1
|
Moreno-Rodríguez M, Martínez-Gardeazabal J, Bengoetxea de Tena I, Llorente-Ovejero A, Lombardero L, González de San Román E, Giménez-Llort L, Manuel I, Rodríguez-Puertas R. Cognitive improvement via cortical cannabinoid receptors and choline-containing lipids. Br J Pharmacol 2025; 182:1038-1058. [PMID: 39489624 DOI: 10.1111/bph.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Recent research linking choline-containing lipids to degeneration of basal forebrain cholinergic neurons in neuropathological states illustrates the challenge of balancing lipid integrity with optimal acetylcholine levels, essential for memory preservation. The endocannabinoid system influences learning and memory processes regulated by cholinergic neurotransmission. Therefore, we hypothesised that activation of the endocannabinoid system may confer neuroprotection against cholinergic degeneration. EXPERIMENTAL APPROACH We examined the neuroprotective potential of sub-chronic treatments with the cannabinoid agonist WIN55,212-2, using ex vivo organotypic tissue cultures including nucleus basalis magnocellularis and cortex and in vivo rat models of specific cholinergic damage induced by 192IgG-saporin. Levels of lipids, choline and acetylcholine were measured with histochemical and immunofluorescence assays, along with [35S]GTPγS autoradiography of cannabinoid and muscarinic GPCRs and MALDI-mass spectrometry imaging analysis. Learning and memory were assessed by the Barnes maze and the novel object recognition test in rats and in the 3xTg-AD mouse model. KEY RESULTS Degeneration, induced by 192IgG-saporin, of baso-cortical cholinergic pathways resulted in memory deficits and decreased cortical levels of lysophosphatidylcholines (LPC). WIN55,212-2 restored cortical cholinergic transmission and LPC levels via activation of cannabinoid receptors. This activation altered cortical lipid homeostasis mainly by reducing sphingomyelins in lesioned animals. These modifications were crucial for memory recovery. CONCLUSION AND IMPLICATIONS We hypothesise that WIN55,212-2 facilitates an alternative choline source by breaking down sphingomyelins, leading to elevated cortical acetylcholine levels and LPCs. These results imply that altering choline-containing lipids via activation of cannabinoid receptors presents a promising therapeutic approach for dementia linked to cholinergic dysfunction.
Collapse
Affiliation(s)
- Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iker Bengoetxea de Tena
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Lombardero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine & Institute of Neuroscience, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Neurodegenerative Diseases, BioBizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
2
|
Harris-Lane LM, Sheehy M, Loveless CA, Rash JA, Storey DP, Tippin GK, Parihar V, Harris N. Reducing medical cannabis use risk among Veterans: A descriptive study. Harm Reduct J 2025; 22:9. [PMID: 39815267 PMCID: PMC11737168 DOI: 10.1186/s12954-024-01149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/21/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Canadian Veterans experiencing chronic pain report concerns about accessing accurate information on the risks associated with medical cannabis (MC) use. The Lower Risk Cannabis Use Guidelines (LRCUG) were developed to equip individuals who use cannabis recreationally with safer-use strategies. Many of the harm reduction recommendations for recreational cannabis use are relevant and important considerations for MC use. The primary objective of our study was to assess Canadian Veterans' awareness of and interest in the LRCUG, and engagement in potential higher-risk MC use behaviours. METHODS Canadian Armed Forces Veterans living with chronic pain (N = 582) were recruited online and through the Chronic Pain Centre of Excellence for Canadian Veterans. Participants completed measures on: cannabis use (never, past, current use), sources of cannabis knowledge, mental health, and awareness of and interest in receiving the LRCUG. Chi-Square and post-hoc analyses characterized the sample and assessed for demographic differences based on cannabis use status and awareness of the LRCUG. Engagement in higher-risk MC use behaviours were aligned to LRCUG recommendations, and detailed descriptively. RESULTS Veterans who currently use cannabis were more likely to be unemployed (z = 3.62, p < .01), released as a Non-Commissioned Officer (z = -3.83, p < .01), and unable to work due a disability (z = -3.43, p < .01) than Veterans who do not currently use. Less than 30% of Veterans were aware of the LRCUG, with greater awareness among individuals who currently use cannabis (n = 356). Engagement in higher-risk MC use behaviours that contradicted LRCUG recommendations ranged from ~ 9% to ~ 85%. Approximately 9% of Veterans experienced co-morbid mental health concerns, yet their MC use was not for mental health purposes (LRCUG recommendation #7). Additionally, almost 85% of Veterans engaged in daily MC use (LRCUG recommendation #5). The majority of Veterans who currently use cannabis engaged in two or more higher-risk MC use behaviours (60.2%; LRCUG recommendation #12). Almost half of all Veterans received their cannabis information from a healthcare provider or the internet. CONCLUSIONS Our study suggests the importance of safer use guidelines tailored for MC use. Development of lower-risk MC use guidelines can support prescribing practitioners and Veterans with information needed for safer and better-informed MC use decisions, tailored to patients' needs and circumstances.
Collapse
Affiliation(s)
- Laura M Harris-Lane
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mitchell Sheehy
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Courtney A Loveless
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Joshua A Rash
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - David P Storey
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gregory K Tippin
- Michael G. DeGroote Pain Clinic, Hamilton Health Sciences, Hamilton, ON, Canada
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Vikas Parihar
- Michael G. DeGroote Pain Clinic, Hamilton Health Sciences, Hamilton, ON, Canada
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Nick Harris
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
3
|
Mazzantini C, Curti L, Lana D, Masi A, Giovannini MG, Magni G, Pellegrini-Giampietro DE, Landucci E. Prolonged incubation with Δ 9-tetrahydrocannabinol but not with cannabidiol induces synaptic alterations and mitochondrial impairment in immature and mature rat organotypic hippocampal slices. Biomed Pharmacother 2025; 183:117797. [PMID: 39787967 DOI: 10.1016/j.biopha.2024.117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations. Rat organotypic hippocampal slices were cultured for 2 days (immature) or 10 days (mature) in vitro and then exposed for 7 days to THC (1 µM) or CBD (1 µM). At the end of the treatment, slices were analyzed by Western blotting, electrophysiological recordings, RT-PCR, and fluorescence microscopy to explore the molecular and functional changes in the hippocampus. A prolonged (7-day) exposure to THC reduced the expression levels of pre- (synaptophysin, vGlut1) and post-synaptic (PSD95) proteins in both immature and mature slices, whereas CBD significantly increased the expression levels of PSD95 only in immature slices. In addition, THC significantly reduced the passive properties and the intrinsic excitability of membranes and increased sEPSCs in CA1 pyramidal cells of immature but not mature slices. Exposure to both cannabinoids impaired mitochondrial function as detected by the reduction of mRNA expression levels of mitobiogenesis genes such as VDAC1, UCP2, and TFAM. Finally, THC but not CBD caused tissue disorganization and morphological modifications in CA1 pyramidal neurons, astrocytes and microglia in both immature and mature slices. These results are helpful to explain the specific vulnerability of adolescent brain to the effects of psychotropic cannabinoids.
Collapse
Affiliation(s)
- Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Lorenzo Curti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Giada Magni
- Cnr, Istituto di Fisica Applicata "Nello Carrara", Sesto Fiorentino, Italy
| | | | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy.
| |
Collapse
|
4
|
Nagata JM, Shim J, Low P, Ganson KT, Testa A, He J, Santos GM, Brindis CD, Baker FC, Shao IY. Prospective association between screen use modalities and substance use experimentation in early adolescents. Drug Alcohol Depend 2025; 266:112504. [PMID: 39612721 DOI: 10.1016/j.drugalcdep.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND There are limited large-scale, prospective analyses examining contemporary screen use and substance use experimentation in early adolescents. The current study aimed to determine associations between eight forms of contemporary screen modalities and substance use experimentation one year later in a national cohort of 11-12-year-olds in the United States. METHODS The sample consisted of 8006 early adolescents (47.9 % female and 41.6 % racial/ethnic minority) from the prospective cohort data of the Adolescent Brain Cognitive Development (ABCD) Study. Logistic regression analyses were conducted to evaluate the prospective associations between screen time (eight different types and total) in Year 2 and substance use experimentation (alcohol, nicotine, cannabis, any substance use) in Year 3, adjusting for covariates and Year 2 substance use experimentation. RESULTS Total screen time was prospectively associated with alcohol, nicotine, and cannabis experimentation. Each additional hour spent on social media (AOR 1.20; 95 % CI 1.14-1.26), texting (AOR 1.18; 95 % CI 1.12-1.24), and video chatting (AOR 1.09; 95 % CI 1.03-1.16) was associated with higher odds of any substance experimentation. Social media use and texting were also associated with higher odds of alcohol, cannabis, and nicotine experimentation; however, television/movies, videos, video games, and the internet were not. Moreover, video chatting was associated with higher odds of cannabis and nicotine experimentation. CONCLUSIONS Our findings indicate that digital social connections, such as via social media, texting, and video chatting, are the contemporary screen modalities that are associated with early adolescent substance experimentation. Future research could explore the mechanisms underlying these associations to inform intervention strategies.
Collapse
Affiliation(s)
- Jason M Nagata
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, University of California, San Francisco, 550 16th Street, Box 0503, San Francisco, CA 94143, USA.
| | - Joan Shim
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, University of California, San Francisco, 550 16th Street, Box 0503, San Francisco, CA 94143, USA
| | - Patrick Low
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, University of California, San Francisco, 550 16th Street, Box 0503, San Francisco, CA 94143, USA
| | - Kyle T Ganson
- Factor-Inwentash Faculty of Social Work, University of Toronto, 246 Bloor St W, Toronto, ON M5S 1V4, Canada
| | - Alexander Testa
- Department of Management, Policy and Community Health, University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| | - Jinbo He
- Division of Applied Psychology, School of Humanities and Social Science, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| | - Glenn-Milo Santos
- Department of Community Health Systems, School of Nursing, University of California, San Francisco, 2 Koret Way, San Francisco, CA 94143, USA
| | - Claire D Brindis
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, University of California, San Francisco, 550 16th Street, Box 0503, San Francisco, CA 94143, USA; Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, 490 Illinois St, San Francisco, CA 94158, USA
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, Menlo Park, 333 Ravenswood Ave, Menlo Park, CA 94025, USA; School of Physiology, University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg 2017, South Africa
| | - Iris Y Shao
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, University of California, San Francisco, 550 16th Street, Box 0503, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Lorenzetti V, Gaillard A, McTavish E, Grace S, Rossetti MG, Batalla A, Bellani M, Brambilla P, Chye Y, Conrod P, Cousijn J, Labuschagne I, Clemente A, Mackey S, Rendell P, Solowij N, Suo C, Li CSR, Terrett G, Thompson PM, Yücel M, Garavan H, Roberts CA. Cannabis Dependence is Associated with Reduced Hippocampal Subregion Volumes Independently of Sex: Findings from an ENIGMA Addiction Working Group Multi-Country Study. Cannabis Cannabinoid Res 2024; 9:e1565-e1578. [PMID: 38498015 PMCID: PMC11685300 DOI: 10.1089/can.2023.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background: Males and females who consume cannabis can experience different mental health and cognitive problems. Neuroscientific theories of addiction postulate that dependence is underscored by neuroadaptations, but do not account for the contribution of distinct sexes. Further, there is little evidence for sex differences in the neurobiology of cannabis dependence as most neuroimaging studies have been conducted in largely male samples in which cannabis dependence, as opposed to use, is often not ascertained. Methods: We examined subregional hippocampus and amygdala volumetry in a sample of 206 people recruited from the ENIGMA Addiction Working Group. They included 59 people with cannabis dependence (17 females), 49 cannabis users without cannabis dependence (20 females), and 98 controls (33 females). Results: We found no group-by-sex effect on subregional volumetry. The left hippocampal cornu ammonis subfield 1 (CA1) volumes were lower in dependent cannabis users compared with non-dependent cannabis users (p<0.001, d=0.32) and with controls (p=0.022, d=0.18). Further, the left cornu ammonis subfield 3 (CA3) and left dentate gyrus volumes were lower in dependent versus non-dependent cannabis users but not versus controls (p=0.002, d=0.37, and p=0.002, d=0.31, respectively). All models controlled for age, intelligence quotient (IQ), alcohol and tobacco use, and intracranial volume. Amygdala volumetry was not affected by group or group-by-sex, but was smaller in females than males. Conclusions: Our findings suggest that the relationship between cannabis dependence and subregional volumetry was not moderated by sex. Specifically, dependent (rather than non-dependent) cannabis use may be associated with alterations in selected hippocampus subfields high in cannabinoid type 1 (CB1) receptors and implicated in addictive behavior. As these data are cross-sectional, it is plausible that differences predate cannabis dependence onset and contribute to the initiation of cannabis dependence. Longitudinal neuroimaging work is required to examine the time-course of the onset of subregional hippocampal alterations in cannabis dependence, and their progression as cannabis dependence exacerbates or recovers over time.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Alexandra Gaillard
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- Centre for Mental Health and Department of Health Sciences and Biostatistics, Swinburne University, Hawthorn, Australia
| | - Eugene McTavish
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Sally Grace
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Maria Gloria Rossetti
- UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Albert Batalla
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marcella Bellani
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Paolo Brambilla
- UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Canada
| | - Janna Cousijn
- Neuroscience of Addiction Lab, Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Izelle Labuschagne
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Adam Clemente
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, Vermont, USA
| | - Peter Rendell
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gill Terrett
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Paul M. Thompson
- Department of Neurology, Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Murat Yücel
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Hugh Garavan
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Carl A. Roberts
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Webert LK, Schantell M, John JA, Coutant AT, Okelberry HJ, Horne LK, Sandal ME, Mansouri A, Wilson TW. Regular cannabis use modulates gamma activity in brain regions serving motor control. J Psychopharmacol 2024; 38:949-960. [PMID: 39140179 PMCID: PMC11524774 DOI: 10.1177/02698811241268876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND People who regularly use cannabis exhibit altered brain dynamics during cognitive control tasks, though the impact of regular cannabis use on the neural dynamics serving motor control remains less understood. AIMS We sought to investigate how regular cannabis use modulates the neural dynamics serving motor control. METHODS Thirty-four people who regularly use cannabis (cannabis+) and 33 nonusers (cannabis-) underwent structured interviews about their substance use history and performed the Eriksen flanker task to map the neural dynamics serving motor control during high-density magnetoencephalography (MEG). The resulting neural data were transformed into the time-frequency domain to examine oscillatory activity and were imaged using a beamforming approach. RESULTS MEG sensor-level analyses revealed robust beta (16-24 Hz) and gamma oscillations (66-74 Hz) during motor planning and execution, which were imaged using a beamformer. Both responses peaked in the left primary motor cortex and voxel time series were extracted to evaluate the spontaneous and oscillatory dynamics. Our key findings indicated that the cannabis+ group exhibited weaker spontaneous gamma activity in the left primary motor cortex relative to the cannabis- group, which scaled with cannabis use and behavioral metrics. Interestingly, regular cannabis use was not associated with differences in oscillatory beta and gamma activity, and there were no group differences in spontaneous beta activity. CONCLUSIONS Our findings suggest that regular cannabis use is associated with suppressed spontaneous gamma activity in the left primary motor cortex, which scales with the degree of cannabis use disorder symptomatology and is coupled to behavioral task performance.
Collapse
Affiliation(s)
- Lauren K. Webert
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason A. John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T. Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucy K. Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Megan E. Sandal
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Amirsalar Mansouri
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
7
|
Basavarajappa BS, Subbanna S. Unveiling the Potential of Phytocannabinoids: Exploring Marijuana's Lesser-Known Constituents for Neurological Disorders. Biomolecules 2024; 14:1296. [PMID: 39456229 PMCID: PMC11506053 DOI: 10.3390/biom14101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa is known for producing over 120 distinct phytocannabinoids, with Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) being the most prominent, primarily in their acidic forms. Beyond Δ9-THC and CBD, a wide array of lesser-known phytocannabinoids, along with terpenes, flavonoids, and alkaloids, demonstrate diverse pharmacological activities, interacting with the endocannabinoid system (eCB) and other biological pathways. These compounds, characterized by phenolic structures and hydroxyl groups, possess lipophilic properties, allowing them to cross the blood-brain barrier (BBB) effectively. Notably, their antioxidant, anti-inflammatory, and neuro-modulatory effects position them as promising agents in treating neurodegenerative disorders. While research has extensively examined the neuropsychiatric and neuroprotective effects of Δ9-THC, other minor phytocannabinoids remain underexplored. Due to the well-established neuroprotective potential of CBD, there is growing interest in the therapeutic benefits of non-psychotropic minor phytocannabinoids (NMPs) in brain disorders. This review highlights the emerging research on these lesser-known compounds and their neuroprotective potential. It offers insights into their therapeutic applications across various major neurological conditions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| |
Collapse
|
8
|
Stellpflug SJ, Stolbach A, Ghorayeb J, Magraken E, Twohey E, Lapoint J, deWeber K. Cannabis in combat sports: position statement of the Association of Ringside Physicians. PHYSICIAN SPORTSMED 2024; 52:432-443. [PMID: 38949963 DOI: 10.1080/00913847.2024.2375788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/30/2024] [Indexed: 07/03/2024]
Abstract
and ARP Position Statement: Based on the available body of scientific evidence and with the goals of promoting safety of combat sports athletes and striving for the advancement of clean sport, the Association of Ringside Physicians recommends the following regarding cannabis:• Use of marijuana or synthetic cannabinoids by combat sports athletes is discouraged due to unproven benefits and many known adverse effects. Acute use can impair cognition and complex motor function, which likely leads to reduced performance in combat sports. Chronic use can increase risk for heart and lung disease, several cancers, schizophrenia, and can reduce testosterone in men and impair fertility. Benefits from cannabis in most contexts, including athletic performance, have not been proven.• Use of topical purified CBD is neither encouraged nor discouraged.• Since acute cannabis intoxication can impair complex cognitive and motor function, any athlete suspected of acute intoxication at the time of competition - based on clinical judgment - should be banned from that competition.• Wide-scale regulation of cannabis based on quantitative testing has limited usefulness in combat sports, for the following reasons:∘ Cannabis is not ergogenic and is likely ergolytic.∘ Concentrations in body fluids correlate poorly with clinical effects and timing of use.∘ Access to testing resources varies widely across sporting organizations.
Collapse
Affiliation(s)
| | - Andrew Stolbach
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joe Ghorayeb
- University of Medicine and Health Sciences, New York, NY, USA
| | | | - Eric Twohey
- Mayo Clinic Department of Physical Medicine and Rehabilitation, Rochester, MN, USA
| | - Jeff Lapoint
- Southern California Permanente Medical Group, San Diego Medical Center, Department of Emergency Medicine, San Diego, CA, USA
| | - Kevin deWeber
- SW Washington Sports Medicine Fellowship, Vancouver, WA, USA
| |
Collapse
|
9
|
Hoch E, Volkow ND, Friemel CM, Lorenzetti V, Freeman TP, Hall W. Cannabis, cannabinoids and health: a review of evidence on risks and medical benefits. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01880-2. [PMID: 39299947 DOI: 10.1007/s00406-024-01880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
The legalization of cannabis for medical and recreational purposes has progressed internationally. Cannabis and cannabinoids are advocated for a plethora of medical indications. An increasing number of medical and nonmedical users regularly consume large doses of delta-9-Tetrahydrocannabinol (THC), the main active component of cannabis. Aim: to summarize the evidence on (1) risks of recreational cannabis use and (2) effectiveness and safety of medicinal cannabis. Findings on recreational use: Cannabis is mostly used to experience its acute rewarding effects. Regular use of high THC products can produce addiction (cannabis use disorder or CUD). Acute consumption of high THC doses (including unintentionally) can cause time-limited mental, gastrointestinal, and cardiovascular problems and motor vehicle accidents. Chronic patterns of cannabis use have been associated with multiple adverse outcomes that are of particular concern among adolescents and young adults, such as, disrupted learning, impaired cognitive performance, reduced educational attainment and an increased risk of CUD, psychosis/schizophrenia, mood and anxiety disorders and suicidal behaviors. There is debate about the extent to which cannabis use is a cause of these adverse outcomes. Physical health risks (e.g., respiratory and cardiovascular, prematurity and restricted fetal growth, hyperemesis syndrome among others) have also been linked with repeated consumption of cannabis with a high THC content. Findings on medical cannabis use: Herbal cannabis, medicines from extracted or synthetized cannabinoids-often used as adjuvants to standard medicines-may produce small to modest benefits. This is primarily the case in treating chronic pain, muscle spasticity, chemotherapy-induced nausea and vomiting, and refractory epilepsy (in the case of cannabidiol, CBD). The evidence is inconclusive on their value in treating mental disorders and other medical conditions. Safety: Cannabis-based medicine is generally well tolerated. There is a risk of mild to moderate adverse effects and CUD.
Collapse
Affiliation(s)
- E Hoch
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany.
- IFT Institut für Therapieforschung, Centre for Mental Health and Addiction Research, Munich, Germany.
- Department Clinical Psychology and Psychotherapy, Charlotte Fresenius University, Munich, Germany.
| | - N D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - C M Friemel
- IFT Institut für Therapieforschung, Centre for Mental Health and Addiction Research, Munich, Germany
| | - V Lorenzetti
- Neuroscience of Addiction and Mental Health Program, School of Behavioural and Health Sciences, Faculty of Health Science, Australian Catholic University, Melbourne, Victoria, 3065, Australia
| | - T P Freeman
- Addiction and Mental Health Group, Department of Psychology, University of Bath, Bath, UK
| | - W Hall
- National Centre for Youth Substance Use Research, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Weng Y, Kruschwitz J, Rueda-Delgado LM, Ruddy KL, Boyle R, Franzen L, Serin E, Nweze T, Hanson J, Smyth A, Farnan T, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland PA, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, McGrath J, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Holz N, Fröhner J, Smolka MN, Vaidya N, Schumann G, Walter H, Whelan R. A robust brain network for sustained attention from adolescence to adulthood that predicts later substance use. eLife 2024; 13:RP97150. [PMID: 39235858 PMCID: PMC11377036 DOI: 10.7554/elife.97150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Substance use, including cigarettes and cannabis, is associated with poorer sustained attention in late adolescence and early adulthood. Previous studies were predominantly cross-sectional or under-powered and could not indicate if impairment in sustained attention was a predictor of substance use or a marker of the inclination to engage in such behavior. This study explored the relationship between sustained attention and substance use across a longitudinal span from ages 14 to 23 in over 1000 participants. Behaviors and brain connectivity associated with diminished sustained attention at age 14 predicted subsequent increases in cannabis and cigarette smoking, establishing sustained attention as a robust biomarker for vulnerability to substance use. Individual differences in network strength relevant to sustained attention were preserved across developmental stages and sustained attention networks generalized to participants in an external dataset. In summary, brain networks of sustained attention are robust, consistent, and able to predict aspects of later substance use.
Collapse
Affiliation(s)
- Yihe Weng
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Johann Kruschwitz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Collaborative Research Centre (SFB 940) 'Volition and Cognitive Control', Technische Universität Dresden, Dresden, Germany
| | - Laura M Rueda-Delgado
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Kathy L Ruddy
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Queens University Belfast, Belfast, United Kingdom
| | - Rory Boyle
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Luisa Franzen
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Emin Serin
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Tochukwu Nweze
- Department of Psychology, University of Utah, Salt Lake City, United States
| | - Jamie Hanson
- Department of Psychology, Learning Research & Development Center, University of Pittsburgh, Pittsburgh, United States
| | - Alannah Smyth
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Tom Farnan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology, & Neuroscience, SGDP Centre, King's College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, United States
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- AP-HP Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Jane McGrath
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier Universitaire Sainte-Justine, University of Montreal, Montreal, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Hoch E, Preuss UW. [Cannabis use and cannabis use disorders]. DER NERVENARZT 2024; 95:781-796. [PMID: 39134752 DOI: 10.1007/s00115-024-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Cannabis use and cannabis use disorders have taken on a new social significance as a result of partial legalization. In 2021 a total of 4.5 million adults (8.8%) in Germany used the drug. The number of users as well as problematic use have risen in the last decade. Cannabis products with a high delta-9-tetrahydrocannabinol (THC) content and their regular use lead to changes in cannabinoid receptor distribution in the brain and to modifications in the structure and functionality of relevant neuronal networks. The consequences of cannabinoid use are particularly in the psychological functioning and can include intoxication, harmful use, dependence with withdrawal symptoms and cannabis-induced mental disorders. Changes in the diagnostics between ICD-10 and ICD-11 are presented. Interdisciplinary S3 guidelines on cannabis-related disorders are currently being developed and will be finalized shortly.
Collapse
Affiliation(s)
- E Hoch
- Klinik und Polyklinik für Psychiatrie und Psychotherapie, Klinik der Ludwig-Maximilians-Universität München, Nußbaumstr. 7, 80336, München, Deutschland.
- IFT Institut für Therapieforschung, München, Deutschland.
- Charlotte-Fresenius University, München, Deutschland.
| | - U W Preuss
- Universitätsklinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther Universität Halle-Wittenberg, Halle, Deutschland
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Klinikum Ludwigsburg, Ludwigsburg, Deutschland
| |
Collapse
|
12
|
Zhang L, Zeng H, Sun Y, Xue H, Gao L, Zhu W. Effect of Tai Chi Compared to Running on Drug Cravings, Attention Bias, and Physical Fitness in Men with Methamphetamine Use Disorder. Healthcare (Basel) 2024; 12:1653. [PMID: 39201211 PMCID: PMC11353623 DOI: 10.3390/healthcare12161653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Methamphetamine use disorder (MUD) is a global health problem. Studies have shown Tai Chi is a potential treatment for MUD. We aimed to explore the effectiveness of Tai Chi in improving drug cravings, attention bias, and physical fitness in men with MUD compared with aerobic exercise. METHODS A total of forty-eight participants (mean age 39.1 ± 8.7 years) were randomly assigned to either the Tai Chi group (TC) or the running group (RG). The TC performed 60 min of moderate-intensity (65-75% HRmax) Tai Chi exercise three times a week. The RG performed 60 min of moderate-intensity (65-75% HRmax) running on a treadmill three times a week. Before and after the intervention, drug cravings, attention bias, and physical fitness were evaluated. RESULTS After 12 weeks, we found the TC significantly improved in attention bias (F (1, 43) = 6.023, p = 0.019, d = -0.42) and reaction time (F (1, 43) = 6.181, p = 0.017, d = -0.72). No significant improvement was found in other variables in the TC, compared to the RG (p > 0.05). CONCLUSIONS The 12-week Tai Chi intervention improved attention bias and reaction time, compared to RG. Tai Chi exercise might be a potential auxiliary method for the rehabilitation for men with MUD.
Collapse
Affiliation(s)
| | | | | | | | - Liquan Gao
- School of Physical Education, Shaanxi Normal University, Xi’an 710119, China; (L.Z.); (H.Z.); (Y.S.); (H.X.)
| | - Wenfei Zhu
- School of Physical Education, Shaanxi Normal University, Xi’an 710119, China; (L.Z.); (H.Z.); (Y.S.); (H.X.)
| |
Collapse
|
13
|
Oscoz-Irurozqui M, Guardiola-Ripoll M, Almodóvar-Payá C, Guerrero-Pedraza A, Hostalet N, Carrion MI, Sarró S, Gomar JJ, Pomarol-Clotet E, Fatjó-Vilas M. Clinical and cognitive outcomes in first-episode psychosis: focus on the interplay between cannabis use and genetic variability in endocannabinoid receptors. Front Psychol 2024; 15:1414098. [PMID: 39193030 PMCID: PMC11348434 DOI: 10.3389/fpsyg.2024.1414098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Research data show the impact of the endocannabinoid system on psychosis through its neurotransmission homeostatic functions. However, the effect of the endocannabinoid system genetic variability on the relationship between cannabis use and psychosis has been unexplored, even less in first-episode patients. Here, through a case-only design, we investigated the effect of cannabis use and the genetic variability of endocannabinoid receptors on clinical and cognitive outcomes in first-episode psychosis (FEP) patients. Methods The sample comprised 50 FEP patients of European ancestry (mean age (sd) = 26.14 (6.55) years, 76% males), classified as cannabis users (58%) or cannabis non-users. Two Single Nucleotide Polymorphisms (SNP) were genotyped at the cannabinoid receptor type 1 gene (CNR1 rs1049353) and cannabinoid receptor type 2 gene (CNR2 rs2501431). Clinical (PANSS, GAF) and neuropsychological (WAIS, WMS, BADS) assessments were conducted. By means of linear regression models, we tested the main effect of cannabis use and its interaction with the polymorphic variants on the clinical and cognitive outcomes. Results First, as regards cannabis effects, our data showed a trend towards more severe positive symptoms (PANSS, p = 0.05) and better performance in manipulative abilities (matrix test-WAIS, p = 0.041) among cannabis users compared to non-users. Second, concerning the genotypic effects, the T allele carriers of the CNR1 rs1049353 presented higher PANSS disorganization scores than CC homozygotes (p = 0.014). Third, we detected that the observed association between cannabis and manipulative abilities is modified by the CNR2 polymorphism (p = 0.022): cannabis users carrying the G allele displayed better manipulative abilities than AA genotype carriers, while the cannabis non-users presented the opposite genotype-performance pattern. Such gene-environment interaction significantly improved the overall fit of the cannabis-only model (Δ-R2 = 8.4%, p = 0.019). Discussion Despite the preliminary nature of the sample, our findings point towards the role of genetic variants at CNR1 and CNR2 genes in the severity of the disorganized symptoms of first-episode psychosis and modulating cognitive performance conditional to cannabis use. This highlights the need for further characterization of the combined role of endocannabinoid system genetic variability and cannabis use in the understanding of the pathophysiology of psychosis.
Collapse
Affiliation(s)
- Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Red de Salud Mental de Gipuzkoa, Osakidetza-Basque Health Service, Gipuzkoa, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Hospital Benito Menni CASM, C/Doctor Antoni Pujadas, Barcelona, Spain
| | - Noemí Hostalet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - María Isabel Carrion
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Hospital Sant Rafael, Passeig de la Vall d’Hebron, Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - JJ Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- The Litwin-Zucker Alzheimer's Research Center, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Brancati GE, Magnesa A, Acierno D, Carli M, De Rosa U, Froli A, Gemignani S, Ventura L, Weiss F, Perugi G. Current nonstimulant medications for adults with attention-deficit/hyperactivity disorder. Expert Rev Neurother 2024; 24:743-759. [PMID: 38915262 DOI: 10.1080/14737175.2024.2370346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Stimulants, including methylphenidate and amphetamines, are the first-line pharmacological treatment of ADHD in adults. However, in patients who do not respond or poorly tolerate stimulants, non-stimulant medications are usually recommended. AREAS COVERED The authors provide a narrative review of the literature on non-stimulant treatments for adult ADHD, including controlled and observational clinical studies conducted on adult samples. Atomoxetine has been extensively studied and showed significant efficacy in treating adult ADHD. Issues related to dosing, treatment duration, safety, and use in the case of psychiatric comorbidity are summarized. Among other compounds indicated for ADHD in adults, antidepressants sharing at least a noradrenergic or dopaminergic component, including tricyclic compounds, bupropion, and viloxazine, have shown demonstratable efficacy. Evidence is also available for antihypertensives, particularly guanfacine, as well as memantine, metadoxine, and mood stabilizers, while negative findings have emerged for galantamine, antipsychotics, and cannabinoids. EXPERT OPINION While according to clinical guidelines, atomoxetine may serve as the only second-line option in adults with ADHD, several other nonstimulant compounds may be effectively used in order to personalize treatment based on comorbid conditions and ADHD features. Nevertheless, further research is needed to identify and test more personalized treatment strategies for adults with ADHD.
Collapse
Affiliation(s)
- Giulio Emilio Brancati
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Anna Magnesa
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Donatella Acierno
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ugo De Rosa
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Alessandro Froli
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Samuele Gemignani
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Lisa Ventura
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Francesco Weiss
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Lorenzetti V, McTavish E, Broyd S, van Hell H, Thomson D, Ganella E, Kottaram AR, Beale C, Martin J, Galettis P, Solowij N, Greenwood LM. Daily Cannabidiol Administration for 10 Weeks Modulates Hippocampal and Amygdalar Resting-State Functional Connectivity in Cannabis Users: A Functional Magnetic Resonance Imaging Open-Label Clinical Trial. Cannabis Cannabinoid Res 2024; 9:e1108-e1121. [PMID: 37603080 DOI: 10.1089/can.2022.0336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Introduction: Cannabis use is associated with brain functional changes in regions implicated in prominent neuroscientific theories of addiction. Emerging evidence suggests that cannabidiol (CBD) is neuroprotective and may reverse structural brain changes associated with prolonged heavy cannabis use. In this study, we examine how an ∼10-week exposure of CBD in cannabis users affected resting-state functional connectivity in brain regions functionally altered by cannabis use. Materials and Methods: Eighteen people who use cannabis took part in a ∼10 weeks open-label pragmatic trial of self-administered daily 200 mg CBD in capsules. They were not required to change their cannabis exposure patterns. Participants were assessed at baseline and post-CBD exposure with structural magnetic resonance imaging (MRI) and a functional MRI resting-state task (eyes closed). Seed-based connectivity analyses were run to examine changes in the functional connectivity of a priori regions-the hippocampus and the amygdala. We explored if connectivity changes were associated with cannabinoid exposure (i.e., cumulative cannabis dosage over trial, and plasma CBD concentrations and Δ9-tetrahydrocannabinol (THC) plasma metabolites postexposure), and mental health (i.e., severity of anxiety, depression, and positive psychotic symptom scores), accounting for cigarette exposure in the past month, alcohol standard drinks in the past month and cumulative CBD dose during the trial. Results: Functional connectivity significantly decreased pre-to-post the CBD trial between the anterior hippocampus and precentral gyrus, with a strong effect size (d=1.73). Functional connectivity increased between the amygdala and the lingual gyrus pre-to-post the CBD trial, with a strong effect size (d=1.19). There were no correlations with cannabinoids or mental health symptom scores. Discussion: Prolonged CBD exposure may restore/reduce functional connectivity differences reported in cannabis users. These new findings warrant replication in a larger sample, using robust methodologies-double-blind and placebo-controlled-and in the most vulnerable people who use cannabis, including those with more severe forms of Cannabis Use Disorder and experiencing worse mental health outcomes (e.g., psychosis, depression).
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Eugene McTavish
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Samantha Broyd
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Hendrika van Hell
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Diny Thomson
- Turner Institute for Brain and Mental Health, School of Psychological Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | - Eleni Ganella
- Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne, Carlton South, Victoria, Australia
- Orygen, the National Center of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Akhil Raja Kottaram
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Center, School of Health and Behavioral Sciences, Australian Catholic University, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne, Carlton South, Victoria, Australia
| | - Camilla Beale
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jennifer Martin
- John Hunter Hospital, Newcastle, New South Wales, Australia
- Center for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Peter Galettis
- Center for Drug Repurposing and Medicines Research, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
| | - Lisa-Marie Greenwood
- The Australian Center for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, New South Wales, Australia
- Research School of Psychology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
16
|
Schantell M, John JA, Coutant AT, Okelberry HJ, Horne LK, Glesinger R, Springer SD, Mansouri A, May‐Weeks PE, Wilson TW. Chronic cannabis use alters the spontaneous and oscillatory gamma dynamics serving cognitive control. Hum Brain Mapp 2024; 45:e26787. [PMID: 39023178 PMCID: PMC11256138 DOI: 10.1002/hbm.26787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Regular cannabis use is associated with cortex-wide changes in spontaneous and oscillatory activity, although the functional significance of such changes remains unclear. We hypothesized that regular cannabis use would suppress spontaneous gamma activity in regions serving cognitive control and scale with task performance. Participants (34 cannabis users, 33 nonusers) underwent an interview regarding their substance use history and completed the Eriksen flanker task during magnetoencephalography (MEG). MEG data were imaged in the time-frequency domain and virtual sensors were extracted from the peak voxels of the grand-averaged oscillatory interference maps to quantify spontaneous gamma activity during the pre-stimulus baseline period. We then assessed group-level differences in spontaneous and oscillatory gamma activity, and their relationship with task performance and cannabis use metrics. Both groups exhibited a significant behavioral flanker interference effect, with slower responses during incongruent relative to congruent trials. Mixed-model ANOVAs indicated significant gamma-frequency neural interference effects in the left frontal eye fields (FEF) and left temporoparietal junction (TPJ). Further, a group-by-condition interaction was detected in the left FEF, with nonusers exhibiting stronger gamma oscillations during incongruent relative to congruent trials and cannabis users showing no difference. In addition, spontaneous gamma activity was sharply suppressed in cannabis users relative to nonusers in the left FEF and TPJ. Finally, spontaneous gamma activity in the left FEF and TPJ was associated with task performance across all participants, and greater cannabis use was associated with weaker spontaneous gamma activity in the left TPJ of the cannabis users. Regular cannabis use was associated with weaker spontaneous gamma in the TPJ and FEF. Further, the degree of use may be proportionally related to the degree of suppression in spontaneous activity in the left TPJ.
Collapse
Affiliation(s)
- Mikki Schantell
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Anna T. Coutant
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Ryan Glesinger
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Amirsalar Mansouri
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | | | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
17
|
Pasquier B, Yaffe K, Levine DA, Rana JS, Pletcher MJ, Tal K, Sidney S, Auer R, Jakob J. Sex Differences in the Association Between Cumulative Use of Cannabis and Cognitive Function in Middle Age: The Coronary Artery Risk Development in Young Adults Study. Cannabis Cannabinoid Res 2024; 9:e1142-e1158. [PMID: 37594767 DOI: 10.1089/can.2022.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Background: Cannabis use may impair cognitive function (CF) differently in men and women, due to sex-specific differences in neurobiological mechanisms and environmental risk factors. Objective: Assess sex differences in the association between cumulative exposure to cannabis and cognitive performance in middle age. Methods: We studied participants from the Coronary Artery Risk Development in Young Adults (CARDIA) Study, including Black and White men and women 18-30 years old at baseline followed over 30 years. Our cross-sectional analysis of CF scores at year 30 was stratified by sex. We computed categories of cumulative exposure in "cannabis-years" (1 cannabis-year=365 days of use) from self-reported use every 2 to 5 years over 30 years. At years 25 and 30, we assessed CF with the Rey Auditory Verbal Learning Test (verbal memory), the Digit Symbol Substitution Test (processing speed), and the Stroop Interference Test (executive function). At year 30, additional measures included Category and Letter Fluency Test (verbal ability) and the Montreal Cognitive Assessment (global cognition). We computed standardized scores for each cognitive test and applied multivariable adjusted linear regression models for self-reported cumulative cannabis use, excluding participants who used cannabis within 24 h. In a secondary analysis, we examined the association between changes in current cannabis use and changes in CF between years 25 and 30. Results: By year 30, 1,352 men and 1,793 women had measures of CF; 87% (N=1,171) men and 84% (N=1,502) women reported ever cannabis use. Men had a mean cumulative use of 2.57 cannabis-years and women 1.29 cannabis-years. Self-reported cumulative cannabis use was associated with worse verbal memory in men (e.g., -0.49 standardized units [SU] for ≥5 cannabis-years of exposure; 95% CI=-0.76 to -0.23), but not in women (SU=0.02; 95% CI=-0.26 to 0.29). Other measures of CF were not associated with cannabis. Changes in current cannabis use between years 25 and 30 were not associated with CF in men or women. Conclusions: Self-reported cumulative cannabis exposure was associated with worse verbal memory in men but not in women. Researchers should consider stratified analyses by sex when testing the association between cannabis and cognition.
Collapse
Affiliation(s)
- Baptiste Pasquier
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Deborah A Levine
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Jamal S Rana
- Department of Cardiology, Kaiser Permanente Northern California, Oakland, California, USA
| | - Mark J Pletcher
- Department of Psychiatry, Neurology, Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Kali Tal
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Stephen Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Reto Auer
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
- University General Medicine and Public Health Centre, University of Lausanne, Lausanne, Switzerland
| | - Julian Jakob
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
- Department of Paediatrics, University Hospital Bern, Inselspital, Bern, Switzerland
| |
Collapse
|
18
|
Castelblanco CA, Springer SD, Schantell M, John JA, Coutant AT, Horne LK, Glesinger R, Eastman JA, Wilson TW. Chronic Cannabis users exhibit altered oscillatory dynamics and functional connectivity serving visuospatial processing. J Psychopharmacol 2024; 38:724-734. [PMID: 39087306 PMCID: PMC11471968 DOI: 10.1177/02698811241265764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
BACKGROUND Cannabis is the most widely used psychoactive drug in the United States. While multiple studies have associated acute cannabis consumption with alterations in cognitive function (e.g., visual and spatial attention), far less is known regarding the effects of chronic consumption on the neural dynamics supporting these cognitive functions. METHODS We used magnetoencephalography (MEG) and an established visuospatial processing task to elicit multi-spectral neuronal responses in 44 regular cannabis users and 53 demographically matched non-user controls. To examine the effects of chronic cannabis use on the oscillatory dynamics underlying visuospatial processing, neural responses were imaged using a time-frequency resolved beamformer and compared across groups. RESULTS Neuronal oscillations serving visuospatial processing were identified in the theta (4-8 Hz), alpha (8-14 Hz), and gamma range (56-76 Hz), and these were imaged and examined for group differences. Our key results indicated that users exhibited weaker theta oscillations in occipital and cerebellar regions and weaker gamma responses in the left temporal cortices compared to non-users. Lastly, alpha oscillations did not differ, but alpha connectivity among higher-order attention areas was weaker in cannabis users relative to non-users and correlated with performance. CONCLUSIONS Overall, these results suggest that chronic cannabis users have alterations in the oscillatory dynamics and neural connectivity serving visuospatial attention. Such alterations were observed across multiple cortical areas critical for higher-order processing and may reflect compensatory activity and/or the initial emergence of aberrant dynamics. Future work is needed to fully understand the implications of altered multispectral oscillations and neural connectivity in cannabis users.
Collapse
Affiliation(s)
- Camilo A. Castelblanco
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Psychology and Brain Sciences, Dartmouth College, Hanover, NH, USA
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Seth D. Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason A. John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T. Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucy K. Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
19
|
Macedo I, Paiva TO, Pasion R, Daedelow L, Heinz A, Magalhães A, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Holz N, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Barbosa F. Light Cannabis Use and the Adolescent Brain: An 8-years Longitudinal Assessment of Mental Health, Cognition, and Reward Processing. Psychopharmacology (Berl) 2024; 241:1447-1461. [PMID: 38532040 PMCID: PMC11199211 DOI: 10.1007/s00213-024-06575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
RATIONALE For decades, cannabis has been the most widely used illicit substance in the world, particularly among youth. Research suggests that mental health problems associated with cannabis use may result from its effect on reward brain circuit, emotional processes, and cognition. However, findings are mostly derived from correlational studies and inconsistent, particularly in adolescents. OBJECTIVES AND METHODS Using data from the IMAGEN study, participants (non-users, persistent users, abstinent users) were classified according to their cannabis use at 19 and 22 years-old. All participants were cannabis-naïve at baseline (14 years-old). Psychopathological symptoms, cognitive performance, and brain activity while performing a Monetary Incentive Delay task were used as predictors of substance use and to analyze group differences over time. RESULTS Higher scores on conduct problems and lower on peer problems at 14 years-old (n = 318) predicted a greater likelihood of transitioning to cannabis use within 5 years. At 19 years of age, individuals who consistently engaged in low-frequency (i.e., light) cannabis use (n = 57) exhibited greater conduct problems and hyperactivity/inattention symptoms compared to non-users (n = 52) but did not differ in emotional symptoms, cognitive functioning, or brain activity during the MID task. At 22 years, those who used cannabis at both 19 and 22 years-old n = 17), but not individuals that had been abstinent for ≥ 1 month (n = 19), reported higher conduct problems than non-users (n = 17). CONCLUSIONS Impairments in reward-related brain activity and cognitive functioning do not appear to precede or succeed cannabis use (i.e., weekly, or monthly use). Cannabis-naïve adolescents with conduct problems and more socially engaged with their peers may be at a greater risk for lighter yet persistent cannabis use in the future.
Collapse
Affiliation(s)
- Inês Macedo
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences (Laboratory of Neuropsychophysiology), University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal.
- Addiction Biology Group, i3S-Instituto de Investigação E Inovação Em Saúde, Porto, Portugal.
| | | | - Rita Pasion
- HEI-LAB, Lusófona University, Porto, Portugal
| | - Laura Daedelow
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin, Institute of Health, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin, Institute of Health, Berlin, Germany
| | - Ana Magalhães
- Addiction Biology Group, i3S-Instituto de Investigação E Inovação Em Saúde, Porto, Portugal
- Instituto de Biologia Molecular E Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, 91191, Gif-Sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de La Santé Et de La Recherche Médicale, INSERM U 1299 Trajectoires Développementales & Psychiatrie, CNRS; EcoleNormaleSupérieure Paris-Saclay, Centre Borelli, University Paris-Saclay, Gif-Sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de La Santé Et de La Recherche Médicale, INSERM U 1299 Trajectoires Développementales & Psychiatrie, University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-Sur-Yvette, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, and AP-HP. Sorbonne University, Paris, France
| | - Eric Artiges
- Institut National de La Santé Et de La Recherche Médicale, INSERM U 1299 Trajectoires Développementales & Psychiatrie, CNRS; EcoleNormaleSupérieure Paris-Saclay, Centre Borelli; Gif-Sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, University Paris-Saclay, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier, Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry Psychotherapy and Psychosomatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin, Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Educational Sciences (Laboratory of Neuropsychophysiology), University of Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| |
Collapse
|
20
|
Audi D, Hajeer S, Saab MB, Saab L, Harati H, Desoutter A, Al Ahmar E, Estephan E. Effects of Cannabis Use on Neurocognition: A Scoping Review of MRI Studies. J Psychoactive Drugs 2024:1-17. [PMID: 38944688 DOI: 10.1080/02791072.2024.2372377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/06/2024] [Indexed: 07/01/2024]
Abstract
Cannabis is one of the most commonly utilized recreational drugs. However, increasing evidence from the literature suggests harmful implications on cognition. Thus, the main aim of the current review is to summarize literature findings pertaining to the impact of cannabis on neurocognitive skills, focusing on the imaging biomarkers provided by MRI. Two reviewers navigated the literature independently using four main search engines including PubMed and Cochrane. Articles were first evaluated through their title and abstract, followed by full-text assessment. Study characteristics and findings were extracted, and the studies' quality was appraised. 47 articles were included. The majority of the studies were of a case-control design (66%), and the most studied neurocognitive skill was memory (40.4%). With task-based fMRI being the most commonly utilized MRI technique, findings have shown significantly varying decreased and increased neuronal activity within brain regions associated with the cognitive tasks performed. Results suggest that cannabis users are significantly suffering from cognitive deficits. The major significance of this review is attributed to highlighting the role of MRI. Future research needs to delve more into validating the negative effects of cannabis, to enable stakeholders to take action to limit cannabis usage, to foster public health and wellbeing.
Collapse
Affiliation(s)
- Dima Audi
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Shorouk Hajeer
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Marie-Belle Saab
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Faculty of Pedagogy, Lebanese University, Furn-El-Chebbak, Lebanon
| | - Lea Saab
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Muscat University, Muscat, Sultanate of Oman
| | | | - Elie Al Ahmar
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
- School of Engineering, Holy Spirit University of Kaslik, Kaslik, Lebanon
| | - Elias Estephan
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Kaslik, Lebanon
- LBN, University Montpellier, Montpellier, France
| |
Collapse
|
21
|
Mullin CJ, Cservenka A. Cannabis Use and Academic Performance in College Students: The Role of Procrastination. CANNABIS (ALBUQUERQUE, N.M.) 2024; 7:108-122. [PMID: 38975598 PMCID: PMC11225980 DOI: 10.26828/cannabis/2024/000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Objective The current study investigated procrastination as a potential moderator of the association between cannabis use and college grade point average (GPA). Participants: 220 college students (ages 18 - 24; 71.8% female) in the Northwestern U.S. who were registered for classes in Fall 2021. Methods Demographic questions, substance use history, the Beck Anxiety Inventory, the Center for Epidemiologic Studies Depression scale, and a Procrastination scale were completed via an online survey. Official term and cumulative GPA records were also collected. Results A regression model indicated that procrastination moderated the association between lifetime cannabis use and cumulative college GPA, whereas this moderation was not present when examining the relationship between past month cannabis use and term GPA. Conclusion The current study identifies a putatively modifiable factor that may be related to academic performance for students who use cannabis. These results may help inform future interventions designed to help students using cannabis succeed academically.
Collapse
Affiliation(s)
| | - Anita Cservenka
- School of Psychological Science, Oregon State University, Corvallis, United States
| |
Collapse
|
22
|
Weng Y, Kruschwitz J, Rueda-Delgado LM, Ruddy K, Boyle R, Franzen L, Serin E, Nweze T, Hanson J, Smyth A, Farnan T, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, McGrath J, Nees F, Orfanos DP, Paus T, Poustka L, Holz N, Fröhner JH, Smolka MN, Vaidya N, Schumann G, Walter H, Whelan R. A robust brain network for sustained attention from adolescence to adulthood that predicts later substance use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587900. [PMID: 38617224 PMCID: PMC11014614 DOI: 10.1101/2024.04.03.587900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Substance use, including cigarettes and cannabis, is associated with poorer sustained attention in late adolescence and early adulthood. Previous studies were predominantly cross-sectional or under-powered and could not indicate if impairment in sustained attention was a predictor of substance-use or a marker of the inclination to engage in such behaviour. This study explored the relationship between sustained attention and substance use across a longitudinal span from ages 14 to 23 in over 1,000 participants. Behaviours and brain connectivity associated with diminished sustained attention at age 14 predicted subsequent increases in cannabis and cigarette smoking, establishing sustained attention as a robust biomarker for vulnerability to substance use. Individual differences in network strength relevant to sustained attention were preserved across developmental stages and sustained attention networks generalized to participants in an external dataset. In summary, brain networks of sustained attention are robust, consistent, and able to predict aspects of later substance use.
Collapse
Affiliation(s)
- Yihe Weng
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Johann Kruschwitz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Collaborative Research Centre (SFB 940) "Volition and Cognitive Control", Technische Universität Dresden, 01069, Dresden, Germany
| | - Laura M Rueda-Delgado
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Kathy Ruddy
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
- School of Psychology, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Rory Boyle
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Luisa Franzen
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Emin Serin
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Charité -Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
| | | | - Jamie Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alannah Smyth
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Tom Farnan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette; and AP-HP. Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Jane McGrath
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| |
Collapse
|
23
|
Murray CH, Frohlich J, Haggarty CJ, Tare I, Lee R, de Wit H. Neural complexity is increased after low doses of LSD, but not moderate to high doses of oral THC or methamphetamine. Neuropsychopharmacology 2024; 49:1120-1128. [PMID: 38287172 PMCID: PMC11109226 DOI: 10.1038/s41386-024-01809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
Neural complexity correlates with one's level of consciousness. During coma, anesthesia, and sleep, complexity is reduced. During altered states, including after lysergic acid diethylamide (LSD), complexity is increased. In the present analysis, we examined whether low doses of LSD (13 and 26 µg) were sufficient to increase neural complexity in the absence of altered states of consciousness. In addition, neural complexity was assessed after doses of two other drugs that significantly altered consciousness and mood: delta-9-tetrahydrocannabinol (THC; 7.5 and 15 mg) and methamphetamine (MA; 10 and 20 mg). In three separate studies (N = 73; 21, LSD; 23, THC; 29, MA), healthy volunteers received placebo or drug in a within-subjects design over three laboratory visits. During anticipated peak drug effects, resting state electroencephalography (EEG) recorded Limpel-Ziv complexity and spectral power. LSD, but not THC or MA, dose-dependently increased neural complexity. LSD also reduced delta and theta power. THC reduced, and MA increased, alpha power, primarily in frontal regions. Neural complexity was not associated with any subjective drug effect; however, LSD-induced reductions in delta and theta were associated with elation, and THC-induced reductions in alpha were associated with altered states. These data inform relationships between neural complexity, spectral power, and subjective states, demonstrating that increased neural complexity is not necessary or sufficient for altered states of consciousness. Future studies should address whether greater complexity after low doses of LSD is related to cognitive, behavioral, or therapeutic outcomes, and further examine the role of alpha desynchronization in mediating altered states of consciousness.
Collapse
Affiliation(s)
- Conor H Murray
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of Los Angeles, California, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.
| | - Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University of Tübingen, Otfried-Müller-Straße 45, 72076, Tübingen, Germany
- Institute for Advanced Consciousness Studies, Santa Monica, California; 2811 Wilshire Blvd # 510, Santa Monica, CA, 90403, USA
| | - Connor J Haggarty
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Ilaria Tare
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Royce Lee
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
24
|
Das S, Singh LK, Tikka SK, Spoorthy MS, Mandal S, Soni PK, Nandan NK. Cognitive impairment in 'non-user' first-degree relatives of persons with cannabis dependence syndrome: A pilot, endophenotype study. Early Interv Psychiatry 2024; 18:346-354. [PMID: 37726210 DOI: 10.1111/eip.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Cannabis use disorders are global emerging problem nowadays, with high prevalence and morbidity. Cognitive impairments, and also corresponding genetic vulnerability, has been fairly replicated in individuals with cannabis dependence. However, there are few studies that assess cognitive functioning as an endophenotype or a trait marker for cannabis dependence. While the primary objective of this study was to assess the endophenotype pattern of cognitive dysfunction in cannabis dependence, assessing the association between the degree of cognitive functioning, and their socio-demographic and clinical variables in the cannabis dependence patients and their first-degree relatives was the secondary objective. METHODOLOGY We compared cognitive functioning across three groups- patients with cannabis dependence syndrome, their 'non-user' first-degree relatives and healthy controls, with 30 participants in each group. Five cognitive domains- attention and concentration, verbal fluency, memory, visuospatial ability and executive functions were assessed. We assessed for endophenotype pattern of statistical significance in pairwise analyses of Kruskal-Wallis test, which was corrected for multiple comparisons. Subsequently, correlation analysis to assess association of cognitive impairment with socio-demographic and clinical variables was conducted. RESULTS Although impairment in attention and executive functions also was seen in patients with cannabis dependence, endophenotype pattern of statistical significance in pairwise analyses, with impairment in first-degree relatives too, was seen in all sub-scores of verbal fluency and verbal memory. None of the correlations were significant. CONCLUSION 'Non-user' first-degree relatives of patients with cannabis dependence too show significant cognitive impairment. Verbal fluency and verbal memory are possible endophenotypes or trait markers for cannabis dependence syndrome.
Collapse
Affiliation(s)
- Shrayasi Das
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Raipur, India
| | - Lokesh Kumar Singh
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Raipur, India
| | | | | | | | | | - Neethu K Nandan
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Raipur, India
| |
Collapse
|
25
|
Manning B, Hayley AC, Catchlove S, Stough C, Downey LA. A randomised, placebo-controlled, double blind, crossover trial on the effect of a 20:1 cannabidiol: Δ9-tetrahydrocannabinol medical cannabis product on neurocognition, attention, and mood. Eur Neuropsychopharmacol 2024; 82:35-43. [PMID: 38490083 DOI: 10.1016/j.euroneuro.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/17/2024]
Abstract
As cannabinoid-based medications gain popularity in the treatment of refractory medical conditions, it is crucial to examine the neurocognitive effects of commonly prescribed products to ensure associated safety profiles. The present study aims to investigate the acute effects of a standard 1 mL sublingual dose of CannEpil®, a medicinal cannabis oil containing 100 mg cannabidiol (CBD) and 5 mg Δ9-tetrahydrocannabinol (THC) on neurocognition, attention, and mood. A randomised, double-blind, placebo-controlled, within-subjects design assessed 31 healthy participants (16 female, 15 male), aged between 21 and 58 years, over a two-week experimental protocol. Neurocognitive performance outcomes were assessed using the Cambridge Neuropsychological Test Automated Battery, with the Profile of Mood States questionnaire, and the Bond-Lader Visual Analogue Scale used to assess subjective state and mood. CannEpil increased Total Errors in Spatial Span and Correct Latency (median) in Pattern Recognition Memory, while also increasing Efficiency Score (lower score indicates greater efficiency) relative to placebo (all p < .05). Subjective Contentedness (p < .01) and Amicability (p < .05) were also increased at around 2.5 h post dosing, relative to placebo. Drowsiness or sedative effect was reported by 23 % of participants between three to six hours post CannEpil administration. Plasma concentrations of CBD, THC, and their metabolites were not significantly correlated with any observed alterations in neurocognition, subjective state, or adverse event occurrence. An acute dose of CannEpil impairs select aspects of visuospatial working memory and delayed pattern recognition, while largely preserving mood states among healthy individuals. Intermittent reports of drowsiness and sedation underscore the inter-individual variability of medicinal cannabis effects on subjective state. (ANZCTR; ACTRN12619000932167; https://www.anzctr.org.au).
Collapse
Affiliation(s)
- Brooke Manning
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia
| | - Amie C Hayley
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia; International Council for Alcohol, Drugs, and Traffic Safety (ICADTS), Rotterdam, the Netherland; Institute for Breathing and Sleep (IBAS), Austin Health, Melbourne Australia.
| | - Sarah Catchlove
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia; Institute for Breathing and Sleep (IBAS), Austin Health, Melbourne Australia
| |
Collapse
|
26
|
McDonald KM, Schantell M, Horne LK, John JA, Rempe MP, Glesinger R, Okelberry HJ, Coutant AT, Springer SD, Mansouri A, Embury CM, Arif Y, Wilson TW. The neural oscillations serving task switching are altered in cannabis users. J Psychopharmacol 2024; 38:471-480. [PMID: 38418434 PMCID: PMC11488983 DOI: 10.1177/02698811241235204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
BACKGROUND Regular cannabis is known to impact higher-order cognitive processes such as attention, but far less is known regarding cognitive flexibility, a component of executive function. Moreover, whether such changes are related to aberrations in the neural oscillatory dynamics serving flexibility remains poorly understood. AIMS Quantify the neural oscillatory dynamics serving cognitive flexibility by having participants complete a task-switching paradigm during magnetoencephalography (MEG). Probe whole-brain maps to identify alterations in chronic cannabis users relative to nonusers and determine how these alterations relate to the degree of cannabis use involvement. METHODS In all, 25 chronic cannabis users and 30 demographically matched nonuser controls completed neuropsychological testing, an interview regarding their substance use, a urinalysis, and a task switch paradigm during MEG. Time-frequency windows of interest were identified using a data-driven statistical approach and these were imaged using a beamformer. Whole-brain neural switch cost maps were computed by subtracting the oscillatory maps of the no-switch condition from the switch condition per participant. These were examined for group differences. RESULTS Cannabis users had weaker theta switch cost responses in the dorsolateral and dorsomedial prefrontal cortices, while nonusers showed the typical pattern of greater recruitment during switch relative to no switch trials. In addition, theta activity in the dorsomedial prefrontal cortex was significantly correlated with cannabis use involvement. CONCLUSIONS Cannabis users exhibited altered theta switch cost activity compared to nonusers in prefrontal cortical regions, which are critical for cognitive flexibility. This activity scaled with cannabis use involvement, indicating a link between cannabis use and aberrant oscillatory activity underlying cognitive flexibility.
Collapse
Affiliation(s)
- Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lucy K Horne
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amirsalar Mansouri
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Rubin-Kahana DS, Butler K, Hassan AN, Sanches M, Le Foll B. Cannabis Use Characteristics Associated with Self-Reported Cognitive Function in a Nationally Representative U.S. sample. Subst Use Misuse 2024; 59:1303-1312. [PMID: 38664196 DOI: 10.1080/10826084.2024.2340975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
BACKGROUND With increases in cannabis use and potency, there is a need to improve our understanding of the impact of use on cognitive function. Previous research indicates long-term cannabis use may have a negative effect on executive function. Few studies have examined persistence of it in protracted abstinence, and there is limited evidence of predictors of worse cognitive function in current and former users. In this study, we aim to evaluate the associations between cannabis use status (current, former, and never use) and self-report cognition. Further, we investigate if cannabis use characteristics predict self-report cognitive function. METHODS Cross-sectional cannabis use data from the National Epidemiological Survey on Alcohol and Related Conditions-III (NESARC-III), a national survey (N = 36,309) conducted in the USA between 2012 and 2013 were used alongside the Executive Function Index scales. The data were analyzed by using Ordinary Least Squares regression. RESULTS Current (N = 3,681, Female = 37.7%) and former users (N = 7,448, Female = 45.4%) reported poorer cognition than never users (N = 24,956, Female = 56.6%). Self-reported cognition of former users was in-between that of current and never users. Several cannabis use characteristics were associated with self-reported cognition in current and former users. CONCLUSION While prospective studies are required to confirm, findings suggest cannabis use is linked to worse cognition. There may be some limited recovery of cognition in former users and some cannabis use characteristics predict impairment. These findings add to our understanding of the cognitive impact of cannabis use. As worse cognitive function may impact relapse, findings have implications for personalization of cannabis use disorder treatment.
Collapse
Affiliation(s)
- Dafna Sara Rubin-Kahana
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kevin Butler
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- School of Psychology, College of Health and Science, University of Lincoln, Lincoln, UK
| | - Ahmed Nabeel Hassan
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, King Abdul-Aziz University, Jeddah, Saudi Arabia
- Department of Psychiatry, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Marcos Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, Centre for Addiction and Health, Toronto, Ontario, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Departments of Family and Community Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Dai HD, Idoate R, Mahroke A, Abresch C. Racial Disparities in Patterns and Modes of Current and Daily Marijuana Use among Adults Living with Children. J Racial Ethn Health Disparities 2024:10.1007/s40615-024-02008-x. [PMID: 38656451 DOI: 10.1007/s40615-024-02008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE This study sought to examine racial disparities in marijuana use among U.S. adults living with children. METHODS Data are drawn from the 2022 Behavioral Risk Factor Surveillance System to examine the prevalence of current (past month) and frequent (≥20 days in the last 30 days) marijuana use along with the mode of marijuana use by 7 racial and ethnic groups (non-Hispanic [NH] White, NH-Black, Hispanic, NH American Indian or Alaskan Native [AI/AN], NH-Asian, NH Native Hawaiian or other Pacific Islander only [NH/PI], and other/multiple races, n=22,659). RESULTS Compared to NH White adults with children, NH Black adults had a higher prevalence of current marijuana use (23.1% vs. 16.9%, p=0.003) and NH AI/AN adults had two times higher prevalence of frequent use (17.3% vs. 8.4%, p=0.0003). Adults living in recreational marijuana legal states (vs. no) were also more likely to report marijuana use, and there were significant age × race/ethnicity and education × race/ethnicity interactions (p<0.05) on marijuana use. Regarding the mode of use, racial minority users except Asians also reported a higher prevalence of smoking marijuana than their White counterparts. CONCLUSIONS AND RELEVANCE Substantial racial disparities in marijuana use patterns among adults who live with children highlight a potential risk for adolescents' health. Addressing these differences is essential for promoting equitable health outcomes in diverse communities.
Collapse
Affiliation(s)
- Hongying Daisy Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Regina Idoate
- Department of Health Promotion, University of Nebraska Medical Center, Omaha, NE, USA
| | - Avina Mahroke
- Department of Health Promotion, University of Nebraska Medical Center, Omaha, NE, USA
- College of Osteopathic Medicine, Kansas City University, Kansas City, Kansas, USA
| | - Chad Abresch
- Department of Health Promotion, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
29
|
Gao J, Zou Y, Lv XY, Chen L, Hou XG. Novel insights into immune-related genes associated with type 2 diabetes mellitus-related cognitive impairment. World J Diabetes 2024; 15:735-757. [PMID: 38680704 PMCID: PMC11045412 DOI: 10.4239/wjd.v15.i4.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The cognitive impairment in type 2 diabetes mellitus (T2DM) is a multifaceted and advancing state that requires further exploration to fully comprehend. Neuroinflammation is considered to be one of the main mechanisms and the immune system has played a vital role in the progression of the disease. AIM To identify and validate the immune-related genes in the hippocampus associated with T2DM-related cognitive impairment. METHODS To identify differentially expressed genes (DEGs) between T2DM and controls, we used data from the Gene Expression Omnibus database GSE125387. To identify T2DM module genes, we used Weighted Gene Co-Expression Network Analysis. All the genes were subject to Gene Set Enrichment Analysis. Protein-protein interaction network construction and machine learning were utilized to identify three hub genes. Immune cell infiltration analysis was performed. The three hub genes were validated in GSE152539 via receiver operating characteristic curve analysis. Validation experiments including reverse transcription quantitative real-time PCR, Western blotting and immunohistochemistry were conducted both in vivo and in vitro. To identify potential drugs associated with hub genes, we used the Comparative Toxicogenomics Database (CTD). RESULTS A total of 576 DEGs were identified using GSE125387. By taking the intersection of DEGs, T2DM module genes, and immune-related genes, a total of 59 genes associated with the immune system were identified. Afterward, machine learning was utilized to identify three hub genes (H2-T24, Rac3, and Tfrc). The hub genes were associated with a variety of immune cells. The three hub genes were validated in GSE152539. Validation experiments were conducted at the mRNA and protein levels both in vivo and in vitro, consistent with the bioinformatics analysis. Additionally, 11 potential drugs associated with RAC3 and TFRC were identified based on the CTD. CONCLUSION Immune-related genes that differ in expression in the hippocampus are closely linked to microglia. We validated the expression of three hub genes both in vivo and in vitro, consistent with our bioinformatics results. We discovered 11 compounds associated with RAC3 and TFRC. These findings suggest that they are co-regulatory molecules of immunometabolism in diabetic cognitive impairment.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, Shandong Province, China
- Department of Endocrinology, Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong Province, China
| |
Collapse
|
30
|
Bhardwaj AK, Mills L, Doyle M, Sahid A, Montebello M, Monds L, Arunogiri S, Haber P, Lorenzetti V, Lubman DI, Malouf P, Harrod ME, Dunlop A, Freeman T, Lintzeris N. A phase III multisite randomised controlled trial to compare the efficacy of cannabidiol to placebo in the treatment of cannabis use disorder: the CBD-CUD study protocol. BMC Psychiatry 2024; 24:175. [PMID: 38433233 PMCID: PMC10910760 DOI: 10.1186/s12888-024-05616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Cannabis use disorder (CUD) is increasingly common and contributes to a range of health and social problems. Cannabidiol (CBD) is a non-intoxicating cannabinoid recognised for its anticonvulsant, anxiolytic and antipsychotic effects with no habit-forming qualities. Results from a Phase IIa randomised clinical trial suggest that treatment with CBD for four weeks reduced non-prescribed cannabis use in people with CUD. This study examines the efficacy, safety and quality of life of longer-term CBD treatment for patients with moderate-to-severe CUD. METHODS/DESIGN A phase III multi-site, randomised, double-blinded, placebo controlled parallel design of a 12-week course of CBD to placebo, with follow-up at 24 weeks after enrolment. Two hundred and fifty adults with moderate-to-severe CUD (target 20% Aboriginal), with no significant medical, psychiatric or other substance use disorders from seven drug and alcohol clinics across NSW and VIC, Australia will be enrolled. Participants will be administered a daily dose of either 4 mL (100 mg/mL) of CBD or a placebo dispensed every 3-weeks. All participants will receive four-sessions of Cognitive Behavioural Therapy (CBT) based counselling. Primary endpoints are self-reported cannabis use days and analysis of cannabis metabolites in urine. Secondary endpoints include severity of CUD, withdrawal severity, cravings, quantity of use, motivation to stop and abstinence, medication safety, quality of life, physical/mental health, cognitive functioning, and patient treatment satisfaction. Qualitative research interviews will be conducted with Aboriginal participants to explore their perspectives on treatment. DISCUSSION Current psychosocial and behavioural treatments for CUD indicate that over 80% of patients relapse within 1-6 months of treatment. Pharmacological treatments are highly effective with other substance use disorders but there are no approved pharmacological treatments for CUD. CBD is a promising candidate for CUD treatment due to its potential efficacy for this indication and excellent safety profile. The anxiolytic, antipsychotic and neuroprotective effects of CBD may have added benefits by reducing many of the mental health and cognitive impairments reported in people with regular cannabis use. TRIAL REGISTRATION Australian and New Zealand Clinical Trial Registry: ACTRN12623000526673 (Registered 19 May 2023).
Collapse
Affiliation(s)
- Anjali K Bhardwaj
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia.
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia.
| | - Llew Mills
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| | - Michael Doyle
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Arshman Sahid
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| | - Mark Montebello
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, North Sydney Local Health District, St Leonards, NSW, Australia
| | - Lauren Monds
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, North Sydney Local Health District, St Leonards, NSW, Australia
| | - Shalini Arunogiri
- Centre for Addiction and Mental Health, Turning Point, Victoria, Australia
| | - Paul Haber
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug Health Services, Sydney Local Health District, Sydney, Australia
| | | | - Dan I Lubman
- Centre for Addiction and Mental Health, Turning Point, Victoria, Australia
| | - Peter Malouf
- Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Mary E Harrod
- NSW Users and AIDS Association, Sydney, NSW, Australia
| | - Adrian Dunlop
- Drug and Alcohol Clinical Services, Hunter New England Local Health District, Newcastle, NSW, Australia
| | - Tom Freeman
- Addiction and Mental Health Group, University of Bath, Bath, UK
| | - Nicholas Lintzeris
- Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
31
|
Brooks-Russell A, Wrobel J, Brown T, Bidwell LC, Wang GS, Steinhart B, Dooley G, Kosnett MJ. Effects of acute cannabis inhalation on reaction time, decision-making, and memory using a tablet-based application. J Cannabis Res 2024; 6:3. [PMID: 38308382 PMCID: PMC10837858 DOI: 10.1186/s42238-024-00215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Acute cannabis use has been demonstrated to slow reaction time and affect decision-making and short-term memory. These effects may have utility in identifying impairment associated with recent use. However, these effects have not been widely investigated among individuals with a pattern of daily use, who may have acquired tolerance. The purpose of this study was to examine the impact of tolerance to cannabis on the acute effects as measured by reaction time, decision-making (gap acceptance), and short-term memory. METHODS Participants (ages 25-45) completed a tablet-based (iPad) test battery before and approximately 60 min after smoking cannabis flower. The change in performance from before to after cannabis use was compared across three groups of cannabis users: (1) occasional use (n = 23); (2) daily use (n = 31); or (3) no current use (n = 32). Participants in the occasional and daily use group self-administered ad libitum, by smoking or vaping, self-supplied cannabis flower with a high concentration of total THC (15-30%). RESULTS The occasional use group exhibited decrements in reaction time (slowed) and short-term memory (replicated fewer shapes) from before to after cannabis use, as compared to the no-use group. In the gap acceptance task, daily use participants took more time to complete the task post-smoking cannabis as compared to those with no use or occasional use; however, the level of accuracy did not significantly change. CONCLUSIONS The findings are consistent with acquired tolerance to certain acute psychomotor effects with daily cannabis use. The finding from the gap acceptance task which showed a decline in speed but not accuracy may indicate a prioritization of accuracy over response time. Cognitive and psychomotor assessments may have utility for identifying impairment associated with recent cannabis use.
Collapse
Affiliation(s)
- Ashley Brooks-Russell
- Injury and Violence Prevention Center, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, 13001 E. 17Th Place, Aurora, CO, 80045, USA.
| | - Julia Wrobel
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tim Brown
- Driving Safety Research Institute, University of Iowa, Iowa City, IA, USA
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - George Sam Wang
- Department of Pediatrics, CU School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Steinhart
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory Dooley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael J Kosnett
- Department of Medicine, CU School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
32
|
Chester LA, Englund A, Chesney E, Oliver D, Wilson J, Sovi S, Dickens AM, Oresic M, Linderman T, Hodsoll J, Minichino A, Strang J, Murray RM, Freeman TP, McGuire P. Effects of Cannabidiol and Delta-9-Tetrahydrocannabinol on Plasma Endocannabinoid Levels in Healthy Volunteers: A Randomized Double-Blind Four-Arm Crossover Study. Cannabis Cannabinoid Res 2024; 9:188-198. [PMID: 36493386 PMCID: PMC10874814 DOI: 10.1089/can.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The effects of cannabis are thought to be mediated by interactions between its constituents and the endocannabinoid system. Delta-9-tetrahydrocannabinol (THC) binds to central cannabinoid receptors, while cannabidiol (CBD) may influence endocannabinoid function without directly acting on cannabinoid receptors. We examined the effects of THC coadministered with different doses of CBD on plasma levels of endocannabinoids in healthy volunteers. Methods: In a randomized, double-blind, four-arm crossover study, healthy volunteers (n=46) inhaled cannabis vapor containing 10 mg THC plus either 0, 10, 20, or 30 mg CBD, in four experimental sessions. The median time between sessions was 14 days (IQR=20). Blood samples were taken precannabis inhalation and at 0-, 5-, 15-, and 90-min postinhalation. Plasma concentrations of THC, CBD, anandamide, 2-arachidonoylglycerol (2-AG), and related noncannabinoid lipids were measured using liquid chromatography-mass spectrometry. Results: Administration of cannabis induced acute increases in plasma concentrations of anandamide (+18.0%, 0.042 ng/mL [95%CI: 0.023-0.062]), and the noncannabinoid ethanolamides, docosatetraenylethanolamide (DEA; +35.8%, 0.012 ng/mL [95%CI: 0.008-0.016]), oleoylethanolamide (+16.1%, 0.184 ng/mL [95%CI: 0.076-0.293]), and N-arachidonoyl-L-serine (+25.1%, 0.011 ng/mL [95%CI: 0.004-0.017]) (p<0.05). CBD had no significant effect on the plasma concentration of anandamide, 2-AG or related noncannabinoid lipids at any of three doses used. Over the four sessions, there were progressive decreases in the preinhalation concentrations of anandamide and DEA, from 0.254 ng/mL [95%CI: 0.223-0.286] to 0.194 ng/mL [95%CI: 0.163-0.226], and from 0.039 ng/mL [95%CI: 0.032-0.045] to 0.027 ng/mL [95%CI: 0.020-0.034] (p<0.05), respectively. Discussion: THC induced acute increases in plasma levels of anandamide and noncannabinoid ethanolamides, but there was no evidence that these effects were influenced by the coadministration of CBD. It is possible that such effects may be evident with higher doses of CBD or after chronic administration. The progressive reduction in pretreatment anandamide and DEA levels across sessions may be related to repeated exposure to THC or participants becoming less anxious about the testing procedure and requires further investigation. The study was registered on clinicaltrials.gov (NCT05170217).
Collapse
Affiliation(s)
- Lucy A. Chester
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Amir Englund
- National Addiction Centre (NAC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Edward Chesney
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Dominic Oliver
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, United Kingdom
| | - Jack Wilson
- The Matilda Centre for Research in Mental Health and Substance Use, The University of Sydney, New South Wales, Australia
| | - Simina Sovi
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alex M. Dickens
- Turku Bioscience Center, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Matej Oresic
- Turku Bioscience Center, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Tuomas Linderman
- Turku Bioscience Center, University of Turku and Åbo Akademi University, Turku, Finland
| | - John Hodsoll
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Amedeo Minichino
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, United Kingdom
| | - John Strang
- National Addiction Centre (NAC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Robin M. Murray
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tom P. Freeman
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, United Kingdom
| |
Collapse
|
33
|
Parikh AC, Jeffery CS, Sandhu Z, Brownlee BP, Queimado L, Mims MM. The effect of cannabinoids on wound healing: A review. Health Sci Rep 2024; 7:e1908. [PMID: 38410495 PMCID: PMC10895075 DOI: 10.1002/hsr2.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Background and Aims Cannabis and its various derivatives are commonly used for both recreational and medicinal purposes. Cannabinoids have been shown to have anti-inflammatory properties. Inflammation is an important component of wound healing and the effect of cannabinoids on wound healing has become a recent topic of investigation. The objective of this article is to perform a comprehensive review of the literature to summarize the effects of cannabinoids on wound healing of the skin and to guide future avenues of research. Methods A comprehensive literature review was performed to evaluate the effects of cannabinoids on cutaneous wound healing. Results Cannabinoids appear to improve skin wound healing through a variety of mechanisms. This is supported through a variety of in vitro and animal studies. Animal studies suggest application of cannabinoids may improve the healing of postsurgical and chronic wounds. There are few human studies which evaluate the effects of cannabinoids on wound healing and many of these are case series and observational studies. They do suggest cannabinoids may have some benefit. However, definitive conclusions cannot be drawn from them. Conclusion While further human studies are needed, topical application of cannabinoids may be a potential therapeutic option for postsurgical and chronic wounds.
Collapse
Affiliation(s)
- Aniruddha C. Parikh
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Christopher S. Jeffery
- Departments of General SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Zainab Sandhu
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Benjamin P. Brownlee
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Lurdes Queimado
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Departments of Cell BiologyThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Otolaryngology Head and Neck Surgery, TSET Health Promotion Research Center, Stephenson Cancer CenterThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Mark M. Mims
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| |
Collapse
|
34
|
Ghosh A, Shaktan A, Verma A, Basu D, Rana DK, Nehra R, Ahuja CK, Modi M, Singh P. Neurocognitive Dysfunctions in People with Concurrent Cannabis Use and Opioid Dependence: A Cross-Sectional, Controlled Study. J Psychoactive Drugs 2024:1-13. [PMID: 38251910 DOI: 10.1080/02791072.2024.2308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Cannabis and opioid co-dependence is independently associated with cognitive impairments. We examined neurocognitive dysfunctions in people with concurrent opioid dependence with cannabis dependence (OD+CD) or cannabis use (OD+CU) compared to those with only opioid dependence (OD) and healthy controls (HC). We selected adult participants, any sex, who met the diagnosis of OD (N = 268), OD+CU (N = 58), and OD + CD (N = 115). We recruited 68 education-matched HC. We administeredStandard progressive matrices (SPM), Wisconsin card sorting test (WCST), Iowa gambling task (IGT), Trail making tests A and B (TMT), and verbal and visual working memory 1-, 2-backtests. 496 (97.5%) were men, and 13 (2.5%) were women. In WCST, OD and OD+CD had significantly higher non-perseverative errors than HC. OD+CD group completed significantly lesser categories than HC. In verbal working memory 2-back, HC scored significantly fewer errors than OD and OD +CD. All patient groups, OD, OD+CU, and OD+CD, scored higher commission errors than HC in visual working memory 1-back. OD and OD+CD scored higher commission and total errors than the controls. OD+CU showed lesser error score than HC in TMT B. Cannabis and opioid co-dependence contribute to cognitive impairments, especially in working memory and executive functions.
Collapse
Affiliation(s)
- Abhishek Ghosh
- Drug Deaddiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Shaktan
- Drug Deaddiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhishek Verma
- Drug Deaddiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
- Department of Psychology, Punjab University, Chandigarh, India
| | - Debasish Basu
- Drug Deaddiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Devender K Rana
- Drug Deaddiction and Treatment Centre, Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritu Nehra
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chirag K Ahuja
- Department of Radiodiagnosis & Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manish Modi
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Paramjit Singh
- Department of Radiodiagnosis & Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
35
|
Chen Z, Wong R. Association Between Cannabis Use and Subjective Cognitive Decline: Findings from the Behavioral Risk Factor Surveillance System (BRFSS). Curr Alzheimer Res 2024; 20:802-810. [PMID: 38409714 DOI: 10.2174/0115672050301726240219050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Cannabis consumption has rapidly increased in the United States due to more states legalizing non-medical and medical use. There is limited research, however, investigating whether cannabis may be associated with cognitive function, particularly across multiple dimensions of cannabis use. OBJECTIVE The objective of this study was to examine whether cannabis consumption reason, frequency, and method are associated with subjective cognitive decline (SCD). METHODS Data were obtained from 4,744 U.S. adults aged 45 and older in the 2021 Behavioral Risk Factor Surveillance System (BRFSS). SCD was a self-reported increase in confusion or memory loss in the past year. Odds of SCD by cannabis use reason, frequency, and methods (e.g., smoke, eat, vaporize) were examined using multiple logistic regression after imputing missing data, applying sampling weights, and adjusting for sociodemographic, health, and substance use covariates. RESULTS Compared to non-users, non-medical cannabis use was significantly associated with 96% decreased odds of SCD (aOR=0.04, 95% CI=0.01-0.44, p<.01). Medical (aOR=0.46, 95% CI=0.06-3.61, p=.46) and dual medical and non-medical use (aOR=0.30, 95% CI=0.03-2.92, p=.30) were also associated with decreased odds of SCD, although not significant. Cannabis consumption frequency and method were not significantly associated with SCD. CONCLUSION The reason for cannabis use, but not frequency and method, is associated with SCD. Further research is needed to investigate the mechanisms that may contribute to the observed associations between non-medical cannabis use and decreased odds of SCD.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Public Health and Preventive Medicine, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Roger Wong
- Department of Public Health and Preventive Medicine, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Geriatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
36
|
Yadav-Samudrala BJ, Gorman BL, Dodson H, Ramineni S, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute Δ 9-tetrahydrocannabinol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Brain Res 2024; 1822:148638. [PMID: 37858856 PMCID: PMC10873064 DOI: 10.1016/j.brainres.2023.148638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin L Gorman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey Dodson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shreya Ramineni
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle R Peace
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
37
|
Rogers JM, Grant I, Marcondes MCG, Morgan EE, Cherner M, Ellis RJ, Letendre SL, Heaton RK, Iudicello JE. Cannabis use may attenuate neurocognitive performance deficits resulting from methamphetamine use disorder. J Int Neuropsychol Soc 2024; 30:84-93. [PMID: 37553288 PMCID: PMC10841263 DOI: 10.1017/s1355617723000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
OBJECTIVE Methamphetamine and cannabis are two widely used, and frequently co-used, substances with possibly opposing effects on the central nervous system. Evidence of neurocognitive deficits related to use is robust for methamphetamine and mixed for cannabis. Findings regarding their combined use are inconclusive. We aimed to compare neurocognitive performance in people with lifetime cannabis or methamphetamine use disorder diagnoses, or both, relative to people without substance use disorders. METHOD 423 (71.9% male, aged 44.6 ± 14.2 years) participants, stratified by presence or absence of lifetime methamphetamine (M-/M+) and/or cannabis (C-/C+) DSM-IV abuse/dependence, completed a comprehensive neuropsychological, substance use, and psychiatric assessment. Neurocognitive domain T-scores and impairment rates were examined using multiple linear and binomial regression, respectively, controlling for covariates that may impact cognition. RESULTS Globally, M+C+ performed worse than M-C- but better than M+C-. M+C+ outperformed M+C- on measures of verbal fluency, information processing speed, learning, memory, and working memory. M-C+ did not display lower performance than M-C- globally or on any domain measures, and M-C+ even performed better than M-C- on measures of learning, memory, and working memory. CONCLUSIONS Our findings are consistent with prior work showing that methamphetamine use confers risk for worse neurocognitive outcomes, and that cannabis use does not appear to exacerbate and may even reduce this risk. People with a history of cannabis use disorders performed similarly to our nonsubstance using comparison group and outperformed them in some domains. These findings warrant further investigation as to whether cannabis use may ameliorate methamphetamine neurotoxicity.
Collapse
Affiliation(s)
- Jeffrey M. Rogers
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | - Erin E. Morgan
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
38
|
Buchwald D, Schmidt C, Buchwald D, Winter KI, Nielsen IB, Klostergaard K, Melgaard D, Fagerberg SK, Leutscher PDC. Impact of Low-Dose Dronabinol Therapy on Cognitive Function in Cancer Patients Receiving Palliative Care: A Case-Series Intervention Study. Palliat Med Rep 2023; 4:326-333. [PMID: 38098857 PMCID: PMC10719641 DOI: 10.1089/pmr.2023.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Background Cannabis may offer therapeutic benefits to patients with advanced cancer not responding adequately to conventional palliative treatment. However, tolerability is a major concern. Cognitive function is a potential adverse reaction to tetrahydrocannabinol containing regimens. The aim of this study was to test cognitive function in patients being prescribed dronabinol as an adjuvant palliative therapy. Methods Adult patients with advanced cancer and severe related pain refractory to conventional palliative treatment were included in this case-series study. Patients were examined at baseline in conjunction with initiation of dronabinol therapy and at a two-week follow-up using three selected Wechsler's adult intelligence scale III neurocognitive tests: Processing Speed Index (PSI), Perceptual Organization Index (POI), and Working Memory Index (WMI). Patients were also assessed using pain visual analog scale, Major Depression Inventory, and Brief Fatigue Inventory. Results Eight patients consented to take part in the study. Two patients discontinued dronabinol therapy, one due to a complaint of dizziness and another critical progression of cancer disease, respectively. The remaining six patients were successfully treated with a daily dosage of 12.5 mg dronabinol (p = 0.039). PSI (p = 0.020), POI (p = 0.034.), and WMI (p = 0.039). Conclusions Cognitive function improved in this group of patients with advanced cancer in conjunction with low-dose dronabinol therapy. The cause is likely multifactorial including reported relief of cancer-associated symptoms. Further clinical investigation is required.
Collapse
Affiliation(s)
- Ditte Buchwald
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | - Casper Schmidt
- Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | - Dorte Buchwald
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Palliative Care Team, Department of Gerontology, North Denmark Regional Hospital, Hjørring, Denmark
| | - Kristina Iris Winter
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Palliative Care Team, Department of Gerontology, North Denmark Regional Hospital, Hjørring, Denmark
| | - Ivan Bo Nielsen
- Palliative Care Team, Department of Gerontology, North Denmark Regional Hospital, Hjørring, Denmark
| | - Kirsten Klostergaard
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
| | - Dorte Melgaard
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | - Steen K. Fagerberg
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
| | - Peter Derek Christian Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Hjørring, Denmark
- Palliative Care Team, Department of Gerontology, North Denmark Regional Hospital, Hjørring, Denmark
| |
Collapse
|
39
|
Yang KH, Tam RM, Satybaldiyeva N, Kepner W, Han BH, Moore AA, Palamar JJ. Trends in past-month cannabis use among US adults across a range of disabilities and health conditions, 2015-2019. Prev Med 2023; 177:107768. [PMID: 37951542 PMCID: PMC10842214 DOI: 10.1016/j.ypmed.2023.107768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION While there is increasing interest in the use of cannabis to manage a range of health-related symptoms, little is known about trends in recent cannabis use with respect to various health conditions. METHODS We examined data from a US representative sample of noninstitutionalized adults age ≥ 18 from the 2015-2019 National Survey on Drug Use and Health (N = 214,505). We estimated the pooled prevalences followed by linear time trends, overall, and by disability (i.e., difficulty hearing, seeing, thinking, walking, dressing, doing errands) and lifetime (i.e., bronchitis, cancer, diabetes, hepatitis, kidney disease) and current (i.e., asthma, depression, heart disease, hypertension) health condition status using logistic regression. Models with year-by-condition status interaction terms were used to assess differential time trends, adjusting for demographic characteristics. RESULTS From 2015 to 2019, cannabis use increased significantly among adults with and without each disability and health condition examined. However, the increase was more rapid among those with (versus without) difficulty hearing (89.8% increase [4.9% to 9.3%] vs. 37.9% increase [8.7% to 12.0%], p = 0.015), difficulty walking (84.1% increase [6.3% to 11.6%] vs. 36.8% increase [8.7% to 11.9%], p < 0.001), 2-3 impairments (75.3% increase [9.3% to 16.3%] vs. 36.6% increase [8.2% to 11.2%], p = 0.041), and kidney disease (135.3% increase [3.4% to 8.0%] vs. 38.4% increase [8.6% to 11.9%], p = 0.045). CONCLUSION Given the potential adverse effects of cannabis, prevention and harm reduction efforts should focus on groups at increasingly higher risk for use, including those with disabilities and kidney disease.
Collapse
Affiliation(s)
- Kevin H Yang
- University of California San Diego School of Medicine, Department of Psychiatry, 9500 Gilman Drive, San Diego, CA 92093, USA.
| | - Rowena M Tam
- University of California San Diego Herbert Wertheim School of Public Health and Human Longevity Science, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Nora Satybaldiyeva
- University of California San Diego Herbert Wertheim School of Public Health and Human Longevity Science, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Wayne Kepner
- University of California San Diego Herbert Wertheim School of Public Health and Human Longevity Science, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Benjamin H Han
- University of California San Diego School of Medicine, Department of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Alison A Moore
- University of California San Diego School of Medicine, Department of Medicine, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Joseph J Palamar
- NYU Grossman School of Medicine, Department of Population Health, 180 Madison Avenue, New York, NY 10016, USA
| |
Collapse
|
40
|
Carnide N, Landsman V, Lee H, Frone MR, Furlan AD, Smith PM. Workplace and non-workplace cannabis use and the risk of workplace injury: Findings from a longitudinal study of Canadian workers. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2023; 114:947-955. [PMID: 37523062 PMCID: PMC10661545 DOI: 10.17269/s41997-023-00795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES Findings of previous studies examining the relationship between cannabis use and workplace injury have been conflicting, likely due to methodological shortcomings, including cross-sectional designs and exposure measures that lack consideration for timing of use. The objective was to estimate the association between workplace cannabis use (before and/or at work) and non-workplace use and the risk of workplace injury. METHODS Canadian workers participating in a yearly longitudinal study (from 2018 to 2020) with at least two adjacent years of survey data comprised the analytic sample (n = 2745). The exposure was past-year workplace cannabis use (no past-year use, non-workplace use, workplace use). The outcome was past-year workplace injury (yes/no). Absolute risks and relative risks (RR) with 95% confidence intervals (CIs) were estimated between workplace and non-workplace cannabis use at one time point and workplace injury at the following time point. Models were adjusted for personal and work variables and were also stratified by whether respondents' jobs were safety-sensitive. RESULTS Compared to no past-year cannabis use, there was no difference in workplace injury risk for non-workplace cannabis use (RR 1.09, 95%CI 0.83-1.44). However, workplace use was associated with an almost two-fold increased risk of experiencing a workplace injury (RR 1.97, 95%CI 1.32-2.93). Findings were similar for workers in safety-sensitive and non-safety-sensitive work. CONCLUSION It is important to distinguish between non-workplace and workplace use when considering workplace safety impacts of cannabis use. Findings have implications for workplace cannabis use policies and substantiate the need for worker education on the risks of workplace cannabis use.
Collapse
Affiliation(s)
- Nancy Carnide
- Institute for Work & Health, Toronto, Ontario, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| | - Victoria Landsman
- Institute for Work & Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Hyunmi Lee
- Institute for Work & Health, Toronto, Ontario, Canada
| | - Michael R Frone
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Andrea D Furlan
- Institute for Work & Health, Toronto, Ontario, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter M Smith
- Institute for Work & Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Skala K, Trabi T, Fuchs M, Gössler R, Haas-Stockmair CW, Kriechbaumer N, Leitner M, Ortner N, Reiter M, Müller C, Wladika W. [Cannabis use in adolescents : Narrative Review and Position paper of the "Addiction Disorders in Adolescents" task force of the Austrian Society for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy (ÖGKJP)]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2023; 37:175-195. [PMID: 35900691 DOI: 10.1007/s40211-022-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabis is the illegal drug most frequently used by Minors in Austria. Due to the gradual decriminalization and legalization that has taken place in many European countries in recent years, the ÖGKJP would like to take a balanced and scientifically based stand on the complex issue of cannabis use and abuse among young people. METHODS The authors searched the medline for current studies using searches tailored to each specific subtopic. Furthermore, recognized compendiums were quoted. RESULTS While occasional recreational use of cannabis in adults with completed brain maturation and no risk profile for mental disorders is likely to be relatively harmless, early initiation of use with regular use and the increasingly available, highly potent cannabis varieties can lead to explicit and sometimes irreversible neurocognitive brain dysfunction. CONCLUSION Legalisation of cannabis consumption for minors needs to be objected to due to the risks of the expected damage in the area of brain development. At the same time, however, it is important to establish sensible legal regulations in order to be able to adequately counteract the fact that over 30% of all European young people occasionally consume cannabis. We are also clearly recommending to not criminalize cannabis users and provide necessary support to vulnerable and addicted cannabis users.
Collapse
Affiliation(s)
- Katrin Skala
- Univ. Klinik für Kinder und Jugendpsychiatrie, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| | - Thomas Trabi
- Abteilung für Kinder- und Jugendpsychiatrie, LKH Graz II, Graz, Österreich
| | - Martin Fuchs
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Ralf Gössler
- Abteilung für Kinder- und Jugendpsychiatrie, Klinik Floridsdorf, Floridsdorf, Österreich
| | | | | | - Monika Leitner
- Praxis für Kinder- und Jugendpsychiatrie, Graz, Österreich
| | - Nora Ortner
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Melanie Reiter
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Christian Müller
- Ambulatorium für Kinder- u. Jugendpsychiatrie, PSD Einsenstadt, Einsenstadt, Österreich
| | - Wolfgang Wladika
- Abteilung für Neurologie und Psychiatrie des Kindes- und Jugendalters, Klinikum Klagenfurt, Klagenfurt, Österreich
| |
Collapse
|
42
|
Pabon E, de Wit H. Effects of Oral Delta-9-Tetrahydrocannabinol in Women During the Follicular Phase of the Menstrual Cycle. Cannabis Cannabinoid Res 2023; 8:1117-1125. [PMID: 35593915 PMCID: PMC10714110 DOI: 10.1089/can.2022.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: This study examined effects of oral delta-9-tetrahydrocannabinol (THC) in women at two phases of the menstrual cycle differing in circulating levels of estrogen (E). Pre-clinical findings indicate that E increases sensitivity to THC and other cannabinoids, raising the possibility that higher E may be a risk factor for adverse responses to THC in women. Methods: We examined subjective and behavioral responses to THC (7.5 and 15 mg oral) and placebo in women during the early follicular (EF) phase when E levels are low and the late follicular (LF) phase when E levels are higher. Outcome measures included self-report ratings of drug effects, cardiovascular measures, and biochemical verification of ovarian hormone levels. We hypothesized that women would exhibit greater responses to THC during the LF phase compared to the EF phase. Results: On most measures, responses to THC were similar during the two phases. However, on two self-report measures, "Wanting More" drug and anxiety, the effects occurred slightly earlier after drug administration in women who were tested during the EF phase. Conclusions: We conclude that the differences in levels of E occurring during the early and LF phase of the menstrual cycle do not strongly influence responses to THC. It remains to be determined whether responses are similarly stable across other cycle phases, or in women receiving exogenous hormone treatments.
Collapse
Affiliation(s)
- Elisa Pabon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Medical Center, Chicago, Illinois, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
43
|
Hudzik TJ, Huestis MA, Rossi SS, Schumacher YO, Harcourt P, Budgett R, Stuart M, Tettey J, Mazzoni I, Rabin O, Danion A, Culler M, Handelsman D, Thevis M, Kinahan A. Cannabis and sport: A World Anti-Doping perspective. Addiction 2023; 118:2040-2042. [PMID: 37574590 DOI: 10.1111/add.16315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Affiliation(s)
| | - Marilyn A Huestis
- Institute for Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sabina Strano Rossi
- Department of Health Surveillance and Bioethics, Forensic Toxicology Laboratory, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, Rome, Italy
| | | | | | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Mark Stuart
- International Testing Agency-ITA, Lausanne, Switzerland
| | - Justice Tettey
- United Nations Office on Drugs and Crime, Vienna International Centre, Vienna, Austria
| | - Irene Mazzoni
- Science and Medicine Department, World Anti-Doping Agency, Montreal, Quebec, Canada
| | - Olivier Rabin
- Science and Medicine Department, World Anti-Doping Agency, Montreal, Quebec, Canada
| | - Anne Danion
- Science and Medicine Department, World Anti-Doping Agency, Montreal, Quebec, Canada
| | | | - David Handelsman
- The ANZAC Research Institute Concord Repatriation General Hospital Gate 3, Concord, NSW, Australia
| | - Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany
| | | |
Collapse
|
44
|
Arkell TR, Manning B, Downey LA, Hayley AC. A Semi-Naturalistic, Open-Label Trial Examining the Effect of Prescribed Medical Cannabis on Neurocognitive Performance. CNS Drugs 2023; 37:981-992. [PMID: 37945917 PMCID: PMC10667416 DOI: 10.1007/s40263-023-01046-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Medical cannabis use is increasing in Australia and other jurisdictions, yet little is known about the effects of medical cannabis on cognitive function. Findings from studies of non-medical ('recreational') cannabis may not be applicable to patients using prescribed medical cannabis to manage a health condition. METHODS In this semi-naturalistic, open-label trial, patients with various health conditions attended a single laboratory session in which they self-administered a standard dose of prescribed medical cannabis as per instructions on the pharmacy label. We assessed cognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and Druid application (app) prior to and following (CANTAB: + 3 h; Druid: + 3 and 5.5 h) medical cannabis self-administration. We also assessed subjective drug effects prior to and following (1, 2 and 4 h) medical cannabis self-administration using a range of 0-10 cm visual analogue scales ('stoned', 'sedated', 'relaxed', 'comfortable', 'anxious' and 'confident'). Data were analyzed using linear fixed-effect models. RESULTS Participants (N = 40; 22 females) were prescribed a range of products including orally administered oils (n = 23) and flower for vaporization (n = 17). Participants had a mean (standard deviation [SD]) age of 41.38 (12.66) years and had been using medical cannabis for a mean (SD) of 10.18 (8.73) months. Chronic non-cancer pain was the most common indication for medical cannabis use (n = 20), followed by sleep disorder (n = 18) and anxiety (n = 11). The mean (SD) delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) dose administered by participants was 9.61 (8.52) mg/9.15 (10.11) mg among those using an oil, and 37.00 (24.53) mg/0.38 (1.58) mg among those who vaporized flower, respectively. Participants' performance improved over time on the CANTAB Multitasking Test and Rapid Visual Information Processing test (both p-values <0.001). All other changes in cognitive performance measures over time were non-significant (p > 0.05). Vaporization of flower was associated with significantly stronger subjective feelings of 'stoned' and 'sedated' relative to oils (both p < 0.001). CONCLUSIONS These findings suggest that prescribed medical cannabis may have minimal acute impact on cognitive function among patients with chronic health conditions, although larger and controlled trials are needed.
Collapse
Affiliation(s)
- Thomas R Arkell
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University of Technology, m 1009, ATC Building, 427-451 Burwood Rd, Hawthorn, Melbourne, VIC, 3122, Australia
| | - Brooke Manning
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University of Technology, m 1009, ATC Building, 427-451 Burwood Rd, Hawthorn, Melbourne, VIC, 3122, Australia
| | - Luke A Downey
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University of Technology, m 1009, ATC Building, 427-451 Burwood Rd, Hawthorn, Melbourne, VIC, 3122, Australia
- Institute for Breathing and Sleep (IBAS), Austin Health, Melbourne, VIC, Australia
| | - Amie C Hayley
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University of Technology, m 1009, ATC Building, 427-451 Burwood Rd, Hawthorn, Melbourne, VIC, 3122, Australia.
- Institute for Breathing and Sleep (IBAS), Austin Health, Melbourne, VIC, Australia.
| |
Collapse
|
45
|
Roberts-West L, Baxendale S. The impact of recreational cannabis use on neuropsychological function in epilepsy. Epilepsy Behav Rep 2023; 24:100630. [PMID: 37954009 PMCID: PMC10637877 DOI: 10.1016/j.ebr.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Cannabis use is associated with neuropsychological impairments in the general population, but little is known about the impact on cognitive function in people with epilepsy who are already at increased risk of difficulties due to the essential comorbidities of the disease. We compared the performance of 42 people with epilepsy (PWE) who reported regular cannabis use with 254 age matched, non-cannabis-using PWE. Patients completed tests of intellectual reserve, memory, language and processing speed. Approximately one in 17 patients (5.9 %) reported current cannabis use. Cannabis use was not associated with epilepsy type. Males were 1.8 times more likely to report cannabis use compared to females. Cannabis use was associated with lower intellectual reserve (Reading IQ: t = 2.8, p < 0.01, Cohen's d = 0.49), reduced encoding of new information (List Learning: t = 3.3, p < 0.001, Cohen's d = 0.56) and enhanced susceptibility to distraction on a subsequent recall task (t = 3.07, p < 0.01, Cohen's d = 0.51. In regression models cannabis use was significantly associated with impairments in learning and recall after controlling for elevated levels of anxiety and depression. Our data indicates that recreational cannabis use in people with epilepsy amplifies deficits in new learning and enhances susceptibility to distraction in the retention of newly learnt material. Recreational cannabis use should be considered when interpreting the significance of these cognitive impairments when they are recorded in a clinical assessment.
Collapse
Affiliation(s)
| | - Sallie Baxendale
- University College Hospital, London, United Kingdom
- UCL Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, United Kingdom
| |
Collapse
|
46
|
Oosten W, Vos E, Los L, Nelwan M, Pieters T. Towards a New Dynamic Interaction Model of Adolescent CUD Manifestation, Prevention, and Treatment: A Narrative Review. PSYCHOACTIVES 2023; 2:294-316. [PMID: 39280928 PMCID: PMC7616443 DOI: 10.3390/psychoactives2040019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Cannabis is one of the most popular drugs of the 21st century, especially among adolescents and young adults. Evidence of a variety of lasting neuropsychological deficits as a result of chronic cannabis use has increased. Furthermore, regular cannabis use is found to be a predictor of mental health problems, less motivation in school, and school dropout. Aim Our goal is to propose a theoretical model of adolescent cannabis use disorder (CUD) based on Zinberg's drug, set, and setting model and explicated by a review of the literature on adolescent cannabis use to improve the prevention and treatment of CUD for adolescents. Methods PubMed and Web of Science were searched for relevant publications as part of a hypothesis-based and model-generating review. Results Individual (set) and environmental (setting) risk factors play important roles in the development of CUD in adolescents. School performance, motivation, and attendance can be negatively influenced by persistent cannabis use patterns and adolescent brain development can consequently be impaired. Thus, cannabis use can be understood as both being the cause of poor school performance but also the consequence of poor school performance. To prevent and reduce adolescent CUD the drug, set, and setting must all be considered. It is important to notice that the multiple feedback loops (indicated in our dynamic interaction model) are not mutually exclusive, but offer important intervention focus points for social workers, addiction professionals, parents, and other care takers. Conclusion We argue that the three dimensions of drug, set, and setting contribute significantly to the eventual manifestation of CUD. Based on our dynamic interaction model, recommendations are made for possible preventive and therapeutic interventions for the treatment of adolescents and young adults with CUD.
Collapse
Affiliation(s)
- Wesley Oosten
- Freudenthal Institute, Utrecht University, P.O. Box 85 170, 3508 AD Utrecht, The Netherlands
| | - Elena Vos
- Trimbos Institute, P.O. Box 80 125, 3500 AS Utrecht, The Netherlands
| | - Leontien Los
- Department of Adolescent Psychiatry and Addiction Prevention, Brijder-Jeugd, 2553 NZ The Hague, The Netherlands
| | - Michel Nelwan
- Department of Children and Adolescent Psychiatry, Erasmus Medical Center Sophia, P.O. Box 2060, 3015 CN Rotterdam, The Netherlands
| | - Toine Pieters
- Freudenthal Institute, Utrecht University, P.O. Box 85 170, 3508 AD Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80 082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
47
|
Steinfeld MR, Torregrossa MM. Consequences of adolescent drug use. Transl Psychiatry 2023; 13:313. [PMID: 37802983 PMCID: PMC10558564 DOI: 10.1038/s41398-023-02590-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 10/08/2023] Open
Abstract
Substance use in adolescence is a known risk factor for the development of neuropsychiatric and substance use disorders in adulthood. This is in part due to the fact that critical aspects of brain development occur during adolescence, which can be altered by drug use. Despite concerted efforts to educate youth about the potential negative consequences of substance use, initiation remains common amongst adolescents world-wide. Additionally, though there has been substantial research on the topic, many questions remain about the predictors and the consequences of adolescent drug use. In the following review, we will highlight some of the most recent literature on the neurobiological and behavioral effects of adolescent drug use in rodents, non-human primates, and humans, with a specific focus on alcohol, cannabis, nicotine, and the interactions between these substances. Overall, consumption of these substances during adolescence can produce long-lasting changes across a variety of structures and networks which can have enduring effects on behavior, emotion, and cognition.
Collapse
Affiliation(s)
- Michael R Steinfeld
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
48
|
Lehman SM, Thompson EL, Pacheco-Colón I, Hawes SW, Adams AR, Granja K, Pulido WJ, Gonzalez R. Cannabis use and episodic memory performance among adolescents: Moderating effects of depression symptoms and sex. J Int Neuropsychol Soc 2023; 29:715-723. [PMID: 36775907 PMCID: PMC10423301 DOI: 10.1017/s135561772300005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
OBJECTIVE Cannabis use has been linked to poorer episodic memory. However, little is known about whether depression and sex may interact as potential moderators of this association, particularly among adolescents. The current study addresses this by examining interactions between depression symptoms and sex on the association between cannabis use and episodic memory in a large sample of adolescents. METHOD Cross-sectional data from 360 adolescents (M age = 17.38, SD = .75) were analyzed at the final assessment wave of a two-year longitudinal study. We used the Drug Use History Questionnaire to assess for lifetime cannabis use, and the Computerized Diagnostic Interview Schedule for Children, Fourth edition to assess the number of depression symptoms in the past year. Subtests from the Wechsler Memory Scale, Fourth Edition and the California Verbal Learning Test, Second Edition were used to assess episodic memory performance. RESULTS The effect of the three-way interaction among cannabis use, depression symptoms, and sex did not have a significant impact on episodic memory performance. However, follow-up analyses revealed a significant effect of the two-way interaction of cannabis use and depression symptoms on episodic memory, such that associations between cannabis use and episodic memory were only significant at lower and average levels of depression symptoms. CONCLUSIONS Contrary to our hypotheses, we found that as depression symptoms increased, the negative association between cannabis use and episodic memory diminished. Given the use of a predominantly subsyndromic sample, future studies should attempt to replicate findings among individuals with more severe depression.
Collapse
Affiliation(s)
- Sarah M Lehman
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL33199-2156, USA
| | - Erin L Thompson
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL33199-2156, USA
| | - Ileana Pacheco-Colón
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL33199-2156, USA
| | - Samuel W Hawes
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL33199-2156, USA
| | - Ashley R Adams
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL33199-2156, USA
| | - Karen Granja
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL33199-2156, USA
| | - William J Pulido
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL33199-2156, USA
| | - Raul Gonzalez
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL33199-2156, USA
| |
Collapse
|
49
|
Watson CWM, Sundermann E, Helm J, Paolillo EW, Hong S, Ellis RJ, Letendre S, Marcotte TD, Heaton RK, Morgan EE, Grant I. A longitudinal study of cannabis use and risk for cognitive and functional decline among older adults with HIV. AIDS Behav 2023; 27:3401-3413. [PMID: 37155086 PMCID: PMC10766343 DOI: 10.1007/s10461-023-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
Cannabis use is rapidly increasing among older adults in the United States, in part to treat symptoms of common health conditions (e.g., chronic pain, sleep problems). Longitudinal studies of cannabis use and cognitive decline in aging populations living with chronic disease are lacking. We examined different levels of cannabis use and cognitive and everyday function over time among 297 older adults with HIV (ages 50-84 at baseline). Participants were classified based on average cannabis use: frequent (> weekly) (n = 23), occasional (≤ weekly) (n = 83), and non-cannabis users (n=191) and were followed longitudinally for up to 10 years (average years of follow-up = 3.9). Multi-level models examined the effects of average and recent cannabis use on global cognition, global cognitive decline, and functional independence. Occasional cannabis users showed better global cognitive performance overall compared to non-cannabis users. Rates of cognitive decline and functional problems did not vary by average cannabis use. Recent cannabis use was linked to worse cognition at study visits when participants had THC+ urine toxicology-this short-term decrement in cognition was driven by worse memory and did not extend to reports of functional declines. Occasional (≤ weekly) cannabis use was associated with better global cognition over time in older adults with HIV, a group vulnerable to chronic inflammation and cognitive impairment. Recent THC exposure may have a temporary adverse impact on memory. To inform safe and efficacious medical cannabis use, the effects of specific cannabinoid doses on cognition and biological mechanisms must be investigated in older adults.
Collapse
Affiliation(s)
- Caitlin Wei-Ming Watson
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States.
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University, University of California, San Diego, CA, United States.
| | - Erin Sundermann
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Jonathan Helm
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Emily W Paolillo
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University, University of California, San Diego, CA, United States
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, CA, United States
| | - Ronald J Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Scott Letendre
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Thomas D Marcotte
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Robert K Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Erin E Morgan
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
50
|
Liyanage M, Nikanjam M, Capparelli EV, Suhandynata RT, Fitzgerald RL, Marcotte TD, Grant I, Momper JD. Variable Delta-9-Tetrahydrocannabinol Pharmacokinetics and Pharmacodynamics After Cannabis Smoking in Regular Users. Ther Drug Monit 2023; 45:689-696. [PMID: 37199428 DOI: 10.1097/ftd.0000000000001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/09/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Despite its federally restricted status, cannabis is widely used medicinally and recreationally. The pharmacokinetics (PK) and central nervous system (CNS) effects of tetrahydrocannabinol (THC), the major psychoactive cannabinoid, are not well understood. The objective of this study was to develop a population PK model of inhaled THC, including sources of variability, and to conduct an exploratory analysis of potential exposure-response relationships. METHODS Regular adult cannabis users smoked a single cannabis cigarette containing 5.9% THC (Chemovar A) or 13.4% THC (Chemovar B) ad libitum. THC concentrations in whole blood were measured and used to develop a population PK model to identify potential factors contributing to interindividual variability in THC PK and to describe THC disposition. Relationships between model-predicted exposure and heart rate, change in composite driving score on a driving simulator, and perceived highness were evaluated. RESULTS From the 102 participants, a total of 770 blood THC concentrations were obtained. A two-compartment structural model adequately fit the data. Chemovar and baseline THC (THC BL ) were found to be significant covariates for bioavailability, with Chemovar A having better THC absorption. The model predicted that heavy users-those with the highest THC BL -would have significantly higher absorption than those with lighter previous use. There was a statistically significant relationship between exposure and heart rate, and exposure and perceived highness. CONCLUSIONS THC PK is highly variable and related to baseline THC concentrations and different chemovars. The developed population PK model showed that heavier users had higher THC bioavailability. To better understand the factors affecting THC PK and dose-response relationships, future studies should incorporate a wide range of doses, multiple routes of administration, and different formulations relevant to typical community use.
Collapse
Affiliation(s)
- Marlon Liyanage
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Louisiana Jolla, California
| | - Mina Nikanjam
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, California
| | - Edmund V Capparelli
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Louisiana Jolla, California
| | - Raymond T Suhandynata
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Louisiana Jolla, California
| | - Robert L Fitzgerald
- Center for Advanced Laboratory Medicine, University of California, San Diego, La Jolla, California; and
| | - Thomas D Marcotte
- Center for Medicinal Cannabis Research (CMCR), Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Igor Grant
- Center for Medicinal Cannabis Research (CMCR), Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, Louisiana Jolla, California
| |
Collapse
|