1
|
Chang H, Sun X, Zhang H, Tan Z, Xi B, Xing M, Dong B, Zhu H. The evolution of structural characteristics and redox properties of humin during the composting of sludge and corn straw. ENVIRONMENTAL TECHNOLOGY 2025; 46:1636-1647. [PMID: 39221761 DOI: 10.1080/09593330.2024.2397589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Humins (HMs), the insoluble faction of humic substances (HSs), play a pivotal role in the bioremediation of pollutants by acting as electron shuttles that modulate the interactions between microorganisms and pollutants. This crucial function is intricately linked to their structural composition and electron transfer capabilities. However, the dynamics of the electron transfer capacity (ETC) of HM extracted during the composting process and its determinants have yet to be fully elucidated. This study undertakes a comprehensive analysis of the ETC of HM derived from composting, employing electrochemical techniques alongside spectroscopic methods and elemental analysis to explore the influencing factors, including the electron accepting capacity (EAC), electron donating capacity (EDC), and electron reversible rate (ERR). Our findings reveal substantial variations in the EAC and EDC of HM throughout the composting process, with EAC values ranging from 133.03-220.98 μmol e- gC-1 and EDC values from 111.17-229.33 μmol e- gC-1. Notably, the composting process enhances the ERR and EDC of HM while diminishing their EAC. This shift is accompanied by an augmented presence of aromatic structures, polar functional groups, quinones, and nitrogen - and sulfur-containing moieties, thereby boosting the HM's EDC. Conversely, the reduction in EAC is associated with a decline in lignin carbon content and the abundance of oxygen-containing moieties, as well as the diminishment of visible fulvic-like and protein-like substances within HM. Importantly, humic-like substances and nitrogen-containing moieties within HM demonstrated the capacity for repeated electron transfer, underscoring their significance in the context of environmental remediation.
Collapse
Affiliation(s)
- Haoyu Chang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Meiyan Xing
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Bin Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Hongxiang Zhu
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
2
|
Ren Y, Liu C, Luo J, Deng X, Zheng D, Shao J, Xu Z, Zhang N, Xiong W, Liu H, Li R, Miao Y, Zhang R, Shen Q, Xun W. Substrate preference triggers metabolic patterns of indigenous microbiome during initial composting stages. BIORESOURCE TECHNOLOGY 2025; 419:132034. [PMID: 39761730 DOI: 10.1016/j.biortech.2024.132034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages. Indigenous synthetic communities exhibit substrate-specific adaptations, increasing compost temperatures by 2 %-10 %, microbial abundance by 44 %-233 %, and microbial activity by 26 %-60 %. Key dissolved substrates, such as choline and succinic acid in straw compost, and phloretin and uric acid in manure compost, drive these microbial preferences. These findings highlight how substrate-specific microbiomes can be engineered to enhance microbial activity, accelerate temperature rise, and extend the thermophilic phase, providing a targeted framework to improve composting efficiency and tailor strategies to different organic waste types.
Collapse
Affiliation(s)
- Yi Ren
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, PR China
| | - Chen Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiayu Luo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Daoyue Zheng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
3
|
Zhang K, Guo H, Liang Y, Liu F, Zheng G, Zhang J, Gao A, Liu N, Ma C. A Mechanism of Reducing Methane Production During Sewage Sludge Composting by Adding Urea. TOXICS 2024; 12:895. [PMID: 39771110 PMCID: PMC11728475 DOI: 10.3390/toxics12120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
The study of the effect of the mechanism of urea addition to sewage sludge and sawdust-composting substrates on methane production is still limited. In the present study, the systematic investigation of the effect of urea addition (0.18, 0.9 and 1.8 kg) on methane production is discussed through the dynamics of physical properties, enzymes, and the microbial community during composting. The results showed that high urea addition (1.8 kg) suppressed methane production, with a lower rate and a shorter duration of warming in the thermophilic phase, but significantly enhanced cellulase activity, urease, and peroxidase, and promoted the degradation of organic carbon, as well as the loss of nitrogen. A high addition of urea stimulated the growth and reproduction of Sinibacillus, Pseudogracilibacillus, Sporosarcina, and Oceanobacillus. The random forest model indicated that the top six independent determinants of CH4 emissions were Methanobacterium, temperature, organic matter (OM), Methanospirillum, and NH4+-N. Furthermore, structural equation modeling displayed that NH4+-N, O2, and pH were the main physicochemical properties affecting CH4 emissions. Methanobacterium, Methanosarcina, and Methanosphaera were the main archaea, and Bacillaceae were the main bacteria affecting CH4 emissions. This study provides new insights and a theoretical basis for optimizing urea addition strategies during composting.
Collapse
Affiliation(s)
- Ke Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Haopeng Guo
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
| | - Yujing Liang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
| | - Fuyong Liu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Guodi Zheng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Aihua Gao
- Zhongyuan Ecological Environment Technology Innovation Center (Henan) Co., Ltd., Zhengzhou 450000, China
| | - Nan Liu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Chuang Ma
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| |
Collapse
|
4
|
Macan GPF, Munhoz DR, Willems LAJ, Monkley C, Lloyd CEM, Hageman J, Geissen V, Landa BB, Harkes P. Macro- and microplastics leachates: Characterization and impact on seed germination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136013. [PMID: 39423638 DOI: 10.1016/j.jhazmat.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Although plastic mulch enhances crop yield, its removal and disposal present significant challenges, contributing to macro- and microplastic pollution in agricultural soils. The adverse effects of this pollution on soil and plant health are not fully understood but may stem from the plastic particles or the toxicity of leached chemical additives. This study assessed the impact of macro- and microplastics from nondegradable LDPE-based (LDPEb) and biodegradable PBAT-based (PBATb) mulch films, along with their leachates, on the germination of three plant species. After seven days of incubation, PBAT mulch leached compounds that significantly inhibited Arabidopsis germination, while cotton and tomato exhibited notable tolerance. Notably, PBATb mulch released a higher concentration of compounds, whereas LDPEb mulch exhibited a greater diversity of leached chemicals. Microplastic particles alone did not hinder seed germination, indicating that plastic toxicity primarily arises from the leachates. Many of these leached compounds lack global regulation and hazard information, underscoring the urgent need for further investigation into their environmental impacts and the development of appropriate regulatory frameworks to mitigate the potential toxicity of chemicals from conventional and biodegradable mulches.
Collapse
Affiliation(s)
- Giovana P F Macan
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; Programa de Doctorado de Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible, Universidad de Córdoba, Córdoba, Spain.
| | - Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Charlie Monkley
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK; School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Jos Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Blanca B Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
5
|
Zhou D, Luo Y, Luo Y, He Y, Chen Y, Wan Z, Wu Y. Chemodiversity of dissolved organic matter and its association with the bacterial community at a zinc smelting slag site after 10 years of direct revegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175322. [PMID: 39111427 DOI: 10.1016/j.scitotenv.2024.175322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/14/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Dissolved organic matter (DOM) plays a critical role in driving the development of biogeochemical functions in revegetated metal smelting slag sites, laying a fundamental basis for their sustainable rehabilitation. However, the DOM composition at the molecular level and its interaction with the microbial community in such sites undergoing long-term direct revegetation remain poorly understood. This study investigated the chemodiversity of DOM and its association with the bacterial community in the rhizosphere and non-rhizosphere slags of four plant species (Arundo donax, Broussonetia papyrifera, Cryptomeria fortunei, and Robinia pseudoacacia) planted at a zinc smelting slag site for 10 years. The results indicated that the relative abundance of lipids decreased from 18 % to 5 %, while the relative abundance of tannins and lignins/CRAM-like substances increased from 4 % to 10 % and from 44 % to 64 % in the revegetated slags, respectively. The chemical stability of the organic matter in the rhizosphere slag increased due to the retention of recalcitrant DOM components, such as lignins, aromatics, and tannins. As the diversity and relative abundance of the bacterial community increased, particularly within the Proteobacteria, there was better utilization of recalcitrant components (e.g., lignins/CRAM-like compounds), but this utilization was not invariable. In addition, potential preference associations between specific bacterial OTUs and DOM molecules were observed, possibly stimulated by heavy metal bioavailability. Network analysis revealed complex connectivity and strong interactions between the bacterial community and DOM molecules. These specific interactions between DOM molecules and the bacterial community enable adaptation to the harsh conditions of the slag environment. Overall, these findings provide novel insights into the transformation of DOM chemodiversity at the molecular level at a zinc smelting slag sites undergoing long-term revegetation. This knowledge could serve as a crucial foundation for developing direct revegetation strategies for the sustainable rehabilitation of metal smelting slag sites.
Collapse
Affiliation(s)
- Dongran Zhou
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Youfa Luo
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China.
| | - Yang Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yu He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yulu Chen
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Wang L, Li Y, Li X. Microbe-aided thermophilic composting accelerates manure fermentation. Front Microbiol 2024; 15:1472922. [PMID: 39526136 PMCID: PMC11544323 DOI: 10.3389/fmicb.2024.1472922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Aerobic composting is a key strategy to the sustainable use of livestock manure, which is however constrained by the slow kinetics. Microbe-aided thermophilic composting provides an attractive solution to this problem. In this study, we identified key thermophilic bacteria capable of accelerating manure composting based on the deciphering of manure bacterial community evolution in a thermophilic system. High-throughput sequencing showed a significant evolution of manure bacterial community structure with the increasing heating temperature. Firmicutes were substantially enriched by the heating, particularly some known thermotolerant bacterial species, such as Novibacillus thermophiles, Bacillus thermolactis, and Ammoniibacillus agariperforans. Correspondingly, through function prediction, we found bacterial taxa with cellulolytic and xylanolytic activities were significantly higher in the thermophilic process relative to the initial stage. Subsequently, a total of 47 bacteria were isolated in situ and their phylogenetic affiliation and degradation capacity were determined. Three isolates were back inoculated to the manure, resulting in shortened composting process from 5 to 3 days with Germination Index increased up to 134%, and improved compost quality particularly in wheat growth promoting. Comparing to the mesophilic and thermophilic Bacillus, the genomes of the three isolates manifested some features similar to the thermophiles, including smaller genome size and mutation of specific genes that enhance heat tolerance. This study provide robust evidence that microbe-aided thermophilic composting is capable to accelerate manure composting and improve the quality of compost, which represents a new hope to the sustainable use of manure from the meat industry.
Collapse
Affiliation(s)
- Likun Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Yancheng Institute of Soil Ecology, Yancheng, China
| | - Yan Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
7
|
He L, Wang Y, Xi B, Zhao X, Cai D, Sun Y, Du Y, Zhang C. Synergistic removal of total petroleum hydrocarbons and antibiotic resistance genes in Yellow River Delta wetlands contaminated soil composting regulated by biogas slurry addition. ENVIRONMENTAL RESEARCH 2024; 252:118724. [PMID: 38518917 DOI: 10.1016/j.envres.2024.118724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The interactive effects between the emerging contaminant antibiotic resistance genes (ARGs) and the traditional pollutant total petroleum hydrocarbons (TPHs) in contaminated soils remain unclear. The synergistic removal of TPHs and ARGs from composted contaminated soil, along with the microbial mechanisms driven by the addition of biogas slurry, have not yet been investigated. This study explored the impact of biogas slurry on the synergistic degradation mechanisms and bacterial community dynamics of ARGs and TPHs in compost derived from contaminated soil. The addition of biogas slurry resulted in a reduction of targeted ARGs and mobile genetic elements (MGEs) by 9.96%-95.70% and 13.32%-97.66%, respectively. Biogas slurry changed the succession of bacterial communities during composting, thereby reducing the transmission risk of ARGs. Pseudomonas, Cellvibrio, and Devosia were identified as core microorganisms in the synergistic degradation of ARGs and TPHs. According to the partial least squares path model, temperature and NO3- indirectly influenced the removal of ARGs and TPHs by directly regulating the abundance and composition of host microbes and MGEs. In summary, the results of this study contribute to the high-value utilization of biogas slurry and provide methodological support for the low-cost remediation of contaminated soils.
Collapse
Affiliation(s)
- Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwen Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuewei Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541000, China
| |
Collapse
|
8
|
Jiang K, Jiang D, Li S, Guo Z, Zhao L, Wang J, Hao X, Bai L, Qiu S, Kang B. Impacts of mixed ferrous sulfate-biochar additives on humification and bacterial community during electric field-assisted aerobic composting. BIORESOURCE TECHNOLOGY 2024; 404:130901. [PMID: 38801959 DOI: 10.1016/j.biortech.2024.130901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
This study assessed the impact of nine mixed ferrous sulfates and biochars on electric field-assisted aerobic composting (EAC), focusing on the spectroscopy of dissolved organic matter (DOM) and microbial communities. Adding 1.05% ferrous sulfate and 5.25% biochar to EAC increased the specific ultraviolet absorbances at 254 and 280 nm by 142.3% and 133.9% on day 35, respectively. This ratio accelerated the early response of carboxyl groups (-COOH) and lignin (CꘌC), enhancing the relative abundance of Thermobifida (4.0%) and Thermopolyspora (4.3%). The condition contributed to humus precursor formation on day 5, increasing the maximum fluorescence intensity of the humus-like component by 74.2% compared to the control on day 35. This study is the first to develop a combined and efficient organic and inorganic additive by multiple-variable experimentation for DOM humification. Consequently, it optimizes EAC for solid waste recycling.
Collapse
Affiliation(s)
- Kunhong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China.
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Zhenzhen Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Liangbin Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Jie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Xiaoxia Hao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Lin Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China
| | - Shixiu Qiu
- Institute of Animal Husbandry, Chengdu Academy of Agriculture and Forestry Sciences, P.R. China
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, P.R. China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, P.R. China.
| |
Collapse
|
9
|
Sobieraj K, Derkacz D, Krasowska A, Białowiec A. Isolation and identification of carbon monoxide producing microorganisms from compost. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:250-258. [PMID: 38677142 DOI: 10.1016/j.wasman.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Carbon monoxide (CO) formation has been observed during composting of various fractions of organic waste. It was reported that this production can be biotic, associated with the activity of microorganisms. However, there are no sources considering the microbial communities producing CO production in compost. This preliminary research aimed to isolate and identify microorganisms potentially responsible for the CO production in compost collected from two areas of the biowaste pile: with low (118 ppm) and high CO concentration (785 ppm). Study proved that all isolates were bacterial strains with the majority of rod-shaped Gram-positive bacteria. Both places can be inhabited by the same bacterial strains, e.g. Bacillus licheniformis and Paenibacillus lactis. The most common were Bacillus (B. licheniformis, B. haynesii, B. paralicheniformis, and B. thermolactis). After incubation of isolates in sealed bioreactors for 4 days, the highest CO levels in the headspace were recorded for B. paralicheniformis (>1000 ppm), B. licheniformis (>800 ppm), and G. thermodenitrificans (∼600 ppm). High CO concentrations were accompanied by low O2 (<6%) and high CO2 levels (>8%). It is recommended to analyze the expression of the gene encoding CODH to confirm or exclude the ability of the identified strains to convert CO2 to CO.
Collapse
Affiliation(s)
- Karolina Sobieraj
- Wrocław University of Environmental and Life Sciences, Department of Applied Bioeconomy, 37a Chełmońskiego Str., 51-630 Wrocław, Poland.
| | - Daria Derkacz
- University of Wrocław, Faculty of Biotechnology, Department of Biotransformation, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland.
| | - Anna Krasowska
- University of Wrocław, Faculty of Biotechnology, Department of Biotransformation, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland.
| | - Andrzej Białowiec
- Wrocław University of Environmental and Life Sciences, Department of Applied Bioeconomy, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; Iowa State University, Department of Agricultural and Biosystems Engineering, 605 Bissell Road, Ames, IA 50011, USA.
| |
Collapse
|
10
|
Li Z, You Z, Zhang L, Chen H. Effect of total solids content on anaerobic digestion of waste activated sludge enhanced by high-temperature thermal hydrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120980. [PMID: 38669887 DOI: 10.1016/j.jenvman.2024.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Total solids (TS) content may provide a regulatory strategy for optimizing anaerobic digestion enhanced by high-temperature thermal hydrolysis, but the role of TS content is not yet clear. In this study, the effect of TS content on the high-temperature thermal hydrolysis and anaerobic digestion of sludge and its mechanism were investigated. The results showed that increasing the TS content from 2% to 8% increased the sludge solubility and methane production potential, reaching peak values of 26.6% and 336 ± 6 mL/g volatile solids (VS), respectively. With a further increase in TS content to 12%, the strong Maillard reaction increased the aromaticity and structural stability of extracellular polymer substances, decreasing sludge solubility to 18.6%. Furthermore, the decrease in sludge biodegradability and the formation of inhibitory by-products resulted in a reduction in methane production to 272 ± 4 mL/g VS. This article provides a new perspective to understand the role of TS content in the thermal hydrolysis of sludge and a novel approach to regulate the Maillard reaction.
Collapse
Affiliation(s)
- Zeyu Li
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhimin You
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Liuqing Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
11
|
Ahmed Mohamed T, Wei Z, Mohaseb M, Junqiu W, El Maghraby T, Chen X, Abdellah YAY, Mu D, El Kholy M, Pan C, Bello A, Zheng G, Mohamed Ahmed A, Ahmed M, Zhao Y. Performance of microbial inoculation and tricalcium phosphate on nitrogen retention and conversion: Core microorganisms and enzyme activity during kitchen waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120601. [PMID: 38518488 DOI: 10.1016/j.jenvman.2024.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
The substantial release of NH3 during composting leads to nitrogen (N) losses and poses environmental hazards. Additives can mitigate nitrogen loss by adsorbing NH3/NH4, adjusting pH, and enhancing nitrification, thereby improving compost quality. Herein, we assessed the effects of combining bacterial inoculants (BI) (1.5%) with tricalcium phosphate (CA) (2.5%) on N retention, organic N conversion, bacterial biomass, functional genes, network patterns, and enzyme activity during kitchen waste (KW) composting. Results revealed that adding of 1.5%/2.5% (BI + CA) significantly (p < 0.05) improved ecological parameters, including pH (7.82), electrical conductivity (3.49 mS/cm), and N retention during composting. The bacterial network properties of CA (265 node) and BI + CA (341 node) exhibited a substantial niche overlap compared to CK (210 node). Additionally, treatments increased organic N and total N (TN) content while reducing NH4+-N by 65.42% (CA) and 77.56% (BI + CA) compared to the control (33%). The treatments, particularly BI + CA, significantly (p < 0.05) increased amino acid N, hydrolyzable unknown N (HUN), and amide N, while amino sugar N decreased due to bacterial consumption. Network analysis revealed that the combination expanded the core bacterial nodes and edges involved in organic N transformation. Key genes facilitating nitrogen mediation included nitrate reductase (nasC and nirA), nitrogenase (nifK and nifD), and hydroxylamine oxidase (hao). The structural equation model suggested that combined application (CA) and microbial inoculants enhance enzyme activity and bacterial interactions during composting, thereby improving nitrogen conversion and increasing the nutrient content of compost products.
Collapse
Affiliation(s)
- Taha Ahmed Mohamed
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin, 300387, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mohamed Mohaseb
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Wu Junqiu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Taha El Maghraby
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yousif Abdelrahman Yousif Abdellah
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Faculty of Public and Environmental Health, University of Khartoum, P.O. Box 205, 11111, Sudan
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mohamed El Kholy
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ayodeji Bello
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; School of Plant and Environmental Sciences, Virginia Technology, VA, 24061, USA
| | - Guangren Zheng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ahmed Mohamed Ahmed
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Marwa Ahmed
- Department of Soil Fertility and Plant Nutrition, Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Yue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Liu X, Rong X, Jiang P, Yang J, Li H, Yang Y, Deng X, Xie G, Luo G. Biodiversity and core microbiota of key-stone ecological clusters regulate compost maturity during cow-dung-driven composting. ENVIRONMENTAL RESEARCH 2024; 245:118034. [PMID: 38147920 DOI: 10.1016/j.envres.2023.118034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The primary objectives of this study were to explore the community-level succession of bacteria, fungi, and protists during cow-dung-driven composting and to elucidate the contribution of the biodiversity and core microbiota of key-stone microbial clusters on compost maturity. Herein, we used high-throughput sequencing, polytrophic ecological networks, and statistical models to visualize our hypothesis. The results showed significant differences in the richness, phylogenetic diversity, and community composition of bacteria, fungi, and eukaryotes at different composting stages. The ASV191 (Sphingobacterium), ASV2243 (Galibacter), ASV206 (Galibacter), and ASV62 (Firmicutes) were the core microbiota of key-stone bacterial clusters relating to compost maturity; And the ASV356 (Chytridiomycota), ASV470 (Basidiomycota), and ASV299 (Ciliophora) were the core microbiota of key-stone eukaryotic clusters relating to compost maturity based on the data of this study. Compared with the fungal taxa, the biodiversity and core microbiota of key-stone bacterial and eukaryotic clusters contributed more to compost maturity and could largely predict the change in the compost maturity. Structural equation modeling revealed that the biodiversity of total microbial communities and the biodiversity and core microbiota of the key-stone microbial clusters in the compost directly and indirectly regulated compost maturity by influencing nutrient availability (e.g., NH4+-N and NO3--N), hemicellulose, humic acid content, and fulvic acid content, respectively. These results contribute to our understanding of the biodiversity and core microbiota of key-stone microbial clusters in compost to improve the performance and efficiency of cow-dung-driven composting.
Collapse
Affiliation(s)
- Xin Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangmin Rong
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Pan Jiang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Junyan Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Han Li
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Yong Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Xingxiang Deng
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan, 411213, China
| | - Guixian Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Gongwen Luo
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
13
|
Wu X, Zhao X, Wu W, Hou J, Zhang W, Tang DKH, Zhang X, Yang G, Zhang Z, Yao Y, Li R. Biotic and abiotic effects of manganese salt and apple branch biochar co-application on humification in the co-composting of hog manure and sawdust. CHEMICAL ENGINEERING JOURNAL 2024; 482:149077. [DOI: 10.1016/j.cej.2024.149077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
14
|
Tan Z, Dong B, Xing M, Sun X, Xi B, Dai W, He C, Luo Y, Huang Y. Electric field applications enhance the electron transfer capacity of dissolved organic matter in sludge compost. ENVIRONMENTAL TECHNOLOGY 2024; 45:283-293. [PMID: 35900008 DOI: 10.1080/09593330.2022.2107951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in heavy metal passivation and organic pollutant degradation owing to its redox ability. The structure and composition of DOM are determinants of redox ability changes during composting. Electric field-assisted aerobic composting (EAAC) has been shown to promote the degradation and humification of organic matter in compost. However, how EAAC affects the redox ability of DOM remains unclear. Hence, electron transfer capacity (ETC) of DOM extracted from EAAC was studied using the electrochemical method. Various spectral methods, such as excitation-emission matrix and ultraviolet and visible spectrophotometry were used to study the relationship of ETC with the compositional and structural changes of DOM. Results indicated that EAAC enhanced ETC of DOM at the later stage of composting, and ETC of DOM extracted from the final EAAC product was 10.4% higher than that of the control group. Spectral and correlation analyses showed that EAAC resulted in structural and compositional changes of DOM, and humification degree, aromatic compounds, molecular weight, and fulvic- and humic-like substance contents were improved in EAAC. This conversion increased ETC of DOM. Results of this study will contribute to the understanding of the redox of DOM and in expanding the application of EAAC products.
Collapse
Affiliation(s)
- Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Meiyan Xing
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Wenfeng Dai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Chaojie He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yumu Luo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yanmei Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
15
|
Cai D, Wang Y, Zhao X, Zhang C, Dang Q, Xi B. Regulating the biodegradation of petroleum hydrocarbons with different carbon chain structures by composting systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166552. [PMID: 37634726 DOI: 10.1016/j.scitotenv.2023.166552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Composting can decrease petroleum hydrocarbons in petroleum contaminated soils, however the microbial degradation mechanisms and regulating method for biodegradation of petroleum hydrocarbons with different carbon chain structures in the composting system have not yet been investigated. This study analyzed variations of total petroleum hydrocarbon concentrations with C ≤ 16 and C > 16, Random Forest model was applied to identify the key microorganisms for degrading the petroleum hydrocarbon components with specific structure in biomass-amended composting. Regulating method for biodegradation of petroleum hydrocarbons with different carbon chain structures was proposed by constructing the influence paths of "environmental factors-key microorganisms- total petroleum hydrocarbons". The results showed that composting improved the degradation rate of C ≤ 16 fraction and C > 16 fraction of petroleum hydrocarbons by 67.88 % and 61.87 %, respectively. Analysis of the microbial results showed that the degrading bacteria of the C ≤ 16 fraction had degradation advantages in the heating phase of the compost, while the C > 16 fraction degraded better in the cooling phase. Moreover, microorganisms that specifically degraded C > 16 fractions were significantly associated with total nitrogen and nitrate nitrogen. The biodegradation of C ≤ 16 fraction was regulated by organic matter, moisture content, and temperature. The composting system modified by biogas slurry was effective in removing of petroleum hydrocarbons with different carbon chain structures in soil by regulating the metabolic potential of the 46 key microorganisms. This study given their expected importance to achieve the purpose of treating waste with waste and contributing to soil utilization as well as pollution remediation.
Collapse
Affiliation(s)
- Danmei Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
16
|
Karamianpour J, Arfaeinia H, Ranjbar Vakilabadi D, Ramavandi B, Dobaradaran S, Fazlzadeh M, Torkshavand Z, Banafshehafshan S, Shekarizadeh H, Ahmadi S, Badeenezhad A. Accumulation, sources, and health risks of phthalic acid esters (PAEs) in road dust from heavily industrialized, urban and rural areas in southern Iran. Heliyon 2023; 9:e23129. [PMID: 38144273 PMCID: PMC10746467 DOI: 10.1016/j.heliyon.2023.e23129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
In this research, a total of 51 road dust samples were collected from three districts (Asaluyeh, Bushehr, and Goshoui) in the south of Iran from April to June 2022 and analyzed for the concentration of 7 phthalic acid esters (PAEs) compounds. Asaluyeh was considered as an industrial area (near gas and petrochemical industries), Bushehr as an urban area, and Goshoui as a rural area (far from pollution sources). The PAEs concentration of the street dust samples was determined using a mass detection gas chromatography (GC/MS). The mean ± SD levels of ƩPAEs in samples from industrial, urban, and rural sources were 56.9 ± 11.5, 18.3 ± 9.64, and 5.68 ± 1.85 μg/g, respectively. The mean concentration levels of ƩPAEs was significantly (P < 0.05) higher in samples from the industrial area than urban and rural areas. The mean levels of di(2-Ethylhexyl) phthalate (DEHP) in industrial, urban, and rural areas were 20.3 ± 8.76, 4.59 ± 1.71, and 2.35 ± 0.98 μg/g, respectively. The results of the PCA analysis indicate that the likely major sources of PAEs in the road dust in the studied areas are the application of various plasticizers in industry, solvents, chemical fertilizers, waste disposal, wastewater (e.g., agricultural, domestic, and industrial), and the use of plastic films and plastic-based irrigation pipes in greenhouses. As well as, it was found that the non-cancer risk of exposure to dust-bound PAEs was higher for children than for adults. These values were <1 for both age groups (children and adults) and the exposure of inhabitants to PAEs in road dust did not pose a notable non-cancer risk. The cancer risk from exposure to DEHP in road dust was below the standard range of 10-6 in all three areas. Further studies that consider different routes of exposure to these contaminants are needed for an accurate risk assessment. Moreover, since higher PAEs level was found in industrial area, decision-makers should adopt strict strategies to control the discharging of pollution from industries to the environment and human societies.
Collapse
Affiliation(s)
- Javid Karamianpour
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Dariush Ranjbar Vakilabadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zahra Torkshavand
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sara Banafshehafshan
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hanyeh Shekarizadeh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sami Ahmadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ahmad Badeenezhad
- Department of Environmental Health Engineering, Behbahan University of Medical Sciences, Behbahan, Iran
| |
Collapse
|
17
|
Jiang H, Zhang Y, Cui R, Ren L, Zhang M, Wang Y. Effects of Two Different Proportions of Microbial Formulations on Microbial Communities in Kitchen Waste Composting. Microorganisms 2023; 11:2605. [PMID: 37894263 PMCID: PMC10609192 DOI: 10.3390/microorganisms11102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this research was to investigate the effect of bulking agents on the maturity and gaseous emissions of composting kitchen waste. The composing experiments were carried out by selected core bacterial agents and universal bacterial agents for 20 days. The results demonstrated that the addition of core microbial agents effectively controlled the emission of typical odor-producing compounds. The addition of core and universal bacterial agents drastically reduced NH3 emissions by 94% and 74%, and decreased H2S emissions by 78% and 27%. The application of core microbial agents during composting elevated the peak temperature to 65 °C and in terms of efficient temperature evolution (>55 °C for 8 consecutive days). The organic matter degradation decreased by 65% from the initial values for core microbial agents were added, while for the other treatments the reduction was slight. Adding core microbial agents to kitchen waste produced mature compost with a higher germination index (GI) 112%, while other treatments did not fully mature and had a GI of <70%. Microbial analysis demonstrated that the core microbial agents in composting increased the relative abundances of Weissella, Ignatzschineria, and Bacteroides. Network and redundancy analysis (RDA) revealed that the core microbial agents enhanced the relationship between bacteria and the eight indicators (p < 0.01), thereby improving the bio transformation of compounds during composting. Overall, these results suggest that the careful selection of appropriate inoculation microorganisms is crucial for improved biological transformation and nutrient content composting efficacy of kitchen waste.
Collapse
Affiliation(s)
| | | | | | | | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (H.J.); (Y.Z.); (R.C.); (L.R.)
| | - Yongjing Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; (H.J.); (Y.Z.); (R.C.); (L.R.)
| |
Collapse
|
18
|
Akinduro A, Onyekwelu CI, Oyelumade T, Ajibade OA, Odetoyin B, Olaniyi OO. Impact of soil supplemented with pig manure on the abundance of antibiotic resistant bacteria and their associated genes. J Antibiot (Tokyo) 2023; 76:548-562. [PMID: 37308603 DOI: 10.1038/s41429-023-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
This study was conducted to evaluate the abundance of antibiotic resistant bacteria and their resistance genes from agriculture soil supplemented with pig manure. Uncultivable soil sample was supplemented with pig manure samples under microcosm experimental conditions and plated on Luria-Bertani (LB) agar incorporated with commercial antibiotics. The supplementation of soil with 15% pig manure resulted in the highest increase in the population of antibiotic resistant bacteria (ARB)/multiple antibiotic resistant bacteria (MARB). Seven genera that included Pseudomonas, Escherichia, Providencia, Salmonella, Bacillus, Alcaligenes and Paenalcaligenes were the cultivable ARB identified. A total of ten antibiotic resistant bacteria genes (ARGs) frequently used in clinical or veterinary settings and two mobile genetic elements (MGEs) (Class 1 and Class 2 integrons) were detected. Eight heavy metal, copper, cadmium, chromium, manganese, lead, zinc, iron, and cobalt were found in all of the manure samples at different concentrations. Tetracycline resistance genes were widely distributed with prevalence of 50%, while aminoglycoside and quinolone-resistance gene had 16% and 13%, respectively. Eighteen ARB isolates carried more than two ARGs in their genome. Class 1 integron was detected among all the 18 ARB with prevalence of 90-100%, while Class 2 integron was detected among 11 ARB. The two classes of integron were found among 10 ARB. Undoubtedly, pig manure collected from farms in Akure metropolis are rich in ARB and their abundance might play a vital role in the dissemination of resistance genes among clinically-relevant pathogens.
Collapse
Affiliation(s)
- Adebayonle Akinduro
- Department of Microbiology, Federal University of Technology, Akure, Nigeria
| | | | - Tomisin Oyelumade
- Department of Microbiology, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Sciences, University of East London, London, UK
| | | | - Babatunde Odetoyin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
19
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
20
|
Li X, Huang X, Zhao C, Wang X, Dong B, Goonetilleke A, Kim KH. Characterizing molecular transformation of dissolved organic matter during high-solid anaerobic digestion of dewatered sludge using ESI FT-ICR MS. CHEMOSPHERE 2023; 320:138101. [PMID: 36764615 DOI: 10.1016/j.chemosphere.2023.138101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of anaerobic digestion (AD) on molecular characteristics of dissolved organic matter (DOM) in the dewatered sludge has been described by advanced electrospray ionization combined with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) technology. With the progress of AD, molecular amounts in DOM samples increased with the lowering in the carbon atom number of average molecular formula and average double bond equivalent (DBE). CHON and CHONS groups are the two main organic substances in sludge with their relative DOM proportions of 29.64% and 32.56%, respectively. The resistants (i.e., refractory organic matter) mainly consist of the proteins regions of CHO groups as well as the proteins/lignin regions of CHON groups. The contrasting temporal trends in protein contents (e.g., decrease (CHO and CHON) vs. increase (CHONS)) may imply differences in their degradation characteristics. Likewise, the multi-N (N3, N4) and S2 organic groups in the sludge are converted to N2 and S1 molecules, while the relative abundance of O atoms (in Ox molecules) tends to increase. In addition, the resistants in sludge DOM contain high oxidizing C and low unsaturation. The overall results of this research are expected to provide the theoretical basis for further optimization of the sludge AD process.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Xiang Huang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Chuyun Zhao
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Xuan Wang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Ashantha Goonetilleke
- School of Civil and Environmental Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
21
|
Kou B, He Y, Wang Y, Qu C, Tang J, Wu Y, Tan W, Yuan Y, Yu T. The relationships between heavy metals and bacterial communities in a coal gangue site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121136. [PMID: 36736561 DOI: 10.1016/j.envpol.2023.121136] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Coal is the main source of energy for China's economic development, but coal gangue dumps are a major source of heavy metal pollution. Bacterial communities have a major effect on the bioremediation of heavy metals in coal gangue dumps. The effects of different concentrations of heavy metals on the composition of bacterial communities in coal gangue sites remain unclear. Soil bacterial communities from four gangue sites that vary in natural heavy metal concentrations were investigated using high-throughput sequencing in this study. Correlations among bacterial communities, heavy metal concentrations, physicochemical properties of the soil, and the composition of dissolved organic matter of soil in coal gangue dumps were also analyzed. Our results indicated that Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota were the bacterial taxa most resistant to heavy metal stress at gangue sites. Heavy metal contamination may be the main cause of changes in bacterial communities. Heavy metal pollution can foster mutually beneficial symbioses between microbial species. Microbial-derived organic matter was the main source of soil organic matter in unvegetated mining areas, and this could affect the toxicity and transport of heavy metals in soil. Polar functional groups such as hydroxyl and ester groups (A226-400) play an important role in the reaction of cadmium (Cd) and lead (Pb), and organic matter with low molecular weight (SR) tends to bind more to mercury (Hg). In addition to heavy metals, the content of nitrogen (N), phosphorus (P), and total organic carbon (TOC) also affected the composition of the bacterial communities; TOC had the strongest effect, followed by N, SOM, and P. Our findings have implications for the microbial remediation of heavy metal-contaminated soils in coal gangue sites and sustainable development.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yue He
- Beijing Guozhong Biotechnology Co., LTD, Beijing, 102211, China
| | - Yang Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuman Wu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing, 102442, China
| |
Collapse
|
22
|
Cao R, Zhang Y, Ju Y, Wang W, Zhao Y, Liu N, Zhang G, Wang X, Xie X, Dai C, Liu Y, Yin H, Shi K, He C, Wang W, Zhao L, Jeon CO, Hao L. Exopolysaccharide-producing bacteria enhanced Pb immobilization and influenced the microbiome composition in rhizosphere soil of pakchoi (Brassica chinensis L.). Front Microbiol 2023; 14:1117312. [PMID: 36970682 PMCID: PMC10034174 DOI: 10.3389/fmicb.2023.1117312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Lead (Pb) contamination of planting soils is increasingly serious, leading to harmful effects on soil microflora and food safety. Exopolysaccharides (EPSs) are carbohydrate polymers produced and secreted by microorganisms, which are efficient biosorbent materials and has been widely used in wastewater treatment to remove heavy metals. However, the effects and underlying mechanism of EPS-producing marine bacteria on soil metal immobilization, plant growth and health remain unclear. The potential of Pseudoalteromonas agarivorans Hao 2018, a high EPS-producing marine bacterium, to produce EPS in soil filtrate, immobilize Pb, and inhibit its uptake by pakchoi (Brassica chinensis L.) was studied in this work. The effects of strain Hao 2018 on the biomass, quality, and rhizospheric soil bacterial community of pakchoi in Pb-contaminated soil were further investigated. The results showed that Hao 2018 reduced the Pb concentration in soil filtrate (16%–75%), and its EPS production increased in the presence of Pb2+. When compared to the control, Hao 2018 remarkably enhanced pakchoi biomass (10.3%–14.3%), decreased Pb content in edible tissues (14.5%–39.2%) and roots (41.3%–41.9%), and reduced the available Pb content (34.8%–38.1%) in the Pb-contaminated soil. Inoculation with Hao 2018 raised the pH of the soil, the activity of several enzymes (alkaline phosphatase, urease, and dehydrogenase), the nitrogen content (NH4+-N and NO3−-N), and the pakchoi quality (Vc and soluble protein content), while also raising the relative abundance of bacteria that promote plant growth and immobilize metals, such as Streptomyces and Sphingomonas. In conclusion, Hao 2018 reduced the available Pb in soil and pakchoi Pb absorption by increasing the pH and activity of multiple enzymes and regulating microbiome composition in rhizospheric soil.
Collapse
Affiliation(s)
- Ruiwen Cao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yiling Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuhao Ju
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanqiu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Nan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Gangrui Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xingbao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xuesong Xie
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cunxi Dai
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yue Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongfei Yin
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kaiyuan Shi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenchen He
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Weiyan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lingyu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Lujiang Hao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Lujiang Hao,
| |
Collapse
|
23
|
Tao X, Xiang F, Ahmad Khan FZ, Yan Y, Ma J, Xu B, Zhang Z. Decomposition and humification process of domestic biodegradable waste by black soldier fly (Hermetia illucens L.) larvae from the perspective of dissolved organic matter. CHEMOSPHERE 2023; 317:137861. [PMID: 36642139 DOI: 10.1016/j.chemosphere.2023.137861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Black soldier fly larvae (Hermitia illucens L.) (BSFL) bioconversion is a promising technology for domestic biodegradable waste (DBW) management and resource recovery. However, little is known about the DBW biodegradation during the BSFL bioconversion from the perspective of dissolved organic matter (DOM). In the current study, field tests were conducted on a full-scale BSFL bioconversion facility with treatment capacity of 15 tons DBW/day. Composition of DOM in DBW were investigated by spectral analysis (UV-vis, fluorescence, and Fourier Transform Infrared spectroscopy (FT-IR)), coupled with enzyme activity analysis. After BSFL bioconversion, DOM concentrations, total carbon and total nitrogen in residues decreased by 51.5%, 18.3% and 19.9%, respectively. Meanwhile, enzymes like catalase, lipase, protease, sucrase, urease and cellulase significantly increased (9.28%-56.3%). The specific UV absorbance at 254 nm and 280 nm (SUVA254, SUVA280), the area at 226-400 nm (A226-400) and slope in the 280-400 nm region (S280-400) of DOM increased by 230%, 186%, 143% and 398%, respectively. Moreover, the characteristic peaks at 1636, 1077 and 1045 cm-1 in FT-IR increased continuously, with a significant decrease in peak at 1124 and 1572 cm-1. DOM spectral data show that BSFL decomposed the carboxylic, cellulose and aliphatic components, resulting in the increase of oxygen-containing functional groups (e.g., hydroxyl, carboxyl, carbonyl) and aromatic compounds. Furthermore, fluorescence profiles show that Region Ⅰ, Ⅱ (aromatic proteins) and Ⅳ (soluble microbial byproducts) decreased while Region Ⅴ (humic-like substances) increased significantly. Humification index increased by 122% while biological index decreased by 18.0%, indicating a significant increase in degree of humification and stabilization of the residues. The current evidence provides a theoretical basis for technical re-innovation and improving economic potential of BSFL technology.
Collapse
Affiliation(s)
- XingHua Tao
- College of Environment and Natural Resource Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province, 310058, PR China; HangZhou GuSheng Technology Company Limited, XiangWang Ave 48, HangZhou, 311121, PR China
| | - FangMing Xiang
- College of Environment and Natural Resource Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province, 310058, PR China; HangZhou GuSheng Technology Company Limited, XiangWang Ave 48, HangZhou, 311121, PR China
| | - Fawad Zafar Ahmad Khan
- Department of Outreach & Continuing Education, MNS University of Agriculture, Multan 66000, Pakistan
| | - YuLong Yan
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 48, HangZhou, 311121, PR China; JiaXing FuKang Biotechnology Company Limited, Building 1-19#, Development Ave 133, TongXiang Economic HiTech Zone, TongXiang, 314515, PR China
| | - JingJin Ma
- College of Environment and Natural Resource Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province, 310058, PR China; HangZhou GuSheng Technology Company Limited, XiangWang Ave 48, HangZhou, 311121, PR China
| | - BingXiang Xu
- JiaXing FuKang Biotechnology Company Limited, Building 1-19#, Development Ave 133, TongXiang Economic HiTech Zone, TongXiang, 314515, PR China
| | - ZhiJian Zhang
- College of Environment and Natural Resource Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province, 310058, PR China; China Academy of West Region Development, ZheJiang University, YuHangTang Ave 866, HangZhou, 310058, PR China.
| |
Collapse
|
24
|
Chen L, Chen Y, Li Y, Liu Y, Jiang H, Li H, Yuan Y, Chen Y, Zou B. Improving the humification by additives during composting: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:93-106. [PMID: 36641825 DOI: 10.1016/j.wasman.2022.12.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Bin Zou
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
25
|
Liu X, Rong X, Yang J, Li H, Hu W, Yang Y, Jiang G, Xiao R, Deng X, Xie G, Luo G, Zhang J. Community succession of microbial populations related to CNPS biological transformations regulates product maturity during cow-manure-driven composting. BIORESOURCE TECHNOLOGY 2023; 369:128493. [PMID: 36526118 DOI: 10.1016/j.biortech.2022.128493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The main objective of present study was to understand the community succession of microbial populations related to carbon-nitrogen-phosphorus-sulfur (CNPS) biogeochemical cycles during cow-manure-driven composting and their correlation with product maturity. The abundance of microbial populations associated with C degradation, nitrification, cellular-P transport, inorganic-P dissolution, and organic-P mineralization decreased gradually with composting but increased at the maturation phase. The abundance of populations related to N-fixation, nitrate-reduction, and ammonification increased during the mesophilic stage and decreased during the thermophilic and maturation stages. The abundance of populations related to C fixation and denitrification increased with composting; however, the latter tended to decrease at the maturation stage. Populations related to organic-P mineralization were the key manipulators regulating compost maturity, followed by those related to denitrification and nitrification; those populations were mediated by inorganic N and available P content. This study highlighted the consequence of microbe-driven P mineralization in improving composting efficiency and product quality.
Collapse
Affiliation(s)
- Xin Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Junyan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Han Li
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Wang Hu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Yong Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Guoliang Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Rusheng Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xingxiang Deng
- Hunan Wodi Ecological Fertilizer Co. Ltd, Xiangtan 411213, China
| | - Guixian Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| |
Collapse
|
26
|
Li D, Manu MK, Varjani S, Wong JWC. Role of tobacco and bamboo biochar on food waste digestate co-composting: Nitrogen conservation, greenhouse gas emissions, and compost quality. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:44-54. [PMID: 36436407 DOI: 10.1016/j.wasman.2022.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion is considered an environmentally benign process for the recycling of food waste into biogas. However, unscientific disposal of ammonium-rich food waste digestate (FWD), a by-product of anaerobic digestion induces environmental issues such as odor nuisances, water pollution, phytotoxicity and pathogen transformations in soil, etc. In the present study, FWD produced from anaerobic digestion of source-separated food waste from markets and industries was used for converting FWD into biofertilizer using 20-L bench scale composters. The issues of nitrogen loss, NH3 volatilization, and greenhouse gas N2O emission were addressed using in-situ composting technologies with the aid of tobacco and bamboo biochar produced at pyrolytic temperatures of 450 °C and 600 °C, respectively. The results demonstrated that the phytotoxic nature of FWD could be reduced into a nutrient-rich compost by mitigating nitrogen loss by 29-53% using 10% tobacco and 10% bamboo biochar in comparison with the control treatment. Tobacco biochar mitigates NH3 emission by 63% but enhances the N2O emission by 65%, whereas bamboo biochar mitigates both NH3 and N2O emissions by 48% and 31%, respectively. Overall, 10% tobacco and 10% bamboo biochar amendment could reduce total nitrogen loss by 29% and 53%, respectively. Furthermore, the biochar addition significantly enhanced the biodegradation rate of FWD and the mature compost could be produced within 21 days of FWD composting as seen by an increased seed germination index (>50% on dry weight basis). The results of this study could be beneficial in developing a circular bioeconomy locally with the waste-derived substrates.
Collapse
Affiliation(s)
- Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
27
|
Sorption of Organic Contaminants by Stable Organic Matter Fraction in Soil. Molecules 2023; 28:molecules28010429. [PMID: 36615617 PMCID: PMC9824550 DOI: 10.3390/molecules28010429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Soil organic matter (SOM) and its heterogeneous nature constitutes the main factor determining the fate and transformation of organic chemicals (OCs). Thus, the aim of thus research was to analyze the influence of the molecular chemodiversity of a stable SOM (S-SOM) on the sorption potential of different groups of OCs (organochloride pesticides—OCPs, and non-chlorinated pesticides—NCPs, polycyclic aromatic hydrocarbons—PAHs). The research was conducted as a batch experiment. For this purpose, a S-SOM was separated from six soils (TOC = 15.0−58.7 gkg−1; TN = 1.4−6.6 gkg−1, pH in KCl = 6.4−7.4 and WRB taxonomy: fluvisols, luviosols, leptosols) by alkaline urea and dimethylsulphoxide with sulfuric acid. Isolated S-SOM fraction was evaluated by UV−VIS, FT-IR and EEM spectroscopy to describe molecular diversity, which allowed the assessment of its potential sorption properties regarding OCs. In order to directly evaluate the sorption affinity of individual OCs to S-SOM, the mixture of the 3 deuterated contaminants: chrysene (PAHs), 4,4′DDT (OCPs) atrazine (NCPs) were applied. The sorption experiment was carried out according to the 106 OECD Guidelines. The OCs concentration was analyzed by gas chromatography triple mass spectrometry (GC-MS/MS). OCs were characterized by different sorption rates to S-SOM fractions according to the overall trend: atrazine (87.5−99.9%) > 4,4′DDT (64−81.6%) > chrysene (35.2−79.8%). Moreover, atrazine exhibited the highest saturation dynamic with fast bounding time amounting to 6 h of contact with S-SOM. Proportionally, the chrysene showed the slowest binding time achieving an average of 55% sorption after 78 h. Therefore, S-SOM isolated from different soils demonstrated varying binding capacity to OCs (CoV = 21%, 27% and 33% for atrazine, DDT and chrysene, respectively). Results indicate that each sample contains S-SOM with different degrees of transformation and sorption properties that affect the OCs availability in soil. Spectroscopic analyses have shown that the main component of S-SOM are biopolymers at various stages of transformation that contain numerous aromatic−aliphatic groups with mostly hydrophilic substituents.
Collapse
|
28
|
Lv Z, Wang P, Yan C, Nie M, Xiong X, Ding M. Spectral characteristic of the waters with different sizes of particles: impact of water quality and land-use type. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9543-9557. [PMID: 36057063 DOI: 10.1007/s11356-022-22757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Natural colloids (NCs) are heterogeneous mixtures of particles in the aquatic environments that are strongly influenced by land use and water quality between terrestrial and aquatic environments. However, the relevant study paid little attention to the difference among the waters with different sizes of particles (e.g., suspended particulate matter (SPM), NCs, and the truly soluble substances). In this study, the spectral properties of these different waters were investigated from different land-use types in the Yuan River basin, China. Results of the UV-visible absorption spectral showed that with the particle size increased, the aromaticity, chromophoric dissolved organic matter, and humification degree of organic matter increased, while the condensation degree decreased. Data analysis from the fluorescence indices indicated that the source and the autochthonous feature of the truly soluble substances differed from that of NCs and SPM, whereas the protein-like component was mainly combined with the relatively larger size of particles (i.e., SPM and NCs), especially the downstream. Although the spectral characteristics of the water samples were strongly influenced by the water quality (> 45%), the land-use type might be the real potential impactor. Furthermore, the influence of land-use type on the spectral properties differed between the large and small scale of the buffer strips and between the mainstream and the tributaries. And this effect was more significant on the fluorescence properties in the mainstream and the spectral properties for NCs than for SPM. The study helps to understand the biogeochemical effects of the waters with different particle sizes.
Collapse
Affiliation(s)
- Zelan Lv
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Peng Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resource, Beijing, 100037, China
| | - Xiaoying Xiong
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Mingjun Ding
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| |
Collapse
|
29
|
Zhao Y, Li W, Chen L, Meng L, Zhang S. Impacts of adding thermotolerant nitrifying bacteria on nitrogenous gas emissions and bacterial community structure during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023; 368:128359. [PMID: 36423768 DOI: 10.1016/j.biortech.2022.128359] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to evaluate the impacts of inoculation with bacterial inoculum containing three thermotolerant nitrifying bacteria strains on nitrogenous gas (mainly NH3 and N2O) emissions and bacterial structure during the sludge composting. The results of physicochemical parameters indicated that inoculation could prolong the thermophilic phase, accelerate degradation of organic substances and improve compost quality. Compared with the non-inoculated treatment, the addition of bacterial agents not only increased the total nitrogen content by 8.7% but also reduced the cumulative NH3 and N2O emissions by 32.2% and 34.6%, respectively. The bacterial inoculation changed the structure and diversity of the microbial community in composting. Additionally, the relative abundances (RA) of bacteria and correlation analyses revealed that inoculation increased the RA of bacteria involved in nitrogen fixation. These results suggested that inoculation of thermotolerant nitrifying bacteria was beneficial for reducing nitrogen loss, nitrogenous gas emissions and regulating the bacterial community during the composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Chen
- School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| |
Collapse
|
30
|
Wang N, Zhao K, Li F, Peng H, Lu Y, Zhang L, Pan J, Jiang S, Chen A, Yan B, Luo L, Huang H, Li H, Wu G, Zhang J. Characteristics of carbon, nitrogen, phosphorus and sulfur cycling genes, microbial community metabolism and key influencing factors during composting process supplemented with biochar and biogas residue. BIORESOURCE TECHNOLOGY 2022; 366:128224. [PMID: 36328174 DOI: 10.1016/j.biortech.2022.128224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling functional genes and bacterial and fungal communities during composting with biochar and biogas residue amendments were studied. Correlations between microbial community structure, functional genes and physicochemical properties were investigated by network analysis and redundancy analysis. It was shown that the gene of acsA abundance accounted for about 50% of the C-related genes. Biogas residue significantly decreased the abundance of denitrification gene nirK. Biogas residues can better promote the diversity of bacteria and fungi during composting. Biochar significantly increased the abundance of Humicola. Redundancy analysis indicated that pile temperature, pH, EC were the main physicochemical factors affecting the microbial community. WSC and NO3--N have significant correlation with C, N, P, S functional genes. The research provides a theoretical basis for clarifying the metabolic characteristics of microbial communities during composting and for the application of biochar and biogas residues in composting.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Keqi Zhao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Hua Peng
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Yaoxiong Lu
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hui Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
31
|
Zhang X, Chen X, Li S, Bello A, Liu J, Gao L, Fan Z, Wang S, Liu L, Ma B, Li H. Mechanism of differential expression of β-glucosidase genes in functional microbial communities in response to carbon catabolite repression. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:3. [PMID: 35418139 PMCID: PMC8756671 DOI: 10.1186/s13068-021-02101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
β-Glucosidase is the rate-limiting enzyme of cellulose degradation. It has been stipulated and established that β-glucosidase-producing microbial communities differentially regulate the expression of glucose/non-glucose tolerant β-glucosidase genes. However, it is still unknown if this differential expression of functional microbial community happens accidentally or as a general regulatory mechanism, and of what biological significance it has. To investigate the composition and function of microbial communities and how they respond to different carbon metabolism pressures and the transcriptional regulation of functional genes, the different carbon metabolism pressure was constructed by setting up the static chamber during composting.
Results
The composition and function of functional microbial communities demonstrated different behaviors under the carbon metabolism pressure. Functional microbial community up-regulated glucose tolerant β-glucosidase genes expression to maintain the carbon metabolism rate by enhancing the transglycosylation activity of β-glucosidase to compensate for the decrease of hydrolysis activity under carbon catabolite repression (CCR). Micrococcales play a vital role in the resistance of functional microbial community under CCR. The transcription regulation of GH1 family β-glucosidase genes from Proteobacteria showed more obvious inhibition than other phyla under CCR.
Conclusion
Microbial functional communities differentially regulate the expression of glucose/non-glucose tolerant β-glucosidase genes under CCR, which is a general regulatory mechanism, not accidental. Furthermore, the differentially expressed β-glucosidase gene exhibited species characteristics at the phylogenetic level.
Collapse
|
32
|
Qi C, Yin R, Cheng J, Xu Z, Chen J, Gao X, Li G, Nghiem L, Luo W. Bacterial dynamics for gaseous emission and humification during bio-augmented composting of kitchen waste with lime addition for acidity regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157653. [PMID: 35926596 DOI: 10.1016/j.scitotenv.2022.157653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the impacts of lime addition and further microbial inoculum on gaseous emission and humification during kitchen waste composting. High-throughput sequencing was integrated with Linear Discriminant Analysis Effect Size (LEfSe) and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to decipher bacterial dynamics in response to different additives. Results showed that lime addition enriched bacteria, such as Taibaiella and Sphingobacterium as biomarkers, to strengthen organic biodegradation toward humification. Furthermore, lime addition facilitated the proliferation of thermophilic bacteria (e.g. Bacillus and Symbiobacterium) for aerobic chemoheterotrophy, leading to enhanced organic decomposition to trigger notable gaseous emission. Such emission profile was further exacerbated by microbial inoculum to lime-regulated condition given the rapid enrichment of bacteria (e.g. Caldicoprobacter and Pusillimonas as biomarkers) for fermentation and denitrification. In addition, microbial inoculum slightly hindered humus formation by narrowing the relative abundance of bacteria for humification. Results from this study show that microbial inoculum to feedstock should be carefully regulated to accelerate composting and avoid excessive gaseous emission.
Collapse
Affiliation(s)
- Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rongrong Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Kou B, Hui K, Miao F, He Y, Qu C, Yuan Y, Tan W. Differential responses of the properties of soil humic acid and fulvic acid to nitrogen addition in the North China Plain. ENVIRONMENTAL RESEARCH 2022; 214:113980. [PMID: 35998702 DOI: 10.1016/j.envres.2022.113980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Humus (HS) is an important component of soil organic matter. Humic acid (HA) and fulvic acid (FA) are two of the most important components of HS, as they substantially affect biogeochemical processes and the migration and transformation of pollutants in soil. Long-term nitrogen (N) addition can lead to changes in soil physical and chemical properties, affect the structural characteristics of soil HS (HA and FA), cause changes in the adsorption and migration of pollutants, and ultimately result in the continuous deterioration of the soil ecological environment. However, few studies have examined the effects of N addition on the structural characteristics of soil HS, including the responses of soil HA and FA to N addition. Here, we conducted a long-term positioning experiment with different levels of N addition (CK: 0 kg N ha-1 yr-1, LN: 100 kg N ha-1 yr-1, and HN: 300 kg N ha-1 yr-1) in typical farmland soils of the North China Plain to study the response of soil HA and FA to N addition. N addition altered the physical and chemical properties of soil (e.g., pH, SOC, TN, and enzyme activity), which affected the responses of the chemical structure, quality indexes, and composition distribution of soil HA and FA to N addition. Differences in the response to N addition between HA and FA were observed. The structural characteristics of FA were stronger in response to HN compared with those of soil HA. As the level of N added increased, soil FA degradation increased, the composition distribution changed, the aromatization degree and molecular weight decreased, and the molecular structure became simpler. The properties of soil HA did not significantly respond to N addition. Given increases in the global N input (N addition and N deposition), our results have implications for agricultural fertilization, soil management, and other activities.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, 550003, China
| | - Fang Miao
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yue He
- Beijing Guo Zhong Biology Technology Co., Ltd, Beijing, 101220, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
34
|
Liu J, Bao Z, Wang C, Wei J, Wei Y, Chen M. Understanding of mercury and methylmercury transformation in sludge composting by metagenomic analysis. WATER RESEARCH 2022; 226:119204. [PMID: 36244140 DOI: 10.1016/j.watres.2022.119204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Municipal sewage especially the produced sewage sludge is a significant source releasing mercury (Hg) to the environment. However, the Hg speciation especially methylmercury (MeHg) transformation in sewage sludge treatment process remains poorly understood. This study investigated the transformation of Hg speciation especially MeHg in sludge composting. The distribution of Hg transformation related gene pairs hgcAB and merAB, and their putative microbial hosts were comprehensively analyzed. Both Hg (from 3.16±0.22 mg/kg to 3.20±0.19 mg/kg) and MeHg content (from 4.77±0.64 ng/g to 4.36±0.37 ng/g) were not obviously changed before and after composting, but about 19.69% of Hg and 27.36% of MeHg were lost according to mass balance calculation. The metagenomic analysis further revealed that anaerobes (Desulfobacterota and Euryarchaeota) were the mainly putative Hg methylators especially carrying high abundance of hgcA gene in the initial periods of composting. Among the 151 reconstructed metagenome-assembled genomes (MAGs), only 4 hgcA gene carriers (Myxococcota, Firmicutes, Cyclobacteriaceae, and Methanothermobacter) and 16 merB gene carriers were identified. But almost all of the MAGs carried hgcB gene and merA gene. The merA gene was widely distributed in genomes, which indicated the widespread functionality of microbes for reducing Hg(II) to Hg(0). The hgcA carrying microbes tends to present the similar metabolic pathways including methanogenesis and sulfur metabolism. Besides, both the irregular distribution of hgcA in various species (including Actinobacteria, Archaea, Bacteroidetes, Desulfobacterota, Euryarchaeota, and Nitrospirae, etc.) and opposite evolution trends between hgcA gene abundance and its host genome abundance can be an indication of horizontal gene transfer or gene deletions of hgcA during composting. Our findings thus revealed that sludge composting is not only a hotspot for Hg speciation transformation, but also a potential hotspot for MeHg transformation.
Collapse
Affiliation(s)
- Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhen Bao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chenlu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinyi Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
35
|
Tang M, Wu Z, Li W, Shoaib M, Aqib AI, Shang R, Yang Z, Pu W. Effects of different composting methods on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial diversity in dairy cattle manures. J Dairy Sci 2022; 106:257-273. [DOI: 10.3168/jds.2022-22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022]
|
36
|
Guo B, Li W, Santibáñez P, Priscu JC, Liu Y, Liu K. Organic matter distribution in the icy environments of Taylor Valley, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156639. [PMID: 35697215 DOI: 10.1016/j.scitotenv.2022.156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Glaciers can accumulate and release organic matter affecting the structure and function of associated terrestrial and aquatic ecosystems. We analyzed 18 ice cores collected from six locations in Taylor Valley (McMurdo Dry Valleys), Antarctica to determine the spatial abundance and quality of organic matter, and the spatial distribution of bacterial density and community structure from the terminus of the Taylor Glacier to the coast (McMurdo Sound). Our results showed that dissolved and particulate organic carbon (DOC and POC) concentrations in the ice core samples increased from the Taylor Glacier to McMurdo Sound, a pattern also shown by bacterial cell density. Fluorescence Excitation Emission Matrices Spectroscopy (EEMs) and multivariate parallel factor (PARAFAC) modeling identified one humic-like (C1) and one protein-like (C2) component in ice cores whose fluorescent intensities all increased from the Polar Plateau to the coast. The fluorescence index showed that the bioavailability of dissolved organic matter (DOM) also decreased from the Polar Plateau to the coast. Partial least squares path modeling analysis revealed that bacterial abundance was the main positive biotic factor influencing both the quantity and quality of organic matter. Marine aerosol influenced the spatial distribution of DOC more than katabatic winds in the ice cores. Certain bacterial taxa showed significant correlations with DOC and POC concentrations. Collectively, our results show the tight connectivity among organic matter spatial distribution, bacterial abundance and meteorology in the McMurdo Dry Valley ecosystem.
Collapse
Affiliation(s)
- Bixi Guo
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Polar Oceans Research Group, Sheridan, MT 59749, USA
| | - Wei Li
- Polar Oceans Research Group, Sheridan, MT 59749, USA; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550, USA
| | - Pamela Santibáñez
- Ministry of Science, Technology, Knowledge, & Innovation, Punta Arenas 6200000, Chile
| | - John C Priscu
- Polar Oceans Research Group, Sheridan, MT 59749, USA.
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System Science (LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
37
|
Fang C, Yuan X, Liao K, Qu H, Han L, He X, Huang G. Micro-aerobic conditions based on membrane-covered improves the quality of compost products: Insights into fungal community evolution and dissolved organic matter characteristics. BIORESOURCE TECHNOLOGY 2022; 362:127849. [PMID: 36031127 DOI: 10.1016/j.biortech.2022.127849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of micro-aerobic conditions on fungal community succession and dissolved organic matter transformation during dairy manure membrane-covered composting. The results showed that lignocellulose degradation in the micro-aerobic composting group (AC: oxygen concentration < 5 %) was slower than that in the static composting group (SC: oxygen concentration < 1 %), but the dissolved organic carbon in AC was greatly increased. The degree of aromatic polymerization was higher in AC than in SC. But the carboxyl carbon and alcohol/ether biodegradations were faster in SC than in AC, which promoted carbon dioxide and methane emissions, respectively. The relative abundances of pathogenic and dung saprotrophic fungi in AC were 44.6 % and 10.59 % lower than those in SC on day 30, respectively. Moreover, the relative abundance of soil saprotrophs increased by 5.18 % after micro-aerobic composting. Therefore, micro-aerobic conditions improved the quality of compost products by influencing fungal community evolution and dissolved organic matter transformation.
Collapse
Affiliation(s)
- Chen Fang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangru Yuan
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Keke Liao
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
38
|
Mohamed TA, Wu J, Zhao Y, Elgizawy N, El Kholy M, Yang H, Zheng G, Mu D, Wei Z. Insights into enzyme activity and phosphorus conversion during kitchen waste composting utilizing phosphorus-solubilizing bacterial inoculation. BIORESOURCE TECHNOLOGY 2022; 362:127823. [PMID: 36029985 DOI: 10.1016/j.biortech.2022.127823] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The main objective of this research was to investigate the effects of Phosphorus-Solubilizing Bacterial (PSB) inoculant on the bacterial structure and phosphorus transformation during kitchen waste composting. High throughput sequencing, topological roles, and multiple analysis methods were conducted to explain the links between phosphorus fractions, enzyme contents, and microbial community structure and function. The findings indicated that bacterial inoculant improved environmental parameters and increased the concentration of total phosphorus, Olsen phosphorus, citric acid phosphorus, OM decomposition, and bacterial diversity. Network analysis concluded that the inoculation treatment was more complex (nodes and edges) and contained more positive links than the control, implying the inoculation effect. The structural equation model also displayed that pH and enzyme activity directly enhanced the phosphorus conversion and bacterial structure. Overall, these results suggest that bacterial inoculation may considerably increase enzyme activity, thus improving biological phosphorus transformation and nutrient content in composting products.
Collapse
Affiliation(s)
- Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | | | - Mohamed El Kholy
- Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hongyu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guangren Zheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
39
|
Wang L, Guan H, Hu J, Feng Y, Li X, Yusef KK, Gao H, Tian D. Aspergillus niger Enhances Organic and Inorganic Phosphorus Release from Wheat Straw by Secretion of Degrading Enzymes and Oxalic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10738-10746. [PMID: 36027054 DOI: 10.1021/acs.jafc.2c03063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To explore the mechanisms of crop straw degradation and phosphorus (P) release by phosphate-solubilizing fungi (PSF), a typical PSF Aspergillus niger (A. niger, ANG) was investigated for the degradation of wheat straw (WST) in this work. The results revealed that A. niger significantly increased wheat straw degradation (30%) compared with no A. niger treatment (7.7%). Meanwhile, more than 92% of total P was released from WST by A. niger, much higher than from WST treatment (69.5%). Although the ratios of inorganic P release between WST and WST + ANG treatments were similar (17.6 vs 19.7%), a significant difference occurred between their release of organic P, i.e., WST (51.9%) vs WST + ANG (72.5%). The high enzyme activity of β-1,4-glucanase and β-glucosidase produced by A. niger contributed to the wheat straw degradation and organic P release compared with no A. niger treatment. Oxalic acid secreted by A. niger dominated the release of inorganic P from WST. Our findings suggested that A. niger is an efficient microbial agent for crop straw degradation and P release, which could be a candidate in the pathway of straw return.
Collapse
Affiliation(s)
- Liyan Wang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Hao Guan
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Jun Hu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Yi Feng
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Li
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Kianpoor Kalkhajeh Yusef
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Hongjian Gao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| | - Da Tian
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Ministry of Natural Resources, Hefei 230036, China
- Anhui Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green phosphorus Fertilizer, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
40
|
Li D, Manu MK, Varjani S, Wong JWC. Mitigation of NH 3 and N 2O emissions during food waste digestate composting at C/N ratio 15 using zeolite amendment. BIORESOURCE TECHNOLOGY 2022; 359:127465. [PMID: 35700892 DOI: 10.1016/j.biortech.2022.127465] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Composting of food waste digestate (FWD) is challenging as it requires more bulking agents, and the nitrogen loss is inevitable. To address these issues, FWD composting was conducted at a relatively lower C/N ratio of 15 with zeolite amendment in the dosage range of 5-15%. The impact of zeolite addition on nitrogen loss, NH3 and N2O emissions was assessed during FWD composting. The results showed that the addition of 10-15% zeolite could significantly reduce the phytotoxic nature of FWD and the compost maturity level could be reached in 10-21 days. Furthermore, ∼45% total nitrogen loss could be reduced by mitigating NH3 and N2O emissions upon 10 and 15% zeolite amendment. The outcome of the present study could be used as an effective strategy for composting FWD in any part of the world as the FWD characteristics are similar irrespective of the type of food waste.
Collapse
Affiliation(s)
- Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
41
|
Zhao X, Li J, Che Z, Xue L. Succession of the Bacterial Communities and Functional Characteristics in Sheep Manure Composting. BIOLOGY 2022; 11:biology11081181. [PMID: 36009808 PMCID: PMC9404829 DOI: 10.3390/biology11081181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Bacterial community is a key factor affecting aerobic composting, and understanding bacterial community succession is important to revealing the mechanism of organic matter degradation. In this study, the succession and metabolic characteristics of bacterial communities were explored in 45 days composting of sheep manure and wheat straw by using high-throughput sequencing technology and bioinformatics tools, respectively. Results showed that the alpha diversity of bacterial community significantly decreased in the thermophilic (T2) phase and then recovered gradually in the bio-oxidative (T3) and the maturation (T4) phases. Bacterial communities varied at different stages, but there were 158 genera in common bacterial species. Unclassified_f_Bacillaceae, Oceanobacillus, Bacillus, Pseudogracilibacillus, and Nocardiopsis were identified as keystone bacterial genera. Eleven genera were significantly correlated (p < 0.05), or even extremely significantly correlated (p < 0.001), with the physicochemical factors. Redundancy analysis (RDA) showed that changes of bacterial community diversity correlated with physicochemical factors. The highest relative abundances were amino acid and carbohydrate metabolism among the metabolic groups in the compost. These results will provide theoretical support for further optimizing sheep manure composting conditions and improving the quality of organic fertilizers.
Collapse
Affiliation(s)
- Xu Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Juan Li
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Zongxian Che
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
- Correspondence: (Z.C.); (L.X.)
| | - Lingui Xue
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Correspondence: (Z.C.); (L.X.)
| |
Collapse
|
42
|
Zheng W, Yang Z, Huang L, Chen Y. Roles of organic matter transformation in the bioavailability of Cu and Zn during sepiolite-amended pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115046. [PMID: 35468432 DOI: 10.1016/j.jenvman.2022.115046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 05/16/2023]
Abstract
The application of clay minerals facilitates the bioavailability of heavy metals and the humification in livestock manure composting. However, whether the humification plays a critical role in the bioavailability of heavy metals is still unclear. Here, with the addition of sepiolite (SEP), the fractions of Cu and Zn, and the spectral characteristics of humic acids (HAs) during aerobic pig manure composting were investigated. The SEP-amended composting had a decreased peak temperature and an increased electrical conductivity, regardless of the SEP dosage. The seed germination index increased by 15.9 ± 0.5% (p < 0.05) with the appropriate dosage of SEP (6%), indicating a higher maturity and a lower phytotoxicity of the SEP-amended compost. The addition of SEP reduced the water-extractable organic matter (WEOM) content and increased the percentage of HAs by 2.8-10.7%. More interestingly, during SEP-amended composting, the reducible fraction of heavy metals was transformed into the oxidizable fraction, and the bioavailability of Cu and Zn decreased by 11.0-15.9% and 15.4-26.5%, respectively. Ultraviolet-visible (UV-vis) spectra and fluorescence spectra analyses showed that the SUVA254 and complex fluorescent components of HAs in the SEP-amended composting increased by 4.4-15.8% and 1.2-9.0%, respectively. Nuclear magnetic resonance (NMR) further confirmed that the addition of SEP increased the aromatic index and percentage of carbonyl-carboxyl C of HAs by 3.4-8.3% and 4.6-5.7%, respectively. The redundancy analyses (RDA) described the SUVA254, aromatic index and carbonyl-carboxyl C of HAs had a strong positive correlation with the oxidizable fraction of heavy metals, which was further confirmed by variance partitioning analysis (VPA). Overall, this work suggested that the HAs structure play an important role in the bioavailability of Cu and Zn during SEP-amended composting, potentially providing safe organic fertilizer.
Collapse
Affiliation(s)
- Wei Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Zhimin Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing, 400716, China; Chongqing Engineering Research Center of Rural Cleaner Production / Key Laboratory of Agricultural Soil Pollution Risk Management and Control for Ecological Environment in Chongqing, Chongqing, 400716, China.
| |
Collapse
|
43
|
Balaganesh P, Vasudevan M, Natarajan N. Evaluating sewage sludge contribution during co-composting using cause-evidence-impact analysis based on morphological characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51161-51182. [PMID: 35246793 DOI: 10.1007/s11356-022-19246-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The pertinent challenges associated with effective treatment of fecal sludge in medium scales necessitate alternative means for land application. The methods of compost preparation from sewage sludge and their modes of application to the agricultural fields have profound impacts on the soil ecology and environment. Besides the chemical conditioning effects on soil organic matter, they also impart physical attributes to the soil texture and structure. Though it is expected that compost addition improves water holding capacity and nutrient sequestration, there is lack of clarity in correlating the field outcomes with conditions of excess nutrient storage/leaching despite the agronomic benefits. In this study, we present a systematic cause-evidence-impact relationship on the feedstock composition, processing, and applications of co-composted sewage sludge. Various analytical tools were compared to elucidate the unique characteristics of co-composted sewage sludge to get a realistic understanding of the complex soil-compost interactions. Results from the spectroscopic characterization reveal the implications of selection of bulking agents and sludge pre-treatment in determining the final quality of the compost. Based on the results, we postulate a unique attribution of parent material influence to the formation of well-defined porous structures which influences the nutrient leaching/sequestrating behavior of the soil. Thus, the compounded impacts of composted organic matter on the soil and crop can be proactively determined in terms of elemental composition, functional groups, and stability indices. The present approach provides good scope for customizing the preparations and applications of aerobic microbial composts in order to derive the preferred field outputs.
Collapse
Affiliation(s)
- Pandiyan Balaganesh
- Smart and Healthy Infrastructure Laboratory, Department of Civil Engineering, Bannari Amman Institute of Technology, Tamil Nadu, Sathyamangalam, 638401, India
| | - Mangottiri Vasudevan
- Smart and Healthy Infrastructure Laboratory, Department of Civil Engineering, Bannari Amman Institute of Technology, Tamil Nadu, Sathyamangalam, 638401, India.
| | - Narayanan Natarajan
- Department of Civil Engineering, Dr. Mahalingam College of Engineering and Technology, Tamil Nadu, Pollachi, 642003, India
| |
Collapse
|
44
|
Ma JJ, Jiang CL, Tao XH, Sheng JL, Sun XZ, Zhang TZ, Zhang ZJ. Insights on dissolved organic matter and bacterial community succession during secondary composting in residue after black soldier fly larvae (Hermetia illucens L.) bioconversion for food waste treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:55-64. [PMID: 35176599 DOI: 10.1016/j.wasman.2022.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Black soldier fly larvae (Hermetia illucens L. BSFL) bioconversion is a promising biotechnology for food waste treatment. However, the separated residues still do not meet criteria for use as land application biofertilizers. In this work, we investigated a full-scale BSFL bioconversion project to explore features of dissolved organic matter (DOM) and its associated responses of bacterial community succession in residue during secondary composting. Data showed that the concentrations of total nitrogen and ammonium nitrogen decreased by 11.8% and 22.6% during the secondary composting, respectively, while the nitrate nitrogen concentration increased 18.7 times. The DOM concentration decreased by 69.1%, in which protein-like, alcohol-phenol, and biodegradable aliphatic substances were metabolized by bacteria during the thermophilic phase together with the accumulation of humus-like substances, resulting in an increase in the relative concentration of aromatic compounds. The structure of the bacterial community varied at different stages of the bioprocess, in which Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes were the dominant bacterial phyla. Lysinibacillus, Pusillimonas, and Caldicoprobacter were found to be key contributors in the degradation and formation of DOM. The DOM concentration (33.4%) and temperature (17.7%) were the prime environmental factors that promoted succession of the bacterial community. Through bacterial metabolism, the structural stability of DOM components was improved during the composting process, and the degrees of humification and aromaticity were also increased. This study depicted the dynamic features of DOM and the associated bacterial community succession in residue during secondary composting, which is conducive with the reuse of BSFL residue as biofertilizer for agriculture.
Collapse
Affiliation(s)
- Jing-Jin Ma
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Cheng-Liang Jiang
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 1118, HangZhou 311121, PR China; ZheJiang FuMei Biotechnology Company Limited, PingYao Future Complex Park, PingYao Ave, HangZhou 311115, PR China
| | - Xing-Hua Tao
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Jian-Lin Sheng
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 1118, HangZhou 311121, PR China; ZheJiang FuMei Biotechnology Company Limited, PingYao Future Complex Park, PingYao Ave, HangZhou 311115, PR China
| | - Xin-Zhao Sun
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Ting-Zhou Zhang
- ZheJiang Cofine Biotechnology Company Limited, HaiNing 314400, PR China
| | - Zhi-Jian Zhang
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China; China Academy of West Region Development, ZheJiang University, YuHangTang Ave 866, HangZhou 310058, PR China.
| |
Collapse
|
45
|
Qi C, Zhang Y, Jia S, Wang R, Han Y, Luo W, Li G, Li Y. Effects of digestion duration on energy efficiency, compost quality, and carbon flow during solid state anaerobic digestion and composting hybrid process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151363. [PMID: 34740669 DOI: 10.1016/j.scitotenv.2021.151363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of anaerobic digestion duration on methane yield, net energy production, and humification of compost during solid state anaerobic digestion (SSAD) and composting hybrid process for food waste treatment. Carbon flow and balance were used to evaluate organic methanation and humification inclination of carbon in the whole SSAD and aerobic composting system. Results showed that SSAD for 15 (AD-15) and 21 days (AD-21) could increase net energy production and degraded organic matter contained in the mixtures to achieve high biological stability. The cumulative net energy production between the AD-15 and AD-21 treatments was not significantly different, which was 8.3% higher than that in SSAD for 30 days (AD-30). Furthermore, digestate (AD-15 and AD-21) composting for 3 days reached maturity and absence of phytotoxic substances. Carbon fixed into humus of the AD-21 treatment (11.6%) was not significantly different from that of AD-15 (12.0%). However, the total amount of carbon fixed into compost in AD-15 was 6.6% higher than that in AD-21. Moreover, the CO2 -C loss of the AD-15 treatment (22.9%) was slightly higher than that of AD-21 (20.6%). Thus, AD-21 treatment achieved the most effective use of carbon during SSAD and composting hybrid process for food waste treatment. These results could provide valuable insights for the effective management of food waste in practice.
Collapse
Affiliation(s)
- Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiran Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sumeng Jia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyu Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128, Jiangsu Province, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yangyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Hou J, Guo Z, Meng F, Li M, Hou LA. Restoration of organic-matter-impoverished arable soils through the application of soil conditioner prepared via short-time hydrothermal fermentation. ENVIRONMENTAL RESEARCH 2022; 204:112088. [PMID: 34563527 DOI: 10.1016/j.envres.2021.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The diversity and stability of critical microbial communities are of great importance for ensuring soil fertility. From the perspective of stimulating microbial diversity in organic-matter-impoverished arable soils, soil conditioner with a certain proportion of labile organic carbon was prepared by short-time hydrothermal fermentation (SHF). The effects of applying SHF, along with soil conditioner derived from traditional aerobic fermentation (TF) and heterogeneous fertilizer (HF), on soil texture, dissolved organic matter evolution, the structure of humic acid, and the succession of dominant microbial taxa were evaluated. SHF enhanced the storage capacity of soil organic carbon and nitrogen retention, and increased the relative abundance of Proteobacteria, Firmicutes and Nitrospirae in organic-matter-impoverished arable soil, with Lysobacter as its significant difference species. In conclusion, the proposed soil conditioner and the positive effects observed in this study indicate that it could be used to solve dual problems of food waste recycling and arable soil improvement.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Beijing, 100012, China.
| | - Li-An Hou
- Xi'an High-Tech Institute, Xi'an, 710025, China
| |
Collapse
|
47
|
Alfonzo A, Laudicina VA, Muscarella SM, Badalucco L, Moschetti G, Spanò GM, Francesca N. Cellulolytic bacteria joined with deproteinized whey decrease carbon to nitrogen ratio and improve stability of compost from wine production chain by-products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114194. [PMID: 34864414 DOI: 10.1016/j.jenvman.2021.114194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Composting residues from wine and dairy chains would contribute to increase the environmental sustainability of the production. The aim of this study was to evaluate the effects of deproteinized whey combined with bioactivators on the composting process. Bacillus velezensis and Kocuria rhizophila, bacteria with cellulolytic activity, were isolated from raw materials and inoculated in the organic mass to be composted. Piles moistened with deproteinized whey showed the highest reduction of total and dissolved organic carbon due to the stimulation of bacterial activity by nitrogen compounds held within deproteinized whey. Such findings were also confirmed by the speed up of the microbial carbon mineralization. Bioactivators and deproteinized whey speeded up the composting process and returned compost characterized by high stability and quality. The addition of available N is crucial to improve the composting process and can act even better if combined with cellulolytic bacteria.
Collapse
Affiliation(s)
- Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Vito Armando Laudicina
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy.
| | - Sofia Maria Muscarella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Luigi Badalucco
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| | - Giacomo Massimo Spanò
- Cantine Europa Società Cooperativa Agricola, SS 115 Km 42.400, Petrosino, 91020, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale Delle Scienze 4, 90128, Palermo, Italy
| |
Collapse
|
48
|
Huang Y, Yang H, Li K, Meng Q, Wang S, Wang Y, Zhu P, Niu Q, Yan H, Li X, Li Q. Red mud conserved compost nitrogen by enhancing nitrogen fixation and inhibiting denitrification revealed via metagenomic analysis. BIORESOURCE TECHNOLOGY 2022; 346:126654. [PMID: 34979278 DOI: 10.1016/j.biortech.2021.126654] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The objective of this study was to investigate the effects of adding red mud (RM) on denitrification and nitrogen fixation in composting. The results revealed that the retentions of NH4+-N and NO3--N in experimental group (T) with RM were 16.20% and 7.27% higher than that in control group (CK) at the mature stage, respectively. The composition and structure of RM can effectively inhibit denitrification and enhance nitrogen fixation. Moreover, metagenomic analysis revealed that Actinobacteria and Proteobacteria were the main microorganisms in denitrification process, while Firmicutes were the main microorganisms in nitrogen fixation process. In T, denitrifying genes nirK and nosZ were 11% and 18% lower than those in CK, respectively, while nitrogen-fixing genes nifK and nifD were 18% and 34% higher than those in control group, respectively. Therefore, adding RM could reduce nitrogen loss and improve the quality of compost via enhancing nitrogen fixation and inhibiting denitrification process.
Collapse
Affiliation(s)
- Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qingran Meng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Susu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qiuqi Niu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hailong Yan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
49
|
Wu D, Qu F, Li D, Zhao Y, Li X, Niu S, Zhao M, Qi H, Wei Z, Song C. Effect of Fenton pretreatment and bacterial inoculation on cellulose-degrading genes and fungal communities during rice straw composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151376. [PMID: 34740666 DOI: 10.1016/j.scitotenv.2021.151376] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 05/26/2023]
Abstract
The aims of this article were to study the effect of Fenton pretreatment and bacterial inoculation on cellulose-degrading genes and fungal communities during rice straw composting. The rice straw was pretreated by Fenton reactions and functional bacterial agents were then inoculated during the cooling phase of composting. Three treatment groups were carried out, the control (CK), Fenton pretreatment (FeW) and Fenton pretreatment and bacterial inoculation (FeWI). The results indicated that Fenton pretreatment and bacterial inoculation changed the fungal communities composition and increased fungal diversity, leading to changes in the cellulose-degrading genes. In addition, a network analysis showed that in the FeWI treatment, the fungi from modules 1, 5 and 8 were core hosts of the cellulose-degrading genes driving the cellulosic degradation. Moreover, Fenton pretreatment and bacterial inoculation changed the core module fungal communities and strengthened the correlation between the core fungi and the cellulose-degrading genes, thereby promoting cellulosic degradation. Based on redundancy and structural equation model analyses, the NH4+-N, TOC, pH and Shannon index were important factors influencing the variations in the cellulose-degrading genes. This study provides a foundation for cellulosic degradation during cellulosic waste composting.
Collapse
Affiliation(s)
- Di Wu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengting Qu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Sijie Niu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Maoyuan Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Haishi Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
50
|
Koyama M, Kakiuchi A, Syukri F, Toda T, Tran QNM, Nakasaki K. Inoculation of Neurospora sp. for improving ammonia production during thermophilic composting of organic sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149961. [PMID: 34525702 DOI: 10.1016/j.scitotenv.2021.149961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Recent attempts have been made to develop a thermophilic composting process for organic sludge to not only produce organic fertilizers and soil conditioners, but to also utilize the generated ammonia gas to produce high value-added algae. The hydrolysis of organic nitrogen in sludge is a bottleneck in ammonia conversion, and its improvement is a major challenge. The present study aimed to elucidate the effects of inoculated Neurospora sp. on organic matter decomposition and ammonia conversion during thermophilic composting of two organic sludge types: anaerobic digestion sludge and shrimp pond sludge. A laboratory-scale sludge composting experiment was conducted with a 6-day pretreatment period at 30 °C with Neurospora sp., followed by a 10-day thermophilic composting period at 50 °C by inoculating the bacterial community. The final organic matter decomposition was significantly higher in the sludge pretreated with Neurospora sp. than in the untreated sludge. Correspondingly, the amount of non-dissolved nitrogen was also markedly reduced by pretreatment, and the ammonia conversion rate was notably improved. Five enzymes exhibiting high activity only during the pretreatment period were identified, while no or low activity was observed during the subsequent thermophilic composting period, suggesting the involvement of these enzymes in the degradation of hardly degradable fractions, such as bacterial cells. The bacterial community analysis and its function prediction suggested the contribution of Bacillaceae in the degradation of easily degradable organic matter, but the entire bacterial community was highly incapable in degrading the hardly degradable fraction. To conclude, this study is the first to demonstrate that Neurospora sp. decomposes those organic nitrogen fractions that require a long time to be decomposed by the bacterial community during thermophilic composting.
Collapse
Affiliation(s)
- Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Ayami Kakiuchi
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Fadhil Syukri
- Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Tatsuki Toda
- Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Quyen Ngoc Minh Tran
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|