamen, thalamus and substantia nigra was calculated, using the cerebellum as reference region. In patients with schizophrenia, clinical symptoms were evaluated by Positive and Negative Syndrome Scale (PANSS). BP(ND) in the thalamus of patients with schizophrenia was significantly higher than in control subjects (P=0.044). In patients with schizophrenia, there were significantly positive correlations between BP(ND) in the thalamus and total (r=0.75), positive (r=0.78) and negative PANSS scores (r=0.82). Altered DAT in the thalamus might be related to the pathophysiology and clinical symptoms of schizophrenia.
Collapse
Affiliation(s)
- Ryosuke Arakawa
- Molecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Urigüen L, García-Fuster MJ, Callado LF, Morentin B, La Harpe R, Casadó V, Lluis C, Franco R, García-Sevilla JA, Meana JJ. Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment. Psychopharmacology (Berl) 2009; 206:313-24. [PMID: 19652957 DOI: 10.1007/s00213-009-1608-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 07/01/2009] [Indexed: 11/28/2022]
Abstract
RATIONALE Dopamine D2 receptors are the main target of antipsychotic drugs. In the brain, D2 receptors coexpress with adenosine A2A and CB1 cannabinoid receptors, leading to functional interactions. OBJECTIVES The protein and messenger RNA (mRNA) contents of A2A, D2, and CB1 receptors were quantified in postmortem prefrontal cortex of subjects with schizophrenia. MATERIALS AND METHODS The study was performed in subjects suffering schizophrenia (n=31) who mainly died by suicide, matched with non-schizophrenia suicide victims (n=13) and non-suicide controls (n=33). The density of receptor proteins was evaluated by immunodetection techniques, and their relative mRNA expression was quantified by quantitative real-time polymerase chain reaction. RESULTS In schizophrenia, the densities of A2A (90+/-6%, n=24) and D2-like receptors (95+/-5%, n=22) did not differ from those in controls (100%). Antipsychotic treatment did not induce changes in the protein expression. In contrast, the immunodensity of CB1 receptors was significantly decreased (71+/-7%, n=11; p<0.05) in antipsychotic-treated subjects with schizophrenia but not in drug-free subjects (104+/-13%, n=11). The relative mRNA amounts encoding for A2A, D2, and CB1 receptors were similar in brains of drug-free, antipsychotic-treated subjects with schizophrenia and controls. CONCLUSIONS The findings suggest that antipsychotics induce down-regulation of CB1 receptors in brain. Since A2A, D2, and CB1 receptors coexpress on brain GABAergic neurons and reductions in markers of GABA neurotransmission have been identified in schizophrenia, a lower density of CB1 receptor induced by antipsychotics could represent an adaptative mechanism that reduces the endocannabinoid-mediated suppression of GABA release, contributing to the normalization of cognitive functions in the disorder.
Collapse
Affiliation(s)
- Leyre Urigüen
- Department of Pharmacology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takebayashi H, Yamamoto N, Umino A, Nishikawa T. Developmentally regulated and thalamus-selective induction of leiomodin2 gene by a schizophrenomimetic, phencyclidine, in the rat. Int J Neuropsychopharmacol 2009; 12:1111-26. [PMID: 19254430 DOI: 10.1017/s1461145709009997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The onset of schizophrenia and the schizophrenomimetic effects of an N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine, rarely occur during infancy and childhood, suggesting that schizophrenia-related neuron circuits and molecules in the brain might show an age-related response to an NMDA receptor antagonist. By using a DNA microarray technique, we have identified the developmentally regulated PCP-inducible gene leiomodin2 (Lmod2) that encodes a tropomyosin-binding actin-capping protein enriched in the cardiac and skeletal muscles. PCP caused an increase in the thalamic amounts of Lmod2 transcripts at postnatal days (PD) 32 and 50 without affecting them at PD 8, 13, 20 and 24, while the NMDA antagonist failed to produce a significant change in the gene expression in the adult heart. In-situ hybridization analysis revealed that the basal and PCP-induced expression of the Lmod2 gene is almost confined to the lateral and anterior nuclei of the thalamus among the brain regions at PD 50. The PCP-induced up-regulation of Lmod2 mRNAs in the adult thalamus was mimicked totally (also up-regulated) by another NMDA antagonist, dizocilpine, and partly by the indirect dopamine agonist, methamphetamine. Moreover, pretreatment with a D(2)-preferring dopamine receptor antagonist, haloperidol, partially antagonizes the increasing effects of PCP on thalamic Lmod2 gene expression. These findings suggest that Lmod2 might be involved in the pathophysiology of the age-dependent onset of drug-induced schizophrenia-like psychosis and schizophrenia and that the limited thalamic nuclei expressing the Lmod2 gene could compose the neuron circuits that are specifically disturbed in these mental disorders.
Collapse
Affiliation(s)
- Hironao Takebayashi
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
El-Rawas R, Saadé NE, Thiriet N, Atweh S, Jaber M, Al-Amin HA. Developmental changes in the mRNA expression of neuropeptides and dopamine and glutamate receptors in neonates and adult rats after ventral hippocampal lesion. Schizophr Res 2009; 113:298-307. [PMID: 19500946 DOI: 10.1016/j.schres.2009.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 04/27/2009] [Accepted: 05/13/2009] [Indexed: 11/15/2022]
Abstract
BACKGROUND The neurodevelopment of hippocampus and prefrontal cortex are known to influence different functions in normal and pathological conditions including cognition and sensorimotor functions. The neonatal lesion of the ventral hippocampus (VH) in rats has been established as an animal model of schizophrenia and is used to study postpubertal changes in behavior and neurobiology. In order to investigate whether early VH lesion in rats alters the expression of genes implicated in schizophrenia pre- and post-puberty, we studied the mRNA expression of neuropeptides (substance P, dynorphin and enkephalin), dopamine D1, dopamine D2, and NMDA (subunits NR1 and NR2A) receptors in this animal model. METHODS Rat pups were lesioned at postnatal day 7 by injecting ibotenic acid into the VH bilaterally, and then sacrificed at age 35 (pre-puberty) and 65 (post-puberty) days. Another group of adult rats had the same lesion in the VH, to independently assess the effects of the lesion on the expression of genes, and then sacrificed at week 4 and 8 post lesion. Sham groups were injected with cerebrospinal fluid using the same procedure. Brains were removed and sectioned to study the mRNA expression using in situ hybridization (ISH). RESULTS The main results are the postpubertal onset of increased NR1 mRNA expression in all cortical regions and decreased dopamine D2 receptor, substance P and enkephalin mRNA expression in the striatum only in rats lesioned as neonates. These changes were not observed in the adult group with VH lesion. CONCLUSIONS Our results demonstrate that the postpubertal behavioral changes in this animal model (and possibly schizophrenia) are related to postpubertal onset of changes in the development of functions and interactions of the dopamine and glutamate receptors in the mesocortical system.
Collapse
MESH Headings
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Brain Injuries/chemically induced
- Brain Injuries/pathology
- Dynorphins/genetics
- Dynorphins/metabolism
- Enkephalins/genetics
- Enkephalins/metabolism
- Female
- Gene Expression Regulation, Developmental/physiology
- Hippocampus/growth & development
- Hippocampus/metabolism
- Ibotenic Acid
- Male
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Pregnancy
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine/genetics
- Receptors, Dopamine/metabolism
- Receptors, Glutamate/classification
- Receptors, Glutamate/genetics
- Receptors, Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Substance P/genetics
- Substance P/metabolism
Collapse
Affiliation(s)
- Rana El-Rawas
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France
| | | | | | | | | | | |
Collapse
|
45
|
Tuppurainen H, Kuikka JT, Viinamäki H, Husso M, Tiihonen J. Dopamine D2/3 receptor binding potential and occupancy in midbrain and temporal cortex by haloperidol, olanzapine and clozapine. Psychiatry Clin Neurosci 2009; 63:529-37. [PMID: 19496999 DOI: 10.1111/j.1440-1819.2009.01982.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS Aberrant dopamine transmission in extrastriatal brain regions has been repeatedly illustrated among patients with schizophrenia. Differences between typical and second-generation antipsychotics in dopamine D(2) receptor modulation within various brain areas remain a topic for debate. The aim of the present study was therefore to investigate dopamine D(2/3) receptor apparent binding potential (BP(app)) and occupancy in midbrain and temporal cortex among clozapine-, olanzapine- and haloperidol-treated schizophrenia patients. METHODS Dopamine D(2/3) binding was studied on single-photon emission computed tomography ligand [(123)I]epidepride in 13 schizophrenia patients treated with medication (two with haloperidol, four with olanzapine and seven with clozapine), six drug-naïve patients and seven healthy controls. RESULTS Statistically significant differences in midbrain dopamine D(2/3) receptor BP(app) (P = 0.015) and occupancy (P = 0.016) were observed between the clozapine, olanzapine and haloperidol groups. The lowest occupancy was found in clozapine-treated patients (5%), followed by olanzapine-treated patients (28%), compared to haloperidol-treated patients (40%). No significant differences were observed in the temporal poles. Occupancy changed substantially depending on the comparison group used (either drug-naïve vs healthy controls) in the examined brain areas (P = 0.001), showing an overestimation with all antipsychotics when the healthy control group was used. CONCLUSION Both typical and second-generation antipsychotics occupy cortical dopamine D(2/3) receptors, thus mediating therapeutic efficacy. Observed differences in midbrain dopamine D(2/3) occupancy between classical antipsychotics and second-generation antipsychotics may have clinical relevance by modulating altered nigrostriatal dopamine neurotransmission during the acute phase of schizophrenia.
Collapse
Affiliation(s)
- Heli Tuppurainen
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The dopamine hypothesis of schizophrenia has been one of the most enduring ideas in psychiatry. Initially, the emphasis was on a role of hyperdopaminergia in the etiology of schizophrenia (version I), but it was subsequently reconceptualized to specify subcortical hyperdopaminergia with prefrontal hypodopaminergia (version II). However, these hypotheses focused too narrowly on dopamine itself, conflated psychosis and schizophrenia, and predated advances in the genetics, molecular biology, and imaging research in schizophrenia. Since version II, there have been over 6700 articles about dopamine and schizophrenia. We selectively review these data to provide an overview of the 5 critical streams of new evidence: neurochemical imaging studies, genetic evidence, findings on environmental risk factors, research into the extended phenotype, and animal studies. We synthesize this evidence into a new dopamine hypothesis of schizophrenia-version III: the final common pathway. This hypothesis seeks to be comprehensive in providing a framework that links risk factors, including pregnancy and obstetric complications, stress and trauma, drug use, and genes, to increased presynaptic striatal dopaminergic function. It explains how a complex array of pathological, positron emission tomography, magnetic resonance imaging, and other findings, such as frontotemporal structural and functional abnormalities and cognitive impairments, may converge neurochemically to cause psychosis through aberrant salience and lead to a diagnosis of schizophrenia. The hypothesis has one major implication for treatment approaches. Current treatments are acting downstream of the critical neurotransmitter abnormality. Future drug development and research into etiopathogenesis should focus on identifying and manipulating the upstream factors that converge on the dopaminergic funnel point.
Collapse
Affiliation(s)
- Oliver D. Howes
- Positron Emission Tomography (PET) Psychiatry Group, Medical Research Council (MRC) Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK,Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Shitij Kapur
- Positron Emission Tomography (PET) Psychiatry Group, Medical Research Council (MRC) Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK,To whom correspondence should be addressed; PO Box 053, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK; tel: +44-20-7848-0593, fax: +44-20-7848-0287, e-mail:
| |
Collapse
|
47
|
Nozaki S, Kato M, Takano H, Ito H, Takahashi H, Arakawa R, Okumura M, Fujimura Y, Matsumoto R, Ota M, Takano A, Otsuka A, Yasuno F, Okubo Y, Kashima H, Suhara T. Regional dopamine synthesis in patients with schizophrenia using L-[beta-11C]DOPA PET. Schizophr Res 2009; 108:78-84. [PMID: 19056247 DOI: 10.1016/j.schres.2008.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/14/2008] [Accepted: 11/08/2008] [Indexed: 11/26/2022]
Abstract
The dopamine hypothesis has been the most widely known theory concerning schizophrenia. However, the exact mechanism including presynaptic dopaminergic activity and its relationship with symptom severity still remains to be revealed. We measured presynaptic dopamine synthesis using positron emission tomography (PET) with L-[beta-(11)C]DOPA in 18 patients with schizophrenia (14 drug-naive and 4 drug-free patients) and 20 control participants. Dopamine synthesis rates, expressed as k(i) values, were obtained using a graphical method, and the occipital cortex was used as reference region. Regions of interest were placed on the prefrontal cortex, temporal cortex, anterior cingulate, parahippocampus, thalamus, caudate nucleus, and putamen. Psychopathology was assessed with the Positive and Negative Symptom Scale (PANSS). We found significantly higher k(i) values in patients than in controls in the left caudate nucleus, but not in the other regions. The k(i) values in the thalamus exhibited a significant positive correlation with the PANSS total scores. Furthermore, a significant positive correlation was observed between the PANSS positive subscale scores and k(i) values in the right temporal cortex. Patients with schizophrenia showed higher dopamine synthesis in the left caudate nucleus, and dopaminergic transmission in the thalamus and right temporal cortex might be implicated in the expression of symptoms in schizophrenia.
Collapse
Affiliation(s)
- Shoko Nozaki
- Molecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tokunaga M, Seneca N, Shin RM, Maeda J, Obayashi S, Okauchi T, Nagai Y, Zhang MR, Nakao R, Ito H, Innis RB, Halldin C, Suzuki K, Higuchi M, Suhara T. Neuroimaging and physiological evidence for involvement of glutamatergic transmission in regulation of the striatal dopaminergic system. J Neurosci 2009; 29:1887-96. [PMID: 19211895 PMCID: PMC2746446 DOI: 10.1523/jneurosci.2559-08.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/30/2008] [Accepted: 12/27/2008] [Indexed: 11/21/2022] Open
Abstract
Aberrant neurotransmissions via glutamate and dopamine receptors have been the focus of biomedical research on the molecular basis of psychiatric disorders, but the mode of their interaction is yet to be uncovered. In this study, we demonstrated the pharmacological reversal of methamphetamine-stimulated dopaminergic overflow by suppression of group I metabotropic glutamate (mGlu) receptor in living primates and rodents. In vivo positron emission tomography (PET) was conducted on cynomolgus monkeys and rats using a full agonistic tracer for dopamine D(2/3) receptor, [(11)C]MNPA [(R)-2-(11)CH(3)O-N-n-propylnorapomorphine], and fluctuation of kinetic data resulting from anesthesia was avoided by scanning awake subjects. Excessive release of dopamine induced by methamphetamine and abolishment of this alteration by treatment with an antagonist of group I mGlu receptors, 2-methyl-6-(phenylethynyl)pyridine (MPEP), were measured in both species as decreased binding potential because of increased dopamine and its recovery to baseline levels, respectively. Counteraction of MPEP to the methamphetamine-induced dopamine spillover was also supported neurochemically by microdialysis of unanesthetized rat striatum. Moreover, patch-clamp electrophysiological assays using acute brain slices prepared from rats indicated that direct targets of MPEP mechanistically involved in the effects of methamphetamine are present locally within the striatum. Because MPEP alone did not markedly alter the baseline dopaminergic neurotransmission according to our PET and electrophysiological data, the present findings collectively extend the insights on dopamine-glutamate cross talk from extrastriatal localization of responsible mGlu receptors to intrastriatal synergy and support therapeutic interventions in case of disordered striatal dopaminergic status using group I mGlu receptor antagonists assessable by in vivo imaging techniques.
Collapse
Affiliation(s)
- Masaki Tokunaga
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Nicholas Seneca
- Molecular Imaging Branch, National Institute of Mental Health–National Institutes of Health, Bethesda, Maryland 20892, and
| | - Ryong-Moon Shin
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Jun Maeda
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Shigeru Obayashi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takashi Okauchi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yuji Nagai
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ryuji Nakao
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Hiroshi Ito
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health–National Institutes of Health, Bethesda, Maryland 20892, and
| | - Christer Halldin
- Department of Clinical Neuroscience, Psychiatry Section, Kalorinska Institute, S-17176 Stockholm, Sweden
| | - Kazutoshi Suzuki
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Makoto Higuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tetsuya Suhara
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
49
|
Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav 2008; 90:226-35. [PMID: 18508116 DOI: 10.1016/j.pbb.2008.04.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 11/24/2022]
Abstract
Previous experimental studies have shown that the prefrontal cortex (PFC) regulates the activity of the nucleus accumbens (NAc), and in particular the release of dopamine in this area of the brain. In the present report we review recent microinjections/microdialysis studies from our laboratory on the effects of stimulation/blockade of dopamine and glutamate receptors in the PFC that modulate dopamine, and also acetylcholine release in the NAc. Stimulation of prefrontal D2 dopamine receptors, but not group I mGlu glutamate receptors, reduces the release of dopamine and acetylcholine in the NAc and spontaneous motor activity. This inhibitory role of prefrontal D2 receptors is not changed by acute systemic injections of the NMDA antagonist phencyclidine. On the other hand, the blockade of NMDA receptors in the PFC increases the release of dopamine and acetylcholine in the NAc as well as motor activity which suggests that the hypofunction of prefrontal NMDA receptors is able to produce the neurochemical and behavioural changes associated with a dysfunction of the corticolimbic circuit. We suggest here that dopamine and glutamate receptors are, in part, segregated in specific cellular circuits in the PFC. Thus, the stimulation/blockade of these receptors would have a different net impact on PFC output projections to regulate dopamine and acetylcholine release in the NAc and in guided behaviour. Finally, it is speculated that environmental enrichment might produce plastic changes that modify the functional interaction between the PFC and the NAc in both physiological and pathological conditions.
Collapse
|
50
|
Boot E, Booij J, Hasler G, Zinkstok JR, de Haan L, Linszen DH, van Amelsvoort TA. AMPT-induced monoamine depletion in humans: evaluation of two alternative [123I]IBZM SPECT procedures. Eur J Nucl Med Mol Imaging 2008; 35:1350-6. [PMID: 18283451 PMCID: PMC2440966 DOI: 10.1007/s00259-008-0739-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 01/15/2008] [Indexed: 11/30/2022]
Abstract
Purpose Acute monoamine depletion paradigms using alpha-methyl-para-tyrosine (AMPT) combined with single photon emission computed tomography (SPECT) have been used successfully to evaluate disturbances in central dopaminergic neurotransmission. However, severe side effects due to relatively high doses (4,500 to 8,000 mg) of AMPT have been reasons for study withdrawal. Thus, we assessed the effectiveness and tolerability of two alternative procedures, using lower doses of AMPT. Methods Six healthy subjects underwent three measurements of striatal dopamine D2 receptor (D2R)-binding potential (BPND) with SPECT and the selective radiolabeled D2R antagonist [123I]IBZM. All subjects were scanned in the absence of pharmacological intervention (baseline) and after two different depletion procedures. In the first depletion session, over 6 h, subjects were administered 1,500 mg of AMPT before scanning. In the second depletion session, over 25 h, subjects were administered 40 mg AMPT/kg body weight. We also administered the Subjective Well-being Under Neuroleptic Treatment Scale, a self-report instrument designed to measure the subjective experience of patients on neuroleptic medication. Results We found no change of mean D2R BPND after the first and short AMPT challenge compared to the baseline. However, we found a significant increase in striatal D2R BPND binding after the AMPT challenge adjusted for bodyweight compared to both other regimen. Although subjective well-being worsened after the prolonged AMPT challenge, no severe side effects were reported. Conclusions Our results imply a low-dosage, suitable alternative to the common AMPT procedure. The probability of side effects and study withdrawal can be reduced by this procedure.
Collapse
Affiliation(s)
- Erik Boot
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Meibergdreef 5, 1070 AW Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|