1
|
Wang Q, Zhang C, Song J, Bamanu B, Zhao Y. Enhancement of bio-promoters on hexavalent chromium inhibited sulfur-driven denitrification: repairing damage, accelerating electron transfer, and reshaping microbial collaboration. BIORESOURCE TECHNOLOGY 2024; 400:130699. [PMID: 38615966 DOI: 10.1016/j.biortech.2024.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Wu Y, Zhao Y, Jia X, Liu Y, Niu J. Phosphomolybdic acid enhancing hexavalent chromium bio-reduction in long-term operation: Optimal dosage and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167328. [PMID: 37751836 DOI: 10.1016/j.scitotenv.2023.167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The bio-reduction of Cr(VI) is regarded as a feasible and safe strategy to treat Cr pollution. The optimal concentration of phosphomolybdic acid (PMo12) for Cr(VI) reduction and the catalytic mechanism of electron behavior (electron production, electron transport and electron consumption) were revealed in denitrifying biofilm systems. The results showed that 0.1 mM PMo12 could achieve 92.5 % removal efficiency of 90 mg/L Cr(VI), which was 47.7 % higher than that of PMo12-free system, and improve the extracellular fixation capacity of Cr(III). The activity of peroxidase (POD) was significantly promoted by PMo12 to repair oxidative stress damage caused by Cr(VI) reduction. Additionally, analysis of electron behavior demonstrated that PMo12 could enhance key indicators of electron production, transport and consumption. This led to rapid activation of the electron pathway inhibited by Cr(VI), enabling simultaneous efficient nitrogen removal and Cr(VI) reduction in the biofilm system. This discovery will provide an efficient technique for Cr-containing wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Zhao Y, Wang Q, Yang Z, Jia X, Cabrera J, Ji M. Bio-capture of Cr(VI) in a denitrification system: Electron competition, long-term performance, and microbial community evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128697. [PMID: 35334263 DOI: 10.1016/j.jhazmat.2022.128697] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Chromium is widely applied in industries as an important metal resource, but the discharge of Cr(VI) containing wastewater leads to the loss of chromium resources. This study proposed a bio-capture process of chromium in a denitrification system. The bio-capture potentiality was explored by investigating the electron competition between Cr(VI) and nitrogen compounds reduction, the long-term bio-capture performance, and the microbial community evolution. In the competition utilization of electron donors, both NO3--N and NO2--N took precedence over Cr(VI), and NO2--N reduction was proved to be the rate-limiting step. Under the optimum conditions of 20 mg/L NO3--N and 6 h HRT, 99.95% of 30 mg/L Cr(VI) could be reduced, and 220980 μg Cr/g MLSS was captured by the biofilm, which was fixed in intercellular as Cr(III). Microbiological analysis confirmed that the bio-reduction of Cr(VI) and NO3--N was mediated by synergistic interactions of a series of dominant bacteria, including genera Acidovorax, Thermomonas, and Microbacterium, which contained both the denitrification genes (narG, narZ, nxrA, and nirK) and chromate reduction genes (chrA and chrR). This study proved the feasibility of chromium bio-capture in denitrification systems and provided a new perspective for the Cr(VI) pollution treatment.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhifan Yang
- Tianjin Municipal Engineering Design & Research Institute Co. Ltd., Tianjin 300380, China
| | - Xulong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
4
|
Pan J, Liu L, Pan H, Yang L, Su M, Wei C. A feasibility study of metal sulfide (FeS and MnS) on simultaneous denitrification and chromate reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127491. [PMID: 34673399 DOI: 10.1016/j.jhazmat.2021.127491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Metal sulfide-based biological process is considered as a promising biotechnology for next-generation wastewater treatment. However, it is not clear if simultaneous bio-reduction of nitrate and chromate was achievable in this process. This study aimed to evaluate the feasibility of metal sulfides (FeS and MnS) on simultaneous denitrification and chromate reduction in autotrophic denitrifying column bioreactors. Results showed that simultaneous reduction of nitrate and chromate was achieved using metal sulfides (FeS and MnS) as electron donors, in which sulfate was the sole soluble end-product. Apart from the sulfur element in the metal sulfides, Fe(II) and Mn(II) were also involved in nitrate and chromate reduction as indicative by the formation of their oxidative states compounds. In microbial communities, SHD-231 and Thiobacillus were the most predominant bacteria, which might have played important roles in simultaneous denitrification and chromate reduction. Compared to FeS, MnS showed a higher performance on nitrate and chromate removal, which could also reduce the toxic inhibition of chromate on nitrate reduction. According to results of XRD and XPS, as well as a lower sulfate production in the FeS system, FeS might have been covered easily to hydroxides due to its bio-oxidation, which limited mass transfer efficiency and bio-availability of FeS. The findings in this study offered insights in the development of promising approaches for the treatment of toxic and hazardous compounds using metal sulfide.
Collapse
Affiliation(s)
- Jianxin Pan
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Liangliang Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Hanping Pan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lihui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Meirong Su
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
5
|
Hu Y, Liu T, Chen N, Feng C. Changes in microbial community diversity, composition, and functions upon nitrate and Cr(VI) contaminated groundwater. CHEMOSPHERE 2022; 288:132476. [PMID: 34634272 DOI: 10.1016/j.chemosphere.2021.132476] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/12/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
With the increasing occurrences of nitrate and Cr(VI) pollution globally, microbially driven pollutant reduction and its interaction effects were of growing interest. Despite the increasing number of experimental reports on the simultaneous reduction of nitrate and Cr(VI), a broad picture of the keystone species and metabolic differences in this process remained elusive. This study explored the changing of microorganisms with the introduction of Cr(VI)/NO3- through analyzing 242 samples from the NCBI database. The correlation between microbial abundance and environmental factors showed that, the types of energy substances and pollutants species in the environment had an impact on the diversity of microorganisms and community structure. The genus of Zoogloea, Candidatus Accumulibacter, and Candidatus Kapabacteria sp. 59-99 had the ability of denitrification, while genus of Alcaligenes, Kerstersia, Petrimonas, and Leucobacter showed effectively Cr(VI) resistance and reducing ability. Azoarcus, Pseudomonas, and Thauera were recognized as important candidates in the simultaneous reduction of nitrate and Cr(VI). Metagenomic predictions of these microorganisms using PICRUSt2 further highlighted the enrichment of Cr(VI)and nitrate reduction-related genes (such as chrA and norC). Special attention should therefore be paid to these bacteria in subsequent studies to evaluate their performance and mechanisms involved in simultaneous denitrification and chromium removal. The microbial co-occurrence network analysis conducted on this basis emphasized a strong association between community collaboration and pollution removal. Collectively, either site surveys or laboratory experiments, subsequent studies should focus on these microbial populations and the interspecific collaborations as they strongly influence the occurrence of simultaneous nitrate and Cr(VI) reduction.
Collapse
Affiliation(s)
- Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
6
|
Zhao B, Sun Z, Liu Y. An overview of in-situ remediation for nitrate in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149981. [PMID: 34517309 DOI: 10.1016/j.scitotenv.2021.149981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Faced with the increasing nitrate pollution in groundwater, in-situ remediation has been widely studied and applied on field-scale as an efficient, economical and less disturbing remediation technology. In this review, we discussed various in-situ remediation for nitrate in groundwater and elaborate on biostimulation, phytoremediation, electrokinetic remediation, permeable reactive barrier and combined remediation. This review described principles of each in-situ remediation, application, the latest progress, problems and challenges on field-scale. Factors affecting the efficiency of in-situ remediation for nitrate in groundwater are also summarized. Finally, this review presented the prospect of in-situ remediation for nitrate pollution in groundwater. The objective of this review is to examine the state of knowledge on in-situ remediation for nitrate in groundwater and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. This helps to better understand the control mechanisms of various in-situ remediation for nitrate pollution in groundwater and the design options available for application to the field-scale.
Collapse
Affiliation(s)
- Bei Zhao
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Yajie Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
7
|
Tabani H, Bameri AE, Abedi H, Hatefi R, Gorjizadeh A, Moghaddam AZ. Introduction of nitrogen doped graphene nanosheets as efficient adsorbents for nitrate removal from aqueous samples. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1875-1886. [PMID: 34900313 PMCID: PMC8617231 DOI: 10.1007/s40201-021-00741-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/11/2021] [Indexed: 05/25/2023]
Abstract
PURPOSE Introducing and developing new kinds of adsorbents are always a significant challenge in water treatments. In this work, for the first time, graphene oxide (GO), nitrogen-doped graphene oxide (ND-GO), highly nitrogen-doped graphene oxide (HND-GO), and 3D high nitrogen-doped graphene oxide (3D-HND-GO) were synthesized and comparatively evaluated in the removal of nitrate content of tap and underground waters. METHODS The removal of the target analyte was performed through a batch adsorption approach, and the factors influencing its removal efficiency (i.e., initial pH of the sample, primary concentrations of nitrate, amount of adsorbent, and contact time) were evaluated through a central composite design (CCD) and response surface methodology (RSM). RESULTS Based on the results, 3D-HND-GO showed the highest removal efficiency in comparison with the other mentioned nanoparticles. The nitrate removal using this adsorbent was modeled successfully so that R 2, adjusted R 2, and predicted R 2 values were 0.9717, 0.9508, and 0.9010, respectively. In addition, the optimal removal condition was achieved using the Nelder-Mead non-linear optimization algorithm as follow: the initial concentrations of nitrate (expressed as nitrogen): 15.0 mg/mL, the amount of the adsorbent: 2.0 mg/mL; pH of the sample: 3.0; and the contact time: 20.0 min. Under this optimal condition, the actual removal result (92.5 ± 4.0%) was in good agreement with the expected value (94.8 ± 5.1%). Additional studies were also performed to comprehensibly evaluate the adsorption activity of the adsorbent (e.g., kinetic, isotherm, and desorption parameters). The adsorption isotherm complied with the Langmuir model illustrating the considerable mono-layer adsorption capacities for the target ions with qm of 8.7 mg/g. The adsorption process was indicated to obey a pseudo 2nd order kinetic model, with the rate-limiting step for the adsorption phase. CONCLUSIONS This study revealed which 3D-HND-G leads to improved yield in the nitrate ions elimination, particularly at acidic media, which was related to the enhanced dispersibility and larger surface area. The adsorbent was further successfully used for treating tap and underground water samples. At the present moment, research as grown to modify 3D-HND-G in orders to increase the potentiality for industrial applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00741-7.
Collapse
Affiliation(s)
- Hadi Tabani
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Amir Ehsan Bameri
- Department of Chemistry College of Sciences, University of Birjand, Birjand, Iran
| | - Hamid Abedi
- Department of Police Equipment and Technologies, Police Sciences and Social Studies Institute, Tehran, Iran
| | - Raheleh Hatefi
- Department of Environmental Geology, Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Ali Gorjizadeh
- Department of Chemistry College of Sciences, University of Birjand, Birjand, Iran
| | | |
Collapse
|
8
|
Zhao C, Liu B, Meng S, Wang Y, Yan L, Zhang X, Wei D. Microbial fuel cell enhanced pollutants removal in a solid-phase biological denitrification reactor: System performance, bioelectricity generation and microbial community analysis. BIORESOURCE TECHNOLOGY 2021; 341:125909. [PMID: 34523547 DOI: 10.1016/j.biortech.2021.125909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
A novel electrochemical system of microbial fuel cell (MFC) coupled solid-phase denitrification biofilm reactor (DBR) system was established to explore the effect of simultaneous power generation and pollutant removal under different HRTs (Ⅰ:48 h; Ⅱ :24 h). The average removal rates of methyl orange, Cr (VI) and NO3--N in test group were 93.0, 98.6 and 95.5% within 60 days, while those were 53.1, 72.1 and 72.7% in control. The maximum power density was 61.2 (Ⅰ) and 16.1 mW/m2 (Ⅱ), while average output voltage was 122 (Ⅰ) and 83.6 mV (Ⅱ). Components 1 and 2 in soluble microbial products were identified, and the humic-like and fulvic acid-like substances varied through different layers. Pseudomonas produced electricity in anode, while denitrified in denitrification layer. Importantly, symbiotic cooperation was absolutely dominant in network analysis of both anodic and denitrifying biofilms. MFC significantly improved DBR's ability to treatment co-polluted wastewater.
Collapse
Affiliation(s)
- Chuanfu Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Bing Liu
- Resources and Environment Innovation Research Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Shuangyu Meng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Yihua Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China
| | - Dong Wei
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, PR China; Anhui Guozhen Environmental Protection Technology Joint Stock Co., Ltd, Hefei 230088, PR China.
| |
Collapse
|
9
|
Chang Q, Ali A, Su J, Wen Q, Bai Y, Gao Z. Simultaneous removal of nitrate, manganese, and tetracycline by Zoogloea sp. MFQ7: Adsorption mechanism of tetracycline by biological precipitation. BIORESOURCE TECHNOLOGY 2021; 340:125690. [PMID: 34352640 DOI: 10.1016/j.biortech.2021.125690] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
A Mn(II) oxidizing-denitrifying and tetracycline (TC) removal bacterium Zoogloea sp. MFQ7 was isolated in this study. Nitrogen removal was 83.49% by nitrogen balance experiment. The maximum removal efficiencies of nitrate, Mn(II), and TC by strain MFQ7 within 96 h was 100.00, 74.56, and 63.59% at C/N of 2.0, pH of 7.0, Mn(II) of 20 mg L-1, temperature of 30.0 °C, and TC of 0.2 mg L-1. SEM illustrated that biogenic manganese oxides (BMO) was petal-like, XRD and XPS analyses confirmed that MnO2 was the main component of BMO. Besides, the maximum adsorption capacity of BMO for TC was 52.21 mg g-1. FTIR detected the changes in TC adsorption by BMO. Pseudo-second-order model (R2 = 0.994) explained the adsorption kinetics of TC on BMO and Langmuir isotherm model (R2 = 0.983) suggested that it was homogeneous adsorption, thermodynamics data (ΔG < 0, ΔH = 18.31 kJ mol-1, ΔS = 72.8 J (mol*K)-1) confirmed that adsorption was endothermic and spontaneous.
Collapse
Affiliation(s)
- Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Wang Q, Zhao Y, Zhai S, Liu D, Zhou X, Wang Y, Cabrera J, Ji M. Application of different redox mediators induced bio-promoters to accelerate the recovery of denitrification and denitrifying functional microorganisms inhibited by transient Cr(VI) shock. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126664. [PMID: 34329097 DOI: 10.1016/j.jhazmat.2021.126664] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The transient hexavalent chromium (Cr(VI)) shock may directly inhibit the denitrification process of municipal wastewater treatment plants (WWTPs), which is difficult to recover in a short time. This study developed four nontoxic bio-promoters (combination of L-cysteine, flavin adenine dinucleotide (FAD), biotin, cytokinin and different redox mediators) to quickly restore the denitrification performance after high-loading Cr(VI) suppressing. After feeding with 100 mg/L of Cr(VI) for 42 cycles (T, 4 h), the removal efficiency of nitrate was reduced by 85.00%, and nitrite was accumulated simultaneously. The denitrification performance was recovered quickly with the addition of bio-promoters, introducing redox mediators showed noticeable superiority on the bio-inhibition release. Compared with sodium humate and riboflavin, the AQDS induced bio-promoter achieved the best nitrate removal recovery performance within only 28 T, and the recovery rate was 2.16 times faster than the natural recovery. Microbial analysis showed that Cr(VI) specially inhibited napA-type denitrifiers, and the OTU numbers sharply dropped by 48.74%. Redox mediators induced bio-promoters could effectively recover the abundance of napA-type and nirS-type denitrifying microorganisms, which was consistent with the change of nitrate removal efficiency. This study offers a cost-effective approach to deal with Cr(VI) shock problem, which may promote the development of bio-promoters for WWTPs.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Duo Liu
- The Ninth Waterworks of Beijing Waterworks Group Co., Ltd, Beijing 100012, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australian
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
Hao L, He Y, Shi C, Hao X. Biologically removing vanadium(V) from groundwater by agricultural biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113244. [PMID: 34265660 DOI: 10.1016/j.jenvman.2021.113244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Vanadium (V) in groundwater can pose a serious threat on both environment and health. Agricultural biomass contains solid carbon source (SCS) and could be attractive for biologically removing V(V). For this purpose, cypress sawdust, corn cob and wheat straw were selected as SCSs to remove vanadate (NaVO3). The experiments demonstrated a high efficiency of V(V) up to 98.6%, and the anaerobically biological reduction of V(V) to V(IV) by wheat straw was identified to be the best SCS by the spectrum analysis of XRD and FTIR. Along with increasing the fragment size of wheat straw, the V(V)-removal efficiency decreased, and the fragment size down to 1-3 mm was confirmed to have a significant bio-removal performance on V(V). Based on the analysis of 16s rRNA sequencing, the microbial abundance and diversity increased in the suspension liquid in the end, indicating that the microbial community could tolerate and/or detoxify V(V), besides degrading lignocellulosic materials.
Collapse
Affiliation(s)
- Liting Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuanyuan He
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chen Shi
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
12
|
Mittal A, Singh R, Chakma S, Goel G, Birke V. An integrated permeable reactive barrier and photobioreactor approach for simultaneous removal of nitrate, phosphate and hexavalent chromium: A combined batch and continuous flow study. BIORESOURCE TECHNOLOGY 2021; 333:125201. [PMID: 33932809 DOI: 10.1016/j.biortech.2021.125201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
In this study, simultaneous removal of nitrate (NO3-), phosphate (PO43-) and hexavalent chromium (Cr(VI)) from wastewater was investigated using a novel integrated filtration unit consisting of adsorbent based permeable reactive barrier (AB-PRB) and biosorption based photobioreactor (BSB-PBR). AB-PRB was comprising a mixture of low-cost adsorbents in an optimum proportion, whereas BSB-PBR carried C. vulgaris microalgae cultivated in controlled environment. The batch analysis for AB-PRB showed maximum removal efficiency of 95.7% and 98.0% for NO3- and PO43-, at pH-6, whereas 84.0% for Cr(VI) at pH-4. However, continuous flow study showed decreasing trend in removal efficiency of NO3-, PO43- and Cr(VI) with increasing flow rate from 10 ml min-1 to 30 ml min-1. Further, in BSB-PBR, maximum removal of 98.2% was achieved for Cr(VI) of 1.0 mg L-1 initial concentration at 3.3 days of hydraulic retention time (HRT). This study provides a novel integrated remediation approach for efficient removal of unlike contaminants.
Collapse
Affiliation(s)
- Akshit Mittal
- Department of Environmental Engineering, Delhi Technological University, Delhi 110042, India
| | - Rahul Singh
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Faculty of Engineering Science, Department of Process, Energy, Environmental and Biotech Engineering, University of Wismar - University of Applied Sciences, Technology, Business, and Design, Philipp-Müller-Str. 14, Wismar 23966, Germany.
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Volker Birke
- Faculty of Engineering Science, Department of Process, Energy, Environmental and Biotech Engineering, University of Wismar - University of Applied Sciences, Technology, Business, and Design, Philipp-Müller-Str. 14, Wismar 23966, Germany
| |
Collapse
|
13
|
Su JF, Hu XF, Lian TT, Wei L. Effect of hydraulic retention time, ZVI concentration, and Fe 2+ concentration on autotrophic denitrification efficiency with iron cycle bacterium strain CC76. ENVIRONMENTAL TECHNOLOGY 2021; 42:2757-2767. [PMID: 31918635 DOI: 10.1080/09593330.2020.1713904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
The immobilized reactor of iron-reducing bacteria and zero-valent iron (ZVI) integrated system was established. This study has shown that the effects of hydraulic retention times (9, 11, 13 h), ZVI concentrations (2, 4, 6, 8 mg/L), and Fe2+ concentrations (5, 10, 15 mg/L) on the denitrification characteristics of iron cycle bacterium strain CC76. The results show that the longer the HRT is, the stronger ability of bacteria to remove nitrate. When ZVI concentration was 4 mg/L and the Fe2+ concentration is 15 mg/L, the removal efficiency of nitrate was the highest, reaching the maximum value of 93.02% (1.07 mg/L/h). Since increasing ZVI concentration in a certain range can not only promote chemical reduction but also make use of strain CC76 as an electron donor. Also, the abundance of strain CC76 decreased with the increase of ZVI concentration, which indicated that adding a low concentration of ZVI could reduce the inhibitory effect on bacteria. Hypothesis analysis of principal components showed that a low concentration of ZVI is beneficial to increase nitrate removal rate. Community structure analysis indicated that strain CC76 and related bacteria were the most abundant bacteria in the reactor.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Xiao Fen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Ting Ting Lian
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
14
|
Zhou X, Zhai S, Zhao Y, Liu D, Wang Q, Ji M. Rapid recovery of inhibited denitrification with cascade Cr(VI) exposure by bio-accelerant: Characterization of chromium distributions, EPS compositions and denitrifying communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125087. [PMID: 33476908 DOI: 10.1016/j.jhazmat.2021.125087] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr(VI)) may inhibit denitrification in biological wastewater treatment systems, and the inhibited denitrification process is difficult to recover in a short time. This study explored Cr(VI) cascade impact (20-125 mg L-1) on denitrification and developed one nontoxic biological accelerant (combination of L-cysteine, flavin adenine dinucleotide, biotin and cytokinin) for denitrification recovery. The results showed that NO3--N removal efficiency decreased from 75.7% to 21.5% when Cr(VI) concentration increased from 80 to 125 mg L-1. Addition of accelerant could effectively promote the removal of NO3--N, and observably reduce the recovery time (42 T) compared with natural recovery (63 T). Furthermore, the main site of Cr(VI) reduction and Cr(III) immobilization was located in the intercellular compartment of the biofilm. Microbes produced more tightly bound extracellular polymeric substances (TB-EPS) to protect them from toxicity under the low Cr(VI) concentrations, while low EPS was secreted when Cr(VI) concentration was higher than 60 mg L-1. Compared to natural recovery system, bio-accelerant addition was beneficial to the recovery of denitrifiers activities, especially for the bacteria containing nirS gene. The results facilitated an understanding of Cr(VI) impact on denitrification, and the proposed bio-accelerant can be potentially applied to heavy metal shock-loading emergency situations.
Collapse
Affiliation(s)
- Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Duo Liu
- The Ninth Waterworks of Beijing Waterworks Group Co., Ltd, Beijing 100012, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
15
|
Rahman Z, Thomas L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front Microbiol 2021; 11:619766. [PMID: 33584585 PMCID: PMC7875889 DOI: 10.3389/fmicb.2020.619766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Chromium (Cr) (VI) is a well-known toxin to all types of biological organisms. Over the past few decades, many investigators have employed numerous bioprocesses to neutralize the toxic effects of Cr(VI). One of the main process for its treatment is bioreduction into Cr(III). Key to this process is the ability of microbial enzymes, which facilitate the transfer of electrons into the high valence state of the metal that acts as an electron acceptor. Many underlying previous efforts have stressed on the use of different external organic and inorganic substances as electron donors to promote Cr(VI) reduction process by different microorganisms. The use of various redox mediators enabled electron transport facility for extracellular Cr(VI) reduction and accelerated the reaction. Also, many chemicals have employed diverse roles to improve the Cr(VI) reduction process in different microorganisms. The application of aforementioned materials at the contaminated systems has offered a variety of influence on Cr(VI) bioremediation by altering microbial community structures and functions and redox environment. The collective insights suggest that the knowledge of appropriate implementation of suitable nutrients can strongly inspire the Cr(VI) reduction rate and efficiency. However, a comprehensive information on such substances and their roles and biochemical pathways in different microorganisms remains elusive. In this regard, our review sheds light on the contributions of various chemicals as electron donors, redox mediators, cofactors, etc., on microbial Cr(VI) reduction for enhanced treatment practices.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
16
|
Zhong H, Cheng Y, Ahmad Z, Shao Y, Zhang H, Lu Q, Shim H. Solid-phase denitrification for water remediation: processes, limitations, and new aspects. Crit Rev Biotechnol 2020; 40:1113-1130. [DOI: 10.1080/07388551.2020.1805720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hua Zhong
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Ying Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, China
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Yalu Shao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Hongwei Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Qihong Lu
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Hojae Shim
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| |
Collapse
|
17
|
Sun Y, Zheng W, Ding X, Singh RP. Selective removal of nitrate using a novel asymmetric amine based strongly basic anion exchange resin. ADSORPT SCI TECHNOL 2020. [DOI: 10.1177/0263617420945839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, a novel asymmetric amine-based strongly basic anion exchange resin SE-1 was synthesized successfully via the reaction of chloromethylated styrene–divinylbenzene copolymer with N, N-dimethyloctylamine. The sorption performance of SE-1 for selective removal of nitrate in aqueous solution was compared to a commercially available nitrate specialty resin, namely Purolite A 520E (A 520E). It was found that the kinetic data could be described better by the pseudo-second-order model, and SE-1 indicated a faster sorption kinetics than A 520E resin. The Langmiur model was more appropriate for explicating the sorption isotherm. Importantly, SE-1 exhibited a greater sorption capacity for nitrate regardless of the absence or presence of competing anions in solutions. The result of column tests reinforced the feasibility of SE-1 for practical application in groundwater treatment.
Collapse
Affiliation(s)
| | - Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, China
| | - Xinchun Ding
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, China
| | - Rajendra P Singh
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, China
| |
Collapse
|
18
|
Yu X, Shi J, Khan A, Yun H, Zhang P, Zhang P, Kakade A, Tian Y, Pei Y, Jiang Y, Huang H, Wu K, Li X. Immobilized-microbial bioaugmentation protects aerobic denitrification from heavy metal shock in an activated-sludge reactor. BIORESOURCE TECHNOLOGY 2020; 307:123185. [PMID: 32244075 DOI: 10.1016/j.biortech.2020.123185] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 05/21/2023]
Abstract
The inhibition of denitrification by heavy metals is a problem in nitrogen wastewater treatment, but the solutions are rarely studied. In this study, Pseudomonas brassicacearum LZ-4, immobilized in sodium alginate-kaolin, was applied in an activated-sludge reactor to protect denitrifiers from hexavalent chromium (Cr(VI)). Q-PCR result showed that the strain LZ-4 was incorporated into activated sludge under the help of immobilization. In the non-bioaugmentation system, the removal efficiency of nitrate was decreased by 86.07% by 30 mg/L Cr(VI). Whereas, denitrification was protected and 95% of nitrate was removed continuously in immobilized-cell bioaugmentation system. Miseq sequencing data showed that bioaugmentation decreased the impact of Cr(VI) on microbial communities and increased the abundance of denitrifiers. Based on the results of biomass and extracellular polymers, activated sludge was protected from Cr(VI) toxicity. This discovery will provide a feasible technique for nitrogen wastewater treatment in the presence of distressing heavy metals.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Juanjuan Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Pengyun Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Yanrong Tian
- PetroChina Lanzhou Petrochemical Company, yumenjie#10, Lanzhou 730060, Gansu, PR China
| | - Yaxin Pei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Kejia Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China.
| |
Collapse
|
19
|
Su JF, Wang Z, Huang TL, Zhang H, Zhang H. Simultaneous removal of nitrate, phosphorous and cadmium using a novel multifunctional biomaterial immobilized aerobic strain Proteobacteria Cupriavidus H29. BIORESOURCE TECHNOLOGY 2020; 307:123196. [PMID: 32220820 DOI: 10.1016/j.biortech.2020.123196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
A novel biomaterial FeCl3/CaCl2/KH2PO4 modified municipal sludge biochar (FCPC) was synthesized. And the impacts of critical factors such as HRT, temperature and C/N ratio on simultaneous denitrification, dephosphorization and Cd(II) removal were investigated. Results show that the highest nitrate removal efficiency reached 92.22% (8.49 mg·L-1·h-1) in test group A and approximately 100% (9.19 mg·L-1·h-1) in test group B. Very low phosphate concentrations (approximately 2.50 mg/L) were detected in the effluent. The average removal efficiency of Cd(II) reached 86.40% (4.42 mg·L-1·h-1) in experimental group A and 90.15% (4.61 mg·L-1·h-1) in experimental group B. Gas emissions and biological precipitation in the bioreactors were monitored, further to confirming contaminant removal mechanisms. Additionally, Cupriavidus H29 was found to contribute dominantly to the FCPC bioreactor activity.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ting Lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Han Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
20
|
Cao L, Ma Y, Deng D, Jiang H, Wang J, Liu Y. Electricity production of microbial fuel cells by degrading cellulose coupling with Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122184. [PMID: 32092674 DOI: 10.1016/j.jhazmat.2020.122184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
A facultative exoelectrogen strain Lsc-8 belonging to the Cellulomonas genus with the ability to degrade carboxymethyl cellulose (CMC) coupled with the reduction of Cr(VI), was successfully isolated from rumen content. The maximum output power density of the microbial fuel cells (MFCs) inoculated strain Lsc-8 was 9.56 ± 0.37 mW·m-2 with CMC as the sole carbon source. From the biomass analysis it can be seen that the electricity generation of the MFCs was primarily attributed to the planktonic cells of strain Lsc-8 rather than the biofilm attached on the electrode, which was different from Geobacter sulfurreducens. Especially, during electricity generation of the MFCs using CMC as carbon source in the anode chamber, the Cr(VI) reduction were simultaneously realized. And it is also found that the Cr(VI) reduction ratio by strain Lsc-8 is directly related to the initial Cr(VI) concentration, and it increased with the increase of initial Cr(VI) concentration at first, then started to decrease when the Cr(VI) concentration was above 21 mg ·L-1. Meanwhile, the highest output power density of 3.47 ± 0.28 mW·m-2 was observed coupling with 95.22 ± 2.72 % of Cr(VI) reduction. These data suggested that the strain Lsc-8 could reduce high toxicity Cr(VI) to low toxicity Cr(III) coupled with electricity generation in MFCs with CMC as the carbon source. Our results also suggested that this study will provide a possibility to simultaneously degrade Cr(VI) and generate electricity by using cellulose as the carbon source via MFCs.
Collapse
Affiliation(s)
- Lianbin Cao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China
| | - Yamei Ma
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China
| | - Dandan Deng
- College of Biology and Food, Shangqiu Normal University, No. 55 Pingyuan Road, Shangqiu, Henan Province, 476000, PR China
| | - Huichun Jiang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China
| | - Jiaxin Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
21
|
Moghaddam AZ, Jazi ME, Allahrasani A, Khazaei M, Ganjali MR, Saeb MR, Vatanpour V. Removal of Chromate and Nitrate Ions from Aqueous Solutions by Co
x
Fe
3‐
x
O
4
@silica Hybrid Nanoparticles Decorated with Cross‐Linked Tragacanth Gum: Experiment, Modeling and Optimization. ChemistrySelect 2020. [DOI: 10.1002/slct.202000725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mehdi Erfani Jazi
- Department of ChemistryMississippi State University Mississippi State Mississippi 39762 United States
| | - Ali Allahrasani
- Department of ChemistryCollege of SciencesUniversity of Birjand Birjand 97175-615 Iran
| | - Mohammad Khazaei
- Department of Environmental Health EngineeringSchool of Public Health and Research Center for Health SciencesHamadan University of Medical Sciences Hamadan Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in ElectrochemistrySchool of ChemistryCollege of ScienceUniversity of Tehran Tehran Iran
- Biosensor Research CenterEndocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical Sciences Tehran Iran
| | - Mohammad Reza Saeb
- Department of Resin and AdditivesInstitute for Color Science and Technology P.O. Box 16765-654 Tehran Iran
| | - Vahid Vatanpour
- Department of Applied ChemistryFaculty of ChemistryKharazmi University P.O. Box 15719-14911 Tehran Iran
| |
Collapse
|
22
|
Dash DM, Osborne WJ. Rapid biodegradation and biofilm-mediated bioremoval of organophosphorus pesticides using an indigenous Kosakonia oryzae strain -VITPSCQ3 in a Vertical-flow Packed Bed Biofilm Bioreactor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110290. [PMID: 32058164 DOI: 10.1016/j.ecoenv.2020.110290] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The widespread use of pesticides has been one of the major anthropogenic sources of environmental pollution. Organophosphorus (OP) pesticides are predominantly used in agriculture due to their broad-spectrum insecticidal activity and chemical stability. The study was focused on the biodegradation of OP pesticides, Profenofos (PF) and Quinalphos (QP) in culture media using bacterium isolated from wetland paddy rhizosphere. The strain VITPSCQ3 showed higher pesticide tolerance, efficient biofilm formation and was capable of synthesizing organophosphate degrading enzymes. Based on the 16S rRNA gene sequencing the isolate exhibited maximum sequence similarity with Kosakinia oryzae (GenBank accession number: KR149275). Biodegradation assay with various concentrations of PF and QP (200, 400, 600 and 800 mg L-1) showed maximum degradation up to 82% and 92% within 48 h. The kinetic studies revealed the biodegradation rates (k) to be 0.0844 min-1 and 0.107 min-1 with half-lives (h) of 18 h and 14.8 h for PF and QP. The degradation products were identified by GCMS and possible degradation pathways were proposed using Insilico techniques. To the best of our knowledge, this is the first report on the biodegradation of PF and QP using Kosakonia oryzae. Bioremoval of PF and QP from aqueous solution was performed using the biofilm of VITPSCQ3 developed on selected substrates in a circulating Vertical-flow packed-bed biofilm (VFPBB) bioreactor. Charcoal, gravel and mushroom (Agaricus bisporus) were used as biofilm carriers. Mushroom showed strong biofilm formation with optimum biodegradation capacity of up to 96% for PF and 92% for QP within 120 min reaction time.
Collapse
Affiliation(s)
- Dipti Mayee Dash
- Department of Bioscience, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - W Jabez Osborne
- Department of Bioscience, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
23
|
Yu Y, An Q, Jin L, Luo N, Li Z, Jiang J. Unraveling sorption of Cr (VI) from aqueous solution by FeCl 3 and ZnCl 2-modified corn stalks biochar: Implicit mechanism and application. BIORESOURCE TECHNOLOGY 2020; 297:122466. [PMID: 31791915 DOI: 10.1016/j.biortech.2019.122466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
A novel functionalized biochar was prepared using corn stalks for efficiently removal and mobility control of Cr(VI). Compared to single modified biochar, iron/zinc biochar (Fe@Zn@HBC) displayed a better removal property and the maximum adsorption capacity of Fe@Zn@HBC reached 138.89 mg·g-1 at pH = 2 and 260 ± 10 Lux illumination. The positive charge on biochar might be the main reason promoting the rapid adsorption of Cr(VI) by electrostatic interaction. Reduction functional groups and photocatalysis (derived from ZnFe2O4 and B-H functional group) provided electrons for Cr(VI) reduction. And the SiO2 could enhance the reduction process by improving electrons transfer. Finally, FeCr2O4 and ZnFeCrO4 were formed by coprecipitation and ion exchange. Meanwhile, Fe@Zn@HBC showed a high solid-liquid magnetic separation potential due to the Fe3O4 and ZnFe2O4. In soil column experiment, Fe@Zn@HBC displayed a superior mobility control on biochar particles and Cr(VI) solution under the external magnetic field.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Qiang An
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Lin Jin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ning Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zheng Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Junnan Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
24
|
Su JF, Bai YH, Huang TL, Wei L, Gao CY, Wen Q. Multifunctional modified polyvinyl alcohol: A powerful biomaterial for enhancing bioreactor performance in nitrate, Mn(II) and Cd(II) removal. WATER RESEARCH 2020; 168:115152. [PMID: 31614240 DOI: 10.1016/j.watres.2019.115152] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/12/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The co-existence of multiple pollutants in wastewater such as nitrate and heavy metal, is of high concern due to the potential environmental impact. In this study, a novel biomaterial PPy@Fe3O4/PVA was synthesized as a multifunctional bacteria immobilized carrier, to enhance simultaneous denitrification, Cd(II) and Mn(II) removal efficiency in bioreactor environments. The morphology and main components of the PPy@Fe3O4/PVA material were characterized by SEM and XRD. Using PPy@Fe3O4/PVA as a carrier, the maximum removal efficiencies for nitrate (0.207 mg L-1·h-1), Mn(II) (90.98%) and Cd(II) (98.78%) were increased by 27.05%, 30.27%, and 16.48%, respectively, compared to in the absence of PPy@Fe3O4/PVA. Regeneration experiments were performed, demonstrating the excellent stability and reusability of the PPy@Fe3O4/PVA material. Furthermore, effects of key factors were investigated on the performance of the PPy@Fe3O4/PVA bioreactor in simultaneous denitrification, Mn(II) and Cd(II) removal. Experimental results indicate that the highest nitrate, Mn(II) and Cd(II) removal efficiencies were obtained under the conditions of HRT of 10 h, initial Mn(II) concentration of 40 mg/L and initial Cd(II) concentration of 10 mg/L. Gas chromatography analysis indicated that N2 was the mainly final gaseous product. Moreover, the bioreactor community diversity was markedly influenced by the initial concentration of Cd(II) and Pseudomonas sp. H117 played a primary role in the process of simultaneous denitrification, Mn(II) and Cd(II) removal.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Han Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ting Lin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chun Yu Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
25
|
Immobilizing magnetic glutaraldehyde cross-linked chitosan on graphene oxide and nitrogen-doped graphene oxide as well-dispersible adsorbents for chromate removal from aqueous solutions. Int J Biol Macromol 2019; 128:61-73. [DOI: 10.1016/j.ijbiomac.2019.01.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
|
26
|
Lu Z, Gan L, Lin J, Chen Z. Aerobic denitrification by Paracoccus sp. YF1 in the presence of Cu(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:80-86. [PMID: 30572217 DOI: 10.1016/j.scitotenv.2018.12.225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
This study of Cu(II)'s impact on aerobic denitrification of Paracoccus sp. YF1 revealed that the denitrification rate decreased markedly from 99.8%, 98.0%, 68.7% to 16.3% when the concentrations of Cu(II) rose from 0, 0.01 mM, 0.05 mM to 0.1 mM, respectively. This outcome was confirmed by the successful test of OD600, total protein and enzyme activities. As the concentration of Cu(II) increased from 0 to 0.1 mM, the total protein contents declined over a period of 48 h, and the activities of nitrate reductase (NR) and nitrite reductase (NIR) decreased remarkably during the first 24 h in a NO3- sufficient state. Meanwhile, the reduction of NO3- and NO2- was positively correlated with the expression level of NR and NIR. The removal rate of nitrate in the control treatment and different concentration of Cu(II) treatment fitted approximately to the zero-order model. Scanning electron microscopy (SEM) confirmed that the cell surfaces of Paracoccus sp. YF1 were disrupted when exposed to 0.1 mM Cu(II). The adsorption of Cu(II) onto the cells' surface was confirmed by Energy dispersive spectrometer (EDS), Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy analysis (XPS). The insights obtained here regarding the influence of Cu(II) on aerobic denitrification will be of great significance for the treatment of heavy metals and nitrite co-existing sewage.
Collapse
Affiliation(s)
- Zeyang Lu
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Li Gan
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Jiajiang Lin
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Zuliang Chen
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
27
|
Chen H, Jin R, Liu G, Tian T, Gu C, Zhou J, Xing D. Effects of sludge lysate for Cr(VI) bioreduction and analysis of bioaugmentation mechanism of sludge humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5065-5075. [PMID: 30604364 DOI: 10.1007/s11356-018-3917-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
This study evaluated the effects of sludge lysate (SL) on the anaerobic bioreduction of Cr(VI) and the role of sludge humic acid (SHA) during this process. The results showed that supplement of SL significantly enhanced the efficiency of Cr(VI) bioreduction by 29.61%, in 12 h compared with that of the control without SL. Moreover, SHA exhibited promoting effects on bioreduction of Cr(VI), and the promotion increased with increasing SHA concentrations from 100 to 300 mg/L. In the presence of 300 mg/L SHA, Cr(VI) (98.21 mg/L) was completely reduced after 24 h with a removal rate increased by 34.3% compared with that of the control without SHA. Further investigation on the bioaugmentation mechanism of SHA by studying the nature of SHA and the reaction mechanism between SHA and Cr(VI) revealed that SHA exhibited a strong adsorption ability, which could adsorb and combine with Cr(VI). The adsorption capacity of Cr(VI) by SHA was calculated as 34.4 mg/g with 0.2 g of SHA and 10 mg/L of Cr(VI). It could also act as redox mediators to accelerate the electron transfer between microorganisms and Cr(VI) to promote reduction of Cr(VI). Furthermore, the effects of SL on the microbial community compositions of the anaerobic Cr(VI) bioreduction system were studied. Brachymonas was the primary bacteria at the genus level. The abundance of electroactive bacteria, such as Acinetobacter, Pseudomonas, and Arcobacter, increased in the SL-amended system. These findings expand the versatility of SL and justify wider use of residual activated sludge, which might contribute to the treatment of heavy metal-contaminated wastewater.
Collapse
Affiliation(s)
- Hongling Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- Drainage Management Office, Tongliao Municipal Commission of Housing Urban-Rural Development, Tongliao, 028000, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chen Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
28
|
Wang S, Zhang B, Diao M, Shi J, Jiang Y, Cheng Y, Liu H. Enhancement of synchronous bio-reductions of vanadium (V) and chromium (VI) by mixed anaerobic culture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:249-256. [PMID: 29990932 DOI: 10.1016/j.envpol.2018.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
The co-occurrence of toxic vanadium (V) and chromium (VI) in groundwater receives incremental attention while knowledge on their interactions in biogeochemical processes is limited, with lack of efficient removal means. This study is the first to realize synchronous bio-reductions of V(V) and Cr(VI) with high efficiency by mixed anaerobic culture. After 72-h operation, 97.0 ± 1.0% of V(V) and 99.1 ± 0.7% of Cr(VI) were removed, respectively, with initial concentration of 1 mM for both V(V) and Cr(VI). Cr(VI) bio-reduction took priority while V(V) detoxification was inhibited. V(IV) and Cr(III) were the identified reduction products, both of which could precipitate naturally. Initial Cr(VI) and acetate concentrations as well as pH affected this process significantly. High-throughput 16S rRNA gene sequencing analysis indicated the accumulation of Anaerolineaceae, Spirochaeta and Spirochaetaceae, which could contribute to V(V) and Cr(VI) bio-reductions. The new knowledge obtained in this study will facilitate understanding the biogeochemical fate of co-existing V(V) and Cr(VI) in groundwater and development of bioremediation strategy for their induced combined pollution.
Collapse
Affiliation(s)
- Song Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Muhe Diao
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, the Netherlands
| | - Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yufeng Jiang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yutong Cheng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hui Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
29
|
A dicyclic-type electrode-based biofilm reactor for simultaneous nitrate and Cr(VI) reduction. Bioprocess Biosyst Eng 2018; 42:167-172. [DOI: 10.1007/s00449-018-2020-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/23/2018] [Indexed: 10/28/2022]
|
30
|
Bai YN, Lu YZ, Shen N, Lau TC, Zeng RJ. Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:585-592. [PMID: 29102641 DOI: 10.1016/j.jhazmat.2017.10.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
This study examined the microbial reduction of hexavalent chromium [Cr(VI)] by an extremely thermophilic bacterium, Caldicellulosiruptor saccharolyticus, under glucose fermentation conditions at 70°C. Experimentation with different initial Cr(VI) concentrations confirmed that C. saccharolyticus had the ability to reduce Cr(VI) and immobilize Cr(III). At a concentration of 40mg/L, Cr(VI) was completely reduced within 12h, and 97% of the reduction product Cr(III) precipitated on the cell surface. Cr(VI) reduction was accelerated by the addition of neutral red (NR, an electron mediator), resulting in the reduction time shortened to 1h. The addition of CuCl2, a Ni-Fe hydrogenase inhibitor, also enhanced Cr(VI) reduction. Additionally, analysis of the relationship between Cr(VI) reduction and glucose fermentation suggested that different electron sources acted during CuCl2 and NR conditions. Hydrogen served as an electron donor under normal fermentation and NR conditions with the catalysis of Ni-Fe hydrogenase. However, when the activity of Ni-Fe hydrogenase was inhibited by CuCl2, C. saccharolyticus directly used reduction equivalents during glucose fermentation for intracellular Cr(VI) reduction. Therefore, our findings demonstrated high Cr(VI) reduction ability and different electron transfer pathways during Cr(VI) reduction by C. saccharolyticus.
Collapse
Affiliation(s)
- Ya-Nan Bai
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yong-Ze Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Nan Shen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Tai-Chu Lau
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Raymond Jianxiong Zeng
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
31
|
Zhong Y, Yang Q, Fu G, Xu Y, Cheng Y, Chen C, Xiang R, Wen T, Li X, Zeng G. Denitrifying microbial community with the ability to bromate reduction in a rotating biofilm-electrode reactor. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:150-157. [PMID: 28826057 DOI: 10.1016/j.jhazmat.2017.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
In this study, the microbial community for bromate reduction in a rotating biofilm-electrode reactor (RBER) was investigated. Continuous experiment demonstrated that the bromate reduction by an auto-hydrogenotrophic microbial community was inhibited by high concentration nitrate (50mg/L). The bacterial diversity of RBER were examined through the analyse of 16S rRNA gene sequences of clone libraries. The results showed that the bromate-reducing bacteria were phylogenetically diverse at the phylum level, representing the Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The relative abundances of these microbial community represented 99.1% of all phylum in the biofilms when bromate served as the sole electron acceptor. Meanwhile, the Bacillus strains became the largest phylotype and represented about 37% of the total bacteria in the biofilm, indicating that the genus Bacillus played the key role in the auto-hydrogenotrophic process. Moreover, three new bacterial genera, Exiguobacterium, Arthrobacter and Chlorobium appeared with the respective relative abundance being about 7.37%, 1.81%, and 0.52%, which might be the bromate-specific reducing bacteria.
Collapse
Affiliation(s)
- Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China.
| | - Guangyi Fu
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China.
| | - Youze Xu
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China
| | - Yingxiang Cheng
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China
| | - Caili Chen
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China
| | - Renjun Xiang
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China
| | - Tao Wen
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410004, China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, China
| |
Collapse
|
32
|
Characterization of Product and Potential Mechanism of Cr(VI) Reduction by Anaerobic Activated Sludge in a Sequencing Batch Reactor. Sci Rep 2017; 7:1681. [PMID: 28490749 PMCID: PMC5431812 DOI: 10.1038/s41598-017-01885-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/05/2017] [Indexed: 01/29/2023] Open
Abstract
Bioremediation of Cr(VI) and nitrate is considered as a promising and cost-effective alternative to chemical and physical methods. However, organo-Cr(III) complexes in effluent generally causes environmental concerns due to second-pollution. Here, Cr(VI) reduction and immobilization efficiencies of anaerobic activated sludge were investigated. Anaerobic activated sludge showed strong reduction ability of Cr(VI) and possessed a great potential of Cr(III) immobilization. Almost 100.0 mg l−1 Cr(VI) could be completely reduced and immobilized by anaerobic activated sludge in a sequencing batch reactor in 24 h. And most generated Cr(III) was accumulated outside of sludge cells. Extracellular polymeric substances (EPS) could bind to Cr(VI) and form EPS-Cr(VI) interaction to reduce the toxic effect of Cr(VI) and promote the Cr(VI) reduction. Protein-like and humic-like substances were responsible for binding with Cr(VI), meanwhile the process was a thermodynamically favorable binding reaction. Then Cr(VI) was reduced to Cr(III) by membrane-associated chromate reductase of sludge. Eventually, the generated Cr(III) might exist as poly-nuclear Cr(III) complexes adhered to sludge surfaces.
Collapse
|
33
|
Zhai S, Zhao Y, Ji M, Qi W. Simultaneous removal of nitrate and chromate in groundwater by a spiral fiber based biofilm reactor. BIORESOURCE TECHNOLOGY 2017; 232:278-284. [PMID: 28237899 DOI: 10.1016/j.biortech.2017.01.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
A spiral fiber based biofilm reactor was developed to remove nitrate and chromate simultaneously. The denitrification and Cr(VI) removal efficiency was evaluated with synthetic groundwater (NO3--N=50mg/L) under different Cr(VI) concentrations (0-1.0mg/L), carbon nitrogen ratios (C/N) (0.8-1.2), hydraulic retention times (HRT) (2-16h) and initial pHs (4-10). Nitrate and Cr(VI) were completely removed without nitrite accumulation when the Cr(VI) concentration was lower than 0.4mg/L. As Cr(VI) up to 1.0mg/L, the system was obviously inhibited, but it recovered rapidly within 6days due to the strong adaption and domestication of microorganisms in the biofilm reactor. The results demonstrated that high removal efficiency of nitrate (≥99%) and Cr(VI) (≥95%) were achieved at lower C/N=0.9, HRT=8h, initial pH=7, and Cr(VI)=1.0mg/L. The technology proposed in present study can be alternative for simultaneous removal of co-contaminants in groundwater.
Collapse
Affiliation(s)
- Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Engineering Research Center of Urban River Eco-Purification Technology, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; Tianjin Engineering Research Center of Urban River Eco-Purification Technology, Tianjin 300350, China
| | - Wenfang Qi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
34
|
Wang G, Zhang B, Li S, Yang M, Yin C. Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4. BIORESOURCE TECHNOLOGY 2017; 227:353-358. [PMID: 28061419 DOI: 10.1016/j.biortech.2016.12.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Toxic vanadium (V) and chromium (VI) often co-exist in wastewater from vanadium ore smelting and their reductions by bacterial strain Shewanella loihica PV-4 is realized simultaneously. After 27-d operation, 71.3% of V(V) and 91.2% of Cr(VI) were removed respectively, with citrate as organic carbon source. Enhancement of Cr(VI) bioreduction was observed with the suppressed V(V) reduction. V(IV) and Cr(III), the main reduction products, precipitated inside the organisms and attached on cell surfaces. Both membrane components containing cytochrome c and cytoplasmic fractions containing soluble proteins as well as NADH may contribute to these microbial reductions. Most Cr(VI) were reduced extracellularly and V(V) tended to be reduced through intracellular process, as revealed by mapping the microbial surface and a line scan across the cell, performed by scanning transmission electron microscopy. This study provides an efficient alternative for controlling combined pollution caused by these two metals based on microbial technology.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Biophysics, College of Basic Medical Sciences, Peking University Health Science Centre, Beijing 100191, China
| | - Baogang Zhang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Shuang Li
- Department of Biophysics, College of Basic Medical Sciences, Peking University Health Science Centre, Beijing 100191, China
| | - Meng Yang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Changcheng Yin
- Department of Biophysics, College of Basic Medical Sciences, Peking University Health Science Centre, Beijing 100191, China.
| |
Collapse
|
35
|
Yu X, Jiang Y, Huang H, Shi J, Wu K, Zhang P, Lv J, Li H, He H, Liu P, Li X. Simultaneous aerobic denitrification and Cr(VI) reduction by Pseudomonas brassicacearum LZ-4 in wastewater. BIORESOURCE TECHNOLOGY 2016; 221:121-129. [PMID: 27639231 DOI: 10.1016/j.biortech.2016.09.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Inorganic nitrogen and heavy metals pervasively co-exist in industrial and domestic wastewaters. In this work, Pseudomonas brassicacearum LZ-4 was tested for the simultaneous reduction of Cr(VI) and nitrate. Nitrate was found to be the best inorganic nitrogen source for strain LZ-4, and could promote Cr(VI) reduction. Cr(VI) had a low degree of inhibition on denitrification, and even 50mgL-1 Cr(VI) did not inhibit reduction of 100mgL-1 NO3--N. The capability of simultaneous reduction of Cr(VI) and nitrate was illustrated by the reductase genes contained in the LZ-4 genome. Application in a batch membrane bioreactor showed that the immobilized strain LZ-4 could remove over 95% of 500mgL-1 NO3--N, 80% of 10mgL-1 Cr(VI), and 96% of 5000mgL-1 COD in each batch of 46days. In summary, the strain LZ-4 is an ideal candidate for remediation of co-contaminants.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Juanjuan Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Kejia Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Pengyun Zhang
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China
| | - Jianguo Lv
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China
| | - Hongli Li
- PetroChina Lanzhou Petrochemical Company, Yumenjie #10, Lanzhou, Gansu 730060, PR China
| | - Huan He
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
36
|
Su JF, Luo XX, Wei L, Ma F, Zheng SC, Shao SC. Performance and microbial communities of Mn(II)-based autotrophic denitrification in a Moving Bed Biofilm Reactor (MBBR). BIORESOURCE TECHNOLOGY 2016; 211:743-750. [PMID: 27061262 DOI: 10.1016/j.biortech.2016.03.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
In this study, Mn(II) as electron donor was tested for the effects on denitrification in the MBBR under the conditions of initial nitrate concentration (10mgL(-1), 30mgL(-1), 50mgL(-1)), pH (5, 6, 7) and hydraulic retention time (HRT) (4h, 8h, 12h) which conducted by response surface methodology (RSM), the results demonstrated that the highest nitrate removal efficiency was occurred under the conditions of initial nitrate concentration of 47.64mgL(-1), HRT of 11.96h and pH 5.21. Analysis of SEM and flow cytometry suggested that microorganisms were immobilized on the Yu Long plastic carrier media successfully before the reactor began to operate. Furthermore, high-throughput sequencing was employed to characterize and compare the community compositions and structures of MBBR under the optimum conditions, the results showed that Pseudomonas sp. SZF15 was the dominant contributor for effective removal of nitrate in the MBBR.
Collapse
Affiliation(s)
- Jun Feng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xian Xin Luo
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng Chen Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Si Cheng Shao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|