1
|
Vieira Sanches M, Oliva M, Fumagalli G, Mezzetta A, Guazzelli L, Freitas R, Pretti C. Short alkyl-chained Imidazolium-based Ionic Liquids: Promising green solution or potential environmental threat? CHEMOSPHERE 2025; 370:143928. [PMID: 39681190 DOI: 10.1016/j.chemosphere.2024.143928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024]
Abstract
Ionic Liquids (ILs) are currently applied in a wide variety of fields, with promising outcomes in microalgae high value biocompounds extraction. The occurrence of these compounds in natural water systems, with their characteristic stability and low biodegradability, becomes a threat worthy of attention. In the present study, Dunaliella tertiolecta, Isochrysis galbana and Rhinomonas reticulata were exposed to 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM] Tf2N) for 72, 168 and 264 h, at 20 and 25 °C. Obtained results suggest that the N-containing cationic ring in the selected IL could act as a nitrogen source, aiding protein synthesis and growth in the three studied microalgae. Moreover, this specific IL might become a potential eutrophication agent when discharged in aquatic ecosystems, already pressured by climate change conditions. Important lipid contents, mainly in I. galbana and associated with increased cellular energy allocation values, could be related to mitochondrial stress, which is known to be a lipid accumulation promoting factor. Hence, we hypothesise that, since [BMIM] Tf2N does not appear to impair growth or biocompound accumulation, it could be a candidate for microalgae biomass pretreatment in biodiesel production. However, its life cycle and disposal must be carefully considered.
Collapse
Affiliation(s)
- Matilde Vieira Sanches
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy.
| | - Giorgia Fumagalli
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy.
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy.
| |
Collapse
|
2
|
Wang Y, Liu A, Amanze C, Clive Ontita N, Zeng W. Isolation and Whole-genome analysis of Desmodesmus sp. SZ-1: Novel acid-tolerant carbon-fixing microalga. BIORESOURCE TECHNOLOGY 2024; 414:131572. [PMID: 39384046 DOI: 10.1016/j.biortech.2024.131572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Utilizing microalgae to capture flue gas pollutants is an effective strategy for mitigating greenhouse gas emissions. However, existing carbon-fixing microalgae exhibit poor tolerance towards acidic flue gas. In this study, the Desmodesmus sp. SZ-1, which can thrive in acidic environments and efficiently sequester CO2, was isolated. Desmodesmus sp. SZ-1 exhibited strong acid tolerance ability, with an average carbon fixation rate of 497.6 mg/L/d under 10 % CO2 and pH 3.5. Physiological analysis revealed that SZ-1 responded to high CO2 by increasing chlorophyll levels while coping with acidic stress by activating antioxidant enzymes. Genome analysis revealed a large number of carbon fixation and acid adaptation genes, involved in membrane lipid biosynthesis, H+ pumps, molecular chaperones, peroxidase system, amino acid synthesis, and carbonic anhydrase. This study provides a novel algal resource for mitigating acid gas emissions and a comprehensive genetic database for genetically modifying microalgae.
Collapse
Affiliation(s)
- Yanchu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Ajuan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Nyambane Clive Ontita
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China.
| |
Collapse
|
3
|
Yang Q, Ran Y, Guo Y, Zeng J, Song Y, Qiao D, Xu H, Cao Y. Enhancement of lipid synthesis by the transcription factor Asg1 in Saitozyma podzolica zwy-2-3 under dissolved oxygen stress. BIORESOURCE TECHNOLOGY 2024; 411:131312. [PMID: 39168414 DOI: 10.1016/j.biortech.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Microbial oils have been of considerable interest as food additives and biofuel resources due to high lipid contents, but lipid accumulation of oleaginous microorganisms can be induced by environmental stresses, such as dissolved oxygen (DO), which limit large-scale lipid production. Here, DO stress gave rise to the endogenous nitric oxide (NO) level to mediate S-nitrosylation of SpAsg1, regulating the lipid accumulation in Saitozyma podzolica zwy-2-3. Notably, qRT-PCR, yeast one-hybrid, dual-luciferase reporter assays, and metabolomics analysis exhibited that overexpression of SpAsg1 promoted lipid synthesis by directly regulation of glucose metabolism, enhancing glucose uptake, ATP and NADPH contents under DO stress. Meanwhile, SpAsg1 improved the antioxidant capacity to reduce the intracellular reactive oxygen species (ROS) and NO levels. Overall, we systematically investigated the regulation of SpAsg1 on lipid metabolism of S. podzolica zwy-2-3 under DO stress, which sheds light on further studies for alleviating oxygen limitation of lipid production in microbial industry.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yihan Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
4
|
El-Sheekh MM, Galal HR, Mousa ASH, Farghl AAM. Improving the biodiesel production in the marine diatom Thalassiosira pseudonana cultivated in nutrient deficiency and sewage water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63764-63776. [PMID: 39503935 DOI: 10.1007/s11356-024-35409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The use of microalgae as a feedstock in biofuel production is highly encouraging. The marine diatom in this study, Thalassiosira pseudonana, was used as a test organism to evaluate the impact of nitrogen or phosphorus limitation and sewage water on improving biodiesel production. The growth rate is more affected in cultures without phosphorus by 41.8% lower than in control and the highest dry weight estimated in control. The cellular dry weight significantly increased in cultures treated with mix1 and mix2 wastewater compared to the control cultures. Chlorophyll a content decreased in the absence of nitrogen and phosphorous and in sewage water cultures. Lipid content in algal cultures without nitrogen or phosphorus and in sewage water accumulated nearly twice as much lipid content in synthetic medium. T. pseudonana showed high FAME contents; the two most abundant fatty acids, stearic acid (C18:0) and palmitoleic acid (C16:1), in the algal extracts revealed that T. pseudonana was predominantly composed of these fatty acids. T. pseudonana grown in nitrogen or phosphorus-deficient conditions exhibited an extreme percentage of saturated fatty acids (SFAs) by 87.38% and 85.47%, respectively, of the total fatty acids (TFAs). More importantly, the low polyunsaturated fatty acid content in oils indicates a high cetane number, low iodine value, and low corrosion for biodiesel quality indicators. Producing biodiesel that closely meets worldwide biodiesel requirements (ASTM D6751 and EN 14214) is the goal of this work, which shows that growing T. pseudonana under nutrient limitations leads to algal metabolism in that direction.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hamdy R Galal
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Amal Sh H Mousa
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Abla A M Farghl
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
5
|
Chelladurai C, Muthiah P, Sultan MA. Influence of multi-stress factors on the growth of Chlorella pyrenoidosa and Scenedesmus abundans using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35261-y. [PMID: 39417936 DOI: 10.1007/s11356-024-35261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
This study evaluated the biofuel production potential of two algal species, Chlorella pyrenoidosa and Scenedesmus abundans, under stress conditions induced by nutrient supplementation or starvation at varying light intensities. Central composite face-centered design response surface methodology (CCFD-RSM) was employed to optimize stress conditions by varying the sodium nitrate (NaNO3), potassium dihydrogen phosphate (KH2PO4), dipotassium hydrogen phosphate (K2HPO4), cultivation time, and light intensity. The study included both C. pyrenoidosa and S. abundans, which presented increased biomass yields when subjected to nutrient starvation. Under the optimized conditions, the dry biomass yield was 98.26 mg/L for C. pyrenoidosa and 110 mg/L for S. abundans. Lipid yields were approximately 22.47% for C. pyrenoidosa and 29.06% for S. abundans under these optimized growth conditions. The optimized parameters for maximum biomass and lipid production were identified as C. pyrenoidosa, and the optimized conditions required 0.805 g/L NaNO3, 0.052 g/L K2HPO4, 0.099 g/L KH2PO4, 17 days of culture, and 5168.39 lx of light intensity. For S. abundans, the optimal conditions were 1.065 g/L NaNO3, 0.071 g/L K2HPO4, 0.058 g/L KH2PO4, 22 days of cultivation, and 2897 lx of light intensity. Overall, both C. pyrenoidosa and S. abundans have emerged as promising candidates for sustainable biodiesel production, highlighting their potential under stress conditions induced by nutrient modulation and variable light intensities.
Collapse
Affiliation(s)
- Chellamboli Chelladurai
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India.
| | - Perumalsamy Muthiah
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| | - Mohamed Arshath Sultan
- Department of Chemical Engineering, St. Josesph College of Engineering, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
6
|
Linares-Maurizi A, Awad R, Durbec A, Reversat G, Gros V, Galano JM, Bertrand-Michel J, Durand T, Pradelles R, Oger C, Vigor C. Stress-Induced Production of Bioactive Oxylipins in Marine Microalgae. Mar Drugs 2024; 22:406. [PMID: 39330287 PMCID: PMC11432788 DOI: 10.3390/md22090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Microalgae, stemming from a complex evolutionary lineage, possess a metabolic composition influenced by their evolutionary journey. They have the capacity to generate diverse polyunsaturated fatty acids (PUFAs), akin to those found in terrestrial plants and oily fish. Also, because of their numerous double bonds, these metabolic compounds are prone to oxidation processes, leading to the creation of valuable bioactive molecules called oxylipins. Moreover, owing to their adaptability across various environments, microalgae offer an intriguing avenue for biosynthesizing these compounds. Thus, modifying the culture conditions could potentially impact the profiles of oxylipins. Indeed, the accumulation of oxylipins in microalgae is subject to the influence of growth conditions, nutrient availability, and stressors, and adjusting these factors can enhance their production in microalgae culture. Consequently, the present study scrutinized the LC-MS/MS profiles of oxylipins from three marine microalgae species (two Haptagophytes and one Chlorophyte) cultivated in 1 L of photobioreactors under varying stress-inducing conditions, such as the introduction of H2O2, EtOAc, and NaCl, during their exponential growth phase. Approximately 50 oxylipins were identified, exhibiting different concentrations depending on the species and growth circumstances. This research suggests that microalgae metabolisms can be steered toward the production of bioactive oxylipins through modifications in the culture conditions. In this instance, the application of a low dose of hydrogen peroxide to Mi 124 appears to stimulate the production of nonenzymatic oxylipins. For Mi136, it is the application of salt stress that seems to increase the overall production of oxylipins. In the case of Mi 168, either a low concentration of H2O2 or a high concentration of AcOEt appears to have this effect.
Collapse
Affiliation(s)
- Amandyne Linares-Maurizi
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France;
| | - Rana Awad
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Anaelle Durbec
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048, I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31077 Toulouse, France; (A.D.); (J.B.-M.)
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Valérie Gros
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048, I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31077 Toulouse, France; (A.D.); (J.B.-M.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Rémi Pradelles
- Microphyt, 713 Route de Mudaison, 34670 Baillargues, France;
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, 34093 Montpellier, France (R.A.); (G.R.); (V.G.); (J.-M.G.); (T.D.); (C.O.)
| |
Collapse
|
7
|
Sousa S, Carvalho AP, Gomes AM. Factors impacting the microbial production of eicosapentaenoic acid. Appl Microbiol Biotechnol 2024; 108:368. [PMID: 38860989 PMCID: PMC11166839 DOI: 10.1007/s00253-024-13209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
The increasing applications for eicosapentaenoic acid (EPA) and the potential shortfall in supply due to sustainability and contamination issues related with its conventional sources (i.e., fish oils; seafood) led to an extensive search for alternative and sustainable sources, as well as production processes. The present mini-review covers all the steps involved in the production of EPA from microorganisms, with a deeper focus on microalgae. From production systems to downstream processing, the most important achievements within each area are briefly highlighted. Comparative tables of methodologies are also provided, as well as additional references of recent reviews, so that readers may deepen their knowledge in the different issues addressed. KEY POINTS: • Microorganisms are more sustainable alternative sources of EPA than fish. • Due to the costly separation from DHA, species that produce only EPA are preferable. • EPA production can be optimised using non-genetic and genetic tailoring engineering.
Collapse
Affiliation(s)
- Sérgio Sousa
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana P Carvalho
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Ana M Gomes
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
8
|
Kadam RV, Rani V, Padmavathy P, Shalini R, Selvi MJT, Narsale SA. Assessment of heavy metals and environmental stress conditions on the production potential of polyunsaturated fatty acids (PUFAs) in indigenous microalgae isolated from the Gulf of Mannar coastal waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:301. [PMID: 38400851 DOI: 10.1007/s10661-024-12447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
The present study evaluated the effects of heavy metals, viz., lead, mercury, and cadmium, on growth, chlorophyll a, b, c, carotenoids, and PUFA content of marine microalgae Chlorella sp. and Cylindrotheca fusiformis. At 96-h exposure, the IC50 values for Hg2+, Pb2+, and Cd2+ were 0.85 mg/L, 2.4 mg/L, and 5.3 mg/L respectively, in Chlorella sp. In C. fusiformis, IC50 values for Hg2+, Pb2+, and Cd2+ were 0.5 mg/L, 1.2 mg/L, and 3 mg/L respectively. The pigment contents of both microalgae were significantly affected upon heavy metal exposure. In Chlorella sp. and C. fusiformis, the exposed concentrations of Hg2+ averagely decreased the PUFA content by 76.34% and 78.68%, respectively. Similarly, Pb2+-exposed concentrations resulted in 54.50% and 82.64% average reductions in PUFA content of Chlorella sp. and C. fusiformis, respectively. Cd2+-exposed concentrations showed 32.58% and 40.54% average reduction in PUFA content of Chlorella sp. and C. fusiformis, respectively. Among the environmental stress conditions, the dark treatment has increased total PUFA content by 6.63% in Chlorella sp. and 3.92% in C. fusiformis. It was observed that the 50% nitrogen starvation (two-stage) significantly improved the PUFA production from 26.47 ± 6.55% to 40.92 ± 10.74% in Chlorella sp. and from 11.23 ± 5.01 to 32.8 ± 14.17% in C. fusiformis. The toxicity for both microalgae was followed in the order Hg2+ > Pb2+ > Cd2+. Among the two species, Chlorella sp. has shown a high tolerance to heavy metals and can be effectively utilized in PUFA production.
Collapse
Affiliation(s)
- Rishikesh Venkatrao Kadam
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| | - V Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India.
| | - P Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| | - R Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| | - M J Thamarai Selvi
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| | - Swapnil Ananda Narsale
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| |
Collapse
|
9
|
Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, Yu X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. BIORESOURCE TECHNOLOGY 2024; 393:130093. [PMID: 38000641 DOI: 10.1016/j.biortech.2023.130093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
High-value metabolites, such as carotenoids, lipids, and proteins, are synthesized by microalgae and find applications in various fields, including food, health supplements, and cosmetics. However, the potential of the microalgal industry to serve these sectors is constrained by low productivity and high energy consumption. Environmental stressors can not only stimulate the accumulation of secondary metabolites in microalgae but also induce oxidative stress, suppressing cell growth and activity, thereby resulting in a decrease in overall productivity. Using melatonin (MT) under stressful conditions is an effective approach to enhance the productivity of microalgal metabolites. This review underscores the role of MT in promoting the accumulation of high-value metabolites and enhancing stress resistance in microalgae under stressful and wastewater conditions. It discusses the underlying mechanisms whereby MT enhances metabolite synthesis and improves stress resistance. The review also offers new perspectives on utilizing MT to improve microalgal productivity and stress resistance in challenging environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Gupta A, Kang K, Pathania R, Saxton L, Saucedo B, Malik A, Torres-Tiji Y, Diaz CJ, Dutra Molino JV, Mayfield SP. Harnessing genetic engineering to drive economic bioproduct production in algae. Front Bioeng Biotechnol 2024; 12:1350722. [PMID: 38347913 PMCID: PMC10859422 DOI: 10.3389/fbioe.2024.1350722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Our reliance on agriculture for sustenance, healthcare, and resources has been essential since the dawn of civilization. However, traditional agricultural practices are no longer adequate to meet the demands of a burgeoning population amidst climate-driven agricultural challenges. Microalgae emerge as a beacon of hope, offering a sustainable and renewable source of food, animal feed, and energy. Their rapid growth rates, adaptability to non-arable land and non-potable water, and diverse bioproduct range, encompassing biofuels and nutraceuticals, position them as a cornerstone of future resource management. Furthermore, microalgae's ability to capture carbon aligns with environmental conservation goals. While microalgae offers significant benefits, obstacles in cost-effective biomass production persist, which curtails broader application. This review examines microalgae compared to other host platforms, highlighting current innovative approaches aimed at overcoming existing barriers. These approaches include a range of techniques, from gene editing, synthetic promoters, and mutagenesis to selective breeding and metabolic engineering through transcription factors.
Collapse
Affiliation(s)
- Abhishek Gupta
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ruchi Pathania
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Lisa Saxton
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Barbara Saucedo
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ashleyn Malik
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Crisandra J. Diaz
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - João Vitor Dutra Molino
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
- California Center for Algae Biotechnology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Macías-de la Rosa A, López-Rosales L, Cerón-García MC, Molina-Miras A, Soriano-Jerez Y, Sánchez-Mirón A, Seoane S, García-Camacho F. Assessment of the marine microalga Chrysochromulina rotalis as bioactive feedstock cultured in an easy-to-deploy light-emitting-diode-based tubular photobioreactor. BIORESOURCE TECHNOLOGY 2023; 389:129818. [PMID: 37793555 DOI: 10.1016/j.biortech.2023.129818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Marine microalgae have potential to be low-cost raw materials. This depends on the exploitation of different biomass fractions for high-value products, including unique compounds. Chrysochromulina rotalis, an under-explored haptophyte with promising properties, was the focus of this study. For the first time, C. rotalis was successfully cultivated in an 80 L tubular photobioreactor, illuminated by an easy-to-use light-emitting-diode-based system. C. rotalis grew without certain trace elements and showed adaptability to different phosphorus sources, allowing a significant reduction in the N:P ratio without compromising biomass yield and productivity. The design features of the photobioreactor provided a protective environment that ensured consistent biomass production from this shear-sensitive microalgae. Carotenoid analysis showed fucoxanthin and its derivatives as major components, with essential fatty acids making up a significant proportion of the total. The study emphasizes the tubular photobioreactor's role in sustainable biomass production for biorefineries, with C. rotalis as a valuable bioactive feedstock.
Collapse
Affiliation(s)
- A Macías-de la Rosa
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - L López-Rosales
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - M C Cerón-García
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - A Molina-Miras
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Y Soriano-Jerez
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - A Sánchez-Mirón
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - S Seoane
- Department of Plant Biology and Ecology, 48940 Leioa, Spain; Technology and Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620 Plentzia, Spain
| | - F García-Camacho
- Department of Chemical Engineering, Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain; Research Centre CIAIMBITAL, University of Almería, 04120 Almería, Spain.
| |
Collapse
|
12
|
Srivastava K, Mickan BS, O'Connor J, Gurung SK, Moheimani NR, Jenkins SN. Development of a controlled release fertilizer by incorporating lauric acid into microalgal biomass: Dynamics on soil biological processes for efficient utilisation of waste resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118392. [PMID: 37384987 DOI: 10.1016/j.jenvman.2023.118392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023]
Abstract
Utilisation of microalgae to extract nutrients from the effluent of anaerobic digestion of food waste is an emerging technology. A by-product of this process is the microalgal biomass which has potential to be used as an organic bio-fertilizer. However, microalgal biomass are rapidly mineralized when applied to soil which may result in N loss. One solution is to emulsify microalgal biomass with lauric acid (LA) to delay the release of mineral N. This study aimed to investigate whether combining LA with microalgae to develop a new fertilizer product with a controlled release function of mineral N when applied to soil, and any potential impacts the bacterial community structure and activity. The treatments were applied to soil emulsified with LA and were combined with either microalgae or urea at rates of 0%, 12.5%, 25% and 50% LA, untreated microalgae or urea and unamended control were incubated at 25 °C and 40% water holding capacity for 28 days. Quantification of soil chemistry (NH4+-N, NO3--N, pH and EC), microbial biomass carbon, CO2 production and bacterial diversity were characterised at 0, 1, 3, 7, 14 and 28 days. The NH4+-N and NO3--N concentration decreased with increasing rate of LA combined microalgae indicating that both N mineralization and nitrification were impacted. As a function of time, NH4+-N concentration increased up to 7 days for the microalgae at lower rates of LA, and then slowly decreased for 14 and 28 days, with an inverse relationship with soil NO3-N. Aligning with soil chemistry, an observed decrease in the predicted nitrification genes amoA·amoB and relative abundance of ammonia oxidizing bacteria (Nitrosomonadaceae) and nitrifying bacteria (Nitrospiraceae) with an increasing rate of LA with microalgae provides further support for possible inhibition of nitrification. The MBC and CO2 production was higher in the soil amended with increasing rates of LA combined microalgae and there was an increase in the relative abundance of fast-growing heterotrophs. Treating microalgae by emulsification with LA has the potential to control the release of N by increasing immobilization over nitrification and therefore it might be possible to engineer microalgae to match plant nutrient growth requirements whilst recovering waste from waste resources.
Collapse
Affiliation(s)
- Kautilya Srivastava
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia
| | - Bede S Mickan
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia; Richgro Garden Products, 203 Acourt Rd, Jandakot, WA, 6164, Australia.
| | - James O'Connor
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia
| | - Sun Kumar Gurung
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia
| | - Navid R Moheimani
- Algae R&D Centre, Discipline of Environmental and Conservation Sciences, Murdoch University, WA, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Sasha N Jenkins
- UWA School of Agriculture and Environment and UWA Institute of Agriculture, The University of Western Australia, Perth, 6000, WA, Australia
| |
Collapse
|
13
|
Patel AK, Vadrale AP, Singhania RR, Chen CW, Chang JS, Dong CD. Enhanced mixotrophic production of lutein and lipid from potential microalgae isolate Chlorella sorokiniana C16. BIORESOURCE TECHNOLOGY 2023; 386:129477. [PMID: 37437816 DOI: 10.1016/j.biortech.2023.129477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The current work aims to isolate high lutein-producing microalgae and maximize lutein production under a sustainable lutein-lipid biorefinery scheme. Lutein reduces retinitis, macular degeneration risk and improves eye health. An effective bioprocess design optimized nutrients, temperature, light, and salinity for biomass and lutein yield enhancement. 3X macro/micronutrients maximally enhanced biomass and lutein yields, 5.2 g/Land 71.13 mg/L. Temperature 32 °C exhibited maximum 17.4 mg/g lutein content and 10 k lux was most favorable for growth and lutein yield (15.47 mg/g). A 25% seawater addition led maximum of 21-27% lipid that could be used for biodiesel. Isolate was identified as Chlorella sorokiniana C16, which exhibited one of the highest lutein yields reported among recent studies, positioning it as a promising candidate for commercial lutein production. This study provides valuable insights into an effective bioprocess design and highlights the C16 strain potential as a sustainable platform for high-value lutein production under a biorefinery scheme.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Akash Pralhad Vadrale
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta-Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Jo Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
14
|
Kumari A, Pabbi S, Tyagi A. Recent advances in enhancing the production of long chain omega-3 fatty acids in microalgae. Crit Rev Food Sci Nutr 2023; 64:10564-10582. [PMID: 37357914 DOI: 10.1080/10408398.2023.2226720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Omega-3 fatty acids have gained attention due to numerous health benefits. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) are long chain omega-3 fatty acids produced from precursor ALA (α-linolenic acid) in humans but their rate of biosynthesis is low, therefore, these must be present in diet or should be taken as supplements. The commercial sources of omega-3 fatty acids are limited to vegetable oils and marine sources. The rising concern about vegan source, fish aquaculture conservation and heavy metal contamination in fish has led to the search for their alternative source. Microalgae have gained importance due to the production of high-value EPA and DHA and can thus serve as a sustainable and promising source of long chain omega-3 fatty acids. Although the bottleneck lies in the optimization for enhanced production that involves strategies viz. strain selection, optimization of cultivation conditions, media, metabolic and genetic engineering approaches; while co-cultivation, use of nanoparticles and strategic blending have emerged as innovative approaches that have made microalgae as potential candidates for EPA and DHA production. This review highlights the possible strategies for the enhancement of EPA and DHA production in microalgae. This will pave the way for their large-scale production for human health benefits.
Collapse
Affiliation(s)
- Arti Kumari
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Sunil Pabbi
- Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
15
|
Ma W, Li J, Yang WQ, Zhang ZY, Yan CX, Huang PW, Sun XM. Efficient Biosynthesis of Odd-Chain Fatty Acids via Regulating the Supply and Consumption of Propionyl-CoA in Schizochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37326390 DOI: 10.1021/acs.jafc.3c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Odd chain fatty acids (OCFAs) are high-value-added compounds with great application in the field of food and medicine. As an oleaginous microorganism, Schizochytrium sp. has the potential to produce OCFAs efficiently. Propionyl-CoA is used as a precursor to synthesize OCFAs through the fatty acid synthetase (FAS) pathway, so its flow direction determines the yield of OCFAs. Here, different substrates were assessed to promote propionyl-CoA supply for OCFA accumulation. Moreover, the methylmalonyl-CoA mutase (MCM) was identified as the key gene responsible for propionyl-CoA consumption, which promotes the propionyl-CoA to enter into the tricarboxylic acid cycle rather than the FAS pathway. As one of the classic B12-dependent enzymes, the activity of MCM can be inhibited in the absence of B12. As expected, the OCFA accumulation was greatly increased. However, the removal of B12 caused growth limitation. Furthermore, the MCM was knocked out to block the consumption of propionyl-CoA and to maintain cell growth; results showed that the engineered strain achieved the OCFAs titer of 2.82 g/L, which is 5.76-fold that of wild type. Last, a fed-batch co-feeding strategy was developed, resulting in the highest reported OCFAs titer of 6.82 g/L. This study provides guidance for the microbial production of OCFAs.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Zi-Yi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
16
|
Wang QR, Hong Y, Li LH. Insights into differences between spore-assisted and pellet-assisted microalgae harvesting using a highly efficient fungus: Efficiency, high-value substances, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162945. [PMID: 36934945 DOI: 10.1016/j.scitotenv.2023.162945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
To achieve efficient and low-cost microalgae harvesting, investigations were conducted on the harvesting efficiency and potential mechanisms of Chlorella sp. HQ by filamentous fungi using two strategies, fungal spore-assisted harvesting (FSH) and fungal pellet-assisted harvesting (FPH). Five of the 19 fungal species isolated from domestic sewage could form pellets, and Aspergillus niger HW8-1 comprised the highest harvesting efficiencies of 99.17 % and 88.70 % for FPH and FSH, respectively. FSH had 2-3 times more lipids and polysaccharides in fungus-alga pellets and caused richer saturated and monounsaturated fatty acids compared with FPH. Moreover, by optimizing the microalgae preculture time, glucose concentration, and microalgae initial density, the contents of high-value substances, such as lipids, polysaccharides, and proteins of fungus-alga pellets after FPH were improved from 5.96 %, 5.67 %, and 7.27 % to 20.18 %, 24.34 % and 10.48 %, respectively. Furthermore, fungal pellets secreted more extracellular polymeric substances (EPS) during FPH than those by FSH, which could chemisorb algal cells by lowering the surface potential of fungal pellets. FPH caused algal cells to cover the outside, which increased the light exposure area of algae, thereby increasing the photosynthesis rate, whereas FSH mainly captured microalgae physically through mycelium entanglement.
Collapse
Affiliation(s)
- Qian-Ru Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Li-Hua Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Farfan-Cabrera LI, Rojo-Valerio A, Calderon-Najera JDD, Coronado-Apodaca KG, Iqbal HM, Parra-Saldivar R, Franco-Morgado M, Elias-Zuñiga A. Microalgae Oil-Based Metal Working Fluids for Sustainable Minimum Quantity Lubrication (MQL) Operations—A Perspective. LUBRICANTS 2023; 11:215. [DOI: 10.3390/lubricants11050215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This article presents a perspective on the potential use of microalgae oils in the production of metal working fluids (MWFs) used for minimum quantity lubrication (MQL) operations. The generalities of MQL operations and requirements of MWFs, and current advances in the development of the most promising microalgae oils with high contents of saturated, monounsaturated, and polyunsaturated fatty acids were reviewed and discussed. The analysis of data, discussions, and conclusions of numerous studies published recently and combined with the experience of the multidisciplinary team of authors strongly suggest that microalgae oils do indeed have great potential as sustainable and eco-friendly base oils for producing semi-synthetic MWFs, soluble oils and straight cutting fluids for MQL operations. Additionally, gaps and challenges focused on the use of agro-industry wastewater in microalgae production, green harvesting and oil extraction methods, and replacement of toxic additives in MWFs by green nanoparticles and biopolymers were identified and highlighted for achieving massive microalgae oil-based MWFs production and truly green machining processes.
Collapse
Affiliation(s)
- Leonardo I. Farfan-Cabrera
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Alejandro Rojo-Valerio
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Juan de Dios Calderon-Najera
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Mariana Franco-Morgado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Alex Elias-Zuñiga
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| |
Collapse
|
18
|
Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, Ma Z, Show PL. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 372:128661. [PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
Collapse
Affiliation(s)
- Tengku Nilam Baizura Tengku Ibrahim
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Azalina Suzianti Feisal
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Noor Haziqah Kamaludin
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Santos-Merino M, Yun L, Ducat DC. Cyanobacteria as cell factories for the photosynthetic production of sucrose. Front Microbiol 2023; 14:1126032. [PMID: 36865782 PMCID: PMC9971976 DOI: 10.3389/fmicb.2023.1126032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-pot reaction. We summarize recent advances reported in such cyanobacteria/heterotroph co-cultivation strategies and provide a perspective on future developments that are likely required to realize their bioindustrial potential.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Lisa Yun
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Chekanov K. Diversity and Distribution of Carotenogenic Algae in Europe: A Review. Mar Drugs 2023; 21:108. [PMID: 36827149 PMCID: PMC9958874 DOI: 10.3390/md21020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Microalgae are the richest source of natural carotenoids, which are valuable pigments with a high share of benefits. Often, carotenoid-producing algae inhabit specific biotopes with unfavorable or even extremal conditions. Such biotopes, including alpine snow fields and hypersaline ponds, are widely distributed in Europe. They can serve as a source of new strains for biotechnology. The number of algal species used for obtaining these compounds on an industrial scale is limited. The data on them are poor. Moreover, some of them have been reported in non-English local scientific articles and theses. This review aims to summarize existing data on microalgal species, which are known as potential carotenoid producers in biotechnology. These include Haematococcus and Dunaliella, both well-known to the scientific community, as well as less-elucidated representatives. Their distribution will be covered throughout Europe: from the Greek Mediterranean coast in the south to the snow valleys in Norway in the north, and from the ponds in Amieiro (Portugal) in the west to the saline lakes and mountains in Crimea (Ukraine) in the east. A wide spectrum of algal secondary carotenoids is reviewed: β-carotene, astaxanthin, canthaxanthin, echinenone, adonixanthin, and adonirubin. For convenience, the main concepts of biology of carotenoid-producing algae are briefly explained.
Collapse
|
21
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
22
|
Li J, Tang X, Pan K, Zhu B, Li Y, Wang Z, Zhao Y. Energy metabolism and intracellular pH regulation reveal different physiological acclimation mechanisms of Chlorella strains to high concentrations of CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158627. [PMID: 36087671 DOI: 10.1016/j.scitotenv.2022.158627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The intolerance of high CO2 in the exhaust gas is the "bottleneck" limiting the wide application of microalgae for CO2 biosequestration. Around this topic, we selected high-CO2-tolerant (LAMB 33 and 31) and nontolerant (LAMB 122) Chlorella strains to study their different energy metabolisms and cytoplasmic pH regulations in response to high CO2. Under 40 % CO2, LAMB 33 and 31 both showed elevated ATP synthesis, accelerated ATP consumption and fast cytoplasmic pH regulation while exhibiting different acclimating strategies therein: chloroplast acclimations were reflected by high chlorophyll contents in 33 but photosystem transitions in 31; faster mitochondrial acclimations occurred in 33 than in 31; cellular organic carbon mainly flowed to monosaccharide synthesis for 33 but to monosaccharide and protein synthesis for 31; and cytoplasmic pH regulation was attributed to V-ATPase in 31 but not in 33. All the above metabolic processes gradually collapsed in 122, leading to growth inhibition. Our study identified different metabolic acclimation strategies among Chlorella strains to high CO2 and provided new traits for breeding microalgae for CO2 biosequestration.
Collapse
Affiliation(s)
- Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Kehou Pan
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Baohua Zhu
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ziqi Wang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
23
|
Modulation of the metabolite content of the unicellular rhodophyte Porphyridium purpureum using a 2-stage cultivation approach and chemical stressors. J Biotechnol 2022; 360:125-132. [PMID: 36375623 DOI: 10.1016/j.jbiotec.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
There have been growing interests in microalgal biotechnology for the biorefining of bioactive compounds such as carotenoid pigments, ω-3 fatty acids, antioxidants or antimicrobials for sectoral applications in the pharmacology, nutraceutical and cosmetic fields. This study focused on the unicellular marine rhodophyte Porphyridium purpureum CCAP 1380/1 A, which was cultivated via a two-stage batch growth mode for 10 days using hydrogen peroxide (H2O2), the phytohormone methyl jasmonate (MJ) and three plant extracts (Passiflora incarnata, Panax ginseng and Valeriana officinalis). The microalgal biomass was then analysed for its protein, phycoerythtin, carbohydrate and pigment composition together with its pigment content and antioxidant activity. Of note, MJ increased the protein and phycoerythtin content (up to 225 µg BSA eq./mg DW and 15 mg/ml, respectively) while both the MJ and H2O2 treatments increased carotenoid pigment yields (β-carotene and zeaxanthin, up to 5 and 4 mg/g, respectively). Carbohydrates were enhanced ∼10 fold by the Valeriana officinalis treatment (up 192 μg starch eq./mg). Overall, neutral lipids and antioxidants were mostly negatively affected by the plant extracts. The greatest antioxidant activity registered was obtained with the H2O2 treatment (15 μmol Trolox eq./g DW with TEAC assay). P. purpureum contains multiple valuable compounds of commercial interest. These results indicate that they can be favorably modulated using specific cultivation regimes and chemical enhancers, thereby facilitating the exploitation of the biomass by applying a suitable co-refinery pipeline.
Collapse
|
24
|
Żymańczyk-Duda E, Samson SO, Brzezińska-Rodak M, Klimek-Ochab M. Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms 2022; 10:microorganisms10122318. [PMID: 36557571 PMCID: PMC9785398 DOI: 10.3390/microorganisms10122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are blue-green Gram-negative and photosynthetic bacteria which are seen as one of the most morphologically numerous groups of prokaryotes. Because of their ability to fix gaseous nitrogen and carbon dioxide to organic materials, they are known to play important roles in the universal nutrient cycle. Cyanobacteria has emerged as one of the promising resources to combat the issues of global warming, disease outbreaks, nutrition insecurity, energy crises as well as persistent daily human population increases. Cyanobacteria possess significant levels of macro and micronutrient substances which facilitate the versatile popularity to be utilized as human food and protein supplements in many countries such as Asia. Cyanobacteria has been employed as a complementary dietary constituent of feed for poultry and as vitamin and protein supplement in aquatic lives. They are effectively used to deal with numerous tasks in various fields of biotechnology, such as agricultural (including aquaculture), industrial (food and dairy products), environmental (pollution control), biofuel (bioenergy) and pharmaceutical biotechnology (such as antimicrobial, anti-inflammatory, immunosuppressant, anticoagulant and antitumor); recently, the growing interest of applying them as biocatalysts has been observed as well. Cyanobacteria are known to generate a numerous variety of bioactive compounds. However, the versatile potential applications of cyanobacteria in biotechnology could be their significant growth rate and survival in severe environmental conditions due to their distinct and unique metabolic pathways as well as active defensive mechanisms. In this review, we elaborated on the versatile cyanobacteria applications in different areas of biotechnology. We also emphasized the factors that could impede the implementation to cyanobacteria applications in biotechnology and the execution of strategies to enhance their effective applications.
Collapse
|
25
|
Malik S, Ashraf MUF, Shahid A, Javed MR, Khan AZ, Usman M, Manivannan A, Mehmood MA, Ashraf GA. Characterization of a newly isolated self-flocculating microalga Bracteacoccus pseudominor BERC09 and its evaluation as a candidate for a multiproduct algal biorefinery. CHEMOSPHERE 2022; 304:135346. [PMID: 35714954 DOI: 10.1016/j.chemosphere.2022.135346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/29/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Microalgae have the highest capability to fix the atmospheric carbon and wastewater-derived nutrients to produce high-value bioproducts including lipids and carotenoids. However, their lower titers and single-product-oriented biomass processing have made the overall process expensive. Hence, increased metabolite titer and processing of the biomass for more than one product are required to ensure the commercial robustness of the algal biorefinery. In this study, a newly isolated algal strain was identified as Bracteacoccus pseudominor BERC09 through phylogenetic analysis based on the 18S rRNA gene sequence. Basic characterization of the strain revealed its promising potential to produce carotenoids and lipids. The lipids and carotenoid biosynthesis pathways of BERC09 were further triggered by manipulating the abiotic factors including nitrogen sources (NaNO3, KNO3, NH4Cl, Urea), nitrogen concentrations (0.06-0.36 gL-1), light intensity (150 μmolm-2s-1 to 300 μmolm-2s-1), and light quality (white and blue). Resultantly, 300 μmolm-2s-1 of blue light yielded 0.768 gL-1 of biomass, 8.4 mgg-1 of carotenoids, and 390 mgg-1 of lipids, and supplementation of 0.36 gL-1 of KNO3 further improved metabolism and yielded 0.814 gL-1 of biomass, 11.86 mgg-1 of carotenoids, and 424 mgg-1 of lipids. Overall, the optimal combination of light and nitrogen concurrently improved biomass, carotenoids, and lipids by 3.5-fold, 6-fold, and 4-fold than control, respectively. Besides, the excellent glycoproteins-based self-flocculation ability of the strain rendered an easier harvesting via gravity sedimentation. Hence, this biomass can be processed in a cascading fashion to use this strain as a candidate for a multiproduct biorefinery to achieve commercial robustness and environmental sustainability.
Collapse
Affiliation(s)
- Sana Malik
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Umer Farooq Ashraf
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aqib Zafar Khan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Usman
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Arthi Manivannan
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Ghulam Abbas Ashraf
- Department of Physics, Zhejiang Normal University, Zhejiang, 321004, Jinhua, China.
| |
Collapse
|
26
|
Zhang X, Wei X, Hu X, Yang Y, Chen X, Tian J, Pan T, Ding B. Effects of different concentrations of CO 2 on Scenedesmus obliquus to overcome sludge extract toxicity and accumulate biomass. CHEMOSPHERE 2022; 305:135514. [PMID: 35798159 DOI: 10.1016/j.chemosphere.2022.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Large amounts of toxic excess sludge as well as high concentrations of carbon dioxide can be produced in coal-gasification industry. Microalgae has huge potential in the use of nutrients, the removal of toxic organic matter in excess sludge and CO2 fixation. At the same time, the cultivation of the microalgae and the accumulation of high-quality biomass are also the key problems of concern. In this study, the growth and biomass synthesis of Scenedesmus obliquus cultured in sludge extract under 0%-15% (v/v) CO2 were investigated. Results indicated that the highest microalgae biomass yield of 1.609 ± 0.012 g/L can be achieved under 15% CO2 on the 30th day. The maximal photochemical efficiency of PSⅡ (Fv/Fm) decreased in the first 12 h and then increased with the culture time, and the decline amplitude decreased with the increase of the CO2 concentration, indicating that CO2 slowed down the toxic inhibition of sludge extract to Scenedesmus obliquus, which was expressed as the down-regulation of p53 signaling pathway and protein A0A383WFI7. Proteomic analysis showed that under high-concentration CO2, the protein interaction network with the protein of photosystem II assembly (A0A383VSL5) as the core protein regulated the growth of Scenedesmus obliquus in terms of energy metabolism and material transportation. On the 4th day, Methyltransf_11 domain-containing protein (A0A383VH03) was up-regulated and promoted lipid synthesis, leading to the accumulation of lipids in Scenedesmus obliquus in the early stage and the increase of polysaccharides in the later stage. Collectively, this study revealed the regulation mechanism of CO2 on toxicity removal and carbon distribution of Scenedesmus obliquus.
Collapse
Affiliation(s)
- Xinyu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiao Wei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueyang Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yingying Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jinyi Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Pan
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Biao Ding
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
27
|
Liu X, Zhang J, Lin Y, Wei L, Cheng H, Wang M. Sulfur heterogeneity: A non-negligible factor in manipulating growth and lipid accumulation of Scenedesmus obliquus at a relatively high ratio of carbon to nitrogen. BIORESOURCE TECHNOLOGY 2022; 360:127599. [PMID: 35820559 DOI: 10.1016/j.biortech.2022.127599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Algal biodiesel has been becoming a focus in the field of bioenergy worldwide. In this study, effects of heterogeneous sulfur (SO42-, SO32- and S2-) on growth and lipid accumulation of Scenedesmus obliquus cultured in wastewater with a C/N ratio of 30 were investigated, respectively. The results shown that SO42-, the optimal sulfur source, could trigger cell growth in a concentration-dependent manner. However, SO32- was superior to the others in boosting carbon uptake of cells, which was subject to NH4+-N concentration. Only SO42- could simultaneously increase lipid content and productivity of cells with a dominant component of oleic acid (C18:1n9c) occupying approximately 40% in fatty acid profile. Additionally, the genes encoding enzymes such as CDIPT, ADPRM, DPP1, pmtA and BTA1 involved in the uppermost lipid-related pathway (glycerophospholipid metabolism) were identified facing different sulfur source regardless of the concentration changes. These findings may facilitate nutrition management efforts to enhance microalgae-based biofuel production.
Collapse
Affiliation(s)
- Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Yu Lin
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Lin Wei
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Haomiao Cheng
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Min Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
28
|
North by Southwest: Screening the Naturally Isolated Microalgal Strains from Different Habitats of Iran for Various Pharmaceutical and Biotechnology Applications. Int J Microbiol 2022; 2022:4386268. [PMID: 35990767 PMCID: PMC9391159 DOI: 10.1155/2022/4386268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Aims Microalgae are known as a promising source for food, pharmaceutical, and biofuel production while providing environmental advantages. The present study evaluates some newly isolated microalgal strains from north and southwest of Iran as a potential source for high-value products. Methods Primitive screening was carried out regarding growth parameters. The molecular and morphological identifications of the selected strains were performed using 18S rRNA gene sequencing. After phylogenic and evolutionary studies, the selected microalgal strains were characterized in terms of protein and pigment content, in addition to the fatty acid profile content. Besides, the CO2 fixation rate was determined to assess capability for various environmental applications. Results All of the selected strains were predominantly belonging to Scenedesmus sp. and Desmodesmus sp. The isolated Scenedesmus sp. VN 009 possessed the highest productivity content and CO2 fixation rate of 0.054 g·L−1d−1 and 0.1 g·L−1d−1, respectively. Moreover, data from GC/MS analysis demonstrated the high robustness of this strain to produce several valuable fatty acids including α-linolenic acid and linoleic acid in 45% and 20% of total fatty acids. Conclusions The identified strains have a great but different potential for SCP, β-carotene, and ω-3 production, as well as CO2 fixation for environmental purposes. In this study, considering the wide range of microalgal strains in different habitats of Iran, the potential applications of native microalgae for various pharmaceutical, food, and biotechnology purposes were investigated.
Collapse
|
29
|
Li Y, Huang C, Han SI, Han A. Measurement of dielectric properties of cells at single-cell resolution using electrorotation. Biomed Microdevices 2022; 24:23. [PMID: 35771277 DOI: 10.1007/s10544-022-00621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Dielectric properties of a cell are biophysical properties of high interest for various applications. However, measuring these properties accurately is not easy, which can be exemplified by the large variations in reported dielectric properties of the same cell types. This paper presents a method for measuring the dielectric properties of cells at high frequency, especially lipid-producing microalgae, at single-cell resolution, by integrating an electrorotation-based dielectric property measurement method with a negative dielectrophoretic (nDEP) force-based single-cell trapping method into a single device. In this method, a four-electrode nDEP structure was used to trap a single cell in an elevated position in the center of another four-electrode structure that can apply electrorotational force. By measuring the speed of cell rotation under different applied electrorotation frequencies and fitting the results into a theoretical core-shell cell model, the dielectric properties of cells, including membrane capacitance and cytoplasm conductivity, could be obtained. This system was applied to measure the dielectric properties of lipid-accumulating microalga Chlamydomonas reinhardtii strain Sta6 by applying an electrorotation signal of up to 100 MHz. By utilizing a broad frequency range and expanding the measurement spectra to a high frequency region, increased accuracy in fitting the dielectric parameters to a theoretical model was possible, especially the cytoplasm conductivity. The developed method can be used in various applications, such as screening microalgae based on their lipid production capabilities, separating cells of different dielectric properties, identifying different cell types, as well as conducting basic biophysical analyses of cellular properties.
Collapse
Affiliation(s)
- Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Song-I Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA. .,Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
30
|
Sousa S, Freitas AC, Gomes AM, Carvalho AP. Modulated stress to balance Nannochloropsis oculata growth and eicosapentaenoic acid production. Appl Microbiol Biotechnol 2022; 106:4017-4027. [PMID: 35599259 DOI: 10.1007/s00253-022-11968-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Two environmental parameters, temperature and light intensity, were independently used as stress modulators to enhance eicosapentaenoic acid (EPA) production by the microalga Nannochloropsis oculata, without hindering biomass production. A sinusoidal approach was used, as environmental conditions were alternated between optimum and stress status in multi-day cycles. Low temperatures (5 and 10 °C) and light intensities (30 and 50 μmol photons/m2/s) were tested. Results revealed that the modulated stress approach used was able to avoid decreases in biomass production. Temperature stress (10 °C) presented the highest impact, increasing EPA content to 12.8 mgEPA/L, 158% more than the amount obtained in optimum (non-modulated) growth conditions at that point in time, while the lower light intensity stress was able to increase to 126% more. It is important to point out that in both cases increases in EPA amounts resulted from increased content in each individual cell and not just from increased biomass contents. KEY POINTS: • Temperature stress (10 °C) presented the highest impact increasing EPA content 158% • Lower light intensity stress was able to increase EPA to 126% more • EPA increased in individual cell contents simultaneous with biomass increase.
Collapse
Affiliation(s)
- Sérgio Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia E Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.,REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico Do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - Ana C Freitas
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia E Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana M Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia E Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| | - Ana P Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia E Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.,REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico Do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| |
Collapse
|
31
|
Rengel R, Giraldez I, Díaz MJ, García T, Vigara J, León R. Simultaneous production of carotenoids and chemical building blocks precursors from chlorophyta microalgae. BIORESOURCE TECHNOLOGY 2022; 351:127035. [PMID: 35314305 DOI: 10.1016/j.biortech.2022.127035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Replacement of fossil fuels has to be accompanied by the incorporation of bio-based procedures for the production of fine chemicals. With this aim, the microalga Chlamydomonas reinhardtii was selected for its ability to accumulate starch, an environmentally-friendly alternative source of chemical building blocks, such as 5'-hydroxymethylfurfural or levulinic acid. The content of appreciated lipophilic coproducts was assessed in the selected microalga cultured at different nutritional conditions; and the parameters for the acidic hydrolysis of the algal biomass, obtained after pigments extraction, were optimized using a Central Composite Design. Response Surface Methodology predicted that the optimal hydrolysis conditions were elevated temperature, high DMSO % and short hydrolysis time for glucose. LA was favored at long times and high acid % and 5'-HMF at lower acid % and high DMSO %. Chlamydomonas can therefore be used as a sustainable feedstock for the simultaneous production of high-added value lipophilic compounds and platform chemicals.
Collapse
Affiliation(s)
- Rocío Rengel
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - Inmaculada Giraldez
- Research Center in Technology of Products and Chemical Processes, PRO2TECS-Chemical Engineering Department, Campus El Carmen, University of Huelva, Huelva, Spain
| | - Manuel J Díaz
- Research Center in Technology of Products and Chemical Processes, PRO2TECS-Chemical Engineering Department, Campus El Carmen, University of Huelva, Huelva, Spain
| | - Trinidad García
- Research Center in Technology of Products and Chemical Processes, PRO2TECS-Chemical Engineering Department, Campus El Carmen, University of Huelva, Huelva, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain.
| |
Collapse
|
32
|
Cultivation of Microalgae in Unsterile Malting Effluent for Biomass Production and Lipid Productivity Improvement. FERMENTATION 2022. [DOI: 10.3390/fermentation8040186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microalgae have the potential to grow in nutrient-rich environments and have the ability to accumulate nutrients from wastewater. The nutrients in malting wastewater are ideal for microalgae cultivation. However, there is limited published work on the growth characteristics of freshwater microalgae grown in malting effluent. This study examined the potential of diluted malting effluent for the growth of freshwater green algae Chlorella sp. and Chlamydomonas sp. isolated from northern Ontario and subsequent biomass and lipid production. Under the 18:6 h light/dark cultivation cycle, the highest cell number counted (540 × 104 cell·mL−1 on day 20) and total chlorophyll content were found in 50% diluted malting effluents for Chlorella sp., whereas the 70% dilution concentration was the most productive for Chlamydomonas (386 × 104 cell·mL−1 on day 16). The total lipid content was higher in the 50% dilution concentration of malting effluent in both Chlorella sp. (maximum 20.5%–minimum 11.5% of dry weight) and Chlamydomonas sp. (max 39.3%–min 25.9% of dry weight). These results emphasize the suitability of using unsterile diluted malting effluent for microalgae cultivation.
Collapse
|
33
|
Ahmad A, W Hassan S, Banat F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered 2022; 13:9521-9547. [PMID: 35387561 PMCID: PMC9161971 DOI: 10.1080/21655979.2022.2061148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sustainable management of natural resources is critical to food security. The shrimp feed and fishery sector is expanding rapidly, necessitating the development of alternative sustainable components. Several factors necessitate the exploration of a new source of environmentally friendly and nutrient-rich fish feed ingredients. Microalgal biomass has the potential to support the growth of fish and shrimp aquaculture for global food security in the bio-economy. Algal biorefineries must valorize the whole crop to develop a viable microalgae-based economy. Microalgae have the potential to replace fish meal and fish oil in aquaculture and ensure sustainability standards. Microalgae biomasses provide essential amino acids, valuable triglycerides such as lipids, vitamins, and pigments, making them suitable as nutritional supplements in livestock feed formulations. Fish and microalgae have similar nutritional profiles, and digestibility is a critical aspect of the aquafeed formulation. A highly digestible feed reduces production costs, feed waste, and the risk of eutrophication. Due to low input costs, low carbon footprint, wastewater treatment benefits, and carbon credits from industrial CO2 conversion, microalgae-based fish and shrimp feeds have the potential to provide significant economic benefits. However, several challenges must be addressed before microalgal biomass and bioproducts may be used as fish feeds, including heavy metal bioaccumulation, poor algal biomass digestion, and antinutrient effects. Knowledge of biochemical composition is limited and diverse, and information on nutritional value is scattered or contradictory. This review article presents alternative approaches that could be used in aquaculture to make microalgal biomass a viable alternative to fish meal.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hassan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Dhanker R, Kumar R, Tiwari A, Kumar V. Diatoms as a biotechnological resource for the sustainable biofuel production: a state-of-the-art review. Biotechnol Genet Eng Rev 2022; 38:111-131. [PMID: 35343391 DOI: 10.1080/02648725.2022.2053319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The greenhouse gas emission from fossil fuel and higher economic cost in its transportation are stimulating scientists to explore biomass energy production at the local level. In the present review, the authors have explored the prospects of commercial-scale biofuels production from the microalgal group, diatoms. Insights on suitability of mass cultivation systems for large-scale production of diatoms have been deliberated based on published literature. Diatoms can proliferate extracting nutrients from the wastewater and the same biomass can be harvested for biofuel production. Residues can be further utilized for the formation of other bioproducts and biofertilizers. The residual applications of diatoms from mass culture are estimated to compensate for the additional costs incurred in the removal of impurities. Well-planned research is required to optimize the commercial-scale production of biofuels from diatoms. The aim of this review is therefore, to demonstrate the economically feasible, hygienically safe cultivation of diatoms on nutrients from wastewater, limitations in using diatoms for biofuel production, and how these limitations can be shorted out for optimum utilization of diatom for biofuel production.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Ram Kumar
- Ecosystem Research Laboratory, Department of Environmental Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Fatehpur, Gaya, Bihar, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Vineet Kumar
- Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)Waste Re-processing, Nehru Marg, Nagpur, Maharashtra, India
| |
Collapse
|
35
|
Farooq W. Maximizing Energy Content and CO 2 Bio-fixation Efficiency of an Indigenous Isolated Microalga Parachlorella kessleri HY-6 Through Nutrient Optimization and Water Recycling During Cultivation. Front Bioeng Biotechnol 2022; 9:804608. [PMID: 35223814 PMCID: PMC8867024 DOI: 10.3389/fbioe.2021.804608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
An alternative source of energy and materials with low negative environmental impacts is essential for a sustainable future. Microalgae is a promising candidate in this aspect. The focus of this study is to optimize the supply of nitrogen and carbon dioxide during the cultivation of locally isolated strain Parachlorella kessleri HY-6. This study focuses on optimizing nitrogen and CO2 supply based on total biomass and biomass per unit amount of nitrogen and CO2. Total biomass increased from 1.23 to 2.30 g/L with an increase in nitrogen concentration from 15.8 to 47.4 mg/L. However, biomass per unit amount of nitrogen supplied was higher at low nitrogen content. Biomass and CO2 fixation rate increased at higher CO2 concentrations in bubbling air, but CO2 fixation efficiency decreased drastically. Finally, the energy content of biomass increased with increases in both nitrogen and CO2 supply. This work thoroughly analyzed the biomass composition via ultimate, proximate, and biochemical analysis. Water is recycled three times for cultivation at three different nitrogen levels. Microalgae biomass increased during the second recycling and then decreased drastically during the third. Activated carbon helped remove the organics after the third recycling to improve the water recyclability. This study highlights the importance of selecting appropriate variables for optimization by considering net energy investment in terms of nutrients (as nitrogen) and CO2 fixation efficiency and effective water recycling.
Collapse
Affiliation(s)
- Wasif Farooq
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.,Integrated Research Centre for Membranes and Water Security (IRC-MWS ), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
36
|
Zheng S, Zou S, Feng T, Sun S, Guo X, He M, Wang C, Chen H, Wang Q. Low temperature combined with high inoculum density improves alpha-linolenic acid production and biochemical characteristics of Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2022; 348:126746. [PMID: 35065224 DOI: 10.1016/j.biortech.2022.126746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Chlamydomonas reinhardtii grows fast and is rich in polyunsaturated fatty acids. To explore whether the alpha-linolenic acid (ALA) content can be further enhanced, the cultures were incubated under different culture temperatures, light intensities and inoculum densities. Results showed that temperature exhibited more great impact on ALA synthesis of C. reinhardtii than light intensity and inoculum size. The changes of light intensity and inoculum size displayed non-significant effects on ALA content. The optimal ALA proportion in cells was obtained under the condition of 10 °C, 50 μE/m2/s and 5% inoculum density, which reached ∼ 39%.The augmented initial inoculum density could markedly improve the biomass of C. reinhardtii under 10 °C. The maximum ALA productivity (16.42 mg/L/d) was gained under 10 °C coupled with 25% inoculum size, where higher intracellular sugar and protein yield were observed. These results suggest C. reinhardtii would be an alternative feedstock for the industrial production of ALA.
Collapse
Affiliation(s)
- Shiyan Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangyun Zou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tian Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shourui Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangxu Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
37
|
Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. ENERGIES 2022. [DOI: 10.3390/en15041550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research progress on sustainable and renewable biofuel has gained motion over the years, not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental and potential energy security issues as well. Intense interest in microalgae (photosynthetic microbes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels derived from algae are now considered sustainable biofuels that are promising, renewable, and clean. Therefore, selecting the robust species of microalgae with substantial features for quality biodiesel production is the first step in the way of biofuel production. A contemporary investigation is more focused on several strategies and techniques to achieve higher biomass and triglycerides in microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most recent ways of improving the production of biomass and lipids. Hence, the current review collects up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures that may aid in lipid harvesting efficiency and improve lipid recovery rate are described.
Collapse
|
39
|
Curcuraci E, Manuguerra S, Messina CM, Arena R, Renda G, Ioannou T, Amato V, Hellio C, Barba FJ, Santulli A. Culture Conditions Affect Antioxidant Production, Metabolism and Related Biomarkers of the Microalgae Phaeodactylum tricornutum. Antioxidants (Basel) 2022; 11:antiox11020411. [PMID: 35204292 PMCID: PMC8869413 DOI: 10.3390/antiox11020411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Phaeodactylum tricornutum (Bacillariophyta) is a worldwide-distributed diatom with the ability to adapt and survive in different environmental habitats and nutrient-limited conditions. In this research, we investigated the growth performance, the total lipids productivity, the major categories of fatty acids, and the antioxidant content in P. tricornutum subjected for 15 days to nitrogen deprivation (N-) compared to standard culture conditions (N+). Furthermore, genes and pathways related to lipid biosynthesis (i.e., glucose-6-phosphate dehydrogenase, acetyl-coenzyme A carboxylase, citrate synthase, and isocitrate dehydrogenase) and photosynthetic activity (i.e., ribulose-1,5-bisphospate carboxylase/oxygenase and fucoxanthin-chlorophyll a/c binding protein B) were investigated through molecular approaches. P. tricornutum grown under starvation condition (N-) increased lipids production (42.5 ± 0.19 g/100 g) and decreased secondary metabolites productivity (phenolic content: 3.071 ± 0.17 mg GAE g-1; carotenoids: 0.35 ± 0.01 mg g−1) when compared to standard culture conditions (N+). Moreover, N deprivation led to an increase in the expression of genes involved in fatty acid biosynthesis and a decrease in genes related to photosynthesis. These results could be used as indicators of nitrogen limitation for environmental or industrial monitoring of P. tricornutum.
Collapse
Affiliation(s)
- Eleonora Curcuraci
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
| | - Simona Manuguerra
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
| | - Concetta Maria Messina
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
- Correspondence: (C.M.M.); (F.J.B.); Tel.: +39-923-560162 (C.M.M.); +34-963-544-972 (F.J.B.)
| | - Rosaria Arena
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
| | - Giuseppe Renda
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
| | - Theodora Ioannou
- Department of Chemistry, Faculty of Science, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Vito Amato
- L’Avannotteria Società Agricola a Responsabilità Limitata, Contrada Triglia Scaletta, 91020 Petrosino, Italy;
| | - Claire Hellio
- LEMAR, IRD, CNRS, Ifremer, Université de Brest, F-29280 Plouzane, France;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
- Correspondence: (C.M.M.); (F.J.B.); Tel.: +39-923-560162 (C.M.M.); +34-963-544-972 (F.J.B.)
| | - Andrea Santulli
- Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (E.C.); (S.M.); (R.A.); (G.R.); (A.S.)
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy
| |
Collapse
|
40
|
Farfan-Cabrera LI, Franco-Morgado M, González-Sánchez A, Pérez-González J, Marín-Santibáñez BM. Microalgae Biomass as a New Potential Source of Sustainable Green Lubricants. Molecules 2022; 27:1205. [PMID: 35208995 PMCID: PMC8875479 DOI: 10.3390/molecules27041205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 12/31/2022] Open
Abstract
Lubricants are materials able to reduce friction and/or wear of any type of moving surfaces facilitating smooth operations, maintaining reliable machine functions, and reducing risks of failures while contributing to energy savings. At present, most worldwide used lubricants are derived from crude oil. However, production, usage and disposal of these lubricants have significant impact on environment and health. Hence, there is a growing pressure to reduce demand of this sort of lubricants, which has fostered development and use of green lubricants, as vegetable oil-based lubricants (biolubricants). Despite the ecological benefits of producing/using biolubricants, availability of the required raw materials and agricultural land to create a reliable chain supply is still far from being established. Recently, biomass from some microalgae species has attracted attention due to their capacity to produce high-value lipids/oils for potential lubricants production. Thus, this multidisciplinary work reviews the main chemical-physical characteristics of lubricants and the main attempts and progress on microalgae biomass production for developing oils with pertinent lubricating properties. In addition, potential microalgae strains and chemical modifications to their oils to produce lubricants for different industrial applications are identified. Finally, a guide for microalgae oil selection based on its chemical composition for specific lubricant applications is provided.
Collapse
Affiliation(s)
- Leonardo I. Farfan-Cabrera
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Mariana Franco-Morgado
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Armando González-Sánchez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - José Pérez-González
- Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Laboratorio de Reología y Física de la Materia Blanda, U.P. Adolfo López Mateos Edif. 9, Col. Lindavista, Alc. Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Benjamín M. Marín-Santibáñez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, U.P. Adolfo López Mateos Edif. 7, Col. Lindavista, Alc. Gustavo A. Madero, Mexico City 07738, Mexico;
| |
Collapse
|
41
|
Kang NK, Baek K, Koh HG, Atkinson CA, Ort DR, Jin YS. Microalgal metabolic engineering strategies for the production of fuels and chemicals. BIORESOURCE TECHNOLOGY 2022; 345:126529. [PMID: 34896527 DOI: 10.1016/j.biortech.2021.126529] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Microalgae are promising sustainable resources because of their ability to convert CO2 into biofuels and chemicals directly. However, the industrial production and economic feasibility of microalgal bioproducts are still limited. As such, metabolic engineering approaches have been undertaken to enhance the productivities of microalgal bioproducts. In the last decade, impressive advances in microalgae metabolic engineering have been made by developing genetic engineering tools and multi-omics analysis. This review presents comprehensive microalgal metabolic pathways and metabolic engineering strategies for producing lipids, long chain-polyunsaturated fatty acids, terpenoids, and carotenoids. Additionally, promising metabolic engineering approaches specific to target products are summarized. Finally, this review discusses current challenges and provides future perspectives for the effective production of chemicals and fuels via microalgal metabolic engineering.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kwangryul Baek
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christine Anne Atkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, IL, USA; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
42
|
Park WK, Min K, Yun JH, Kim M, Kim MS, Park GW, Lee SY, Lee S, Lee J, Lee JP, Moon M, Lee JS. Paradigm shift in algal biomass refinery and its challenges. BIORESOURCE TECHNOLOGY 2022; 346:126358. [PMID: 34800638 DOI: 10.1016/j.biortech.2021.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have been studied and tested for over 70 years. However, biodiesel, the prime target of the algal industry, has suffered from low competitiveness and current steps toward banning the internal combustion engine all over the world. Meanwhile, interest in reducing CO2 emissions has grown as the world has witnessed disasters caused by global warming. In this situation, in order to maximize the benefits of the microalgal industry and surmount current limitations, new breakthroughs are being sought. First, drop-in fuel, mandatory for the aviation and maritime industries, has been discussed as a new product. Second, methods to secure stable and feasible outdoor cultivation focusing on CO2 sequestration were investigated. Lastly, the need for an integrated refinery process to simultaneously produce multiple products has been discussed. While the merits of microalgae industry remain valid, further investigations into these new frontiers would put algal industry at the core of future bio-based economy.
Collapse
Affiliation(s)
- Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| |
Collapse
|
43
|
Kafil M, Berninger F, Koutra E, Kornaros M. Utilization of the microalga Scenedesmus quadricauda for hexavalent chromium bioremediation and biodiesel production. BIORESOURCE TECHNOLOGY 2022; 346:126665. [PMID: 34990857 DOI: 10.1016/j.biortech.2021.126665] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to evaluate the bioremediation potential of the microalga Scenedesmus quadricauda in removing hexavalent chromium (Cr (VI)) from synthetic wastewater, under autotrophic and heterotrophic conditions and different inoculum concentrations. In both cultivation modes, the highest inoculum density of 0.8 g L-1 led to the highest Cr (VI) removal efficiency. In addition, Cr (VI) stress was more severe in 10 ppm compared to 5 ppm, while heavy metal effects were alleviated under heterotrophic conditions. Concurrently, Cr (VI) stress affected biomass quality, resulting in an increase in lipid and carbohydrate production and decreased proteins. Furthermore, under higher Cr (VI) concentration more saturated and monounsaturated fatty acids were produced, while monounsaturated fatty acids content was also greater under heterotrophic conditions. In total, the findings of this study highlight the advantages of heterotrophic cultivation of microalgae for concomitant industrial wastewater treatment and biofuel production.
Collapse
Affiliation(s)
- Mahboubeh Kafil
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Frank Berninger
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Eleni Koutra
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, 26504 Patras, Greece
| |
Collapse
|
44
|
Yun HS, Kim YS, Yoon HS. Effect of Different Cultivation Modes (Photoautotrophic, Mixotrophic, and Heterotrophic) on the Growth of Chlorella sp. and Biocompositions. Front Bioeng Biotechnol 2022; 9:774143. [PMID: 34976972 PMCID: PMC8718857 DOI: 10.3389/fbioe.2021.774143] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
In the past, biomass production using microalgae culture was dependent on inorganic carbon sources as microalgae are photosynthetic organisms. However, microalgae utilize both organic and inorganic carbon sources, such as glucose. Glucose is an excellent source of organic carbon that enhances biomass yield and the content of useful substances in microalgae. In this study, photoautotrophic, mixotrophic, and heterotrophic cultivation conditions were applied to three well-known strains of Chlorella (KNUA104, KNUA114, and KNUA122) to assess biomass productivity, and compositional changes (lipid, protein, and pigment) were evaluated in BG11 media under photoautotrophic, mixotrophic, and heterotrophic conditions utilizing different initial concentrations of glucose (5, 10, 15, 20, and 25 g L−1). Compared to the photoautotrophic condition (biomass yield: KNUA104, 0.35 ± 0.04 g/L/d; KNUA114, 0.40 ± 0.08 g/L/d; KNUA122, 0.38 ± 0.05 g/L/d) glucose was absent, and the biomass yield improved in the mixotrophic (glucose: 20 g L−1; biomass yield: KNUA104, 2.99 ± 0.10 g/L/d; KNUA114, 5.18 ± 0.81 g/L/d; KNUA122, 5.07 ± 0.22 g/L/d) and heterotrophic conditions (glucose: 20 g L−1; biomass yield: KNUA104, 1.72 ± 0.26 g/L/d; KNUA114, 4.26 ± 0.27 g/L/d; KNUA122, 4.32 ± 0.32 g/L/d). All strains under mixotrophic and heterotrophic conditions were optimally cultured when 15–20 g L−1 initial glucose was provided. Although bioresourse productivity improved under both mixotrophic and heterotrophic conditions where mixotrophic conditions were found to be optimal as the yields of lipid and pigment were also enhanced. Protein content was less affected by the presence of light or the concentration of glucose. Under mixotrophic conditions, the highest lipid content (glucose: 15 g L−1; lipid content: 68.80 ± 0.54%) was obtained with Chlorella vulgaris KNUA104, and enhanced pigment productivity of Chlorella sorokiniana KNUA114 and KNUA122 (additional pigment yield obtained with 15 g L−1 glucose: KNUA 114, 0.33 ± 0.01 g L−1; KNUA122, 0.21 ± 0.01 g L−1). Also, saturated fatty acid (SFA) content was enhanced in all strains (SFA: KNUA104, 29.76 ± 1.31%; KNUA114, 37.01 ± 0.98%; KNUA122, 33.37 ± 0.17%) under mixotrophic conditions. These results suggest that mixotrophic cultivation of Chlorella vulgaris and Chlorella sorokiniana could improve biomass yield and the raw material quality of biomass.
Collapse
Affiliation(s)
- Hyun-Sik Yun
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Young-Saeng Kim
- Research Institute of Ulleung-do & Dok-do, Kyungpook National University, Daegu, South Korea
| | - Ho-Sung Yoon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea.,Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, South Korea.,Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
45
|
Jakhwal P, Kumar Biswas J, Tiwari A, Kwon EE, Bhatnagar A. Genetic and non-genetic tailoring of microalgae for the enhanced production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) - A review. BIORESOURCE TECHNOLOGY 2022; 344:126250. [PMID: 34728356 DOI: 10.1016/j.biortech.2021.126250] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The myriad health benefits associated with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) laid the path for their application in the functional foods and nutraceutical industries. Fish being primarily exploited for extraction of EPA and DHA are unsustainable sources; thus, oleaginous microalgae turn out to be an alternative sustainable source. This review paper aims to provide the recent developments in the context of enhancing EPA and DHA production by utilising non-genetic tailoring and genetic tailoring methods. We have also summarized the legislation, public perception, and possible risks associated with the usage of genetically modified microalgae focusing on EPA and DHA production.
Collapse
Affiliation(s)
- Parul Jakhwal
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| |
Collapse
|
46
|
Esakkimuthu S, Wang S, Abomohra AELF. Physical stress for enhanced biofuel production from microalgae. HANDBOOK OF ALGAL BIOFUELS 2022:451-475. [DOI: 10.1016/b978-0-12-823764-9.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
47
|
Gondi R, Kavitha S, Yukesh Kannah R, Parthiba Karthikeyan O, Kumar G, Kumar Tyagi V, Rajesh Banu J. Algal-based system for removal of emerging pollutants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 344:126245. [PMID: 34743994 DOI: 10.1016/j.biortech.2021.126245] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The bioremediation of emerging pollutants in wastewater via algal biotechnology has been emerging as a cost-effective and low-energy input technological solution. However, the algal bioremediation technology is still not fully developed at a commercial level. The development of different technologies and new strategies to cater specific needs have been studied. The existence of multiple emerging pollutants and the selection of microalgal species is a major concern. The rate of algal bioremediation is influenced by various factors, including accidental contaminations and operational conditions in the pilot-scale studies. Algal-bioremediation can be combined with existing treatment technologies for efficient removal of emerging pollutants from wastewater. This review mainly focuses on algal-bioremediation systems for wastewater treatment and pollutant removal, the impact of emerging pollutants in the environment, selection of potential microalgal species, mechanisms involved, and challenges in removing emerging pollutants using algal-bioremediation systems.
Collapse
Affiliation(s)
- Rashmi Gondi
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
48
|
Vazirzadeh A, Jafarifard K, Ajdari A, Chisti Y. Removal of nitrate and phosphate from simulated agricultural runoff water by Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149988. [PMID: 34525699 DOI: 10.1016/j.scitotenv.2021.149988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Microalgae such Chlorella vulgaris can effectively absorb nitrate and phosphate from contaminated water. This work characterized nitrate and phosphate removal from simulated agricultural runoff using C. vulgaris. Statistically designed experiments were used to model the following responses: (1) algal growth; (2) nitrate removal; (3) phosphate removal; (4) protein in the algal biomass; (5) chlorophyll content of the biomass; (6) the biomass phenolics content; and (7) the free radical scavenging antioxidant activity of the biomass. These response were modelled for the following key experimental factors: initial nitrate concentration in the simulated runoff (1080-3240 mg L-1, as NaNO3), initial phosphate concentration (20-60 mg L-1, as K2HPO4), photoperiod (8-24 h of light/day) and culture duration (5-15 days). The validated models were used to identify the factor levels to maximize the various responses. Nitrate removal was maximized at 85.6% when initial nitrate and phosphate concentrations were 2322 mg L-1 and 38 mg L-1 (N:P atom ratio ≈ 125:1), respectively, with a 17.2 h daily photoperiod in a 13-day culture. Phosphate removal was maximized at 95% when the initial nitrate and phosphate concentrations were 1402 mg L-1 and 56.7 mg L-1 (N:P ≈ 51:1), respectively, with a 15.7 h daily photoperiod in a 14.7-day culture. At least ~14 h of a daily photoperiod and a ~11-day culture period were required to maximize all the studied responses. C. vulgaris is edible and may be used as animal feed. Nutritional aspects of the biomass were characterized. Biomass with more than 24% protein could be produced. Under the best conditions, the chlorophyll (potential food colorants) content of the biomass was 8.5% and the maximum level of total phenolics (antioxidants) in the biomass was nearly 13 mg gallic acid equivalent g-1.
Collapse
Affiliation(s)
- Arya Vazirzadeh
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Kiyanoush Jafarifard
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Ashkan Ajdari
- Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education, and Extension Organization (AREEO), Chabahar, Iran
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
49
|
Ma W, Wang YZ, Nong FT, Du F, Xu YS, Huang PW, Sun XM. An emerging simple and effective approach to increase the productivity of thraustochytrids microbial lipids by regulating glycolysis process and triacylglycerols' decomposition. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:247. [PMID: 34972534 PMCID: PMC8719115 DOI: 10.1186/s13068-021-02097-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND The oleaginous microorganism Schizochytrium sp. is widely used in scientific research and commercial lipid production processes. However, low glucose-to-lipid conversion rate (GLCR) and low lipid productivity of Schizochytrium sp. restrict the feasibility of its use. RESULTS Orlistat is a lipase inhibitor, which avoids triacylglycerols (TAGs) from hydrolysis by lipase. TAGs are the main storage forms of fatty acids in Schizochytrium sp. In this study, the usage of orlistat increased the GLCR by 21.88% in the middle stage of fermentation. Whereas the productivity of lipid increased 1.34 times reaching 0.73 g/L/h, the saturated fatty acid and polyunsaturated fatty acid yield increased from 21.2 and 39.1 to 34.9 and 48.5 g/L, respectively, indicating the advantages of using a lipase inhibitor in microbial lipids fermentation. Similarly, the system was also successful in Thraustochytrid Aurantiochytrium. The metabolic regulatory mechanisms stimulated by orlistat in Schizochytrium sp. were further investigated using transcriptomics and metabolomics. The results showed that orlistat redistributed carbon allocation and enhanced the energy supply when inhibiting the TAGs' degradation pathway. Therefore, lipase in Schizochytrium sp. prefers to hydrolyze saturated fatty acid TAGs into the β-oxidation pathway. CONCLUSIONS This study provides a simple and effective approach to improve lipid production, and makes us understand the mechanism of lipid accumulation and decomposition in Schizochytrium sp., offering new guidance for the exploitation of oleaginous microorganisms.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| |
Collapse
|
50
|
Ghorbani A, Rafiee P, Hosseini M, Ebrahimi S. Potential of a mixed culture of microalgae for accumulation of beta-carotene under different stress conditions. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Beta-carotene, a pigment found in plants, is mainly produced by microalgae. Nevertheless, this production has only been investigated in pure cultures. Beta-carotene production through mixed culture eliminates the costly procedure of sterilization and contamination prevention needed for pure cultures. In this study, for the first time, the growth, beta-carotene, and chlorophyll production of a mixed culture of microalgae from Caspian Sea was investiagted under different stress conditions. At the condition of tripled light intensity and nitrogen starvation, beta-carotene content increased from 18.03 to 43.8 and 46.5 mol beta-carotene g−1 protein, respectively. However, the salinity of 4 mol L−1 caused the beta-carotene content to fall to zero. The blank sample reached a constant value of 23 mol beta-carotene g−1protein. The comparable results with the specific monoculture species exhibit the high potential of a mixed culture of microalgae for beta-carotene production without need of the high sterilization cost. Nevertheless, more research is needed for where it can be a good substitute for pure culture.
Collapse
Affiliation(s)
- Azita Ghorbani
- Biotechnology Research Center, Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Poorya Rafiee
- Biotechnology Research Center, Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| | - Maryam Hosseini
- Department of Chemical Engineering , Azarbaijan Shahid Madani University , Tabriz , Iran
| | - Sirous Ebrahimi
- Biotechnology Research Center, Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , Iran
| |
Collapse
|