1
|
Ye J, Duan C, Han J, Chen J, Sun N, Li Y, Yuan T, Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen Res 2025; 20:1541-1554. [PMID: 38934398 PMCID: PMC11688552 DOI: 10.4103/nrr.nrr-d-23-01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
Collapse
Affiliation(s)
- Jinmei Ye
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Duan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Han
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinrong Chen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Giménez-Palomo A, Andreu H, de Juan O, Olivier L, Ochandiano I, Ilzarbe L, Valentí M, Stoppa A, Llach CD, Pacenza G, Andreazza AC, Berk M, Vieta E, Pacchiarotti I. Mitochondrial Dysfunction as a Biomarker of Illness State in Bipolar Disorder: A Critical Review. Brain Sci 2024; 14:1199. [PMID: 39766398 PMCID: PMC11674880 DOI: 10.3390/brainsci14121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondria are organelles involved in different cellular functions, especially energy production. A relationship between mitochondrial dysfunction and mood disorders, especially bipolar disorder (BD), has been reported in the scientific literature, which suggests altered energy production and higher levels of oxidative stress compared to healthy controls. Specifically, in BD, the hypothesis of a biphasic pattern of energy availability has been postulated according to mood states. Current evidence highlights the presence of mitochondrial dysfunction in BD and variations between the manic, depressive, and euthymic phases. These findings need to be confirmed in future studies to identify biomarkers that may lead to individualized management of patients with BD and also to identify profiles with a higher risk of presenting an unfavorable course of illness, which would enable the design of preventive and therapeutic strategies in determined subpopulations of patients with BD. The limitations of this review include the non-systematic methodology, variety of mitochondrial-related functions associated with BD, heterogeneous study designs, preliminary evidence for specific findings, and limited recommendations regarding the use of mitochondrial modulators in BD.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Helena Andreu
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Oscar de Juan
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Luis Olivier
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Iñaki Ochandiano
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Lidia Ilzarbe
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Marc Valentí
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Aldo Stoppa
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
| | - Cristian-Daniel Llach
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON M5G 1M9, Canada;
| | - Giulio Pacenza
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
| | - Ana Cristina Andreazza
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mitochondrial Innovation Initiative, MITO2i, Toronto, ON M5S 1A8, Canada
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine and Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Isabella Pacchiarotti
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain (H.A.); (O.d.J.); (A.S.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
- Institute of Neurosciences (UBNeuro), 170 Villarroel St., 08036 Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| |
Collapse
|
3
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
4
|
Zhang Y, Tong L, Ma L, Ye H, Zeng S, Zhang S, Ding Y, Wang W, Bao T. Progress in The Research of Lactate Metabolism Disruption And Astrocyte-Neuron Lactate Shuttle Impairment in Schizophrenia: A Comprehensive Review. Adv Biol (Weinh) 2024; 8:e2300409. [PMID: 38596839 DOI: 10.1002/adbi.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Yingying Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Liang Tong
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Li Ma
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Hong Ye
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shue Zeng
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Shaochuan Zhang
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| | - Yu Ding
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Weiwei Wang
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, P. R. China
| | - Tianhao Bao
- Mental Health Centre of Kunming Medical University, Kunming, Yunnan, 650225, P. R. China
| |
Collapse
|
5
|
Triebelhorn J, Cardon I, Kuffner K, Bader S, Jahner T, Meindl K, Rothhammer-Hampl T, Riemenschneider MJ, Drexler K, Berneburg M, Nothdurfter C, Manook A, Brochhausen C, Baghai TC, Hilbert S, Rupprecht R, Milenkovic VM, Wetzel CH. Induced neural progenitor cells and iPS-neurons from major depressive disorder patients show altered bioenergetics and electrophysiological properties. Mol Psychiatry 2024; 29:1217-1227. [PMID: 35732695 PMCID: PMC11189806 DOI: 10.1038/s41380-022-01660-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Abstract
The molecular pathomechanisms of major depressive disorder (MDD) are still not completely understood. Here, we follow the hypothesis, that mitochondria dysfunction which is inevitably associated with bioenergetic disbalance is a risk factor that contributes to the susceptibility of an individual to develop MDD. Thus, we investigated molecular mechanisms related to mitochondrial function in induced neuronal progenitor cells (NPCs) which were reprogrammed from fibroblasts of eight MDD patients and eight non-depressed controls. We found significantly lower maximal respiration rates, altered cytosolic basal calcium levels, and smaller soma size in NPCs derived from MDD patients. These findings are partially consistent with our earlier observations in MDD patient-derived fibroblasts. Furthermore, we differentiated MDD and control NPCs into iPS-neurons and analyzed their passive biophysical and active electrophysiological properties to investigate whether neuronal function can be related to altered mitochondrial activity and bioenergetics. Interestingly, MDD patient-derived iPS-neurons showed significantly lower membrane capacitance, a less hyperpolarized membrane potential, increased Na+ current density and increased spontaneous electrical activity. Our findings indicate that functional differences evident in fibroblasts derived from MDD patients are partially present after reprogramming to induced-NPCs, could relate to altered function of iPS-neurons and thus might be associated with the aetiology of major depressive disorder.
Collapse
Affiliation(s)
- Julian Triebelhorn
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Iseline Cardon
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Kerstin Kuffner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Tatjana Jahner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Katrin Meindl
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, 93053, Regensburg, Germany
| | | | - Konstantin Drexler
- Department of Dermatology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - André Manook
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
- Central Biobank of the University of Regensburg and the Regensburg University Hospital, 93053, Regensburg, Germany
| | - Thomas C Baghai
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Sven Hilbert
- Institute of Educational Research, Faculty of Human Sciences, University of Regensburg, 93053, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Chu H, Cui C, Su X, Zhang H, Ma J, Zhu H, Bai L, Li R. Research progress in mitochondrial quality control in schizophrenia. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:128-134. [PMID: 38615174 PMCID: PMC11017019 DOI: 10.11817/j.issn.1672-7347.2024.230398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 04/15/2024]
Abstract
Mitochondria are the main site of energy metabolism within cells, generating a substantial amount of ATP to supply energy to the human body. Research has shown that alterations in mitochondrial structure and function exist in individuals with schizophrenia, suggesting their potential impact on the onset of psychiatric disorders and clinical treatment efficacy. Therefore, understanding the research progress on the genetic mechanisms, pathological processes, image manifestations of schizophrenia and mitochondrial quality control, and summarizing the relevant evidence of mitochondrial-related targets as potential therapeutic targets for schizophrenia, can provide references for further research.
Collapse
Affiliation(s)
- Haoran Chu
- School of Mental Health, Jining Medical University, Jining Shandong 272067.
| | - Cuicui Cui
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Xianbiao Su
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Hongchang Zhang
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Jiashu Ma
- School of Mental Health, Jining Medical University, Jining Shandong 272067
| | - Houming Zhu
- School of Mental Health, Jining Medical University, Jining Shandong 272067
| | - Ludong Bai
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China
| | - Ranran Li
- Sixth Department of Psychiatry, Shandong Mental Health Center, Jinan 250014, China.
| |
Collapse
|
7
|
Lu JJ, Wu PF, He JG, Li YK, Long LH, Yao XP, Yang JH, Chen HS, Zhang XN, Hu ZL, Chen Z, Wang F, Chen JG. BNIP3L/NIX-mediated mitophagy alleviates passive stress-coping behaviors induced by tumor necrosis factor-α. Mol Psychiatry 2023; 28:5062-5076. [PMID: 36914810 DOI: 10.1038/s41380-023-02008-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Recent studies based on animal models of various neurological disorders have indicated that mitophagy, a selective autophagy that eliminates damaged and superfluous mitochondria through autophagic degradation, may be involved in various neurological diseases. As an important mechanism of cellular stress response, much less is known about the role of mitophagy in stress-related mood disorders. Here, we found that tumor necrosis factor-α (TNF-α), an inflammation cytokine that plays a particular role in stress responses, impaired the mitophagy in the medial prefrontal cortex (mPFC) via triggering degradation of an outer mitochondrial membrane protein, NIP3-like protein X (NIX). The deficits in the NIX-mediated mitophagy by TNF-α led to the accumulation of damaged mitochondria, which triggered synaptic defects and behavioral abnormalities. Genetic ablation of NIX in the excitatory neurons of mPFC caused passive coping behaviors to stress, and overexpression of NIX in the mPFC improved TNF-α-induced synaptic and behavioral abnormalities. Notably, ketamine, a rapid on-set and long-lasting antidepressant, reversed the TNF-α-induced behavioral abnormalities through activation of NIX-mediated mitophagy. Furthermore, the downregulation of NIX level was also observed in the blood of major depressive disorder patients and the mPFC tissue of animal models. Infliximab, a clinically used TNF-α antagonist, alleviated both chronic stress- and inflammation-induced behavioral abnormalities via restoring NIX level. Taken together, these results suggest that NIX-mediated mitophagy links inflammation signaling to passive coping behaviors to stress, which underlies the pathophysiology of stress-related emotional disorders.
Collapse
Affiliation(s)
- Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Xia-Ping Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Hao Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, 430030, China.
| |
Collapse
|
8
|
Helaly AMN, Ghorab DSED. Schizophrenia as metabolic disease. What are the causes? Metab Brain Dis 2023; 38:795-804. [PMID: 36656396 PMCID: PMC9849842 DOI: 10.1007/s11011-022-01147-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
Schizophrenia (SZ) is a devastating neurodevelopmental disease with an accelerated ageing feature. The criteria of metabolic disease firmly fit with those of schizophrenia. Disturbances in energy and mitochondria are at the core of complex pathology. Genetic and environmental interaction creates changes in redox, inflammation, and apoptosis. All the factors behind schizophrenia interact in a cycle where it is difficult to discriminate between the cause and the effect. New technology and advances in the multi-dispensary fields could break this cycle in the future.
Collapse
Affiliation(s)
- Ahmed Mohamed Nabil Helaly
- Clinical Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
- Forensic Medicine and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa Shame El Din Ghorab
- Basic Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Yao Y, Han W. Proline Metabolism in Neurological and Psychiatric Disorders. Mol Cells 2022; 45:781-788. [PMID: 36324271 PMCID: PMC9676987 DOI: 10.14348/molcells.2022.0115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.
Collapse
Affiliation(s)
- Yuxiao Yao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138667
| |
Collapse
|
10
|
Clifton NE, Bosworth ML, Haan N, Rees E, Holmans PA, Wilkinson LS, Isles AR, Collins MO, Hall J. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Hum Mol Genet 2022; 31:3095-3106. [PMID: 35531971 PMCID: PMC9476630 DOI: 10.1093/hmg/ddac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.
Collapse
Affiliation(s)
- Nicholas E Clifton
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Matthew L Bosworth
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Niels Haan
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
11
|
The psychiatric risk gene BRD1 modulates mitochondrial bioenergetics by transcriptional regulation. Transl Psychiatry 2022; 12:319. [PMID: 35941107 PMCID: PMC9359996 DOI: 10.1038/s41398-022-02053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bromodomain containing 1 (BRD1) encodes an epigenetic regulator that controls the expression of genetic networks linked to mental illness. BRD1 is essential for normal brain development and its role in psychopathology has been demonstrated in genetic and preclinical studies. However, the neurobiology that bridges its molecular and neuropathological effects remains poorly explored. Here, using publicly available datasets, we find that BRD1 targets nuclear genes encoding mitochondrial proteins in cell lines and that modulation of BRD1 expression, irrespective of whether it is downregulation or upregulation of one or the other existing BRD1 isoforms (BRD1-L and BRD1-S), leads to distinct shifts in the expression profile of these genes. We further show that the expression of nuclear genes encoding mitochondrial proteins is negatively correlated with the expression of BRD1 mRNA during human brain development. In accordance, we identify the key gate-keeper of mitochondrial metabolism, Peroxisome proliferator-activated receptor (PPAR) among BRD1's co-transcription factors and provide evidence that BRD1 acts as a co-repressor of PPAR-mediated transcription. Lastly, when using quantitative PCR, mitochondria-targeted fluorescent probes, and the Seahorse XFe96 Analyzer, we demonstrate that modulation of BRD1 expression in cell lines alters mitochondrial physiology (mtDNA content and mitochondrial mass), metabolism (reducing power), and bioenergetics (among others, basal, maximal, and spare respiration) in an expression level- and isoform-dependent manner. Collectively, our data suggest that BRD1 is a transcriptional regulator of nuclear-encoded mitochondrial proteins and that disruption of BRD1's genomic actions alters mitochondrial functions. This may be the mechanism underlying the cellular and atrophic changes of neurons previously associated with BRD1 deficiency and suggests that mitochondrial dysfunction may be a possible link between genetic variation in BRD1 and psychopathology in humans.
Collapse
|
12
|
The role of mitochondria in the pathophysiology of schizophrenia: A critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 2021; 132:449-464. [PMID: 34864002 DOI: 10.1016/j.neubiorev.2021.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
There has been increasing interest in the role of mitochondrial dysfunction in the pathophysiology of schizophrenia. Mitochondrial complex one (MCI) dysfunction may represent a mechanism linking bioenergetic impairment with the alterations in dopamine signalling, glutamatergic dysfunction, and oxidative stress found in the disorder. New lines of evidence from novel approaches make it timely to review evidence for mitochondrial involvement in schizophrenia, with a specific focus on MCI. The most consistent findings in schizophrenia relative to controls are reductions in expression of MCI subunits in post-mortem brain tissue (Cohen's d> 0.8); reductions in MCI function in post-mortem brains (d> 0.7); and reductions in neural glucose utilisation (d= 0.3 to 0.6). Antipsychotics may affect glucose utilisation, and, at least in vitro, affect MC1. The findings overall are consistent with MCI dysfunction in schizophrenia, but also highlight the need for in vivo studies to determine the link between MCI dysfunction and symptoms in patients. If new imaging tools confirm MCI dysfunction in the disease, this could pave the way for new treatments targeting this enzyme.
Collapse
|
13
|
Klein Gunnewiek TM, Van Hugte EJH, Frega M, Guardia GS, Foreman K, Panneman D, Mossink B, Linda K, Keller JM, Schubert D, Cassiman D, Rodenburg R, Vidal Folch N, Oglesbee D, Perales-Clemente E, Nelson TJ, Morava E, Nadif Kasri N, Kozicz T. m.3243A > G-Induced Mitochondrial Dysfunction Impairs Human Neuronal Development and Reduces Neuronal Network Activity and Synchronicity. Cell Rep 2021; 31:107538. [PMID: 32320658 DOI: 10.1016/j.celrep.2020.107538] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy, intellectual and cortical sensory deficits, and psychiatric manifestations are the most frequent manifestations of mitochondrial diseases. How mitochondrial dysfunction affects neural structure and function remains elusive, mostly because of a lack of proper in vitro neuronal model systems with mitochondrial dysfunction. Leveraging induced pluripotent stem cell technology, we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background from patients with the common pathogenic m.3243A > G variant of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). iNeurons with high heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity, and fewer excitatory synapses. Micro-electrode array recordings of neuronal networks displayed reduced network activity and decreased synchronous network bursting. Impaired neuronal energy metabolism and compromised structural and functional integrity of neurons and neural networks could be the primary drivers of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.
Collapse
Affiliation(s)
- Teun M Klein Gunnewiek
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Eline J H Van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands
| | - Gemma Solé Guardia
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katharina Foreman
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Daan Panneman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - David Cassiman
- Department of Hepatology, UZ Leuven, 3000 Leuven, Belgium
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Disorders, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Noemi Vidal Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Timothy J Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands.
| | - Tamas Kozicz
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 55905 Rochester, MN, USA.
| |
Collapse
|
14
|
Gonzalez S. The Role of Mitonuclear Incompatibility in Bipolar Disorder Susceptibility and Resilience Against Environmental Stressors. Front Genet 2021; 12:636294. [PMID: 33815470 PMCID: PMC8010675 DOI: 10.3389/fgene.2021.636294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
It has been postulated that mitochondrial dysfunction has a significant role in the underlying pathophysiology of bipolar disorder (BD). Mitochondrial functioning plays an important role in regulating synaptic transmission, brain function, and cognition. Neuronal activity is energy dependent and neurons are particularly sensitive to changes in bioenergetic fluctuations, suggesting that mitochondria regulate fundamental aspects of brain function. Vigorous evidence supports the role of mitochondrial dysfunction in the etiology of BD, including dysregulated oxidative phosphorylation, general decrease of energy, altered brain bioenergetics, co-morbidity with mitochondrial disorders, and association with genetic variants in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial genes. Despite these advances, the underlying etiology of mitochondrial dysfunction in BD is unclear. A plausible evolutionary explanation is that mitochondrial-nuclear (mitonuclear) incompatibility leads to a desynchronization of machinery required for efficient electron transport and cellular energy production. Approximately 1,200 genes, encoded from both nuclear and mitochondrial genomes, are essential for mitochondrial function. Studies suggest that mitochondrial and nuclear genomes co-evolve, and the coordinated expression of these interacting gene products are essential for optimal organism function. Incompatibilities between mtDNA and nuclear-encoded mitochondrial genes results in inefficiency in electron flow down the respiratory chain, differential oxidative phosphorylation efficiency, increased release of free radicals, altered intracellular Ca2+ signaling, and reduction of catalytic sites and ATP production. This review explores the role of mitonuclear incompatibility in BD susceptibility and resilience against environmental stressors.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Department of Psychiatry and Behavioral Health, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
15
|
Zitkovsky EK, Daniels TE, Tyrka AR. Mitochondria and early-life adversity. Mitochondrion 2021; 57:213-221. [PMID: 33484871 PMCID: PMC8172448 DOI: 10.1016/j.mito.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Early-life adversity (ELA), which includes maltreatment, neglect, or severe trauma in childhood, increases the life-long risk for negative health outcomes. Mitochondria play a key role in the stress response and may be an important mechanism by which stress is transduced into biological risk for disease. By responding to cues from stress-signaling pathways, mitochondria interact dynamically with physiological stress responses coordinated by the central nervous, endocrine, and immune systems. Preclinical evidence suggests that alterations in mitochondrial function and structure are linked to both early stress and systemic biological dysfunction. Early clinical studies support that increased mitochondrial DNA content and altered cellular energy demands may be present in individuals with a history of ELA. Further research should investigate mitochondria as a potential therapeutic target following ELA.
Collapse
Affiliation(s)
- Emily K Zitkovsky
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Alpert Medical School of Brown University, 222 Richmond St, Providence, RI 02903, USA.
| | - Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA.
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA.
| |
Collapse
|
16
|
Lin CH, Chen YM, Lane HY. Novel Treatment for the Most Resistant Schizophrenia: Dual Activation of NMDA Receptor and Antioxidant. Curr Drug Targets 2021; 21:610-615. [PMID: 31660823 DOI: 10.2174/1389450120666191011163539] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
Clozapine has been regarded as the last-line antipsychotic agent for patients with refractory schizophrenia. However, many patients remain unresponsive to clozapine, referred to as "clozapineresistant", "ultra-treatment-resistant", or remain in incurable state. There has been no convincing evidence for augmentation on clozapine so far. Novel treatments including numerous N-methyl-Daspartate (NMDA) receptor (NMDAR) enhancers, such as glycine, D-serine, D-cycloserine, and Nmethylglycine (sarcosine) failed in clinical trials. Earlier, the inhibition of D-amino acid oxidase (DAAO) that may metabolize D-amino acids and activate NMDAR has been reported to be beneficial for patients with schizophrenia receiving antipsychotics except for clozapine. A recent randomized, double-blind, placebo-controlled clinical trial found that add-on sodium benzoate, a DAAO inhibitor, improved the clinical symptoms in patients with clozapine- resistant schizophrenia, possibly through DAAO inhibition (and thereby NMDAR activation) and antioxidation as well; additionally, sodium benzoate showed no obvious side effects, indicating that the treatment is safe at doses up to 2 g per day for 6 weeks. More studies are warranted to elucidate the mechanisms of sodium benzoate for the treatment of schizophrenia and the etiology of this severe brain disease. If the finding can be reconfirmed, this approach may bring new hope for the treatment of the most refractory schizophrenia. This review summarizes the current status of clinical trials and related mechanisms for treatmentresistant, especially, clozapine-resistant schizophrenia. The importance of understanding the molecular circuit switches is also highlighted which can restore brain function in patients with schizophrenia. Future directions in developing better treatments for the most difficult to cure schizophrenia are also discussed.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Ming Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
17
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Xulu KR, Womersley JS, Sommer J, Hinsberger M, Elbert T, Weierstall R, Kaminer D, Malan-Müller S, Seedat S, Hemmings SMJ. DNA methylation and psychotherapy response in trauma-exposed men with appetitive aggression. Psychiatry Res 2021; 295:113608. [PMID: 33290938 DOI: 10.1016/j.psychres.2020.113608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Exposure to violence can lead to appetitive aggression (AA), the positive feeling and fascination associated with violence, and posttraumatic stress disorder (PTSD), characterised by hyperarousal, reexperience and feelings of ongoing threat. Psychotherapeutic interventions may act via DNA methylation, an environmentally sensitive epigenetic mechanism that can influence gene expression. We investigated epigenetic signatures of psychotherapy for PTSD and AA symptoms in South African men with chronic trauma exposure. Participants were assigned to one of three groups: narrative exposure therapy for forensic offender rehabilitation (FORNET), cognitive behavioural therapy or waiting list control (n = 9-10/group). Participants provided saliva and completed the Appetitive Aggression Scale and PTSD Symptom Severity Index at baseline, 8-month and 16-month follow-up. The relationship, over time, between methylation in 22 gene promoter region sites, symptom scores, and treatment was assessed using linear mixed models. Compared to baseline, PTSD and AA symptom severity were significantly reduced at 8 and 16 months, respectively, in the FORNET group. Increased methylation of genes implicated in dopaminergic neurotransmission (NR4A2) and synaptic plasticity (AUTS2) was associated with reduced PTSD symptom severity in participants receiving FORNET. Analyses across participants revealed a proportional relationship between AA and methylation of TFAM, a gene involved in mitochondrial biosynthesis.
Collapse
Affiliation(s)
- Khethelo R Xulu
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Jessica Sommer
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | | | - Thomas Elbert
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | - Roland Weierstall
- Department of Psychology, University of Konstanz, Konstanz, Germany; Clinical Psychology & Psychotherapy, Medical School Hamburg, Hamburg, Germany.
| | - Debbie Kaminer
- Department of Psychology, University of Cape Town, Cape Town, South Africa.
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
19
|
Palladino VS, Chiocchetti AG, Frank L, Haslinger D, McNeill R, Radtke F, Till A, Haupt S, Brüstle O, Günther K, Edenhofer F, Hoffmann P, Reif A, Kittel-Schneider S. Energy Metabolism Disturbances in Cell Models of PARK2 CNV Carriers with ADHD. J Clin Med 2020; 9:jcm9124092. [PMID: 33353000 PMCID: PMC7766864 DOI: 10.3390/jcm9124092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
The main goal of the present study was the identification of cellular phenotypes in attention-deficit-/hyperactivity disorder (ADHD) patient-derived cellular models from carriers of rare copy number variants (CNVs) in the PARK2 locus that have been previously associated with ADHD. Human-derived fibroblasts (HDF) were cultured and human-induced pluripotent stem cells (hiPSC) were reprogrammed and differentiated into dopaminergic neuronal cells (mDANs). A series of assays in baseline condition and in different stress paradigms (nutrient deprivation, carbonyl cyanide m-chlorophenyl hydrazine (CCCP)) focusing on mitochondrial function and energy metabolism (ATP production, basal oxygen consumption rates, reactive oxygen species (ROS) abundance) were performed and changes in mitochondrial network morphology evaluated. We found changes in PARK2 CNV deletion and duplication carriers with ADHD in PARK2 gene and protein expression, ATP production and basal oxygen consumption rates compared to healthy and ADHD wildtype control cell lines, partly differing between HDF and mDANs and to some extent enhanced in stress paradigms. The generation of ROS was not influenced by the genotype. Our preliminary work suggests an energy impairment in HDF and mDAN cells of PARK2 CNV deletion and duplication carriers with ADHD. The energy impairment could be associated with the role of PARK2 dysregulation in mitochondrial dynamics.
Collapse
Affiliation(s)
- Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, D-60528 Frankfurt, Germany; (V.S.P.); (L.F.); (A.R.)
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Frankfurt, D-60528 Frankfurt, Germany; (A.G.C.); (D.H.)
| | - Lukas Frank
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, D-60528 Frankfurt, Germany; (V.S.P.); (L.F.); (A.R.)
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Frankfurt, D-60528 Frankfurt, Germany; (A.G.C.); (D.H.)
| | - Rhiannon McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, D-97080 Würzburg, Germany;
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, D-97080 Würzburg, Germany;
| | - Andreas Till
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, D-53127 Bonn, Germany; (A.T.); (O.B.)
| | - Simone Haupt
- LIFE & BRAIN GmbH, Cellomics Unit, D-53127 Bonn, Germany;
- Department 75, Transfer, University of Cologne, 50923 Cologne, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, D-53127 Bonn, Germany; (A.T.); (O.B.)
| | - Katharina Günther
- Institute of Molecular Biology & CMBI, University of Innsbruck, AT-6020 Innsbruck, Austria; (K.G.); (F.E.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, AT-5020 Salzburg, Austria
| | - Frank Edenhofer
- Institute of Molecular Biology & CMBI, University of Innsbruck, AT-6020 Innsbruck, Austria; (K.G.); (F.E.)
| | - Per Hoffmann
- Institute of Humane Genetics, LIFE & BRAIN Center, University of Bonn Medical Faculty & University Hospital Bonn, D-53127 Bonn, Germany;
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, D-60528 Frankfurt, Germany; (V.S.P.); (L.F.); (A.R.)
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, D-60528 Frankfurt, Germany; (V.S.P.); (L.F.); (A.R.)
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, D-97080 Würzburg, Germany;
- Correspondence: ; Tel.: +49-931-201-77100
| |
Collapse
|
20
|
Sagata N, Kano SI, Ohgidani M, Inamine S, Sakai Y, Kato H, Masuda K, Nakahara T, Nakahara-Kido M, Ohga S, Furue M, Sawa A, Kanba S, Kato TA. Forskolin rapidly enhances neuron-like morphological change of directly induced-neuronal cells from neurofibromatosis type 1 patients. Neuropsychopharmacol Rep 2020; 40:396-400. [PMID: 33037790 PMCID: PMC7722681 DOI: 10.1002/npr2.12144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Aim Neurofibromatosis type 1 (NF1) is a multifaceted disease, and frequently comorbid with neurodevelopmental disorders such as autism spectrum disorder (ASD) and learning disorder. Dysfunction of adenylyl cyclase (AC) is one of the candidate pathways in abnormal development of neuronal cells in the brain of NF1 patients, while its dynamic abnormalities have not been observed. Direct conversion technology can generate induced‐neuronal (iN) cells directly from human fibroblasts within 2 weeks. Just recently, we have revealed that forskolin, an AC activator, rescues the gene expression pattern of iN cells derived from NF1 patients (NF1‐iN cells). In this microreport, we show the dynamic effect of forskolin on NF1‐iN cells. Methods iN cells derived from healthy control (HC‐iN cells) and NF1‐iN cells were treated with forskolin (final concentration 10 μM), respectively. Morphological changes of iN cells were captured by inverted microscope with CCD camera every 2 minutes for 90 minutes. Results Prior to forskolin treatment, neuron‐like spherical‐form cells were observed in HC‐iN cells, but most NF1‐iN cells were not spherical‐form but flatform. Only 20 minutes after forskolin treatment, the morphology of the iN cells were dramatically changed from flatform to spherical form, especially in NF1‐iN cells. Conclusion The present pilot data indicate that forskolin or AC activators may have therapeutic effects on the growth of neuronal cells in NF1 patients. Further translational research should be conducted to validate our pilot findings for future drug development of ASD. Neurofibromatosis type 1 (NF1) is highly comorbid with neurodevelopmental disorders such as autism spectrum disorder (ASD) and learning disorder, and underlying mechanisms have not been well clarified. We herein showed that forskolin, an AC activator, rapidly enhances neuron‐like morphological change of directly induced‐neuronal (iN) cells from NF1 patients. The present pilot data using the direct conversion technology indicate that forskolin or AC activators may have therapeutic effects on the growth of neuronal cells in NF1 patients.
![]()
Collapse
Affiliation(s)
- Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin-Ichi Kano
- Department of Psychiatry and Behavioral Neurobiology & Department of Neurobiology, The University of Alabama at Birmingham (UAB) School of Medicine, Birmingham, AL, USA.,Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makiko Nakahara-Kido
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Sawa
- Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzón-Sandoval J, Bowden R, Alegre-Abarrategui J, Wade-Martins R, Webber C. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat Commun 2020; 11:4183. [PMID: 32826893 PMCID: PMC7442652 DOI: 10.1038/s41467-020-17876-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
We describe a human single-nuclei transcriptomic atlas for the substantia nigra (SN), generated by sequencing approximately 17,000 nuclei from matched cortical and SN samples. We show that the common genetic risk for Parkinson’s disease (PD) is associated with dopaminergic neuron (DaN)-specific gene expression, including mitochondrial functioning, protein folding and ubiquitination pathways. We identify a distinct cell type association between PD risk and oligodendrocyte-specific gene expression. Unlike Alzheimer’s disease (AD), we find no association between PD risk and microglia or astrocytes, suggesting that neuroinflammation plays a less causal role in PD than AD. Beyond PD, we find associations between SN DaNs and GABAergic neuron gene expression and multiple neuropsychiatric disorders. Conditional analysis reveals that distinct neuropsychiatric disorders associate with distinct sets of neuron-specific genes but converge onto shared loci within oligodendrocytes and oligodendrocyte precursors. This atlas guides our aetiological understanding by associating SN cell type expression profiles with specific disease risk. The substantia nigra is important in neurological disease, particularly movement disorders. Here the authors provide a single cell transcriptomic atlas for the human substantia nigra.
Collapse
Affiliation(s)
- Devika Agarwal
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK
| | - Cynthia Sandor
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Viola Volpato
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Tara M Caffrey
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | | | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX2 7BN, UK
| | - Javier Alegre-Abarrategui
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK.,Department of Neuropathology, University of Oxford, Oxford, UK.,Division of Brain Sciences, Imperial College London, London, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK
| | - Caleb Webber
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK. .,UK Dementia Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
22
|
Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020; 46:484-495. [PMID: 31755955 PMCID: PMC7147598 DOI: 10.1093/schbul/sbz119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
23
|
Transient receptor potential vanilloid 1 antagonism in neuroinflammation, neuroprotection and epigenetic regulation: potential therapeutic implications for severe psychiatric disorders treatment. Psychiatr Genet 2020; 30:39-48. [PMID: 32097233 DOI: 10.1097/ypg.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Abstract
In seeking to understand mental health and disease, it is fundamental to identify the biological substrates that draw together the experiences and physiological processes that underlie observed psychological changes. Mitochondria are subcellular organelles best known for their central role in energetics, producing adenosine triphosphate to power most cellular processes. Converging lines of evidence indicate that mitochondria play a key role in the biological embedding of adversity. Preclinical research documents the effects of stress exposure on mitochondrial structure and function, and recent human research suggests alterations constituting recalibrations, both adaptive and nonadaptive. Current research suggests dynamic relationships among stress exposure, neuroendocrine signaling, inflammation, and mitochondrial function. These complex relationships are implicated in disease risk, and their elucidation may inform prevention and treatment of stress- and trauma-related disorders. We review and evaluate the evidence for mitochondrial dysfunction as a consequence of stress exposure and as a contributing factor to psychiatric disease.
Collapse
Affiliation(s)
- Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Elizabeth M Olsen
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA; , , .,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
25
|
Abstract
People with bipolar disorder (BD) all too often have suboptimal long-term outcomes with existing treatment options. They experience relapsing episodes of depression and mania and also have interepisodic mood and anxiety symptoms. We need to have a better understanding of the pathophysiology of BD if we are to make progress in improving these outcomes. This chapter will focus on the critical role of mitochondria in human functioning, oxidative stress, and the biological mechanisms of mitochondria in BD. Additionally, this chapter will present the evidence that, at least for some people, BD is a product of mitochondrial dysregulation. We review the modulators of mitochondria, the connection between current BD medication treatments and mitochondria, and additional medications that have theoretical potential to treat BD.
Collapse
|
26
|
Li S, Qui Y, Teng Z, Chen J, Kang D, Tang H, Xiang H, Wu C, Tan Y, Wang L, Yang Y, Wang B, Wu H. Association Between Bipolar Disorder and Low Bone Mass: A Cross-Sectional Study With Newly Diagnosed, Drug-Naïve Patients. Front Psychiatry 2020; 11:530. [PMID: 32587534 PMCID: PMC7299052 DOI: 10.3389/fpsyt.2020.00530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Medical comorbidities in people with mental disorders have recently gained more attention. People with bipolar disorder (BD) often have comorbid low bone mass, which is associated with increased fracture risk and related severe outcomes. However, few clinical studies on bone metabolism in BD patients are available. This study was designed to assess bone mineral density (BMD) and related influencing factors in a sample of newly diagnosed, drug-naïve individuals with BD and age- and sex-matched healthy controls. METHODS Sixty-one drug-naïve individuals with BD (DSM-V) and 95 healthy volunteers had their lumbar spine (L1-L4) and left hip (Neck/Troch/Ward's) BMD determined by dual-energy X-ray absorptiometry. Besides, sociodemographic and clinical assessment were collected. Between-group comparisons and within subgroup analysis were performed. RESULTS Drug-naïve patients with BD had significantly lower BMD in comparison to healthy controls in multiple sites (L1, L3, Neck, Troch, Ward's, and total hip). On subgroup analysis, overweight individuals with BD had higher bone mass, while females presented reduced BMD. Binary logistic regression showed that low BMD in multiple regions was associated with BD diagnosis, body mass index (BMI), gender, and age. CONCLUSION Drug-naïve individuals with BD have lower BMD when compared to an age- and gender-matched healthy control sample. Low BMI and female gender are factors associated with this outcome. The underlying pathological mechanisms of BD comorbid with osteoporosis should be further explored. CLINICAL TRIAL REGISTRATION www.chictr.org.cn, identifier ChiCTR190002137.
Collapse
Affiliation(s)
- Sujuan Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Yan Qui
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Ziwei Teng
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Dongyu Kang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Hui Tang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Hui Xiang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Chujun Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Yuxi Tan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Lu Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Yanyi Yang
- Health Management Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| |
Collapse
|
27
|
Zhang C, Rong H. Genetic Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:19-57. [PMID: 31784956 DOI: 10.1007/978-981-32-9271-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BPD) are both chronic, severe mood disorder with high misdiagnosis rate, leading to substantial health and economic burdens to patients around the world. There is a high misdiagnosis rate of bipolar depression (BD) just based on symptomology in depressed patients whose previous manic or mixed episodes have not been well recognized. Therefore, it is important for psychiatrists to identify these two major psychiatric disorders. Recently, with the accumulation of clinical sample sizes and the advances of methodology and technology, certain progress in the genetics of major depression and bipolar disorder has been made. This article reviews the candidate genes for MDD and BD, genetic variation loci, chromosome structural variation, new technologies, and new methods.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Han Rong
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
ĽUPTÁK M, HROUDOVÁ J. Important Role of Mitochondria and the Effect of Mood Stabilizers on Mitochondrial Function. Physiol Res 2019; 68:S3-S15. [DOI: 10.33549/physiolres.934324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria primarily serve as source of cellular energy through the Krebs cycle and β-oxidation to generate substrates for oxidative phosphorylation. Redox reactions are used to transfer electrons through a gradient to their final acceptor, oxygen, and to pump hydrogen protons into the intermembrane space. Then, ATP synthase uses the electrochemical gradient to generate adenosine triphosphate (ATP). During these processes, reactive oxygen species (ROS) are generated. ROS are highly reactive molecules with important physiological functions in cellular signaling. Mitochondria play a crucial role in intracellular calcium homeostasis and serve as transient calcium stores. High levels of both, ROS and free cytosolic calcium, can damage mitochondrial and cellular structures and trigger apoptosis. Impaired mitochondrial function has been described in many psychiatric diseases, including mood disorders, in terms of lowered mitochondrial membrane potential, suppressed ATP formation, imbalanced Ca2+ levels and increased ROS levels. In vitro models have indicated that mood stabilizers affect mitochondrial respiratory chain complexes, ROS production, ATP formation, Ca2+ buffering and the antioxidant system. Most studies support the hypothesis that mitochondrial dysfunction is a primary feature of mood disorders. The precise mechanism of action of mood stabilizers remains unknown, but new mitochondrial targets have been proposed for use as mood stabilizers and mitochondrial biomarkers in the evaluation of therapy effectiveness.
Collapse
Affiliation(s)
- M. ĽUPTÁK
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | |
Collapse
|
29
|
Does obesity and diabetes mellitus metastasize to the brain? "Metaboptosis" and implications for drug discovery and development. CNS Spectr 2019; 24:467-469. [PMID: 30940233 DOI: 10.1017/s1092852918001670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Borgelt L, Strakowski SM, DelBello MP, Weber W, Eliassen JC, Komoroski RA, Chu WJ, Welge JA, Blom TJ, Rummelhoff E, Tallman M, Lee JH, Adler CM. Neurophysiological effects of multiple mood episodes in bipolar disorder. Bipolar Disord 2019; 21:503-513. [PMID: 31025452 DOI: 10.1111/bdi.12782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Bipolar disorder is marked by progressive symptomatic changes, which have been linked with episode-related structural findings-particularly in the prefrontal cortex. However, few studies have examined neurofunctional and neurochemical effects of disease burden. In this study, we compared first- and multi-episode bipolar individuals. We hypothesized that the latter would demonstrate evidence of neurophysiological differences consistent with a model of progressive functional degradation of these networks. METHODS First- and multi-episode manic bipolar subjects participated in functional magnetic resonance imaging (fMRI) including a continuous performance task with emotional distractors, and in single-voxel (1 H) magnetic resonance spectroscopy (MRS). A priori fMRI regions-of-interest (ROI) included structures comprising prefrontal-striatal-amygdala networks; (1 H)MRS voxels were placed within bilateral ventrolateral prefrontal (VLPFC) and anterior cingulate cortex (ACC). Both ROI and voxel-based brain activation in response to emotional stimuli, and neurochemical concentrations derived from (1 H)MRS were compared across bipolar groups. RESULTS Multi-episode bipolar subjects showed relatively lower regional activation across prefrontal-striatal-amygdala networks, including bilateral VLPFC, orbitofrontal cortex, ACC, putamen, caudate, and amygdala. Exploratory whole-brain, voxel-based analysis suggested additional areas of lower activation extending into Brodmann area 22, posterior parietal regions, and right thalamus. Glutamate and N-acetylaspartate (NAA) concentrations were also relatively lower in the ACC of multi-episode subjects. CONCLUSIONS Disease burden, exemplified by multiple affective episodes is associated with evidence of widespread decrements in affective network activity. Lower ACC NAA concentration is similarly consistent with a model of progressive functional deficits. These findings support the functional significance of previously observed progressive structural changes throughout these regions.
Collapse
Affiliation(s)
- Logan Borgelt
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stephen M Strakowski
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Psychiatry, Dell Medical School of The University of Texas at Austin, Austin, Texas
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wade Weber
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James C Eliassen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Richard A Komoroski
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wen-Jang Chu
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Thomas J Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Emily Rummelhoff
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maxwell Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jing-Huei Lee
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
31
|
Nold V, Sweatman C, Karabatsiakis A, Böck C, Bretschneider T, Lawless N, Fundel-Clemens K, Kolassa IT, Allers KA. Activation of the kynurenine pathway and mitochondrial respiration to face allostatic load in a double-hit model of stress. Psychoneuroendocrinology 2019; 107:148-159. [PMID: 31129488 DOI: 10.1016/j.psyneuen.2019.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/24/2022]
Abstract
Allostasis is the process by which the body's physiological systems adapt to environmental changes. Chronic stress increases the allostatic load to the body, producing wear and tear that could, over time, become pathological. In this study, young adult male Wistar Kyoto rats were exposed to an unpredictable chronic mild stress (uCMS) protocol to increase allostatic load. First, physiological systems which may be affected by extended uCMS exposure were assessed. Secondly, 5 weeks of uCMS were used to investigate early adaptations in the previously selected systems. Adverse experiences during developmentally sensitive periods like adolescence are known to severely alter the individual stress vulnerability with long-lasting effects. To elucidate how early life adversity impacts stress reactivity in adulthood, an additional group with juvenile single-housing (JSH) prior to uCMS was included in the second cohort. The aim of this work was to assess the impact of chronic stress with or without adversity during adolescence on two domains known to be impacted in numerous stress-related disorders: mitochondrial energy metabolism and the immune system. Both, uCMS and adolescence stress increased kynurenine and kynurenic acid in plasma, suggesting a protective, anti-oxidant response from the kynurenine pathway. Furthermore, uCMS resulted in a down-regulation of immediate early gene expression in the prefrontal cortex and hippocampus, while only rats with the double-hit of adolescent stress and uCMS demonstrated increased mitochondrial activity in the hippocampus. These results suggest that early life adversity may impact on allostatic load by increasing energetic requirements in the brain.
Collapse
Affiliation(s)
- V Nold
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm, Germany; Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, Biberach a. d. Riss, Germany
| | - C Sweatman
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, Biberach a. d. Riss, Germany
| | - A Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm, Germany
| | - C Böck
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm, Germany
| | - T Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, Biberach a. d. Riss, Germany
| | - N Lawless
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 65, Biberach a.d. Riss, Germany
| | - K Fundel-Clemens
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, Birkendorferstraße 65, Biberach a.d. Riss, Germany
| | - I-T Kolassa
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, Ulm, Germany
| | - K A Allers
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstraße 65, Biberach a. d. Riss, Germany.
| |
Collapse
|
32
|
Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol Psychiatry 2019; 24:936-951. [PMID: 30089789 DOI: 10.1038/s41380-018-0133-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.
Collapse
|
33
|
Namkung H, Lee BJ, Sawa A. Causal Inference on Pathophysiological Mediators in Psychiatry. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:17-23. [PMID: 30850434 DOI: 10.1101/sqb.2018.83.037655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supported by technological advances and collaborative efforts, psychiatric genetics has provided robust genetic findings in the past decade, particularly through genome-wide association studies (GWASs). However, translating these genetic findings into biological mechanisms and new therapies has been enormously challenging because of the complexity of their interpretation. Furthermore, the heterogeneity among patients with the same diagnosis, such as schizophrenia or major depressive disorder, challenges the biological validity of existing categorical approaches in clinical nosology, which is further complicated by the pleiotropic nature of many genetic variants across multiple disorders. Therefore, in the post-GWAS era, the greatest challenge lies in integrating such enriched genetic information with functional dimensions of neurobiological measures and observable behaviors. In this integration, the causal inference from genotypes to phenotypes through intermediate biological processes is of particular importance. In this review, we aim to construct an intellectual framework in which we may obtain causal, mechanistic insights into how multifactorial etiologies-in particular, many genetic variants-affect downstream biological pathways that lead to dimensions of psychiatric relevance.
Collapse
Affiliation(s)
- Ho Namkung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Brian J Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Maryland 21287, USA
| |
Collapse
|
34
|
van Hugte E, Nadif Kasri N. Modeling Psychiatric Diseases with Induced Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:297-312. [PMID: 31705501 DOI: 10.1007/978-981-32-9721-0_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of disorders that are challenging to model and treat, due to their underlying complex genetic architecture and clinical variability. Presently, increasingly more studies are making use of induced pluripotent stem cell (iPSC)-derived neurons, reprogrammed from patient somatic cells, to model neuropsychiatric disorders. iPSC-derived neurons offer the possibility to recapitulate relevant disease biology in the context of the individual patient genetic background. In addition to disease modeling, iPSC-derived neurons offer unprecedented opportunities in drug screening. In this chapter, the current status of iPSC disease modeling for neuropsychiatric disorders is presented. Both 2D and 3D disease modeling approaches are discussed as well as the generation of different neuronal cell types that are relevant for studying neuropsychiatric disorders. Moreover, the advantages and limitations are highlighted in addition to the future perspectives of using iPSC-derived neurons in the uncovering of robust cellular phenotypes that consecutively have the potential to lead to clinical developments.
Collapse
Affiliation(s)
- Eline van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
- Academic Center for Epileptology Kempenhaeghe, Heeze, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Hoffmann A, Spengler D. The Mitochondrion as Potential Interface in Early-Life Stress Brain Programming. Front Behav Neurosci 2018; 12:306. [PMID: 30574076 PMCID: PMC6291450 DOI: 10.3389/fnbeh.2018.00306] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play a central role in cellular energy-generating processes and are master regulators of cell life. They provide the energy necessary to reinstate and sustain homeostasis in response to stress, and to launch energy intensive adaptation programs to ensure an organism’s survival and future well-being. By this means, mitochondria are particularly apt to mediate brain programming by early-life stress (ELS) and to serve at the same time as subcellular substrate in the programming process. With a focus on mitochondria’s integrated role in metabolism, steroidogenesis and oxidative stress, we review current findings on altered mitochondrial function in the brain, the placenta and peripheral blood cells following ELS-dependent programming in rodents and recent insights from humans exposed to early life adversity (ELA). Concluding, we propose a role of the mitochondrion as subcellular intersection point connecting ELS, brain programming and mental well-being, and a role as a potential site for therapeutic interventions in individuals exposed to severe ELS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
36
|
Zeng XF, Li Q, Li J, Wong N, Li Z, Huang J, Yang G, Sham PC, Li SB, Lu G. HIV-1 Tat and methamphetamine co-induced oxidative cellular injury is mitigated by N-acetylcysteine amide (NACA) through rectifying mTOR signaling. Toxicol Lett 2018; 299:159-171. [PMID: 30261225 DOI: 10.1016/j.toxlet.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023]
Abstract
Methamphetamine (Meth) is an addictive psychostimulant whose abuse is intimately linked to increased risks for HIV-1 infection. Converging lines of evidence indicate that Meth also aggravates the symptoms of HIV-associated neurocognitive disorders (HAND), though the underlying mechanisms remain poorly understood. By using the lipophilic antioxidant N-acetylcysteine amide (NACA) as an interventional agent, we examined the roles of oxidative stress in autophagy and apoptosis induced by HIV-Tat (the transactivator of transcription), Meth or their combined treatment in human SH-SY5Y neuroblastoma cells and in the rat striatum. Oxidative stress was monitored in terms of the production of intracellular reactive oxygen species (ROS) and antioxidant reserves including glutathione peroxidase (GPx) and Cu,Zn-superoxide dismutase (SOD). NACA significantly reduced the level of ROS and restored GPx and SOD to levels comparable to that of normal control, implying a cytoprotective effect of NACA against oxidative stress elicited by Tat- and/or Meth. Protein expression of mammalian target of rapamycin (mTOR) was measured in SH-SY5Y cells and in the rat striatum to further explore the underlying mechanism of NACA protect against oxidative stress. The results support a beneficial effect of NACA in vivo and in vitro through rectification of the mTOR signaling pathway. Collectively, our study shows that NACA protects against Meth and/or Tat-induced cellular injury in vitro and in the rat striatum in vivo by attenuating oxidative stress, apoptosis and autophagy, at least in part, via modulation of mTOR signaling.
Collapse
Affiliation(s)
- Xiao-Feng Zeng
- School of Forensic Medicine, Xi,an Jiaotong University, Xi'an, Shanxi Province, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qi Li
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Naikei Wong
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Shenzhen University, Shenzhen 518112, Hong Kong, China
| | - Zhen Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Center for Genomic Sciences, The University of Hong Kong, Hong Kong, China
| | - Sheng-Bin Li
- School of Forensic Medicine, Xi,an Jiaotong University, Xi'an, Shanxi Province, China.
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|
37
|
Lockhart S, Sawa A, Niwa M. Developmental trajectories of brain maturation and behavior: Relevance to major mental illnesses. J Pharmacol Sci 2018; 137:1-4. [PMID: 29773518 PMCID: PMC8034585 DOI: 10.1016/j.jphs.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
Abstract
Adverse events in childhood and adolescence, such as social neglect or drug abuse, are known to lead to behavioral changes in young adulthood. This is particularly true for the subset of people who are intrinsically more vulnerable to stressful conditions. Yet the underlying mechanisms for such developmental trajectory from early life insult to aberrant adult behavior remains elusive. Adolescence is a period of dynamic physiological, psychological, and behavioral changes, encompassing a distinct neurodevelopmental stage called the 'critical period'. During adolescence, the brain is uniquely susceptible to stress. Stress mediators may lead to disturbances to biological processes that can cause permanent alterations in the adult stage, even as severe as the onset of mental illness when paired with genetic risk and environmental factors. Understanding the molecular factors governing the critical period and how stress can disturb the maturation processes will allow for better treatment and prevention of late adolescent/young adult onset psychiatric disorders.
Collapse
Affiliation(s)
- Sedona Lockhart
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Minae Niwa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
38
|
Andreazza AC, Nierenberg AA. Mitochondrial Dysfunction: At the Core of Psychiatric Disorders? Biol Psychiatry 2018; 83:718-719. [PMID: 29628041 DOI: 10.1016/j.biopsych.2018.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Ana C Andreazza
- Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew A Nierenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|