1
|
Long Z, Li J, Marino M. Brain structural changes underlying clinical symptom improvement following fast-acting treatments in treatment resistant depression. J Affect Disord 2025; 369:52-60. [PMID: 39326585 DOI: 10.1016/j.jad.2024.09.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Electroconvulsive therapy (ECT), ketamine infusion (KI), and total sleep deprivation (TSD) are effective and fast in treating patients with treatment-resistant depression (TRD). However, it remains unclear whether the three treatments have the same effect on clinical symptom improvement and have common brain structural mechanisms. METHODS The current study included 127 TRD patients and 37 healthy controls, which were obtained from the Perturbation of the Treatment Resistant Depression Connectome Project. We aimed to investigate the shared and distinct brain structural changes underlying clinical symptom improvement among ECT, KI, and TSD treatments. RESULTS All of the three treatments significantly reduced the depressive symptoms in TRD patients, but they differently affected other clinical measurements. Neuroimaging results also revealed that all of ECT, KI, and TSD treatments significantly increased gray matter volume of left caudate after treatment in TRD patients. However, the gray matter volume of other brain regions including hippocampus, parahippocampus, amygdala, insula, fusiform gyrus, several occipital and temporal areas was increased only after ECT treatment. Still, the baseline or the change of gray matter volume did not correlate with the depressive symptom improvement for all of the three treatments. LIMITATIONS A higher sample size would be required to further validate our findings. CONCLUSIONS The results observed in the current study suggested that the ECT, KI, and TSD treatments differently affected clinical measurements and brain structures in TRD patients, though all of them were effective in depressive symptom improvement, which might facilitate the development of personalized treatment protocol for this disease.
Collapse
Affiliation(s)
- Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China.
| | - Jiao Li
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Marco Marino
- Department of General Psychology, University of Padua, Italy; Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Eloge JC, Cooper JJ, Ross DA. Along Came the DSM-Melancholic Depression, the Dexamethasone Suppression Test, and How Psychiatry Lost the Brain. Biol Psychiatry 2025; 97:9-11. [PMID: 39613386 DOI: 10.1016/j.biopsych.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Affiliation(s)
- Joshua C Eloge
- Department of Psychiatry, Rush University Medical Center, Chicago, Illinois
| | - Joseph J Cooper
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.
| | - David A Ross
- Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Kurhan F, Yıldız V, Kamış GZ, Karataş K, Batur M. Evaluation of the Electroconvulsive Therapy's Impact on Retinal Structures in First-Episode Psychosis Patients Using Optical Coherence Tomography. Schizophr Bull 2024:sbae187. [PMID: 39591543 DOI: 10.1093/schbul/sbae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is a complex disorder thought to have neurodevelopmental and neurodegenerative aspects. Optical coherence tomography (OCT) measurements of schizophrenia patients revealed that the retinal layers of these patients were thinner than those of healthy controls. This study aimed to examine retinal changes in first-episode psychosis patients treated with electroconvulsive therapy (ECT) via OCT. STUDY DESIGN Thirty first-episode psychosis patients (13 men, 17 women) aged 18 to 65 years who had no comorbidities and no smoking, alcohol, or substance use disorders and who were treated with ECT were included in the study. The patients were evaluated using OCT before treatment and after an average of 7.4 sessions of ECT in remission, and the results were compared. STUDY RESULTS Statistically significant increases were observed in retinal layer thickness, inner plexiform layer, outer plexiform layer, and total retinal thickness within the 1 mm ring (P = .015, P = .045, and P = .025, respectively). The inner nuclear layer thickness significantly increased within the 6 mm ring (P = .037). CONCLUSIONS In conclusion, ECT noticeably affected retinal structures, particularly according to similar measurements, indicating potential improvements in and the ability to reverse neuronal degeneration after one month of treatment. This study highlights the potential impact of ECT on retinal structures in individuals experiencing first-episode psychosis, as it can enhance specific retinal layers and reverse neuronal degeneration.
Collapse
Affiliation(s)
- Faruk Kurhan
- Department of Psychiatry Faculty of Medicine, Van Yuzuncu Yil University, Van 65100, Turkey
| | - Veysi Yıldız
- Department of Ophthalmology, Faculty of Medicine, Van Yuzuncu Yil University, Van 65100, Turkey
| | - Gülsüm Zuhal Kamış
- Department of Psychiatry, Ankara Bilkent City Hospital Clinic Ankara, 06800, Turkey
| | - Kübra Karataş
- Department of Ophthalmology, Faculty of Medicine, Van Yuzuncu Yil University, Van 65100, Turkey
| | - Muhammed Batur
- Department of Ophthalmology, Faculty of Medicine, Van Yuzuncu Yil University, Van 65100, Turkey
| |
Collapse
|
4
|
Hassan J, Péran P, Yrondi A. Neuroimaging correlates of cognitive disorders secondary to electroconvulsive therapy: A systematic review. L'ENCEPHALE 2024:S0013-7006(24)00201-X. [PMID: 39510874 DOI: 10.1016/j.encep.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES Electroconvulsive therapy is known as an efficient therapy, which is sometimes recommended for the management of severe and resistant depression. However, ECT is associated with cognitive adverse effects. The study of the neurobiological correlates of the cognitive adverse effects of ECT has been covered in few published reviews. However, these mechanisms have been investigated in an increasing number of studies in recent years, particularly in neuroimaging. This systematic review of the literature focuses on correlates between changes in structural or functional neuroimaging and impairment of cognitive functions during the ECT treatment. METHODS We conducted a systematic review of the literature using PRISMA methodology. Searches were performed on the Medline and Web of Science databases using the following equation: "electroconvulsive therapy AND (MRI OR fMRI OR DTI OR neuroimaging) AND depression AND cogniti*". RESULTS This article highlights the significant heterogeneity of the results. In structural imaging, approximately 50% of the studies did not report any correlation between volumetric changes and neuropsychological changes. In studies that did highlight a correlation, the latter was mainly reported with changes in the hippocampus. From a functional perspective, we highlighted a correlation between changes in the connectivity of the hippocampal region and cognition. CONCLUSION These results demonstrate a growing interest in understanding the neurobiological mechanisms underlying cognitive disorders secondary to ECT treatment. The ultimate aim behind this understanding is to adopt a more effective prevention strategy vis-à-vis these adverse effects.
Collapse
Affiliation(s)
- Johann Hassan
- Service de Psychiatrie et de Psychologie Médicale (Department of Psychiatry and Medical Psychology), Centre Expert Dépression Résistante FondaMental, Hôpital Purpan, CHU de Toulouse, Toulouse, France; Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France
| | - Patrice Péran
- Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France
| | - Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale (Department of Psychiatry and Medical Psychology), Centre Expert Dépression Résistante FondaMental, Hôpital Purpan, CHU de Toulouse, Toulouse, France; Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France.
| |
Collapse
|
5
|
Ji Y, Huang W, Zheng S, Zheng H, Qian R, Duan N, Li W, Wang L, Wu X, Wang K, Tian Y. Trajectory of associative memory impairment during electroconvulsive therapy in depression. J Psychiatr Res 2024; 179:69-76. [PMID: 39260110 DOI: 10.1016/j.jpsychires.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Memory impairment is a serious cognitive side effect of electroconvulsive therapy (ECT) in the treatment of major depressive episodes (MDEs) and has garnered widespread attention in clinical practice, but its underlying evolution pattern during the course of ECT remains rarely understood in detail. Associative memory (AM) is a core indicator that reflects memory impairment in ECT. This study aimed to identify the dynamic trajectory of AM impairment and explore associated predictive factors. 405 intensive longitudinal AM data from 81 patients with MDE were collected at the baseline, after the first, third, fifth, and eighth ECT using five sets of face-cued word memory paradigms. Changes in AM score over time were analyzed using a linear mixed effects model. Trajectory subgroups and predictive factors were investigated using growth mixture model and logistic regression. AM score during ECT were significantly lower than at baseline, with the lowest scores observed after the eighth ECT session. Two trajectories of rapid (N = 56, 69.14%) and slow (N = 25, 30.86%) AM impairment were differentiated. Older female with lower education level were significant predictors contributing to more rapid memory impairment for ECT. The evolving pattern of associative memory impairment during ECT appears to occur early and worsen with subsequent treatment. This study may provide the important evidence understanding of the number effect of ECT sessions on memory impairment and suggest individual factors for predicting ECT memory outcome.
Collapse
Affiliation(s)
- Yang Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wanling Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shuang Zheng
- Anhui Mental Health Center, Hefei, 230022, China
| | - Hao Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Rui Qian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Nanxue Duan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wenfei Li
- Anhui Mental Health Center, Hefei, 230022, China
| | - Long Wang
- Anhui Mental Health Center, Hefei, 230022, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China; The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Mental Health Center, Hefei, 230022, China; The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China.
| |
Collapse
|
6
|
Al-Sharif NB, Zavaliangos-Petropulu A, Narr KL. A review of diffusion MRI in mood disorders: mechanisms and predictors of treatment response. Neuropsychopharmacology 2024; 50:211-229. [PMID: 38902355 PMCID: PMC11525636 DOI: 10.1038/s41386-024-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
By measuring the molecular diffusion of water molecules in brain tissue, diffusion MRI (dMRI) provides unique insight into the microstructure and structural connections of the brain in living subjects. Since its inception, the application of dMRI in clinical research has expanded our understanding of the possible biological bases of psychiatric disorders and successful responses to different therapeutic interventions. Here, we review the past decade of diffusion imaging-based investigations with a specific focus on studies examining the mechanisms and predictors of therapeutic response in people with mood disorders. We present a brief overview of the general application of dMRI and key methodological developments in the field that afford increasingly detailed information concerning the macro- and micro-structural properties and connectivity patterns of white matter (WM) pathways and their perturbation over time in patients followed prospectively while undergoing treatment. This is followed by a more in-depth summary of particular studies using dMRI approaches to examine mechanisms and predictors of clinical outcomes in patients with unipolar or bipolar depression receiving pharmacological, neurostimulation, or behavioral treatments. Limitations associated with dMRI research in general and with treatment studies in mood disorders specifically are discussed, as are directions for future research. Despite limitations and the associated discrepancies in findings across individual studies, evolving research strongly indicates that the field is on the precipice of identifying and validating dMRI biomarkers that could lead to more successful personalized treatment approaches and could serve as targets for evaluating the neural effects of novel treatments.
Collapse
Affiliation(s)
- Noor B Al-Sharif
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Artemis Zavaliangos-Petropulu
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Kiebs M, Farrar DC, Yrondi A, Cardoner N, Tuovinen N, Redlich R, Dannlowski U, Soriano-Mas C, Dols A, Takamiya A, Tendolkar I, Narr KL, Espinoza R, Laroy M, van Eijndhoven P, Verwijk E, van Waarde J, Verdijk J, Maier HB, Nordanskog P, van Wingen G, van Diermen L, Emsell L, Bouckaert F, Repple J, Camprodon JA, Wade BSC, Donaldson KT, Oltedal L, Kessler U, Hammar Å, Sienaert P, Hebbrecht K, Urretavizcaya M, Belge JB, Argyelan M, Baradits M, Obbels J, Draganski B, Philipsen A, Sartorius A, Rhebergen D, Ousdal OT, Hurlemann R, McClintock S, Erhardt EB, Abbott CC. Electroconvulsive therapy and cognitive performance from the Global ECT MRI Research Collaboration. J Psychiatr Res 2024; 179:199-208. [PMID: 39312853 DOI: 10.1016/j.jpsychires.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
The Global ECT MRI Research Collaboration (GEMRIC) has collected clinical and neuroimaging data of patients treated with electroconvulsive therapy (ECT) from around the world. Results to date have focused on neuroimaging correlates of antidepressant response. GEMRIC sites have also collected longitudinal cognitive data. Here, we summarize the existing GEMRIC cognitive data and provide recommendations for prospective data collection for future ECT-imaging investigations. We describe the criteria for selection of cognitive measures for mega-analyses: Trail Making Test Parts A (TMT-A) and B (TMT-B), verbal fluency category (VFC), verbal fluency letter (VFL), and percent retention from verbal learning and memory tests. We performed longitudinal data analysis focused on the pre-/post-ECT assessments with healthy comparison (HC) subjects at similar timepoints and assessed associations between demographic and ECT parameters with cognitive changes. The study found an interaction between electrode placement and treatment number for VFC (F(1,107) = 4.14, p = 0.04). Higher treatment was associated with decreased VFC performance with right unilateral electrode placement. Percent retention showed a main effect for group, with post-hoc analysis indicating decreased cognitive performance among the HC group. However, there were no significant effects of group or group interactions observed for TMT-A, TMT-B, or VFL. We assessed the current GEMRIC cognitive data and acknowledge the limitations associated with this data set including the limited number of neuropsychological domains assessed. Aside from the VFC and treatment number relationship, we did not observe ECT-mediated neurocognitive effects in this investigation. We provide prospective cognitive recommendations for future ECT-imaging investigations focused on strong psychometrics and minimal burden to subjects.
Collapse
Affiliation(s)
- Maximilian Kiebs
- Department of Psychiatry and Psychotherapy, School of Medicine and Health Sciences, University of Oldenburg, Oldenberg, Germany; Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| | - Danielle C Farrar
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU de Toulouse, Hôpital Purpan, ToNIC Toulouse NeuroImaging Centre, Toulouse, France; Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Narcis Cardoner
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Noora Tuovinen
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Division of Psychiatry I, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronny Redlich
- Department of Psychology, University of Halle, Germany; Institute of Translational Psychiatry, University of Muenster, Germany; Halle-Jena-Magdeburg, German Center for Mental Health (DZPG), Germany
| | - Udo Dannlowski
- Institute of Translational Psychiatry, University of Muenster, Germany
| | - Carles Soriano-Mas
- Network Center for Biomedical Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, Universitat de Barcelona - UB, Barcelona, Spain
| | - Annemiek Dols
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychiatry, Amsterdam UMC location, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Akihiro Takamiya
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| | - Indira Tendolkar
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Katherine L Narr
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Maarten Laroy
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esmée Verwijk
- Department of Psychology, Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands; Department of Medical Psychology, UMC Amsterdam, Amsterdam, the Netherlands; ECT-Department, Parnassia Psychiatric Institute, The Hague, the Netherlands
| | | | - Joey Verdijk
- Department of Psychiatry, Rijnstate, Arnhem, the Netherlands
| | - Hannah B Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Pia Nordanskog
- Center for Social and Affective Neuroscience (CSAN), Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Psychiatry in Linköping, Linköping, Sweden
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC location, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience Amsterdam, the Netherlands
| | - Linda van Diermen
- Department of Psychiatry, University Hospital of Liège, Liege, Belgium; Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Louise Emsell
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Geriatric Psychiatry, University Psychiatry Center (UPC), KU Leuven, Leuven, Belgium
| | - Filip Bouckaert
- Department of Neurosciences, Neuropsychiatry, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Geriatric Psychiatry, University Psychiatry Center (UPC), KU Leuven, Leuven, Belgium
| | - Jonathan Repple
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt, Germany; Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Joan A Camprodon
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin S C Wade
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - K Tristan Donaldson
- Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Ute Kessler
- Department of Psychiatry, Haukeland University Hospital, Bergen, Norway; University of Bergen, Bergen, Norway
| | - Åsa Hammar
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden; Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Skåne, Sweden
| | - Pascal Sienaert
- Academic Center for ECT and Neuromodulation (AcCENT), Department of Neurosciences, Neuropsychiatry, University Psychiatry Center (UPC), KU Leuven, Leuven, Belgium
| | - Kaat Hebbrecht
- Academic Center for ECT and Neuromodulation (AcCENT), Department of Neurosciences, Neuropsychiatry, University Psychiatry Center (UPC), KU Leuven, Leuven, Belgium
| | - Mikel Urretavizcaya
- Network Center for Biomedical Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Neurosciences Group - Psychiatry and Mental Health, Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain; Department of Clinical Sciences, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Jean-Baptiste Belge
- Department of Psychiatry, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Miklos Argyelan
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Mate Baradits
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Jasmien Obbels
- Academic Center for ECT and Neuromodulation (AcCENT), Department of Neurosciences, Neuropsychiatry, University Psychiatry Center (UPC), KU Leuven, Leuven, Belgium
| | - Bogdan Draganski
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Didericke Rhebergen
- Department of Psychiatry, Amsterdam UMC location, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; GGZ Central, Mental Health Institute, Amersfoort, the Netherlands
| | - Olga Therese Ousdal
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Norway
| | - René Hurlemann
- Department of Psychiatry and Psychotherapy, School of Medicine and Health Sciences, University of Oldenburg, Oldenberg, Germany
| | - Shawn McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Erik B Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Christopher C Abbott
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
8
|
De Jager JE, Boesjes R, Roelandt GHJ, Koliaki I, Sommer IEC, Schoevers RA, Nuninga JO. Shared effects of electroconvulsive shocks and ketamine on neuroplasticity: A systematic review of animal models of depression. Neurosci Biobehav Rev 2024; 164:105796. [PMID: 38981574 DOI: 10.1016/j.neubiorev.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Electroconvulsive shocks (ECS) and ketamine are antidepressant treatments with a relatively fast onset of therapeutic effects compared to conventional medication and psychotherapy. While the exact neurobiological mechanisms underlying the antidepressant response of ECS and ketamine are unknown, both interventions are associated with neuroplasticity. Restoration of neuroplasticity may be a shared mechanism underlying the antidepressant efficacy of these interventions. In this systematic review, literature of animal models of depression is summarized to examine the possible role of neuroplasticity in ECS and ketamine on a molecular, neuronal, synaptic and functional level, and specifically to what extent these mechanisms are shared between both interventions. The results highlight that hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) levels are consistently increased after ECS and ketamine. Moreover, both interventions positively affect glutamatergic neurotransmission, astrocyte and neuronal morphology, synaptic density, vasculature and functional plasticity. However, a small number of studies investigated these processes after ECS. Understanding the shared fundamental mechanisms of fast-acting antidepressants can contribute to the development of novel therapeutic approaches for patients with severe depression.
Collapse
Affiliation(s)
- Jesca E De Jager
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands.
| | - Rutger Boesjes
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Gijs H J Roelandt
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Ilektra Koliaki
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands
| | - Robert A Schoevers
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Jasper O Nuninga
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands; University Medical Centre Utrecht, Department of Psychiatry, the Netherlands
| |
Collapse
|
9
|
Abe Y, Erchinger VJ, Ousdal OT, Oltedal L, Tanaka KF, Takamiya A. Neurobiological mechanisms of electroconvulsive therapy for depression: Insights into hippocampal volumetric increases from clinical and preclinical studies. J Neurochem 2024; 168:1738-1750. [PMID: 38238933 DOI: 10.1111/jnc.16054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 10/04/2024]
Abstract
Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy-resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT-related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT-related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT-induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Vera J Erchinger
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Olga Therese Ousdal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Khadka N, Deng ZD, Lisanby SH, Bikson M, Camprodon JA. Computational Models of High-Definition Electroconvulsive Therapy for Focal or Multitargeting Treatment. J ECT 2024:00124509-990000000-00211. [PMID: 39185880 DOI: 10.1097/yct.0000000000001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
ABSTRACT Attempts to dissociate electroconvulsive therapy (ECT) therapeutic efficacy from cognitive side effects of ECT include modifying electrode placement, but traditional electrode placements employing 2 large electrodes are inherently nonfocal, limiting the ability to selectively engage targets associated with clinical benefit while avoiding nontargets associated with adverse side effects. Limited focality represents a technical limitation of conventional ECT, and there is growing evidence that the spatial distribution of the ECT electric fields induced in the brain drives efficacy and side effects. Computational models can be used to predict brain current flow patterns for existing and novel ECT montages. Using finite element method simulations (under quasi-static, nonadaptive assumptions, 800-mA total current), the electric fields generated in the superficial cortex and subcortical structures were predicted for the following traditional ECT montages (bilateral temporal, bifrontal, right unilateral) and experimental montages (focal electrically administered seizure therapy, lateralized high-definition [HD]-ECT, unilateral 4 × 1-ring HD-ECT, bilateral 4 × 1-ring HD-ECT, and a multipolar HD-ECT). Peak brain current density in regions of interest was quantified. Conventional montages (bilateral bifrontal, right unilateral) each produce distinct but diffuse and deep current flow. Focal electrically administered seizure therapy and lateralized HD-ECT produce unique, lateralized current flow, also impacting specific deep regions. A 4 × 1-ring HD-ECT restricts current flow to 1 (unilateral) or 2 (bilateral) cortical regions. Multipolar HD-ECT shows optimization to a specific target set. Future clinical trials are needed to determine whether enhanced control over current distribution is achieved with these experimental montages, and the resultant seizures, improve the risk/benefit ratio of ECT.
Collapse
Affiliation(s)
- Niranjan Khadka
- From the Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, CUNY, NY
| | - Joan A Camprodon
- From the Division of Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Denier N, Grieder M, Jann K, Breit S, Mertse N, Walther S, Soravia LM, Meyer A, Federspiel A, Wiest R, Bracht T. Analyzing fractal dimension in electroconvulsive therapy: Unraveling complexity in structural and functional neuroimaging. Neuroimage 2024; 297:120671. [PMID: 38901774 DOI: 10.1016/j.neuroimage.2024.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Numerous studies show that electroconvulsive therapy (ECT) induces hippocampal neuroplasticity, but findings are inconsistent regarding its clinical relevance. This study aims to investigate ECT-induced plasticity of anterior and posterior hippocampi using mathematical complexity measures in neuroimaging, namely Higuchi's fractal dimension (HFD) for fMRI time series and the fractal dimension of cortical morphology (FD-CM). Furthermore, we explore the potential of these complexity measures to predict ECT treatment response. METHODS Twenty patients with a current depressive episode (16 with major depressive disorder and 4 with bipolar disorder) underwent MRI-scans before and after an ECT-series. Twenty healthy controls matched for age and sex were also scanned twice for comparison purposes. Resting-state fMRI data were processed, and HFD was computed for anterior and posterior hippocampi. Group-by-time effects for HFD in anterior and posterior hippocampi were calculated and correlations between HFD changes and improvement in depression severity were examined. For FD-CM analyses, we preprocessed structural MRI with CAT12's surface-based methods. We explored group-by-time effects for FD-CM and the predictive value of baseline HFD and FD-CM for treatment outcome. RESULTS Patients exhibited a significant increase in bilateral hippocampal HFD from baseline to follow-up scans. Right anterior hippocampal HFD increase was associated with reductions in depression severity. We found no group differences and group-by-time effects in FD-CM. After applying a whole-brain regression analysis, we found that baseline FD-CM in the left temporal pole predicted reduction of overall depression severity after ECT. Baseline hippocampal HFD did not predict treatment outcome. CONCLUSION This study suggests that HFD and FD-CM are promising imaging markers to investigate ECT-induced neuroplasticity associated with treatment response.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
12
|
Laroy M, Bouckaert F, Ousdal OT, Dols A, Rhebergen D, van Exel E, van Wingen G, van Waarde J, Verdijk J, Kessler U, Bartsch H, Jorgensen MB, Paulson OB, Nordanskog P, Prudic J, Sienaert P, Vandenbulcke M, Oltedal L, Emsell L. Characterization of gray matter volume changes from one week to 6 months after termination of electroconvulsive therapy in depressed patients. Brain Stimul 2024; 17:876-886. [PMID: 39059711 DOI: 10.1016/j.brs.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Increased gray matter volume (GMV) following electroconvulsive therapy (ECT) has been well-documented, with limited studies reporting a subsequent decrease in GMV afterwards. OBJECTIVE This study characterized the reversion pattern of GMV after ECT and its association with clinical depression outcome, using multi-site triple time-point data from the Global ECT-MRI Research Collaboration (GEMRIC). METHODS 86 subjects from the GEMRIC database were included, and GMV in 84 regions-of-interest (ROI) was obtained from automatic segmentation of T1 MRI images at three timepoints: pre-ECT (T0), within one-week post-ECT (T1), and one to six months post-ECT (T2). RM-ANOVAs were used to assess longitudinal changes and LMM analyses explored associations between GMV changes and demographical and clinical characteristics. RESULTS 63 of the 84 ROIs showed a significant increase-and-decrease pattern (RM-ANOVA, Bonferroni corrected p < 0.00059). Post hoc tests indicated a consistent pattern in each of these 63 ROIs: significant increase from T0 to T1inGMV, followed by significant decrease from T1 to T2 and no difference between T0 and T2, except for both amygdalae, right hippocampus and pars triangularis, which showed the same increase and decrease but GMV at T2 remained higher compared to T0. No consistent relationship was found between GMV change pattern and clinical status. CONCLUSION The GEMRIC cohort confirmed a rapid increase of GMV after ECT followed by reversion of GMV one to six months thereafter. The lack of association between the GMV change pattern and depression outcome scores implies a transient neurobiological effect of ECT unrelated to clinical improvement.
Collapse
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium.
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Annemieke Dols
- Department of Psychiatry, UMC Utrecht, Division Brain, Utrecht, the Netherlands; Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Didi Rhebergen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Mental Health Institute, GGZ Centraal, Amersfoort, the Netherlands
| | - Eric van Exel
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jeroen van Waarde
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joey Verdijk
- Department of Psychiatry, Rijnstate Hospital, Arnhem, the Netherlands; University of Twente, Department of Clinical Neurophysiology, Enschede, the Netherlands
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hauke Bartsch
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Martin Balslev Jorgensen
- Psychiatric Center Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Olaf B Paulson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Pia Nordanskog
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joan Prudic
- Department of Psychiatry, Columbia University Irving Medical Center, USA
| | - Pascal Sienaert
- KU Leuven, Department of Neurosciences, Academic Centre for ECT and Neuromodulation, B-3000, Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, B-3000, Leuven, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, B-3000, Leuven, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| |
Collapse
|
13
|
Abe Y, Yokoyama K, Kato T, Yagishita S, Tanaka KF, Takamiya A. Neurogenesis-independent mechanisms of MRI-detectable hippocampal volume increase following electroconvulsive stimulation. Neuropsychopharmacology 2024; 49:1236-1245. [PMID: 38195908 PMCID: PMC11224397 DOI: 10.1038/s41386-023-01791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective psychiatric treatments but the underlying mechanisms are still unclear. In vivo human magnetic resonance imaging (MRI) studies have consistently reported ECT-induced transient hippocampal volume increases, and an animal model of ECT (electroconvulsive stimulation: ECS) was shown to increase neurogenesis. However, a causal relationship between neurogenesis and MRI-detectable hippocampal volume increases following ECT has not been verified. In this study, mice were randomly allocated into four groups, each undergoing a different number of ECS sessions (e.g., 0, 3, 6, 9). T2-weighted images were acquired using 11.7-tesla MRI. A whole brain voxel-based morphometry analysis was conducted to identify any ECS-induced brain volume changes. Additionally, a histological examination with super-resolution microscopy was conducted to investigate microstructural changes in the brain regions that showed volume changes following ECS. Furthermore, parallel experiments were performed on X-ray-irradiated mice to investigate the causal relationship between neurogenesis and ECS-related volume changes. As a result, we revealed for the first time that ECS induced MRI-detectable, dose-dependent hippocampal volume increase in mice. Furthermore, increased hippocampal volumes following ECS were seen even in mice lacking neurogenesis, suggesting that neurogenesis is not required for the increase. The comprehensive histological analyses identified an increase in excitatory synaptic density in the ventral CA1 as the major contributor to the observed hippocampal volume increase following ECS. Our findings demonstrate that modification of synaptic structures rather than neurogenesis may be the underlying biological mechanism of ECT/ECS-induced hippocampal volume increase.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 35 Shinanomachi, Tokyo, Shinju-ku, 160-8582, Japan
| | - Kiichi Yokoyama
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 35 Shinanomachi, Tokyo, Shinju-ku, 160-8582, Japan
| | - Tomonobu Kato
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 35 Shinanomachi, Tokyo, Shinju-ku, 160-8582, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, 35 Shinanomachi, Tokyo, Shinju-ku, 160-8582, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
14
|
Gbyl K, Labanauskas V, Lundsgaard CC, Mathiassen A, Ryszczuk A, Siebner HR, Rostrup E, Madsen K, Videbech P. Electroconvulsive therapy disrupts functional connectivity between hippocampus and posterior default mode network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110981. [PMID: 38373628 DOI: 10.1016/j.pnpbp.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The mechanisms underlying memory deficits after electroconvulsive therapy (ECT) remain unclear but altered functional interactions between hippocampus and neocortex may play a role. OBJECTIVES To test whether ECT reduces functional connectivity between hippocampus and posterior regions of the default mode network (DMN) and to examine whether altered hippocampal-neocortical functional connectivity correlates with memory impairment. A secondary aim was to explore if these connectivity changes are present 6 months after ECT. METHODS In-patients with severe depression (n = 35) received bitemporal ECT. Functional connectivity of the hippocampus was probed with resting-state fMRI before the first ECT-session, after the end of ECT, and at a six-month follow-up. Memory was assessed with the Verbal Learning Test - Delayed Recall. Seed-based connectivity analyses established connectivity of four hippocampal seeds, covering the anterior and posterior parts of the right and left hippocampus. RESULTS Compared to baseline, three of four hippocampal seeds became less connected to the core nodes of the posterior DMN in the week after ECT with Cohen's d ranging from -0.9 to -1.1. At the group level, patients showed post-ECT memory impairment, but individual changes in delayed recall were not correlated with the reduction in hippocampus-DMN connectivity. At six-month follow-up, no significant hippocampus-DMN reductions in connectivity were evident relative to pre-ECT, and memory scores had returned to baseline. CONCLUSION ECT leads to a temporary disruption of functional hippocampus-DMN connectivity in patients with severe depression, but the change in connectivity strength is not related to the individual memory impairment.
Collapse
Affiliation(s)
- Krzysztof Gbyl
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Vytautas Labanauskas
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Christoffer Cramer Lundsgaard
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - André Mathiassen
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Adam Ryszczuk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Egill Rostrup
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
| | - Kristoffer Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Borgers T, Enneking V, Klug M, Garbe J, Meinert H, Wulle M, König P, Zwiky E, Herrmann R, Selle J, Dohm K, Kraus A, Grotegerd D, Repple J, Opel N, Leehr EJ, Gruber M, Goltermann J, Meinert S, Bauer J, Heindel W, Kavakbasi E, Baune BT, Dannlowski U, Redlich R. Long-term effects of electroconvulsive therapy on brain structure in major depression. Psychol Med 2024; 54:940-950. [PMID: 37681274 DOI: 10.1017/s0033291723002647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies on major depressive disorder (MDD) have predominantly found short-term electroconvulsive therapy (ECT)-related gray matter volume (GMV) increases, but research on the long-term stability of such changes is missing. Our aim was to investigate long-term GMV changes over a 2-year period after ECT administration and their associations with clinical outcome. METHODS In this nonrandomized longitudinal study, patients with MDD undergoing ECT (n = 17) are assessed three times by structural MRI: Before ECT (t0), after ECT (t1) and 2 years later (t2). A healthy (n = 21) and MDD non-ECT (n = 33) control group are also measured three times within an equivalent time interval. A 3(group) × 3(time) ANOVA on whole-brain level and correlation analyses with clinical outcome variables is performed. RESULTS Analyses yield a significant group × time interaction (pFWE < 0.001) resulting from significant volume increases from t0 to t1 and decreases from t1 to t2 in the ECT group, e.g., in limbic areas. There are no effects of time in both control groups. Volume increases from t0 to t1 correlate with immediate and delayed symptom increase, while volume decreases from t1 to t2 correlate with long-term depressive outcome (all p ⩽ 0.049). CONCLUSIONS Volume increases induced by ECT appear to be a transient phenomenon as volume strongly decreased 2 years after ECT. Short-term volume increases are associated with less symptom improvement suggesting that the antidepressant effect of ECT is not due to volume changes. Larger volume decreases are associated with poorer long-term outcome highlighting the interplay between disease progression and structural changes.
Collapse
Affiliation(s)
- Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Jasper Garbe
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Hannah Meinert
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Marius Wulle
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Philine König
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
| | - Esther Zwiky
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
| | - Rebekka Herrmann
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
| | - Janine Selle
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
- Deutsches Zentrum für Psychische Gesundheit, German Center of Mental Health, Site Halle, MLU Halle, Halle, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 10, 60528 Frankfurt am Main, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Münster, Albert-Schweitzer-Campus 1, Building A16, 48149 Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Albert-Schweitzer-Campus 1, Building A16, 48149 Münster, Germany
| | - Erhan Kavakbasi
- Department of Psychiatry, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University Hospital Münster, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
- Department of Psychiatry, University of Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
- Department of Psychology, University of Halle, Emil-Abderhalden-Straße 26, 06108 Halle, Germany
- Deutsches Zentrum für Psychische Gesundheit, German Center of Mental Health, Site Halle, MLU Halle, Halle, Germany
| |
Collapse
|
16
|
Schreiner JE, Kessler U, Oedegaard KJ, Mardal KA, Oltedal L. Exploring New Electroencephalogram Parameters in Electroconvulsive Therapy. J ECT 2024; 40:20-30. [PMID: 37310067 DOI: 10.1097/yct.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE This pilot study aims to evaluate a novel metric based on the power spectrum of the EEG recordings from ECT-induced seizures-its association to volume changes in the hippocampus after ECT and improvement in depression rating scores. METHODS Depressed patients treated with ECT underwent brain magnetic resonance imaging before and after treatment and the EEG from each seizure was recorded (N = 29). Hippocampal volume changes and EEG parameters were recorded in addition to clinician-rated and self-reported measures of depressive symptoms. The slope of the power law in the power spectral density of the EEG was calculated. Multivariate linear models relating seizure parameters to volume change or clinical outcome were systematically and successively simplified. The best models were selected according to Akaike information criterion. RESULTS The slope of the power law was steeper in the right than the left hemisphere (P < 0.001). Electroencephalogram measures were included in the best models of volume change for both hippocampi as well as in the models explaining clinical outcome ( P = 0.014, P = 0.004). CONCLUSIONS In this pilot study, novel EEG measures were explored and contributed in models explaining the variation in volume change in the hippocampus and in clinical outcome after ECT.
Collapse
|
17
|
Abbott CC, Miller J, Farrar D, Argyelan M, Lloyd M, Squillaci T, Kimbrell B, Ryman S, Jones TR, Upston J, Quinn DK, Peterchev AV, Erhardt E, Datta A, McClintock SM, Deng ZD. Amplitude-determined seizure-threshold, electric field modeling, and electroconvulsive therapy antidepressant and cognitive outcomes. Neuropsychopharmacology 2024; 49:640-648. [PMID: 38212442 PMCID: PMC10876627 DOI: 10.1038/s41386-023-01780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024]
Abstract
Electroconvulsive therapy (ECT) pulse amplitude, which dictates the induced electric field (E-field) magnitude in the brain, is presently fixed at 800 or 900 milliamperes (mA) without clinical or scientific rationale. We have previously demonstrated that increased E-field strength improves ECT's antidepressant effect but worsens cognitive outcomes. Amplitude-determined seizure titration may reduce the E-field variability relative to fixed amplitude ECT. In this investigation, we assessed the relationships among amplitude-determined seizure-threshold (STa), E-field magnitude, and clinical outcomes in older adults (age range 50 to 80 years) with depression. Subjects received brain imaging, depression assessment, and neuropsychological assessment pre-, mid-, and post-ECT. STa was determined during the first treatment with a Soterix Medical 4×1 High Definition ECT Multi-channel Stimulation Interface (Investigation Device Exemption: G200123). Subsequent treatments were completed with right unilateral electrode placement (RUL) and 800 mA. We calculated Ebrain defined as the 90th percentile of E-field magnitude in the whole brain for RUL electrode placement. Twenty-nine subjects were included in the final analyses. Ebrain per unit electrode current, Ebrain/I, was associated with STa. STa was associated with antidepressant outcomes at the mid-ECT assessment and bitemporal electrode placement switch. Ebrain/I was associated with changes in category fluency with a large effect size. The relationship between STa and Ebrain/I extends work from preclinical models and provides a validation step for ECT E-field modeling. ECT with individualized amplitude based on E-field modeling or STa has the potential to enhance neuroscience-based ECT parameter selection and improve clinical outcomes.
Collapse
Affiliation(s)
| | - Jeremy Miller
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Danielle Farrar
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Miklos Argyelan
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Megan Lloyd
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Taylor Squillaci
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Brian Kimbrell
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Sephira Ryman
- Mind Research Network, Albuquerque, NM, USA
- Department of Neurology, Albuquerque, NM, USA
| | - Thomas R Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Joel Upston
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | | | - Shawn M McClintock
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhi-De Deng
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Bruin WB, Oltedal L, Bartsch H, Abbott C, Argyelan M, Barbour T, Camprodon J, Chowdhury S, Espinoza R, Mulders P, Narr K, Oudega M, Rhebergen D, Ten Doesschate F, Tendolkar I, van Eijndhoven P, van Exel E, van Verseveld M, Wade B, van Waarde J, Zhutovsky P, Dols A, van Wingen G. Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: a multicenter machine learning analysis. Psychol Med 2024; 54:495-506. [PMID: 37485692 DOI: 10.1017/s0033291723002040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. METHODS Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. RESULTS Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82-0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70-0.73 AUC). CONCLUSIONS These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.
Collapse
Affiliation(s)
- Willem Benjamin Bruin
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hauke Bartsch
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Miklos Argyelan
- The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Tracy Barbour
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School. Boston, MA, USA
| | - Joan Camprodon
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School. Boston, MA, USA
| | - Samadrita Chowdhury
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School. Boston, MA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, USA
| | - Peter Mulders
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Nijmegen, The Netherlands
| | - Katherine Narr
- Ahmanson-Lovelace Brain Mapping Center, Departments of Neurology, and Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, USA
| | - Mardien Oudega
- Department of Old Age Psychiatry, GGZinGeest, Department of Psychiatry, Amsterdam UMC, location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Didi Rhebergen
- Mental Health Institute GGZ Centraal, Amersfoort; Department of Psychiatry, Amsterdam UMC, location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Freek Ten Doesschate
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Rijnstate, Department of Psychiatry, Arnhem, The Netherlands
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Nijmegen, The Netherlands
| | - Philip van Eijndhoven
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Nijmegen, The Netherlands
| | - Eric van Exel
- Department of Old Age Psychiatry, GGZinGeest, Department of Psychiatry, Amsterdam UMC, location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Benjamin Wade
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, UCLA, Los Angeles, USA
| | | | - Paul Zhutovsky
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemiek Dols
- Department of Old Age Psychiatry, GGZinGeest, Department of Psychiatry, Amsterdam UMC, location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Guido van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, The Netherlands
| |
Collapse
|
19
|
Argyelan M, Deng ZD, Ousdal OT, Oltedal L, Angulo B, Baradits M, Spitzberg AJ, Kessler U, Sartorius A, Dols A, Narr KL, Espinoza R, van Waarde JA, Tendolkar I, van Eijndhoven P, van Wingen GA, Takamiya A, Kishimoto T, Jorgensen MB, Jorgensen A, Paulson OB, Yrondi A, Péran P, Soriano-Mas C, Cardoner N, Cano M, van Diermen L, Schrijvers D, Belge JB, Emsell L, Bouckaert F, Vandenbulcke M, Kiebs M, Hurlemann R, Mulders PC, Redlich R, Dannlowski U, Kavakbasi E, Kritzer MD, Ellard KK, Camprodon JA, Petrides G, Malhotra AK, Abbott CC. Electroconvulsive therapy-induced volumetric brain changes converge on a common causal circuit in depression. Mol Psychiatry 2024; 29:229-237. [PMID: 37985787 PMCID: PMC11116108 DOI: 10.1038/s41380-023-02318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Neurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response. We set out to investigate if the neuronal underpinnings of electroconvulsive therapy (ECT) are similarly associated with this causal depression network (CDN). Our aim here is to provide a comprehensive analysis in three cohorts of patients segregated by electrode placement (N = 246 with right unilateral, 79 with bitemporal, and 61 with mixed) who underwent ECT. We conducted a data-driven, unsupervised multivariate neuroimaging analysis Principal Component Analysis (PCA) of the cortical and subcortical volume changes and electric field (EF) distribution to explore changes within the CDN associated with antidepressant outcomes. Despite the different treatment modalities (ECT vs TMS and DBS) and methodological approaches (structural vs functional networks), we found a highly similar pattern of change within the CDN in the three cohorts of patients (spatial similarity across 85 regions: r = 0.65, 0.58, 0.40, df = 83). Most importantly, the expression of this pattern correlated with clinical outcomes (t = -2.35, p = 0.019). This evidence further supports that treatment interventions converge on a CDN in depression. Optimizing modulation of this network could serve to improve the outcome of neurostimulation in depression.
Collapse
Affiliation(s)
- Miklos Argyelan
- Feinstein Institutes for Medical Research, Institute of Behavioral Science, Manhasset, NY, USA.
- The Zucker Hillside Hospital, Glen Oaks, NY, USA.
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Brian Angulo
- Feinstein Institutes for Medical Research, Institute of Behavioral Science, Manhasset, NY, USA
| | - Mate Baradits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | | | - Ute Kessler
- Department of Psychiatry, Haukeland University Hospital, University of Bergen, Bergen, Hungary
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Annemiek Dols
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Amsterdam UMC location Vrije Universiteit Amsterdam, Psychiatry, Neuroscience, Amsterdam, The Netherlands
| | - Katherine L Narr
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Nijmegen, the Netherlands
| | - Philip van Eijndhoven
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Nijmegen, the Netherlands
| | - Guido A van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Akihiro Takamiya
- Department of Neuropsychiatry Keio University School of Medicine, Tokyo, Japan
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Taishiro Kishimoto
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| | - Martin B Jorgensen
- Psychiatric Center Copenhagen and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anders Jorgensen
- Psychiatric Center Copenhagen and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Olaf B Paulson
- Neurobiological Research Unit Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Antoine Yrondi
- Service de Psychiatrie et Psychologie Médicale, Centre Expert Dépression Résistante, Fondation Fondamental, CHU Toulouse, ToNIC, Toulouse NeuroImaging Center, Univerité de Toulouse, Inserm, UPS, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Univeristé de Toulouse, Inserm, UPS, Toulouse, France
| | - Carles Soriano-Mas
- Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain
- CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Narcis Cardoner
- CIBERSAM, Carlos III Health Institute, Madrid, Spain
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Cano
- CIBERSAM, Carlos III Health Institute, Madrid, Spain
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Linda van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Psychiatric Center Bethanie, Andreas Vesaliuslaan 39, 2980, Zoersel, Belgium
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- University Psychiatric Center Duffel, Stationstraat 22, Duffel, 2570, Belgium
| | - Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Louise Emsell
- Geriatric Psychiatry, University Psychiatric Center-KU Leuven, Leuven, Belgium
| | - Filip Bouckaert
- Geriatric Psychiatry, University Psychiatric Center-KU Leuven, Leuven, Belgium
| | | | - Maximilian Kiebs
- School of Medicine & Health Sciences University Hospital Oldenburg, Oldenburg, Germany
- Department of Psychiatry and Psychotherapy University Hospital Bonn, Bonn, Germany
| | - René Hurlemann
- School of Medicine & Health Sciences University Hospital Oldenburg, Oldenburg, Germany
| | - Peter Cr Mulders
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry, Nijmegen, the Netherlands
| | - Ronny Redlich
- Department of Psychology, University of Halle, Halle, Germany
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Halle, Germany
| | - Udo Dannlowski
- Department of Translational Psychiatry, University of Muenster, Muenster, Germany
| | - Erhan Kavakbasi
- Department of Mental Health, University of Muenster, Muenster, Germany
| | - Michael D Kritzer
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen K Ellard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Anil K Malhotra
- Feinstein Institutes for Medical Research, Institute of Behavioral Science, Manhasset, NY, USA
- The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | | |
Collapse
|
20
|
Deng ZD, Robins PL, Regenold W, Rohde P, Dannhauer M, Lisanby SH. How electroconvulsive therapy works in the treatment of depression: is it the seizure, the electricity, or both? Neuropsychopharmacology 2024; 49:150-162. [PMID: 37488281 PMCID: PMC10700353 DOI: 10.1038/s41386-023-01677-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT. The latest research suggests that this goal may be attainable because modifications of ECT technique have already yielded improvements in cognitive outcomes without sacrificing efficacy. These modifications involve changes in how the electricity is administered (both where in the brain, and how much), which in turn impacts the characteristics of the resulting seizure. What we do not completely understand is whether it is the changes in the applied electricity, or in the resulting seizure, or both, that are responsible for improved safety. Answering this question may be key to developing the next generation of seizure therapies that lack these adverse side effects, and ushering in novel interventions that are better, faster, and safer than ECT.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Pei L Robins
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paul Rohde
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Moritz Dannhauer
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Sartorius A, Karl S, Zilles-Wegner D. Hippocampal neuroplasticity, major depression and, not to forget: ECT. Mol Psychiatry 2024; 29:1-2. [PMID: 36038727 PMCID: PMC11078706 DOI: 10.1038/s41380-022-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Sebastian Karl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| |
Collapse
|
22
|
Belge JB, van Eijndhoven P, Mulders PCR. Mechanism of Action of ECT in Depression. Curr Top Behav Neurosci 2024; 66:279-295. [PMID: 37962811 DOI: 10.1007/7854_2023_450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Electroconvulsive therapy (ECT) remains the most potent antidepressant treatment available for patients with major depressive disorder (MDD). ECT is highly effective, achieving a response rate of 70-80% and a remission rate of 50-60% even in treatment-resistant patients. The underlying mechanisms of ECT are not fully understood, although several hypotheses have been proposed, including the monoamine hypothesis, anticonvulsive hypothesis, neuroplastic effects, and immunomodulatory properties. In this paper, we provide an overview of magnetic resonance imaging evidence that addresses the neuroplastic changes that occur after ECT at the human systems level and elaborate further on ECTs potent immunomodulatory properties. Despite a growing body of evidence that suggests ECT may normalize many of the structural and functional changes in the brain associated with severe depression, there is a lack of convergence between neurobiological changes and the robust clinical effects observed in depression. This may be due to sample sizes used in ECT studies being generally small and differences in data processing and analysis pipelines. Collaborations that acquire large datasets, such as the GEMRIC consortium, can help translate ECT's clinical efficacy into a better understanding of its mechanisms of action.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| | - Peter C R Mulders
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Brooks JO, Kruse JL, Kubicki A, Hellemann G, Espinoza RT, Irwin MR, Narr KL. Structural brain plasticity and inflammation are independently related to changes in depressive symptoms six months after an index ECT course. Psychol Med 2024; 54:108-116. [PMID: 36600668 PMCID: PMC11798564 DOI: 10.1017/s0033291722003555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is effective for treatment-resistant depression and leads to short-term structural brain changes and decreases in the inflammatory response. However, little is known about how brain structure and inflammation relate to the heterogeneity of treatment response in the months following an index ECT course. METHODS A naturalistic six-month study following an index ECT course included 20 subjects with treatment-resistant depression. Upon conclusion of the index ECT course and again after six months, structural magnetic resonance imaging scans and peripheral inflammation measures [interleukin-6 (IL-6), IL-8, tumor necrosis factor (TNF-α), and C-reactive protein] were obtained. Voxel-based morphometry processed with the CAT-12 Toolbox was used to estimate changes in gray matter volume. RESULTS Between the end of the index ECT course and the end of follow-up, we found four clusters of significant decreases in gray matter volume (p < 0.01, FWE) and no regions of increased volume. Decreased HAM-D scores were significantly related only to reduced IL-8 level. Decreased volume in one cluster, which included the right insula and Brodmann's Area 22, was related to increased HAM-D scores over six months. IL-8 levels did not mediate or moderate the relationship between volumetric change and depression. CONCLUSIONS Six months after an index ECT course, multiple regions of decreased gray matter volume were observed in a naturalistic setting. The independent relations between brain volume and inflammation to depressive symptoms suggest novel explanations of the heterogeneity of longer-term ECT treatment response.
Collapse
Affiliation(s)
- John O. Brooks
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer L. Kruse
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Antoni Kubicki
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | - Randall T. Espinoza
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michael R. Irwin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
25
|
Loef D, Tendolkar I, van Eijndhoven PFP, Hoozemans JJM, Oudega ML, Rozemuller AJM, Lucassen PJ, Dols A, Dijkstra AA. Electroconvulsive therapy is associated with increased immunoreactivity of neuroplasticity markers in the hippocampus of depressed patients. Transl Psychiatry 2023; 13:355. [PMID: 37981649 PMCID: PMC10658169 DOI: 10.1038/s41398-023-02658-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
Electroconvulsive therapy (ECT) is an effective therapy for depression, but its cellular effects on the human brain remain elusive. In rodents, electroconvulsive shocks increase proliferation and the expression of plasticity markers in the hippocampal dentate gyrus (DG), suggesting increased neurogenesis. Furthermore, MRI studies in depressed patients have demonstrated increases in DG volume after ECT, that were notably paralleled by a decrease in depressive mood scores. Whether ECT also triggers cellular plasticity, inflammation or possibly injury in the human hippocampus, was unknown. We here performed a first explorative, anatomical study on the human post-mortem hippocampus of a unique, well-documented cohort of bipolar or unipolar depressed patients, who had received ECT in the 5 years prior to their death. They were compared to age-matched patients with a depressive disorder who had not received ECT and to matched healthy controls. Upon histopathological examination, no indications were observed for major hippocampal cell loss, overt cytoarchitectural changes or classic neuropathology in these 3 groups, nor were obvious differences present in inflammatory markers for astrocytes or microglia. Whereas the numbers of proliferating cells expressing Ki-67 was not different, we found a significantly higher percentage of cells positive for Doublecortin, a marker commonly used for young neurons and cellular plasticity, in the subgranular zone and CA4 / hilus of the hippocampus of ECT patients. Also, the percentage of positive Stathmin 1 cells was significantly higher in the subgranular zone of ECT patients, indicating neuroplasticity. These first post-mortem observations suggest that ECT has no damaging effects but may rather have induced neuroplasticity in the DG of depressed patients.
Collapse
Affiliation(s)
- Dore Loef
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands.
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands.
| | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
- Department of Psychiatry and Psychotherapy, University Hospital Essen, Essen, Germany
| | - Philip F P van Eijndhoven
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Mardien L Oudega
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemiek Dols
- Amsterdam UMC, location VUmc, Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Anke A Dijkstra
- Molecular Neuroscience Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Takamiya A, Kishimoto T, Mimura M. What Can We Tell About the Effect of Electroconvulsive Therapy on the Human Hippocampus? Clin EEG Neurosci 2023; 54:584-593. [PMID: 34547937 DOI: 10.1177/15500594211044066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroconvulsive therapy (ECT) is the most effective antidepressant treatment, although its mechanisms of action remain unclear. Since 2010, several structural magnetic resonance imaging studies based on a neuroplastic hypothesis have consistently reported increases in the hippocampal volume following ECT. Moreover, volume increases in the human dentate gyrus, where neurogenesis occurs, have also been reported. These results are in line with the preclinical findings of ECT-induced neuroplastic changes, including neurogenesis, gliogenesis, synaptogenesis, and angiogenesis, in rodents and nonhuman primates. Despite this robust evidence of an effect of ECT on hippocampal plasticity, the clinical relevance of these human hippocampal changes continues to be questioned. This narrative review summarizes recent findings regarding ECT-induced hippocampal volume changes. Furthermore, this review also discusses methodological considerations and future directions in this field.
Collapse
Affiliation(s)
- Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Frid LM, Kessler U, Ousdal OT, Hammar Å, Haavik J, Riemer F, Hirnstein M, Ersland L, Erchinger VJ, Ronold EH, Nygaard G, Jakobsen P, Craven AR, Osnes B, Alisauskiene R, Bartsch H, Le Hellard S, Stavrum AK, Oedegaard KJ, Oltedal L. Neurobiological mechanisms of ECT and TMS treatment in depression: study protocol of a multimodal magnetic resonance investigation. BMC Psychiatry 2023; 23:791. [PMID: 37904091 PMCID: PMC10617235 DOI: 10.1186/s12888-023-05239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Noninvasive neurostimulation treatments are increasingly being used to treat major depression, which is a common cause of disability worldwide. While electroconvulsive therapy (ECT) and transcranial magnetic stimulation (TMS) are both effective in treating depressive episodes, their mechanisms of action are, however, not completely understood. ECT is given under general anesthesia, where an electrical pulse is administered through electrodes placed on the patient's head to trigger a seizure. ECT is used for the most severe cases of depression and is usually not prescribed before other options have failed. With TMS, brain stimulation is achieved through rapidly changing magnetic fields that induce electric currents underneath a ferromagnetic coil. Its efficacy in depressive episodes has been well documented. This project aims to identify the neurobiological underpinnings of both the effects and side effects of the neurostimulation techniques ECT and TMS. METHODS The study will utilize a pre-post case control longitudinal design. The sample will consist of 150 subjects: 100 patients (bipolar and major depressive disorder) who are treated with either ECT (N = 50) or TMS (N = 50) and matched healthy controls (N = 50) not receiving any treatment. All participants will undergo multimodal magnetic resonance imaging (MRI) as well as neuropsychological and clinical assessments at multiple time points before, during and after treatment. Arterial spin labeling MRI at baseline will be used to test whether brain perfusion can predict outcomes. Signs of brain disruption, potentiation and rewiring will be explored with resting-state functional MRI, magnetic resonance spectroscopy and multishell diffusion weighted imaging (DWI). Clinical outcome will be measured by clinician assessed and patient reported outcome measures. Memory-related side effects will be investigated, and specific tests of spatial navigation to test hippocampal function will be administered both before and after treatment. Blood samples will be stored in a biobank for future analyses. The observation time is 6 months. Data will be explored in light of the recently proposed disrupt, potentiate and rewire (DPR) hypothesis. DISCUSSION The study will contribute data and novel analyses important for our understanding of neurostimulation as well as for the development of enhanced and more personalized treatment. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05135897.
Collapse
Affiliation(s)
- Leila Marie Frid
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Åsa Hammar
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, , Psychiatry Research Skåne, Region Skåne, Sweden
| | - Jan Haavik
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Marco Hirnstein
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Vera Jane Erchinger
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Eivind Haga Ronold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Gyrid Nygaard
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Petter Jakobsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Berge Osnes
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | | | - Hauke Bartsch
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anne-Kristin Stavrum
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ketil J Oedegaard
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
28
|
Zavaliangos-Petropulu A, McClintock SM, Joshi SH, Taraku B, Al-Sharif NB, Espinoza RT, Narr KL. Hippocampal subfield volumes in treatment resistant depression and serial ketamine treatment. Front Psychiatry 2023; 14:1227879. [PMID: 37876623 PMCID: PMC10590913 DOI: 10.3389/fpsyt.2023.1227879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Subanesthetic ketamine is a rapidly acting antidepressant that has also been found to improve neurocognitive performance in adult patients with treatment resistant depression (TRD). Provisional evidence suggests that ketamine may induce change in hippocampal volume and that larger pre-treatment volumes might be related to positive clinical outcomes. Here, we examine the effects of serial ketamine treatment on hippocampal subfield volumes and relationships between pre-treatment subfield volumes and changes in depressive symptoms and neurocognitive performance. Methods Patients with TRD (N = 66; 31M/35F; age = 39.5 ± 11.1 years) received four ketamine infusions (0.5 mg/kg) over 2 weeks. Structural MRI scans, the National Institutes of Health Toolbox (NIHT) Cognition Battery, and Hamilton Depression Rating Scale (HDRS) were collected at baseline, 24 h after the first and fourth ketamine infusion, and 5 weeks post-treatment. The same data was collected for 32 age and sex matched healthy controls (HC; 17M/15F; age = 35.03 ± 12.2 years) at one timepoint. Subfield (CA1/CA3/CA4/subiculum/molecular layer/GC-ML-DG) volumes corrected for whole hippocampal volume were compared across time, between treatment remitters/non-remitters, and patients and HCs using linear regression models. Relationships between pre-treatment subfield volumes and clinical and cognitive outcomes were also tested. All analyses included Bonferroni correction. Results Patients had smaller pre-treatment left CA4 (p = 0.004) and GC.ML.DG (p = 0.004) volumes compared to HC, but subfield volumes remained stable following ketamine treatment (all p > 0.05). Pre-treatment or change in hippocampal subfield volumes over time showed no variation by remission status nor correlated with depressive symptoms (p > 0.05). Pre-treatment left CA4 was negatively correlated with improved processing speed after single (p = 0.0003) and serial ketamine infusion (p = 0.005). Left GC.ML.DG also negatively correlated with improved processing speed after single infusion (p = 0.001). Right pre-treatment CA3 positively correlated with changes in list sorting working memory at follow-up (p = 0.0007). Discussion These results provide new evidence to suggest that hippocampal subfield volumes at baseline may present a biomarker for neurocognitive improvement following ketamine treatment in TRD. In contrast, pre-treatment subfield volumes and changes in subfield volumes showed negligible relationships with ketamine-related improvements in depressive symptoms.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Shawn M. McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Noor B. Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Randall T. Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
29
|
Cano M, Lee E, Polanco C, Barbour T, Ellard KK, Andreou B, Uribe S, Henry ME, Seiner S, Cardoner N, Soriano-Mas C, Camprodon JA. Brain volumetric correlates of electroconvulsive therapy versus transcranial magnetic stimulation for treatment-resistant depression. J Affect Disord 2023; 333:140-146. [PMID: 37024015 PMCID: PMC10288116 DOI: 10.1016/j.jad.2023.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) are effective neuromodulation therapies for treatment-resistant depression (TRD). While ECT is generally considered the most effective antidepressant, rTMS is less invasive, better tolerated and leads to more durable therapeutic benefits. Both interventions are established device antidepressants, but it remains unknown if they share a common mechanism of action. Here we aimed to compare the brain volumetric changes in patients with TRD after right unilateral (RUL) ECT versus left dorsolateral prefrontal cortex (lDLPFC) rTMS. METHODS We assessed 32 patients with TRD before the first treatment session and after treatment completion using structural magnetic resonance imaging. Fifteen patients were treated with RUL ECT and seventeen patients received lDLPFC rTMS. RESULTS Patients receiving RUL ECT, in comparison with patients treated with lDLPFC rTMS, showed a greater volumetric increase in the right striatum, pallidum, medial temporal lobe, anterior insular cortex, anterior midbrain, and subgenual anterior cingulate cortex. However, ECT- or rTMS-induced brain volumetric changes were not associated with the clinical improvement. LIMITATIONS We evaluated a modest sample size with concurrent pharmacological treatment and without neuromodulation therapies randomization. CONCLUSIONS Our findings suggest that despite comparable clinical outcomes, only RUL ECT is associated with structural change, while rTMS is not. We hypothesize that structural neuroplasticity and/or neuroinflammation may explain the larger structural changes observed after ECT, whereas neurophysiological plasticity may underlie the rTMS effects. More broadly, our results support the notion that there are multiple therapeutic strategies to move patients from depression to euthymia.
Collapse
Affiliation(s)
- Marta Cano
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Erik Lee
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Polanco
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy Barbour
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen K Ellard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Blake Andreou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sofia Uribe
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael E Henry
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Seiner
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Narcís Cardoner
- Sant Pau Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carles Soriano-Mas
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain.
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Xu J, Li W, Bai T, Li J, Zhang J, Hu Q, Wang J, Tian Y, Wang K. Volume of hippocampus-amygdala transition area predicts outcomes of electroconvulsive therapy in major depressive disorder: high accuracy validated in two independent cohorts. Psychol Med 2023; 53:4464-4473. [PMID: 35604047 DOI: 10.1017/s0033291722001337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although many previous studies reported structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy (ECT) in major depressive disorder (MDD), yet the exact roles of both areas for antidepressant effects are still controversial. METHODS In the current study, segmentation of amygdala and hippocampal sub-regions was used to investigate the longitudinal changes of volume, the relationship between volume and antidepressant effects, and prediction performances for ECT in MDD patients before and after ECT using two independent datasets. RESULTS As a result, MDD patients showed selectively and consistently increased volume in the left lateral nucleus, right accessory basal nucleus, bilateral basal nucleus, bilateral corticoamygdaloid transition (CAT), bilateral paralaminar nucleus of the amygdala, and bilateral hippocampus-amygdala transition area (HATA) after ECT in both datasets, whereas marginally significant increase of volume in bilateral granule cell molecular layer of the head of dentate gyrus, the bilateral head of cornu ammonis (CA) 4, and left head of CA 3. Correlation analyses revealed that increased volume of left HATA was significantly associated with antidepressant effects after ECT. Moreover, volumes of HATA in the MDD patients before ECT could be served as potential biomarkers to predict ECT remission with the highest accuracy of 86.95% and 82.92% in two datasets (The predictive models were trained on Dataset 2 and the sensitivity, specificity and accuracy of Dataset 2 were obtained from leave-one-out-cross-validation. Thus, they were not independent and very likely to be inflated). CONCLUSIONS These results not only suggested that ECT could selectively induce structural plasticity of the amygdala and hippocampal sub-regions associated with antidepressant effects of ECT in MDD patients, but also provided potential biomarkers (especially HATA) for effectively and timely interventions for ECT in clinical applications.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenfei Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022 China
| | - Tongjian Bai
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiaying Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinhuan Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaojian Wang
- Key Laboratory of Biological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Neurology, the Second Hospital of Anhui Medical University, Hefei 230022, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Anhui Medical University, School of Mental Health and Psychological Sciences, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, 230022, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
- Anhui Medical University, School of Mental Health and Psychological Sciences, Hefei 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
- Anhui Province clinical research center for neurological disease, Hefei 230022, China
| |
Collapse
|
31
|
Deng ZD, Ousdal OT, Oltedal L, Angulo B, Baradits M, Spitzberg A, Kessler U, Sartorius A, Dols A, Narr K, Espinoza R, Van Waarde J, Tendolkar I, van Eijndhoven P, van Wingen G, Takamiya A, Kishimoto T, Jorgensen M, Jorgensen A, Paulson O, Yrondi A, Peran P, Soriano-Mas C, Cardoner N, Cano M, van Diermen L, Schrijvers D, Belge JB, Emsell L, Bouckaert F, Vandenbulcke M, Kiebs M, Hurlemann R, Mulders P, Redlich R, Dannlowski U, Kavakbasi E, Kritzer M, Ellard K, Camprodon J, Petrides G, Maholtra A, Abbott C, Argyelan M. Electroconvulsive therapy-induced volumetric brain changes converge on a common causal circuit in depression. RESEARCH SQUARE 2023:rs.3.rs-2925196. [PMID: 37398308 PMCID: PMC10312966 DOI: 10.21203/rs.3.rs-2925196/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neurostimulation is a mainstream treatment option for major depression. Neuromodulation techniques apply repetitive magnetic or electrical stimulation to some neural target but significantly differ in their invasiveness, spatial selectivity, mechanism of action, and efficacy. Despite these differences, recent analyses of transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS)-treated individuals converged on a common neural network that might have a causal role in treatment response. We set out to investigate if the neuronal underpinnings of electroconvulsive therapy (ECT) are similarly associated with this common causal network (CCN). Our aim here is to provide a comprehensive analysis in three cohorts of patients segregated by electrode placement (N = 246 with right unilateral, 79 with bitemporal, and 61 with mixed) who underwent ECT. We conducted a data-driven, unsupervised multivariate neuroimaging analysis (Principal Component Analysis, PCA) of the cortical and subcortical volume changes and electric field (EF) distribution to explore changes within the CCN associated with antidepressant outcomes. Despite the different treatment modalities (ECT vs TMS and DBS) and methodological approaches (structural vs functional networks), we found a highly similar pattern of change within the CCN in the three cohorts of patients (spatial similarity across 85 regions: r = 0.65, 0.58, 0.40, df = 83). Most importantly, the expression of this pattern correlated with clinical outcomes. This evidence further supports that treatment interventions converge on a CCN in depression. Optimizing modulation of this network could serve to improve the outcome of neurostimulation in depression.
Collapse
Affiliation(s)
| | | | - Leif Oltedal
- Department of Clinical Medicine, University of Bergen
| | - Brian Angulo
- Department of Clinical Medicine, University of Bergen
| | - Mate Baradits
- Department of Clinical Medicine, University of Bergen
| | | | - Ute Kessler
- Department of Clinical Medicine, University of Bergen
| | | | - Annemiek Dols
- Geffen School of Medicine at the University of California, Los Angeles
| | - Katherine Narr
- Geffen School of Medicine at the University of California, Los Angeles
| | - Randall Espinoza
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California
| | | | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behavior, Department of Psychiatry
| | | | | | | | | | | | | | | | | | | | | | - Narcís Cardoner
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau. Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Sa
| | | | | | | | | | | | | | | | | | - Rene Hurlemann
- Institute for Translational Psychiatry, University of Münster
| | - Peter Mulders
- Institute for Translational Psychiatry, University of Münster
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kawashima H, Yamasaki S, Kubota M, Hazama M, Fushimi Y, Miyata J, Murai T, Suwa T. Commonalities and differences in ECT-induced gray matter volume change between depression and schizophrenia. Neuroimage Clin 2023; 38:103429. [PMID: 37150022 PMCID: PMC10193002 DOI: 10.1016/j.nicl.2023.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for depression and schizophrenia, particularly in urgent or treatment-resistant cases. After ECT, regional gray matter volume (GMV) increases have been repeatedly reported both in depression and schizophrenia. However, the interpretation of these findings remains entangled because GMV changes do not necessarily correlate with treatment effects and may be influenced by the intervention itself. We hypothesized that the comparison of longitudinal magnetic resonance imaging data between the two diagnostic groups will provide clues to distinguish diagnosis-specific and transdiagnostic changes. METHOD Twenty-nine Japanese participants, including 18 inpatients with major depressive disorder and 11 with schizophrenia, underwent longitudinal voxel-based morphometry before and after ECT. We investigated GMV changes common to both diagnostic groups and those specific to each group. Moreover, we also evaluated potential associations between GMV changes and clinical improvement for each group. RESULTS In both diagnostic groups, GMV increased in widespread areas after ECT, sharing common regions including: anterior temporal cortex; medial frontal and anterior cingulate cortex; insula; and caudate nucleus. In addition, we found a schizophrenia-specific GMV increase in a region including the left pregenual anterior cingulate cortex, with volume increase significantly correlating with clinical improvement. CONCLUSIONS Transdiagnostic volume changes may represent the effects of the intervention itself and pathophysiological changes common to both groups. Conversely, diagnosis-specific volume changes are associated with treatment effects and may represent pathophysiology-specific impacts of ECT.
Collapse
Affiliation(s)
- Hirotsugu Kawashima
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Shimpei Yamasaki
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Kubota
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaaki Hazama
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taro Suwa
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Kritzer MD, Peterchev AV, Camprodon JA. Electroconvulsive Therapy: Mechanisms of Action, Clinical Considerations, and Future Directions. Harv Rev Psychiatry 2023; 31:101-113. [PMID: 37171471 PMCID: PMC10198476 DOI: 10.1097/hrp.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
LEARNING OBJECTIVES • Outline and discuss the fundamental physiologic, cellular, and molecular mechanisms of ECT to devise strategies to optimize therapeutic outcomes• Summarize the overview of ECT, its efficacy in treating depression, the known effects on cognition, evidence of mechanisms, and future directions. ABSTRACT Electroconvulsive therapy (ECT) is the most effective treatment for a variety of psychiatric illnesses, including treatment-resistant depression, bipolar depression, mania, catatonia, and clozapine-resistant schizophrenia. ECT is a medical and psychiatric procedure whereby electrical current is delivered to the brain under general anesthesia to induce a generalized seizure. ECT has evolved a great deal since the 1930s. Though it has been optimized for safety and to reduce adverse effects on cognition, issues persist. There is a need to understand fundamental physiologic, cellular, and molecular mechanisms of ECT to devise strategies to optimize therapeutic outcomes. Clinical trials that set out to adjust parameters, electrode placement, adjunctive medications, and patient selection are critical steps towards the goal of improving outcomes with ECT. This narrative review provides an overview of ECT, its efficacy in treating depression, its known effects on cognition, evidence of its mechanisms, and future directions.
Collapse
Affiliation(s)
- Michael D Kritzer
- From the Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA (Drs. Kritzer, Camprodon); Department of Psychiatry and Behavioral Sciences, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Department of Neurosurgery, Duke University, Durham, NC (Dr. Peterchev)
| | | | | |
Collapse
|
34
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
35
|
Denier N, Walther S, Breit S, Mertse N, Federspiel A, Meyer A, Soravia LM, Wallimann M, Wiest R, Bracht T. Electroconvulsive therapy induces remodeling of hippocampal co-activation with the default mode network in patients with depression. Neuroimage Clin 2023; 38:103404. [PMID: 37068311 PMCID: PMC10130338 DOI: 10.1016/j.nicl.2023.103404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/15/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION Electroconvulsive therapy (ECT) is a highly efficient treatment for depression. Previous studies repeatedly reported an ECT-induced volume increase in the hippocampi. We assume that this also affects extended hippocampal networks. This study aims to investigate the structural and functional interplay between hippocampi, hippocampal pathways and core regions of the default mode network (DMN). Twenty patients with a current depressive episode receiving ECT-treatment and twenty age and sex matched healthy controls (HC) were included in the study. ECT-patients underwent multimodal magnetic resonance imaging (MRI)-scans (diffusion weighted imaging, resting state functional MRI) before and after an ECT-index series. HC were also scanned twice in a similar between-scan time-interval. Parahippocampal cingulum (PHC) and uncinate fasciculus (UF) were reconstructed for each participant using manual tractography. Fractional anisotropy (FA) was averaged across tracts. Furthermore, we investigated seed-based functional connectivity (FC) from bilateral hippocampi and from the PCC, a core region of the DMN. At baseline, FA in PHC and UF did not differ between groups. There was no baseline group difference of hippocampal-FC. PCC-FC was decreased in ECT-patients. ECT induced a decrease in FA in the left PHC in the ECT group. No longitudinal changes of FA were found in the UF. Furthermore, there was a decrease in hippocampal-PCC-FC, an increase in hippocampal-supplementary motor area-FC, and an increase in PCC-FC in the ECT-group, reversing group differences at baseline. Our findings suggest that ECT induces structural and functional remodeling of a hippocampal-DMN. Those changes may contribute to ECT-induced clinical response in patients with depression.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Meret Wallimann
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| |
Collapse
|
36
|
Van der A J, De Jager JE, van Dellen E, Mandl RCW, Somers M, Boks MPM, Sommer IEC, Nuninga JO. Changes in perfusion, and structure of hippocampal subfields related to cognitive impairment after ECT: A pilot study using ultra high field MRI. J Affect Disord 2023; 325:321-328. [PMID: 36623568 DOI: 10.1016/j.jad.2023.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) in patients with major depression is associated with volume changes and markers of neuroplasticity in the hippocampus, in particular in the dentate gyrus. It is unclear if these changes are associated with cognitive side effects. OBJECTIVES We investigated whether changes in cognitive functioning after ECT were associated with hippocampal structural changes. It was hypothesized that 1) volume increase of hippocampal subfields and 2) changes in perfusion and diffusion of the hippocampus correlated with cognitive decline. METHODS Using ultra high field (7 T) MRI, intravoxel incoherent motion and volumetric data were acquired and neurocognitive functioning was assessed before and after ECT in 23 patients with major depression. Repeated measures correlation analysis was used to examine the relation between cognitive functioning and structural characteristics of the hippocampus. RESULTS Left hippocampal volume, left and right dentate gyrus and right CA1 volume increase correlated with decreases in verbal memory functioning. In addition, a decrease of mean diffusivity in the left hippocampus correlated with a decrease in letter fluency. LIMITATIONS Due to methodological restrictions direct study of neuroplasticity is not possible. MRI is used as an indirect measure. CONCLUSION As both volume increase in the hippocampus and MD decrease can be interpreted as indirect markers for neuroplasticity that co-occur with a decrease in cognitive functioning, our results may indicate that neuroplastic processes are affecting cognitive processes after ECT.
Collapse
Affiliation(s)
- Julia Van der A
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Jesca E De Jager
- Department of Biomedical Sciences of Cells and Systems, Brain Center, University Medical Center, Groningen, the Netherlands.
| | - Edwin van Dellen
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Intensive Care Medicine, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - René C W Mandl
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Metten Somers
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marco P M Boks
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences of Cells and Systems, Brain Center, University Medical Center, Groningen, the Netherlands
| | - Jasper O Nuninga
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Biomedical Sciences of Cells and Systems, Brain Center, University Medical Center, Groningen, the Netherlands
| |
Collapse
|
37
|
Hsieh MH. Electroconvulsive therapy for treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023; 281:69-90. [PMID: 37806717 DOI: 10.1016/bs.pbr.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Electroconvulsive therapy (ECT), the oldest brain stimulation procedure in psychiatry, is associated with rapid response and remission in majority of patients with resistant, severe, and sometimes life-threatening depression. ECT has been included as an essential component in the definition of treatment-resistant depression (TRD) to display the course and diversification of TRD. On the other hand, ECT remains the treatment of choice for the most severe incapacitating forms of TRD and is a cost-effective treatment. In this chapter, we reviewed some essential studies, meta-analysis, and expert guidelines regarding ECT in TRD. ECT should not be considered as a treatment of last resort, and its administration should be considered on the basis of individual patient and illness factors. The clinical role of ECT vs other neurostimulation treatments for TRD, that is, repetitive transcranial magnetic stimulation, were also explored. Much effort has been directed toward the clinical and basic research about mechanisms of action of ECT in depression. A thorough understanding of the neurobiological effects of ECT may increase our understanding of its therapeutic effects, ultimately leading to improved patient care. We also showed that the distinct mechanisms of ECT in biological treatments of major depressive disorder (MDD) and some recent approaches to understand this most common psychiatric disorder. ECT should remain a standard part of modern psychiatric medicine. We recommend a more careful and thoughtful application of this traditional but effective technology.
Collapse
Affiliation(s)
- Ming H Hsieh
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
38
|
Greenstein SP, Petrides G, Fricchione G. Consultation-Liaison Case Conference: Malignantly Catatonic and Unable to Receive Electroconvulsive Therapy. J Acad Consult Liaison Psychiatry 2023; 64:158-165. [PMID: 36283620 DOI: 10.1016/j.jaclp.2022.10.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
We present the case of a 65-year-old female with a past psychiatric history of obsessive-compulsive disorder and anxiety who recently underwent diagnostic laparoscopy in the setting of a recent computerized tomography scan revealing a peritoneal mass. Postoperatively, she was delirious and soon found to be malignantly catatonic. This patient's treatment was complicated by an acute stroke, which was a relative contraindication for electroconvulsive therapy. Top experts in the consultation-liaison psychiatry and electroconvulsive therapy fields provide guidance for this clinical scenario based on their experience and a review of the available literature. Key teaching points include a review of diagnosing and treating catatonia, a review of electroconvulsive therapy for the treatment of catatonia, as well as a review of the role of the consultation-liaison psychiatrist in medically complex cases. Specifically, we offer guidance in treating patients that have malignant catatonia when electroconvulsive therapy is unavailable.
Collapse
Affiliation(s)
- Samuel P Greenstein
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY; Consultation-Liaison Psychiatry, Long Island Jewish Medical Center/Northwell Health, New Hyde Park, NY; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY.
| | - Georgios Petrides
- Department of Psychiatry, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY; Consultation-Liaison Psychiatry, Long Island Jewish Medical Center/Northwell Health, New Hyde Park, NY; Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Gregory Fricchione
- Division of Psychiatry and Medicine, Mass General Hospital, Boston, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
39
|
Ji GJ, Li J, Liao W, Wang Y, Zhang L, Bai T, Zhang T, Xie W, He K, Zhu C, Dukart J, Baeken C, Tian Y, Wang K. Neuroplasticity-Related Genes and Dopamine Receptors Associated with Regional Cortical Thickness Increase Following Electroconvulsive Therapy for Major Depressive Disorder. Mol Neurobiol 2023; 60:1465-1475. [PMID: 36469225 DOI: 10.1007/s12035-022-03132-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2022]
Abstract
Electroconvulsive therapy (ECT) is an effective neuromodulatory therapy for major depressive disorder (MDD). Treatment is associated with regional changes in brain structure and function, indicating activation of neuroplastic processes. To investigate the underlying neurobiological mechanism of macroscopic reorganization following ECT, we longitudinally (before and after ECT in two centers) collected magnetic resonance images for 96 MDD patients. Similar patterns of cortical thickness (CT) changes following ECT were observed in two centers. These CT changes were spatially colocalized with a weighted combination of genes enriched for neuroplasticity-related ontology terms and pathways (e.g., synaptic pruning) as well as with a higher density of D2/3 dopamine receptors. A multiple linear regression model indicated that the region-specific gene expression and receptor density patterns explained 40% of the variance in CT changes after ECT. In conclusion, these findings suggested that dopamine signaling and neuroplasticity-related genes are associated with the ECT-induced morphological reorganization.
Collapse
Affiliation(s)
- Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China.
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610000, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610000, China.,MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Yingru Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China
| | - Ting Zhang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China.,Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen Xie
- Department of Psychiatry, Anhui Mental Health Center, Hefei, 230022, China
| | - Kongliang He
- Department of Psychiatry, Anhui Mental Health Center, Hefei, 230022, China
| | - Chuyan Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour, Research Centre Jülich, INM-7), Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40210, Düsseldorf, Germany
| | - Chris Baeken
- Experimental Psychiatry Lab, Department of Head and Skin, Ghent University, Ghent, Belgium.,Department of Psychiatry, Free University Brussels, Brussels, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University , Hefei, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, The School of Mental Health and Psychological Sciences, Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei, 230032, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Anhui Province, Hefei, 230032, China. .,Anhui Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
40
|
Wagenmakers MJ, Oudega ML, Klaus F, Wing D, Orav G, Han LKM, Binnewies J, Beekman ATF, Veltman DJ, Rhebergen D, van Exel E, Eyler LT, Dols A. BrainAge of patients with severe late-life depression referred for electroconvulsive therapy. J Affect Disord 2023; 330:1-6. [PMID: 36858270 DOI: 10.1016/j.jad.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Severe depression is associated with accelerated brain aging. BrainAge gap, the difference between predicted and observed BrainAge, was investigated in patients with late-life depression (LLD). We aimed to examine BrainAge gap in LLD and its associations with clinical characteristics indexing LLD chronicity, current severity, prior to electroconvulsive therapy (ECT) and ECT outcome. METHODS Data was analyzed from the Mood Disorders in Elderly treated with Electroconvulsive Therapy (MODECT) study. A previously established BrainAge algorithm (BrainAge R by James Cole, (https://github.com/james-cole/brainageR)) was applied to pre-ECT T1-weighted structural MRI-scans of 42 patients who underwent ECT. RESULTS A BrainAge gap of 1.8 years (SD = 5.5) was observed, Cohen's d = 0.3. No significant associations between BrainAge gap, number of previous episodes, current episode duration, age of onset, depression severity, psychotic symptoms or ECT outcome were observed. LIMITATIONS Limited sample size. CONCLUSIONS Our initial findings suggest an older BrainAge than chronological age in patients with severe LLD referred for ECT, however with high degree of variability and direction of the gap. No associations were found with clinical measures. Larger samples are needed to better understand brain aging and to evaluate the usability of BrainAge gap as potential biomarker of prognosis an treatment-response in LLD. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02667353.
Collapse
Affiliation(s)
- Margot J Wagenmakers
- GGZ inGeest Specialized Mental Health Care, Psychiatry, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Mental Health, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Sleep and Stress, Amsterdam, the Netherlands.
| | - Mardien L Oudega
- GGZ inGeest Specialized Mental Health Care, Psychiatry, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Mental Health, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Sleep and Stress, Amsterdam, the Netherlands
| | - Federica Klaus
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032 Zurich, Switzerland; Department of Psychiatry, University of California San Diego, San Diego, USA
| | - David Wing
- Exercise and Physical Activity Resource Center (EPARC), Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Gwendolyn Orav
- Department of Psychiatry, University of California San Diego, San Diego, USA
| | - Laura K M Han
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Julia Binnewies
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Sleep and Stress, Amsterdam, the Netherlands
| | - Aartjan T F Beekman
- GGZ inGeest Specialized Mental Health Care, Psychiatry, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Mental Health, Amsterdam, the Netherlands
| | - Dick J Veltman
- GGZ inGeest Specialized Mental Health Care, Psychiatry, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Sleep and Stress, Amsterdam, the Netherlands
| | - Didi Rhebergen
- Amsterdam Public Health Research Institute, Mental Health, Amsterdam, the Netherlands; GGZ Centraal Specialized Menthal Health Care, Amersfoort, the Netherlands
| | - Eric van Exel
- GGZ inGeest Specialized Mental Health Care, Psychiatry, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, San Diego, USA; Desert-Pacific MIRECC, VA San Diego Healthcare, San Diego, CA, USA
| | - Annemieke Dols
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands and Amsterdam UMC
| |
Collapse
|
41
|
Jog MA, Anderson C, Kubicki A, Boucher M, Leaver A, Hellemann G, Iacoboni M, Woods R, Narr K. Transcranial direct current stimulation (tDCS) in depression induces structural plasticity. Sci Rep 2023; 13:2841. [PMID: 36801903 PMCID: PMC9938111 DOI: 10.1038/s41598-023-29792-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique involving administration of well-tolerated electrical current to the brain through scalp electrodes. TDCS may improve symptoms in neuropsychiatric disorders, but mixed results from recent clinical trials underscore the need to demonstrate that tDCS can modulate clinically relevant brain systems over time in patients. Here, we analyzed longitudinal structural MRI data from a randomized, double-blind, parallel-design clinical trial in depression (NCT03556124, N = 59) to investigate whether serial tDCS individually targeted to the left dorso-lateral prefrontal cortex (DLPFC) can induce neurostructural changes. Significant (FWEc p < 0.05) treatment-related gray matter changes were observed with active high-definition (HD) tDCS relative to sham tDCS within the left DLPFC stimulation target. No changes were observed with active conventional tDCS. A follow-up analysis within individual treatment groups revealed significant gray matter increases with active HD-tDCS in brain regions functionally connected with the stimulation target, including the bilateral DLPFC, bilateral posterior cingulate cortex, subgenual anterior cingulate cortex, and the right hippocampus, thalamus and left caudate brain regions. Integrity of blinding was verified, no significant differences in stimulation-related discomfort were observed between treatment groups, and tDCS treatments were not augmented by any other adjunct treatments. Overall, these results demonstrate that serial HD-tDCS leads to neurostructural changes at a predetermined brain target in depression and suggest that such plasticity effects may propagate over brain networks.
Collapse
Affiliation(s)
- Mayank A Jog
- Department of Neurology, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
| | - Cole Anderson
- Diagnostic Imaging Sciences Center, University of Washington, Seattle, WA, 98195, USA
| | - Antoni Kubicki
- Department of Neurology, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Michael Boucher
- Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, 90095, USA
| | - Amber Leaver
- Department of Radiology, Northwestern University, Evanston, IL, 60208, USA
| | - Gerhard Hellemann
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marco Iacoboni
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Roger Woods
- Department of Neurology, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Katherine Narr
- Department of Neurology, University of California Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
42
|
Bracht T, Walther S, Breit S, Mertse N, Federspiel A, Meyer A, Soravia LM, Wiest R, Denier N. Distinct and shared patterns of brain plasticity during electroconvulsive therapy and treatment as usual in depression: an observational multimodal MRI-study. Transl Psychiatry 2023; 13:6. [PMID: 36627288 PMCID: PMC9832014 DOI: 10.1038/s41398-022-02304-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a highly effective treatment for depression. Previous studies point to ECT-induced volume increase in the hippocampi and amygdalae, and to increase in cortical thickness. However, it is unclear if these neuroplastic changes are associated with treatment response. This observational study aimed to address this research question by comparing neuroplasticity between patients with depression receiving ECT and patients with depression that respond to treatment as usual (TAU-responders). Twenty ECT-patients (16 major depressive disorder (MDD), 4 depressed bipolar disorder), 20 TAU-responders (20 MDD) and 20 healthy controls (HC) were scanned twice with multimodal magnetic resonance imaging (structure: MP2RAGE; perfusion: arterial spin labeling). ECT-patients were scanned before and after an ECT-index series (ECT-group). TAU-responders were scanned during a depressive episode and following remission or treatment response. Volumes and cerebral blood flow (CBF) of the hippocampi and amygdalae, and global mean cortical thickness were compared between groups. There was a significant group × time interaction for hippocampal and amygdalar volumes, CBF in the hippocampi and global mean cortical thickness. Hippocampal and amygdalar enlargements and CBF increase in the hippocampi were observed in the ECT-group but neither in TAU-responders nor in HC. Increase in global mean cortical thickness was observed in the ECT-group and in TAU-responders but not in HC. The co-occurrence of increase in global mean cortical thickness in both TAU-responders and in ECT-patients may point to a shared mechanism of antidepressant response. This was not the case for subcortical volume and CBF increase.
Collapse
Affiliation(s)
- Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland. .,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Sebastian Walther
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Leila M. Soravia
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland ,grid.5734.50000 0001 0726 5157Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Niklaus Denier
- grid.5734.50000 0001 0726 5157Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland ,Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
43
|
Qi S, Calhoun VD, Zhang D, Miller J, Deng ZD, Narr KL, Sheline Y, McClintock SM, Jiang R, Yang X, Upston J, Jones T, Sui J, Abbott CC. Links between electroconvulsive therapy responsive and cognitive impairment multimodal brain networks in late-life major depressive disorder. BMC Med 2022; 20:477. [PMID: 36482369 PMCID: PMC9733153 DOI: 10.1186/s12916-022-02678-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although electroconvulsive therapy (ECT) is an effective treatment for depression, ECT cognitive impairment remains a major concern. The neurobiological underpinnings and mechanisms underlying ECT antidepressant and cognitive impairment effects remain unknown. This investigation aims to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks and assesses whether they are associated with the ECT-induced electric field (E-field) with an optimal pulse amplitude estimation. METHODS A single site clinical trial focused on amplitude (600, 700, and 800 mA) included longitudinal multimodal imaging and clinical and cognitive assessments completed before and immediately after the ECT series (n = 54) for late-life depression. Another two independent validation cohorts (n = 84, n = 260) were included. Symptom and cognition were used as references to supervise fMRI and sMRI fusion to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks. Correlations between ECT-induced E-field within these two networks and clinical and cognitive outcomes were calculated. An optimal pulse amplitude was estimated based on E-field within antidepressant-response and cognitive-impairment networks. RESULTS Decreased function in the superior orbitofrontal cortex and caudate accompanied with increased volume in medial temporal cortex showed covarying functional and structural alterations in both antidepressant-response and cognitive-impairment networks. Volume increases in the hippocampal complex and thalamus were antidepressant-response specific, and functional decreases in the amygdala and hippocampal complex were cognitive-impairment specific, which were validated in two independent datasets. The E-field within these two networks showed an inverse relationship with HDRS reduction and cognitive impairment. The optimal E-filed range as [92.7-113.9] V/m was estimated to maximize antidepressant outcomes without compromising cognitive safety. CONCLUSIONS The large degree of overlap between antidepressant-response and cognitive-impairment networks challenges parameter development focused on precise E-field dosing with new electrode placements. The determination of the optimal individualized ECT amplitude within the antidepressant and cognitive networks may improve the treatment benefit-risk ratio. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02999269.
Collapse
Affiliation(s)
- Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jeremy Miller
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Yvette Sheline
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Shawn M McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rongtao Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiao Yang
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Joel Upston
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Tom Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| | | |
Collapse
|
44
|
Cai H, Du R, Yang K, Li W, Wang Z. Association between electroconvulsive therapy and depressive disorder from 2012 to 2021: Bibliometric analysis and global trends. Front Hum Neurosci 2022; 16:1044917. [DOI: 10.3389/fnhum.2022.1044917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
BackgroundDepressive disorder is a chronic mental illness that is vulnerable to relapse, imposes a huge economic burden on society and patients, and is a major global public health problem. Depressive disorders are characterized by depressed mood, decreased energy and interest, and suicidal ideation and behavior in severe cases. They can be treated through pharmacotherapy and psychotherapy or physical treatments such as electroconvulsive therapy (ECT). In patients with suicidal ideation, behavior, or refractory depressive disorder ECT has a faster onset of action and better efficacy than pharmacotherapy. This study used bibliometric and visual analyses to map the current state of global research on ECT for depressive disorder and to predict future research trends in this area.Materials and methodsA literature search was performed for studies on ECT and depressive disorder in the Web of Science Core Collection (WoSCC) database. All studies considered for this paper were published between 2012 and 2021. Bibliometric and co-occurrence analyses were performed using the CiteSpace software.ResultsIn total, 2,184 publications were retrieved. The number of publications on ECT and depressive disorder have been increasing since 2012, with China being a emerging hub with a growing influence in the field. Zafiris J. Daskalakis is the top author in terms of number of publications, and The Journal of ECT is not only the most published journal but also the most co-cited journal in the field. Co-occurrence analysis showed that electroconvulsive therapy, treatment-resistant depression, bipolar disorder, hippocampus, efficacy, and electrode placement are current research hotspots. Molecular biomarkers, neuroimaging predictors, and late-life depression will become research hotspots in the future.ConclusionOur analysis made it possible to observe an important growth of the field since 2012, to identify key scientific actors in this growth and to predict hot topics for future research.
Collapse
|
45
|
Gbyl K, Lindberg U, Wiberg Larsson HB, Rostrup E, Videbech P. Cerebral perfusion is related to antidepressant effect and cognitive side effects of Electroconvulsive Therapy. Brain Stimul 2022; 15:1486-1494. [PMID: 36332891 DOI: 10.1016/j.brs.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The mechanisms underlying the antidepressant effect and cognitive side effects of Electroconvulsive Therapy (ECT) remain elusive. The measurement of cerebral perfusion provides an insight into brain physiology. OBJECTIVE We investigated ECT-related perfusion changes in depressed patients and tested whether these changes correlate with clinical effects. METHODS A sample of 22 in-patients was examined at three time points: 1) within two days before, 2) within one week after, and 3) six months after an ECT series. Cerebral perfusion was quantified using arterial spin labeling magnetic resonance imaging. The primary regions of interest were the bilateral dorsolateral prefrontal cortices (DL-PFC) and hippocampi. The depression severity was assessed by the six-item Hamilton Depression Rating Scale, and cognitive performance by the Screen for Cognitive Impairment in Psychiatry. A linear mixed model and partial correlation were used for statistical analyses. RESULTS Following an ECT series, perfusion decreased in the right (-6.0%, p = .01) and left DL-PFC (-5.6%, p = .001). Perfusion increased in the left hippocampus (4.8%, p = .03), while on the right side the increase was insignificant (2.3%, p = .23). A larger perfusion reduction in the right DL-PFC correlated with a better antidepressant effect, and a larger perfusion increase in the right hippocampus with worse cognitive impairment. CONCLUSION ECT-induced attenuation of prefrontal activity may be related to clinical improvement, whereas a hippocampal process triggered by the treatment is likely associated with cognitive side effects.
Collapse
Affiliation(s)
- Krzysztof Gbyl
- Center for Neuropsychiatric Depression Research (CNDR), Mental Health Center Glostrup, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research (CNDR), Mental Health Center Glostrup, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Steele JD, Farnan T, Semple DM, Bai S. Fronto-medial electrode placement for electroconvulsive treatment of depression. Front Neurosci 2022; 16:1029683. [PMID: 36340770 PMCID: PMC9631818 DOI: 10.3389/fnins.2022.1029683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for severe treatment-resistant depression but concern about cognitive side-effects, particularly memory loss, limits its use. Recent observational studies on large groups of patients who have received ECT report that cognitive side-effects were associated with electric field (EF) induced increases in hippocampal volume, whereas therapeutic efficacy was associated with EF induced increases in sagittal brain structures. The aim in the present study was to determine whether a novel fronto-medial (FM) ECT electrode placement would minimize electric fields in bilateral hippocampi (HIP) whilst maximizing electric fields in dorsal sagittal cortical regions. An anatomically detailed computational head model was used with finite element analysis, to calculate ECT-induced electric fields in specific brain regions identified by translational neuroimaging studies of treatment-resistant depressive illness, for a range of electrode placements. As hypothesized, compared to traditional bitemporal (BT) electrode placement, a specific FM electrode placement reduced bilateral hippocampal electric fields two-to-three-fold, whilst the electric fields in the dorsal anterior cingulate (dAC) were increased by approximately the same amount. We highlight the clinical relevance of this specific FM electrode placement for ECT, which may significantly reduce cognitive and non-cognitive side-effects and suggest a clinical trial is indicated.
Collapse
Affiliation(s)
- J. Douglas Steele
- School of Medicine, University of Dundee, Dundee, United Kingdom
- *Correspondence: J. Douglas Steele,
| | - Tom Farnan
- School of Medicine, University of Dundee, Dundee, United Kingdom
| | - David M. Semple
- University Hospital Hairmyres, NHS Lanarkshire, Glasgow, United Kingdom
| | - Siwei Bai
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| |
Collapse
|
47
|
Cano M, Lee E, Worthley A, Ellard K, Barbour T, Soriano-Mas C, Camprodon JA. Electroconvulsive therapy effects on anhedonia and reward circuitry anatomy: A dimensional structural neuroimaging approach. J Affect Disord 2022; 313:243-250. [PMID: 35764228 DOI: 10.1016/j.jad.2022.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Anhedonia is a core symptom of major depressive disorder (MDD) resulting from maladaptive reward processing. Electroconvulsive therapy (ECT) is an effective treatment for patients with MDD. No previous neuroimaging studies have taken a dimensional approach to assess whether ECT-induced volume changes are specifically related to improvements in anhedonia and positive valence emotional constructs. We aimed to assess the relationship between ECT-induced brain volumetric changes and improvement in anhedonia and reward processing in patients with MDD. METHODS We evaluated 15 patients with MDD before and after ECT. We used magnetic resonance imaging, clinical scales (i.e., Quick Inventory of Depressive Symptomatology for syndromal depression severity and Snaith-Hamilton Pleasure Scale for anhedonia) and the Temporal Experience of Pleasure Scale for anticipatory and consummatory experiences of pleasure. We identified 5 regions of interest within the reward circuit and a 6th control region relevant for MDD but not core to the reward system (Brodmann Area 25). RESULTS Anhedonia, anticipatory and consummatory reward processing improved after ECT. Volume increases within the right reward system separated anhedonia responders and non-responders. Improvement in anticipatory (but not consummatory) reward correlated with increases in volume in hippocampus, amygdala, ventral tegmental area and nucleus accumbens. LIMITATIONS We evaluated a modest sample size of patients with concurrent pharmacological treatment using a subjective psychometric assessment. CONCLUSIONS We highlight the importance of a dimensional and circuit-based approach to understanding target engagement and the mechanism of action of ECT, with the goal to define symptom- and circuit-specific response biomarkers for device neuromodulation therapies.
Collapse
Affiliation(s)
- Marta Cano
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Mental Health Department, Unitat de Neurociència Traslacional, Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Tauli (I3PT), Barcelona, Spain; CIBERSAM, Carlos III Health Institute, Madrid, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Erik Lee
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexis Worthley
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen Ellard
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracy Barbour
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carles Soriano-Mas
- CIBERSAM, Carlos III Health Institute, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain.
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Leaver AM, Espinoza R, Wade B, Narr KL. Parsing the Network Mechanisms of Electroconvulsive Therapy. Biol Psychiatry 2022; 92:193-203. [PMID: 35120710 PMCID: PMC9196257 DOI: 10.1016/j.biopsych.2021.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the oldest and most effective forms of neurostimulation, wherein electrical current is used to elicit brief, generalized seizures under general anesthesia. When electrodes are positioned to target frontotemporal cortex, ECT is arguably the most effective treatment for severe major depression, with response rates and times superior to other available antidepressant therapies. Neuroimaging research has been pivotal in improving the field's mechanistic understanding of ECT, with a growing number of magnetic resonance imaging studies demonstrating hippocampal plasticity after ECT, in line with evidence of upregulated neurotrophic processes in the hippocampus in animal models. However, the precise roles of the hippocampus and other brain regions in antidepressant response to ECT remain unclear. Seizure physiology may also play a role in antidepressant response to ECT, as indicated by early positron emission tomography, single-photon emission computed tomography, and electroencephalography research and corroborated by recent magnetic resonance imaging studies. In this review, we discuss the evidence supporting neuroplasticity in the hippocampus and other brain regions during and after ECT, and their associations with antidepressant response. We also offer a mechanistic, circuit-level model that proposes that core mechanisms of antidepressant response to ECT involve thalamocortical and cerebellar networks that are active during seizure generalization and termination over repeated ECT sessions, and their interactions with corticolimbic circuits that are dysfunctional prior to treatment and targeted with the electrical stimulus.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| | - Randall Espinoza
- Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin Wade
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
49
|
Multimodal multi-center analysis of electroconvulsive therapy effects in depression: Brainwide gray matter increase without functional changes. Brain Stimul 2022; 15:1065-1072. [DOI: 10.1016/j.brs.2022.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
|
50
|
Rojas M, Ariza D, Ortega Á, Riaño-Garzón ME, Chávez-Castillo M, Pérez JL, Cudris-Torres L, Bautista MJ, Medina-Ortiz O, Rojas-Quintero J, Bermúdez V. Electroconvulsive Therapy in Psychiatric Disorders: A Narrative Review Exploring Neuroendocrine-Immune Therapeutic Mechanisms and Clinical Implications. Int J Mol Sci 2022; 23:6918. [PMID: 35805923 PMCID: PMC9266340 DOI: 10.3390/ijms23136918] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 01/12/2023] Open
Abstract
Electroconvulsive therapy (ECT) is based on conducting an electrical current through the brain to stimulate it and trigger generalized convulsion activity with therapeutic ends. Due to the efficient use of ECT during the last years, interest in the molecular bases involved in its mechanism of action has increased. Therefore, different hypotheses have emerged. In this context, the goal of this review is to describe the neurobiological, endocrine, and immune mechanisms involved in ECT and to detail its clinical efficacy in different psychiatric pathologies. This is a narrative review in which an extensive literature search was performed on the Scopus, Embase, PubMed, ISI Web of Science, and Google Scholar databases from inception to February 2022. The terms "electroconvulsive therapy", "neurobiological effects of electroconvulsive therapy", "molecular mechanisms in electroconvulsive therapy", and "psychiatric disorders" were among the keywords used in the search. The mechanisms of action of ECT include neurobiological function modifications and endocrine and immune changes that take place after ECT. Among these, the decrease in neural network hyperconnectivity, neuroinflammation reduction, neurogenesis promotion, modulation of different monoaminergic systems, and hypothalamus-hypophysis-adrenal and hypothalamus-hypophysis-thyroid axes normalization have been described. The majority of these elements are physiopathological components and therapeutic targets in different mental illnesses. Likewise, the use of ECT has recently expanded, with evidence of its use for other pathologies, such as Parkinson's disease psychosis, malignant neuroleptic syndrome, post-traumatic stress disorder, and obsessive-compulsive disorder. In conclusion, there is sufficient evidence to support the efficacy of ECT in the treatment of different psychiatric disorders, potentially through immune, endocrine, and neurobiological systems.
Collapse
Affiliation(s)
- Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Daniela Ariza
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Manuel E. Riaño-Garzón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia; (M.E.R.-G.); (M.J.B.)
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
- Psychiatric Hospital of Maracaibo, Maracaibo 4004, Venezuela
| | - José Luis Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (D.A.); (Á.O.); (M.C.-C.); (J.L.P.)
| | - Lorena Cudris-Torres
- Programa de Psicología, Fundación Universitaria del Área Andina, Valledupar 200001, Colombia;
| | - María Judith Bautista
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia; (M.E.R.-G.); (M.J.B.)
| | - Oscar Medina-Ortiz
- Facultad de Medicina, Universidad de Santander, Cúcuta 540003, Colombia;
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 77054, USA;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|