1
|
Zhao K, Zhao X, He L, Wang N, Bai M, Zhang X, Chen G, Chen A, Luo L, Zhang J. Comprehensive assessment of straw returning with organic fertilizer on paddy ecosystems: A study based on greenhouse gas emissions, C/N sequestration, and risk health. ENVIRONMENTAL RESEARCH 2024; 266:120519. [PMID: 39647690 DOI: 10.1016/j.envres.2024.120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
High greenhouse gas emissions and soil deterioration are caused by the overuse of chemical fertilizers. To improve soil quality and crop productivity, it is necessary to utilize fewer chemical fertilizers to achieve sustainable agriculture. Organic substitution is a scientific fertilization strategy that will benefit future agricultural productivity development, little is known about how it affects the heavy metal content and trace gas emissions in rice grains. A field experiment using straw return to the field (SRF), organic fertilizer application (OFA), and their combination (SRF/OFA) fertilization strategies. The results demonstrated that SRF, OFA, and SRF/OFA increased the yield by 19.40%, 22.39%, and 28.36% than the natural growth control group (NG). The OFA has the highest STN stock and SRF/OFA has the highest STN sequestration rate, while SRF achieved the highest SOC stock and sequestration rate. The OFA reduced CO2, CH4, and N2O emissions by 17.73%, 71.87%, and 86.06%, resulting in a minimum global warming potential and greenhouse gas intensity yield among these strategies. Cumulative seasonal CO2 and CH4 emissions were negatively correlated with soil paddy soil C/N and C/P (P < 0.05). Moreover, Cu, Cd, and Pb contents in grain were reduced by 66.18%-70.31%, 35.45%-40.91%, and 76.62%-77.92%, respectively. The health risk evaluation revealed that all metals had a target hazard quotient of <1, except for NG. The hazard index (0.42-0.53), which measures the additive effects of contaminants, exceeded the threshold. The implementation of the organic alternative strategy can reduce the trend of increasing surface pollution, slow down the excessive utilization intensity of agricultural resources, and encourage the development of a greener, more sustainable agricultural way.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China
| | - Xichen Zhao
- Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China
| | - Ma Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiaobing Zhang
- Hunan Yirun Biotechnology Co., LTD, Changsha, 410133, Hunan, China
| | - Ge Chen
- Yueyang Bureau of Agriculture and Rural Affairs, Yueyang, 414022, Hunan, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410028, China; Yuelushan Laboratory, Hunan Agricultural University Area, Changsha, 410000, Hunan, China.
| |
Collapse
|
2
|
Yi M, Shen Q, Tang J, Sun H. Effects of straws on greenhouse gas emissions in the ectopic fermentation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122579. [PMID: 39366230 DOI: 10.1016/j.jenvman.2024.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024]
Abstract
Straws are commonly used padding materials in the ectopic fermentation system, but their effects on greenhouse gas emissions are not well understood. This study compared the effects of rape, rice and corn straws on the fermentation performance of the ectopic fermentation system. Compared with corn straw, the treatment groups with rape straw and rice straw significantly increased the alpha diversity of the fermentation system, and simultaneously mitigated the cumulative emissions of CO2 and N2O by up to 32.4% and 93.9%, respectively. The CO2 and N2O peak emission in the treatment group with corn straw reached 1.4 × 106 and 36.2 mg/m2/d, respectively. CH4 peak emission was one order of magnitude lower than that of N2O in the ectopic fermentation system. Redundancy analysis showed that Pseudoxanthomonas sp000510725 was the key specie that positively affect the fermentation temperature, CO2 and N2O emissions in the fermentation system. Nitrogen metabolism genes, such as nosZ, nirK, and nirS were more abundant in the surface layer of the fermentation system, indicating more active nitrogen metabolism in this region, and the core zone could be the primary source of N2O emissions. Those findings indicated that rape and rice straw can be potential padding materials for mitigating greenhouse gas emissions in large-scale ectopic fermentation system.
Collapse
Affiliation(s)
- Ming Yi
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou, 310021, China; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou Zhejiang, PR China
| | - Qi Shen
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou, 310021, China
| | - Jiangwu Tang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou, 310021, China.
| | - Hong Sun
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou, 310021, China
| |
Collapse
|
3
|
He Y, He Y, Abdullah Al-Dhabi N, Gao P, Huang H, Yan B, Cui X, Tang W, Zhang J, Lu Y, Peng F. Effects of exogenous thermophilic bacteria and ripening agent on greenhouse gas emissions, enzyme activity and microbial community during straw composting. BIORESOURCE TECHNOLOGY 2024; 407:131114. [PMID: 39009049 DOI: 10.1016/j.biortech.2024.131114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
This research examined the impact of exogenous thermophilic bacteria and ripening agents on greenhouse gas (GHG) emission, enzyme activity, and microbial community during composting. The use of ripening agents alone resulted in a 30.9 % reduction in CO2 emissions, while the use of ripening agents and thermophilic bacteria resulted in a 50.8 % reduction in N2O emissions. Pearson's analysis showed that organic matter and nitrate nitrogen were the key parameters affecting GHG emissions. There was an inverse correlation between CO2 and CH4 releases and methane monooxygenase α subunit and N2O reductase activity (P<0.05). Additionally, N2O emissions were positively related to β-1, 4-N-acetylglucosaminidase, and ammonia monooxygenase activity (P<0.05). Deinococcota, Chloroflexi, and Bacteroidota are closely related to CO2 and N2O emissions. Overall, adding thermophilic bacteria represents an effective strategy to mitigate GHG emissions during composting.
Collapse
Affiliation(s)
- Yuewei He
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China; College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yuedong He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peng Gao
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Hongli Huang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xinwei Cui
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yaoxiong Lu
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Fuyuan Peng
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| |
Collapse
|
4
|
Xu ZX, Zeng B, Chen S, Xiao S, Jiang LG, Li X, Wu YF, You LX. Soil microbial community composition and nitrogen enrichment responses to the operation of electric power substation. Front Microbiol 2024; 15:1453162. [PMID: 39228385 PMCID: PMC11368844 DOI: 10.3389/fmicb.2024.1453162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
The surge in global energy demand mandates a significant expansion of electric power substations. Nevertheless, the ecological consequences of electric power substation operation, particularly concerning the electromagnetic field, on soil microbial communities and nitrogen enrichment remain unexplored. In this study, we collected soil samples from six distinct sites at varying distances from an electric power substation in Xintang village, southeastern China, and investigated the impacts of electromagnetic field on the microbial diversity and community structures employing metagenomic sequencing technique. Our results showed discernible dissimilarities in the fungal community across the six distinct sites, each characterized by unique magnetic and electric intensities, whereas comparable variations were not evident within bacterial communities. Correlation analysis revealed a diminished nitrogen fixation capacity at the site nearest to the substation, characterized by low moisture content, elevated pH, and robust magnetic induction intensity and electric field intensity. Conversely, heightened nitrification processes were observed at this location compared to others. These findings were substantiated by the relative abundance of key genes associated with ammonium nitrogen and nitrate nitrogen production. This study provides insights into the relationships between soil microbial communities and the enduring operation of electric power substations, thereby contributing fundamental information essential for the rigorous environmental impact assessments of these facilities.
Collapse
Affiliation(s)
- Zhi-Xin Xu
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Bo Zeng
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Sheng Chen
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Sa Xiao
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Lin-Gao Jiang
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Xiang Li
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Yun-Fang Wu
- High Voltage Branch of State Grid Fujian Electric Power Co., Ltd., Fuzhou, China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
5
|
Han Y, Bi R, Wang Y, Sun L, Liu X, Shi S, Chang N, Zhao L, Bao J, Xu Y, Liu W, Zhang J, Jiang N, Zhang Y, Xu X, Sun Y. Insight into N 2O emission and denitrifier communities under different aeration intensities in composting of cattle manure from perspective of multi-factor interaction analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172936. [PMID: 38701923 DOI: 10.1016/j.scitotenv.2024.172936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Nitrous oxide (N2O) emission from composting is a significant contributor to greenhouse effect and ozone depletion, which poses a threat to environment. To address the challenge of mitigating N2O emission during composting, this study investigated the response of N2O emission and denitrifier communities (detected by metagenome sequencing) to aeration intensities of 6 L/min (C6), 12 L/min (C12), and 18 L/min (C18) in cattle manure composting using multi-factor interaction analysis. Results showed that N2O emission occurred mainly at mesophilic phase. Cumulative N2O emission (QN2O, 9.79 mg·kg-1 DW) and total nitrogen loss (TN loss, 16.40 %) in C12 composting treatment were significantly lower than those in the other two treatments. The lower activity of denitrifying enzymes and the more complex and balanced network of denitrifiers and environmental factors might be responsible for the lower N2O emission. Denitrification was confirmed to be the major pathway for N2O production. Moisture content (MC) and Luteimonas were the key factors affecting N2O emission, and nosZ-carrying denitrifier played a significant role in reducing N2O emission. Although relative abundance of nirS was lower than that of nirK significantly (P < 0.05), nirS was the key gene influencing N2O emission. Community composition of denitrifier varied significantly with different aeration treatments (R2 = 0.931, P = 0.001), and Achromobacter was unique to C12 at mesophilic phase. Physicochemical factors had higher effect on QN2O, whereas denitrifying genes, enzymes and NOX- had lower effect on QN2O in C12. The complex relationship between N2O emission and the related factors could be explained by multi-factor interaction analysis more comprehensively. This study provided a novel understanding of mechanism of N2O emission regulated by aeration intensity in composting.
Collapse
Affiliation(s)
- Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuanhang Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinda Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liyan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Bao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Yonghui Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jining Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Nana Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Zhou Z, Shi X, Bhople P, Jiang J, Chater CCC, Yang S, Perez-Moreno J, Yu F, Liu D. Enhancing C and N turnover, functional bacteria abundance, and the efficiency of biowaste conversion using Streptomyces-Bacillus inoculation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120895. [PMID: 38626487 DOI: 10.1016/j.jenvman.2024.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Microbial inoculation plays a significant role in promoting the efficiency of biowaste conversion. This study investigates the function of Streptomyces-Bacillus Inoculants (SBI) on carbon (C) and nitrogen (N) conversion, and microbial dynamics, during cow manure (10% and 20% addition) and corn straw co-composting. Compared to inoculant-free controls, inoculant application accelerated the compost's thermophilic stage (8 vs 15 days), and significantly increased compost total N contents (+47%) and N-reductase activities (nitrate reductase: +60%; nitrite reductase: +219%). Both bacterial and fungal community succession were significantly affected by DOC, urease, and NH4+-N, while the fungal community was also significantly affected by cellulase. The contribution rate of Cupriavidus to the physicochemical factors of compost was as high as 83.40%, but by contrast there were no significantly different contributions (∼60%) among the top 20 fungal genera. Application of SBI induced significant correlations between bacteria, compost C/N ratio, and catalase enzymes, indicative of compost maturation. We recommend SBI as a promising bio-composting additive to accelerate C and N turnover and high-quality biowaste maturation. SBI boosts organic cycling by transforming biowastes into bio-fertilizers efficiently. This highlights the potential for SBI application to improve plant growth and soil quality in multiple contexts.
Collapse
Affiliation(s)
- Ziyan Zhou
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Parag Bhople
- Crops, Environment, And Land Use Department, Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Y35TC98, Ireland
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Shimei Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jesus Perez-Moreno
- Colegio de Postgraduados, Campus Montecillo, Edafologia, Texcoco, 56230, Mexico
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
7
|
Xu J, Zhang Z, Wu Y, Liu B, Xia X, Chen Y. Effects of C/N ratio on N 2O emissions and nitrogen functional genes during vegetable waste composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32538-32552. [PMID: 38656720 DOI: 10.1007/s11356-024-33427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Nitrous oxide (N2O) generation during composting not only leads to losses of nitrogen (N) but also reduces the agronomic values and environmental benefits of composting. This study aimed to investigate the effect of the C/N ratio on N2O emissions and its underlying mechanisms at the genetic level during the composting of vegetable waste. The experiment was set up with three treatments, including low C/N treatment (LT, C/N = 18), middle C/N treatment (MT, C/N = 30), and high C/N treatment (HT, C/N = 50). The results showed that N2O emission was mainly concentrated in the cooling and maturation periods, and the cumulative N2O emissions decreased as the C/N ratio increased. Specifically, the cumulative N2O emission was 57,401 mg in LT, significantly higher than 2155 mg in MT and 1353 mg in HT. Lowering the C/N ratio led to increasing TN, NH4+-N, and NO3--N contents throughout the composting process. All detected nitrification-related gene abundances in LT continued to increase during composting, significantly surpassing those in MT during the cooling period. By contrast, in HT, there was a slight increase in the abundance of detected nitrification-related genes but a significant decrease in the abundance of narG, napA, and norB genes in the thermophilic and cooling periods. The structural equation model revealed that hao and nosZ genes were vital in N2O emissions. In conclusion, increasing the C/N ratio effectively contributed to N2O reduction during vegetable waste composting.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Zhi Zhang
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Bo Liu
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Xiange Xia
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization From Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
8
|
Xu Z, Gao X, Li G, Nghiem LD, Luo W, Zhang F. Microbial Sources and Sinks of Nitrous Oxide during Organic Waste Composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7367-7379. [PMID: 38644786 DOI: 10.1021/acs.est.3c10341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Composting is widely used for organic waste management and is also a major source of nitrous oxide (N2O) emission. New insight into microbial sources and sinks is essential for process regulation to reduce N2O emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for N2O sources and sinks during composting. Results showed that several nosZ-lacking denitrifiers in feedstocks drove N2O emission at the beginning of the composting. Such emission became negligible at the thermophilic stage, as high temperatures inhibited all denitrifiers for N2O production except for those containing nirK. The nosZ-lacking denitrifiers were notably enriched to increase N2O production at the cooling stage. Nevertheless, organic biodegradation limited energy availability for chemotaxis and flagellar assembly to restrain nirKS-containing denitrifiers for nitrate reduction toward N2O sources but insignificantly interrupt norBC- and nosZ-containing bacteria (particularly nosZ-containing nondenitrifiers) for N2O sinks by capturing N2O and nitric oxide (NO) for energy production, thereby reducing N2O emission at the mature stage. Furthermore, nosZII-type bacteria included all nosZ-containing nondenitrifiers and dominated N2O sinks. Thus, targeted strategies can be developed to restrict the physiological behaviors of nirKS-containing denitrifiers and expand the taxonomic distribution of nosZ for effective N2O mitigation in composting.
Collapse
Affiliation(s)
- Zhicheng Xu
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Wenhai Luo
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Fusuo Zhang
- Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Wang N, He Y, Zhao K, Lin X, He X, Chen A, Wu G, Zhang J, Yan B, Luo L, Xu D. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120337. [PMID: 38417357 DOI: 10.1016/j.jenvman.2024.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
China, being a major agricultural nation, employs aerobic composting as an efficient approach to handle agricultural solid waste. Nevertheless, the composting process is often accompanied by greenhouse gas emissions, which are known contributors to global warming. Therefore, it is urgent to control the formation and emission of greenhouse gases from composting. This study provides a comprehensive analysis of the mechanisms underlying the production of nitrous oxide, methane, and carbon dioxide during the composting process of agricultural wastes. Additionally, it proposes an overview of the variables that affect greenhouse gas emissions, including the types of agricultural wastes (straw, livestock manure), the specifications for compost (pile size, aeration). The key factors of greenhouse gas emissions during composting process like physicochemical parameters, additives, and specific composting techniques (reuse of mature compost products, ultra-high-temperature composting, and electric-field-assisted composting) are summarized. Finally, it suggests directions and perspectives for future research. This study establishes a theoretical foundation for achieving carbon neutrality and promoting environmentally-friendly composting practices.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xi He
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China.
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Daojun Xu
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Veterinary Medicine, Hunan Agricultural University, 410128, China.
| |
Collapse
|
10
|
Liu Y, Xu J, Li X, Zhou W, Cui X, Tian P, Yu H, Wang X. Synergistic effects of Fe-based nanomaterial catalyst on humic substances formation and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2024; 395:130371. [PMID: 38278455 DOI: 10.1016/j.biortech.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
In this study, a novel Fe-based nanomaterial catalyst (Fe0/FeS) was synthesized via a self-heating process and employed to explore its impact on the formation of humic substances and the mitigation of microplastics. The results reveal that Fe0/FeS exhibited a significant increase in humic acid content (71.01 mg kg-1). Similarly, the formation of humic substances resulted in a higher humification index (4.91). Moreover, the addition of Fe0/FeS accelerated the degradation of microplastics (MPs), resulting in a lower concentration of MPs (9487 particles/kg) compared to the control experiments (22792 particles/kg). Fe0/FeS significantly increased the abundance of medium-sized MPs (50-200 μm) and reduced the abundance of small-sized (10-50 μm) and large-sized MPs (>1000 μm). These results can be attributed to the Fe0/FeS regulating the ▪OH production and specific microorganisms to promote humic substance formation and the degradation of MPs. This study proposes a feasible strategy to improve composting characteristics and reduce contaminants.
Collapse
Affiliation(s)
- Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jiayi Xu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiaolu Li
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Wuyi Zhou
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Pengjiao Tian
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Haizhong Yu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China.
| |
Collapse
|
11
|
Xia F, Zhang Z, Zhang Q, Huang H, Zhao X. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168734. [PMID: 38007117 DOI: 10.1016/j.scitotenv.2023.168734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Anthropogenic greenhouse gas (GHG) emissions are a major factor influencing climate change. The application of biochar as a soil amendment may be an effective way to reduce GHG emissions. Life cycle assessment (LCA) is widely used to assess the impact of biochar as a soil amendment on GHG emissions. The methodology is effective in assessing the impacts of the various stages of the biochar life cycle on GHG emissions. However, because of the diversity of biochar types, it is difficult to summarize the regularity of biochar life cycle impacts on GHG emissions. This paper summarizes the pathways of biochar's effect on GHG emissions and in-depth analyzes the mechanism of biochar's influence on GHG emissions from the perspective of biochar properties. Finally, the review comprehensively analyzes the effects of different types of biochar feedstock on GHG emissions at the stages of feedstock pretreatment, preparation, and application of the life cycle. The conclusions are as follows: (1) Biochar affects GHG emissions in three ways: feedstock supply, pyrolysis process, and application process. (2) The impact of biochar on GHG emissions is influenced by a combination of the physicochemical properties of biochar. (3) Biochar has a positive impact (feedstock pretreatment stage and preparation stage) or a negative impact (application stage) on life cycle GHG emissions. (4) The carbon sequestration capacity of biochar varies by feedstock type. The ranking of carbon sequestration capacity is waste wood biochar (WWB) > crop straw biochar (CSB) > livestock manure biochar (LMB) > sewage sludge biochar (SSB).
Collapse
Affiliation(s)
- Fang Xia
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China.
| | - Qian Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Haochong Huang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaohui Zhao
- Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
12
|
Bao J, Li S, Qv M, Wang W, Wu Q, Kristianto Nugroho Y, Huang L, Zhu L. Urea addition as an enhanced strategy for degradation of petroleum contaminants during co-composting of straw and pig manure: Evidences from microbial community and enzyme activity evaluation. BIORESOURCE TECHNOLOGY 2024; 393:130135. [PMID: 38043688 DOI: 10.1016/j.biortech.2023.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Alterations in microbial community succession patterns and enzyme activities by petroleum pollutants during co-composting of straw and swine manure with the supplementary nitrogen source are unclear. In this study, urea was added into co-composting systems, and the removal performance of petroleum, microbial enzyme activity and community changes were investigated. Results showed that the polyphenol oxidase and catalase activities which were both related to the degradation of petroleum contaminants were accordingly increased from 20.65 to 30.31 U/g and from 171.87 to 231.86 U/g due to urea addition. The removal efficiency of petroleum contaminants in composting with urea increased from 45.06% to 82.29%. The addition of urea increased the diversity and abundance of petroleum-degrading microorganisms, and enhanced microbial linkages. This study provides a novel strategy for the degradation of petroleum hydrocarbon as well as a new insight into the effect of urea on both microbial processes and composting phases.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Wei Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Qirui Wu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | | | - Lizhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
13
|
Zhao Y, Hu Z, Lu Y, Shan S, Zhuang H, Gong C, Cui X, Zhang F, Li P. Facilitating mitigation of agricultural non-point source pollution and improving soil nutrient conditions: The role of low temperature co-pyrolysis biochar in nitrogen and phosphorus distribution. BIORESOURCE TECHNOLOGY 2024; 394:130179. [PMID: 38092075 DOI: 10.1016/j.biortech.2023.130179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The current study generated co-pyrolysis biochar by pyrolyzing rice straw and pig manure at 300 °C and subsequently applying it in a field. Co-pyrolysis biochar demonstrated superior efficiency in mitigating agricultural non-point source pollution compared to biochar derived from individual sources. Furthermore, it displayed notable capabilities in retaining and releasing nutrients, resulting in increased soil levels of total nitrogen, total phosphorus, and organic matter during the maturation stage of rice. Moreover, co-pyrolysis biochar influences soil microbial communities, potentially impacting nutrient cycling. During the rice maturation stage, the soil treated with co-pyrolysis biochar exhibited significant increases in available nutrients and rice yield compared to the control (p < 0.05). These findings emphasize the potential of co-pyrolysis biochar for in-situ nutrient retention and enhanced soil nutrient utilization. To summarize, the co-pyrolysis of agricultural waste materials presents a promising approach to waste management, contributing to controlling non-point source pollution, improving soil fertility, and promoting crop production.
Collapse
Affiliation(s)
- Yufei Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhijun Hu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yunpeng Lu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haifeng Zhuang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Chenpan Gong
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xin Cui
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fuhao Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Peng Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
14
|
Wang G, Gou Z, Tian G, Sima W, Zhou J, Bo Z, Zhang Z, Gao Q. Study on the effectiveness and mechanism of a sustainable dual slow-release model to improve N utilization efficiency and reduce N pollution in black soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168033. [PMID: 37898209 DOI: 10.1016/j.scitotenv.2023.168033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Long-term intensive cultivation has led to serious N loss and low N fertilizer utilization efficiency (NUE) in black soil areas. The lost N is not only a waste of resources but also a serious pollution threat to the environment, leading to the decline in water quality and food safety and the greenhouse effect. In the present study, a stable dual slow-release model, CPCS-Urea, was prepared by in situ polymerization using nitrapyrin, urea and melamine-formaldehyde resin as raw materials. The effect of the dual slow-release model was systematically evaluated using two consecutive years of field experiments. Five treatments were established in the field experiment: no N fertilizer (N0), urea (N180), 1 % CPEC-Urea, 0.5 % CPCS-Urea, and 1 % CPCS-Urea. The results showed that the new dual slow-release CPCS-Urea model outperformed both the use of urea and the traditional slow-release CPEC-Urea model in reducing N losses and improving NUE. The application of CPCS-Urea reduced nitrate (NO3-) leaching by 28.2 %-47.2 % and N2O emissions by 36.5 %-42.4 % and increased NUE by 20.7 %-28.5 % compared to urea application. The CPCS-Urea model modulated the activity of ammonia-oxidizing bacteria (AOB) and dissimilatory nitrate reduction to ammonium (DNRA) bacteria in soil, showing a significant decrease in AOB activity and an increase in DNRA activity. This results in a lower soil NO3--N yield and a 53.1 %-72.0 % increase in NH4+-N content, providing sufficient N for the entire growth and development cycle of maize. In short, the dual slow-release CPCS-Urea model has great application prospects for promoting agricultural development in black soil areas.
Collapse
Affiliation(s)
- Gaoxu Wang
- College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, Jilin 130118, China
| | - Zechang Gou
- College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, Jilin 130118, China
| | - Geng Tian
- Jilin Woyijia Ecological Agriculture Co. LTD, Siping, Jilin 136400, China
| | - Wenyue Sima
- College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, Jilin 130118, China
| | - Jiafeng Zhou
- College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, Jilin 130118, China
| | - Zhenghao Bo
- College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, Jilin 130118, China
| | - Zhongqing Zhang
- College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, Jilin 130118, China.
| | - Qiang Gao
- College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, Jilin 130118, China.
| |
Collapse
|
15
|
Wang B, Zhang P, Guo X, Bao X, Tian J, Li G, Zhang J. Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH 3 and N 2O emissions and increase of nitrate. BIORESOURCE TECHNOLOGY 2024; 391:129981. [PMID: 37926358 DOI: 10.1016/j.biortech.2023.129981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Co-composting of chicken manure, straw and zeolite was investigated in a water bath heating system to estimate the effect of zeolite on physicochemical properties and metabolic functions related to nitrogen conversion. The results indicated that NH3 catches by zeolite was concentrated in the early stage and zeolite with 10 % addition reduced 28 % NH3 and 55 % N2O emissions as compost ended. The nitrate content in 10 % zeolite group was 17 % higher than that in control group. There was no significant increase of NO2- in zeolite group. More NO2- formed NH3, rather than being converted to NOx through denitrification. The abundance of nitrification genes amoA and hao increased except nxrA in zeolite groups. Denitrification was the most obvious at 20 d and zeolite decreased the abundance of denitrification genes narG, nirK and nosZ at this time.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Peng Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Guo
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Bao
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Junjie Tian
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Guomin Li
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China.
| | - Jian Zhang
- College of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
16
|
Yang X, Mazarji M, Li M, Li A, Li R, Zhang Z, Pan J. Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure. BIORESOURCE TECHNOLOGY 2024; 391:129985. [PMID: 37931761 DOI: 10.1016/j.biortech.2023.129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Magnetite affects nitrogen cycle of pig manure (PM) biostabilisation was investigated. Various doses of magnetite (0 % (T1); 2.5 % (T2); 5 % (T3); 7.5 % (T4)) were homogeneously added into PM and wolfberry branch fillings (BF) mixture for a 50-day composting. Compared to T1, total nitrogen (TN) loss in gaseous form increased remarkably by 17.51 %, 56.31 %, and 24.91 %, respectively, in T2-T4. In particular, T3 dramatically increased the cumulative N2O emission but decreased NH3 emissions. However, T2 and T3 enhanced the total nitrogen contents by 7.24 % and 3.09 %. Structural equation models (SEM) analysis indicated that magnetite addition increased the direct and indirect pathways of N2O emission. Further analysis revealed that Ruminofilibacter and N2O emission were significantly correlated, and Pseudomonas played a vital role in nitrogen preservation. Although using 2 % magnetite as an additive could increase the TN content, the obvious increase of N2O emission should be considered in engineering practice.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mahmoud Mazarji
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengtong Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aohua Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
17
|
Lin X, Al-Dhabi NA, Li F, Wang N, Peng H, Chen A, Wu G, Zhang J, Zhang L, Huang H, Yan B, Luo L, Tang W. Relative contribution of ammonia-oxidizing bacteria and denitrifying fungi to N 2O production during rice straw composting with biochar and biogas residue amendments. BIORESOURCE TECHNOLOGY 2023; 390:129891. [PMID: 37863336 DOI: 10.1016/j.biortech.2023.129891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Nitrous oxide (N2O) production is associated with ammonia-oxidizing bacteria (amoA-AOB) and denitrifying fungi (nirK-fungi) during the incorporation of biochar and biogas residue composting. This research examined the relative contribution of alterations in the abundance, diversity and structure of amoA-AOB and nirK-fungi communities on N2O emission by real-time PCR and sequence processing. Results showed that N2O emissions showed an extreme relation with the abundance of amoA-AOB (rs = 0.584) while giving credit to nirK-fungi (rs = 0.500). Nitrosomonas and Nitrosospira emerged as the dominant genera driving ammoxidation process. Biogas residue changed the community structure of AOB by altering Nitrosomonadaceae proportion and physiological capacity. The denitrification process, primarily governed by nirK-fungi, served as a crucial pathway for N2O production, unveiling the pivotal mechanism of biochar to suppress N2O emissions. C/N and NH4+-N were identified as significant parameters influencing the distribution of nirK-fungi, especially Micromonospora, Halomonas and Mesorhizobium.
Collapse
Affiliation(s)
- Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fanghong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China.
| | - Lihua Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Hongli Huang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha 410000, Hunan, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
Zhou Y, Zhao H, Lu Z, Ren X, Zhang Z, Wang Q. Synergistic effects of biochar derived from different sources on greenhouse gas emissions and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023; 387:129556. [PMID: 37517712 DOI: 10.1016/j.biortech.2023.129556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
This study aimed to investigate the effects of biochar derived from different sources (wheat straw, sawdust and pig manure) on greenhouse gas and microplastics (MPs) mitigation during sewage sludge composting. Compared to the control, all biochar significantly reduced the N2O by 28.91-41.23%, while having no apparent effect on CH4. Sawdust biochar and pig manure biochar significantly reduced the NH3 by 12.53-23.53%. Adding biochar decreased the global warming potential during composting, especially pig manure biochar (177.48 g/kg CO2-eq.). The concentration of MPs significantly increased in the control (43736.86 particles/kg) compared to the initial mixtures, while the addition of biochar promoted the oxidation and degradation of MPs (15896.06-23225.11 particles/kg), with sawdust biochar and manure biochar were more effective. Additionally, biochar significantly reduced the abundance of small-sized (10-100 μm) MPs compared to the control. Moreover, biochar might regulate specific microbes (e.g., Thermobifida, Bacillus and Ureibacillus) to mitigate greenhouse gas emissions and MPs degradation.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Haoran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zonghui Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
19
|
Liu H, Awasthi MK, Zhang Z, Syed A, Bahkali AH, Sindhu R, Verma M. Microbial dynamics and nitrogen retention during sheep manure composting employing peach shell biochar. BIORESOURCE TECHNOLOGY 2023; 386:129555. [PMID: 37499921 DOI: 10.1016/j.biortech.2023.129555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
In this study, the effects of peach shell biochar (PSB) and microbial agent (EM) amendment on nitrogen conservation and bacterial dynamics during sheep manure (SM) composting were examined. Six treatments were performed including T1 (control with no addition), T2 (EM), T3 (EM + 2.5 %PSB), T4 (EM + 5 %PSB), T5 (EM + 7.5 %PSB), and T6 (EM + 10 %PSB). The results showed that the additives amendment reduced NH3 emissions by 6.12%∼32.88% and N2O emissions by 10.96%∼19.76%, while increased total Kjeldahl nitrogen (TKN) content by 8.15-9.13 g/kg. Meanwhile, Firmicutes were the dominant flora in the thermophilic stages, while Proteobacteria, Actinobacteriota, and Bacteroidota were the dominant flora in the maturation stages. The abundance of Bacteroidota and Actinobacteriota were increased by 17.49%∼32.51% and 2.31%∼12.60%, respectively, which can accelerate the degradable organic materials decomposition. Additionally, redundancy analysis showed that Proteobacteria, Actinobacteriota, and Bacteroidota were positively correlated with NO3--N, TKN, and N2O, but a negative correlation with NH3 and NH4+-N. Finally, results confirmed that (EM + 10 %PSB) additives were more effective to reduce nitrogen loss and improve bacterial dynamics.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, India
| |
Collapse
|
20
|
Ye J, Wang Y, Wang Y, Hong L, Kang J, Jia Y, Li M, Chen Y, Wu Z, Wang H. Improvement of soil acidification and ammonium nitrogen content in tea plantations by long-term use of organic fertilizer. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:994-1008. [PMID: 37345615 DOI: 10.1111/plb.13554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/07/2023] [Indexed: 06/23/2023]
Abstract
Soil acidification is common in some Chinese tea plantations, which seriously affected growth of tea trees. Hence, it is essential to explore soil remediation in acidified tea plantations for sustainable development of the tea industry. We sought to determine how different fertilizers affect acidified soil and their N transformation in tea plantations. Different fertilizers were used on acidified tea plantation soils for 4 years (2017-2021), and changes in soil pH, indices related to soil N transformation and tea yield were analysed to construct interaction networks of these indices and find which had the largest influence on fertilization. Long-term use of sheep manure reduced soil acidification, increased soil pH, enhanced the number and intensity of N-fixing and ammonifying bacteria, urease, protease, asparaginase and N-acetamide glucose ribosidase activity and nifH gene expression. This treatment reduced the number and intensity of soil nitrifying and denitrifying bacteria, nitrate reductase and nitrite reductase activity, while the expression of amoA-AOA, nirK, nirS, narG and nosZ in turn increased ammonium N content of the soil, reduced nitrate N content, and enhanced tea yield. Topsis index weight analysis showed that ammonium N content in the soil had the largest impact among fertilization effects. Long-term use of sheep manure was beneficial in restoring the balance of the micro-ecosystem in acidified soil. This study provides an important practical basis for soil remediation and fertilizer management in acidified tea plantation soils.
Collapse
Affiliation(s)
- J Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Y Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Longyan University, Longyan, China
| | - Y Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - L Hong
- College of Life Science, Longyan University, Longyan, China
| | - J Kang
- College of Life Science, Longyan University, Longyan, China
| | - Y Jia
- College of Life Science, Longyan University, Longyan, China
| | - M Li
- College of Life Science, Longyan University, Longyan, China
| | - Y Chen
- College of Life Science, Longyan University, Longyan, China
| | - Z Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - H Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
21
|
Liu Z, Yan Z, Liu G, Wang X, Fang J. Impacts of adding FeSO 4 and biochar on nitrogen loss, bacterial community and related functional genes during cattle manure composting. BIORESOURCE TECHNOLOGY 2023; 379:129029. [PMID: 37030418 DOI: 10.1016/j.biortech.2023.129029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
This study investigated the impacts of adding FeSO4 and biochar to cattle manure and rice straw composts on functional genes controlling nitrogen loss, bacterial community, nitrification, and denitrification. Four treatments were established, including a control group (CP), and CP mixtures that included 4% biochar (TG1), 4% FeSO4 (TG2), or 2% FeSO4 and 2% biochar (TG3). Compared to CP, TG1-3 had a lower total nitrogen loss rate, and TG3 resulted in reduced NH3 (52.4%) and N2O (35.6%) emissions to mitigate nitrogen loss. The abundance of amoA and narG gene in TG3 was higher than in the other groups, and TG3 was beneficial to the growth of Proteobacteria and Actinobacteria. According to redundancy and Pearson analysis, TG3 had a positive effect on the nitrification process by increasing the abundance of amoA and narG. Thus, biochar and FeSO4 addition mitigate nitrogen loss by regulating the nitrification processes.
Collapse
Affiliation(s)
- Zhuangzhuang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Zhiwei Yan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Xinyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| |
Collapse
|
22
|
Jia X, Wang Y, Zhang Q, Lin S, Zhang Y, Du M, Chen M, Ye J, Wu Z, Wang H. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1179960. [PMID: 37426968 PMCID: PMC10327554 DOI: 10.3389/fpls.2023.1179960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Soil acidification in Chinese tea plantations is widespread, and it has significantly affected the growth of tea trees; it was important to explore soil remediation of acidified tea plantations in depth for the sustainable development of tea industry. In this study, the effects of sheep manure fertilizer with different application depths on soil acidification, tea yield and quality, and soil nitrogen transformation in tea plantations were analyzed for five consecutive years from 2018 to 2022. The results showed that long-term use of sheep manure fertilizer significantly reduced soil acidification (P< 0.05) in tea plantations, improved soil pH and soil ammonium nitrogen content, enhanced root activity and root nitrogen uptake capacity of tea trees, and thus improved tea yield and quality. The effect of different application depths of sheep manure fertilizer on tea yield and quality was mainly reflected in the transformation ability of soil ammonium nitrogen and nitrate nitrogen, which showed that high transformation ability of soil ammonium nitrogen and high ammonium nitrogen content were beneficial to high tea yield and vice versa, and the best effect was achieved when sheep manure was applied at a depth of 50 cm and 70 cm. The topsis analysis confirmed that sheep manure fertilization had a greater effect on root activity, ammonium nitrogen, ammonia intensity, and nifH gene. This study provided an important practical basis for the restoration of acidified tea plantation soil through sheep manure fertilizer management.
Collapse
Affiliation(s)
- Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Mengru Du
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Zeyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
23
|
Jiao M, Ren X, Zhan X, Hu C, Wang J, Syed A, Bahkali AH, Zhang Z. Exploring gaseous emissions and pivotal enzymatic activity during co-composting of branch and pig manure: the effect of particle size of bulking agents. BIORESOURCE TECHNOLOGY 2023; 382:129199. [PMID: 37201868 DOI: 10.1016/j.biortech.2023.129199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
The purpose of current study was to probe the effect of various length of branch on gaseous emissions and vital enzymatic activity. Four lengths (<2 cm, 2 cm, 5 cm, and 10 cm) of clipped branch were mingled with collected pig manure for 100 days aerobic fermentation. The consequence demonstrated that the amendment of 2 cm of branch showed conducive to decline the greenhouse gas emissions, which the CH4 emissions decreased by 1.62-40.10%, and the N2O emissions decreased by 21.91-34.04% contrasted with other treatments. Furthermore, the peak degree of enzymatic activities was also observed in 2 cm of branch treatment by the optimizing living condition for microbes. In view of microbiological indicators, the most abundant and complex bacterial community could be monitor in 2 cm of branch composting pile, which verified the microbial facilitation. Summing up, the strategy of 2 cm branch amendment would be recommended.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
24
|
Wang G, Qiu G, Wei J, Guo Z, Wang W, Liu X, Song Y. Activated carbon enhanced traditional activated sludge process for chemical explosion accident wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 225:115595. [PMID: 36863655 DOI: 10.1016/j.envres.2023.115595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
With the development of industries, explosion accidents occur frequently during production, transportation, usage and storage of hazard chemicals. It remained challenging to efficiently treat the resultant wastewater. As an enhancement of traditional process, the activated carbon-activated sludge (AC-AS) process has a promising potential in treating wastewater with high concentrations of toxic compounds, chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N), etc. In this paper, activated carbon (AC), activated sludge (AS) and AC-AS were used to treat the wastewater produced from an explosion accident in the Xiangshui Chemical Industrial Park. The removal efficiency was assessed by the removal performances of COD, dissolved organic carbon (DOC), NH4+-N, aniline and nitrobenzene. Increased removal efficiency and shortened treatment time were achieved in the AC-AS system. To achieve the same COD, DOC and aniline removal (90%), the AC-AS system saved 30, 38 and 58 h compared with the AS system, respectively. The enhancement mechanism of AC on the AS was explored by metagenomic analysis and three-dimensional excitation-emission-matrix spectra (3DEEMs). More organics, especially aromatic substances were removed in the AC-AS system. These results showed that the addition of AC promoted the microbial activity in pollutant degradation. Bacteria, such as Pyrinomonas, Acidobacteria and Nitrospira and genes, such as hao, pmoA-amoA, pmoB-amoB and pmoC-amoC, were found in the AC-AS reactor, which might have played important roles in the degradation of pollutants. To sum up, AC might have enhanced the growth of aerobic bacteria which further improved the removal efficiency via the combined effects of adsorption and biodegradation. The successful treatment of Xiangshui accident wastewater using the AC-AS demonstrated the potential universal characteristics of the process for the treatment of wastewater with high concentration of organic matter and toxicity. This study is expected to provide reference and guidance for the treatment of similar accident wastewaters.
Collapse
Affiliation(s)
- Guanying Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhuang Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yonghui Song
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
25
|
Ansari SA, Shakeel A, Sawarkar R, Maddalwar S, Khan D, Singh L. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. ENVIRONMENTAL RESEARCH 2023; 224:115529. [PMID: 36822534 DOI: 10.1016/j.envres.2023.115529] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Although the composting of lignocellulosic biomass is an emerging waste-to-wealth approach towards organic waste management and circular economy, it still has some environmental loopholes that must be addressed to make it more sustainable and reliable. The significant difficulties encountered when composting lignocellulosic waste biomass are consequently discussed in this study, as well as the advances in science that have been achieved throughout time to handle these problems in a sustainable manner. It discusses an important global concern, the emission of greenhouse gases during the composting process which limits its applicability on a broader scale. Furthermore, it discusses in detail, how different organic minerals and biological additives modify the physiochemical and biological characteristics of compost, aiming at developing eco-friendly compost with minimum odor, greenhouse gases emission and an optimum C/N ratio. It brings novel insights by demonstrating the effect of additives on the microbial enzymes and their pathways involved in the degradation of lignocellulosic biomass. This review also highlights the limitations of the application of additives in composting and suggests possible ways to overcome these limitations in the future for the sustainable and eco-friendly management of agricultural waste. The present review concludes that the use of additives in the co-composting of lignocellulosic biomass can be a viable remedy for the ongoing issues with the management of lignocellulosic waste.
Collapse
Affiliation(s)
- Suhel Aneesh Ansari
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Adnan Shakeel
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Riya Sawarkar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Shrirang Maddalwar
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Debishree Khan
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR NEERI, Nagpur, India.
| |
Collapse
|
26
|
Piao M, Li A, Du H, Sun Y, Du H, Teng H. A review of additives use in straw composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57253-57270. [PMID: 37012566 DOI: 10.1007/s11356-023-26245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 05/10/2023]
Abstract
Straw composting is not only a process of decomposition and re-synthesis of organic matter, but also a process of harmless treatment, avoiding air pollution caused by straw burning. Many factors, including raw materials, humidity, C/N, and microbial structure, may determine the composting process and the quality of final product. In recent years, many researches have focused on composting quality improvement by adding one or more exogenous substances, including inorganic additives, organic additives, and microbial agents. Although a few review publications have compiled the research on the use of additives in composting, none of them has specifically addressed the composting of crop straw. Additives used in straw composting can increase degradation of recalcitrant substances and provide ideal living surroundings for microorganism, and thus reduce nitrogen loss and promote humus formation, etc. This review's objective is to critically evaluate the impact of various additives on straw composting process, and analyze how these additives enhance final quality of composting. Furthermore, a vision for future perspectives is provided. This paper can serve as a reference for straw composting process optimization and composting end-product improvement.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Ang Li
- College of Engineering, Jilin Normal University, Siping, China
| | - Huishi Du
- College of Tourism and Geographical Science, Jilin Normal University, Siping, China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Engineering, Jilin Normal University, Siping, China.
| |
Collapse
|
27
|
Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N, Sumathijones C, Rajagopal R, Chang SW, Ravindran B, Awasthi MK. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. BIORESOURCE TECHNOLOGY 2023; 372:128679. [PMID: 36706818 DOI: 10.1016/j.biortech.2023.128679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biofuel or biogas have become the primary source of bio-energy, providing an alternative to conventionally used energy that can meet the growing energy demand for people all over the world while reducing greenhouse gas emissions. Enzyme hydrolysis in bioethanol production is a critical step in obtaining sugars fermented during the final fermentation process. More efficient enzymes are being researched to provide a more cost-effective technique during enzymatic hydrolysis. The exploitation of microbial catabolic biochemical reactions to produce electric energy can be used for complex renewable biomasses and organic wastes in microbial fuel cells. In hydrolysis methods, a variety of diverse enzyme strategies are used to promote efficient bioethanol production from various lignocellulosic biomasses like agricultural wastes, wood feedstocks, and sea algae. This paper investigates the most recent enzyme hydrolysis pathways, microbial fermentation, microbial fuel cells, and anaerobic digestion in the manufacture of bioethanol/bioenergy from lignocellulose biomass.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001 Uttarakhand, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - C Sumathijones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China.
| |
Collapse
|
28
|
Kong Z, Wang H, Yan G, Yan Q, Kim JR. Limited dissolved oxygen facilitated nitrogen removal at biocathode during the hydrogenotrophic denitrification process using bioelectrochemical system. BIORESOURCE TECHNOLOGY 2023; 372:128662. [PMID: 36693505 DOI: 10.1016/j.biortech.2023.128662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Effects of limited dissolved oxygen (DO) on hydrogenotrophic denitrification at biocathode was investigated using bioelectrochemical system. It was found that total nitrogen removal increased by 5.9%, as DO reached about 0.24 mg/L with the cathodic chamber unplugged (group R_Exposure). With the presence of limited DO, not only the nitrogen metabolic pathway was influenced, but the composition of microbial communities of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were enriched accordingly. After metagenomic analysis, enriched genes in R_Exposure were found to be associated with nearly each of nitrogen removal steps as denitrification, nitrification, DNRA, nitrate assimilation and even nitrogen fixation. Moreover, genes encoding both Complexes III and IV constituted the electron transfer chain were significantly enriched, indicating that more electrons would be orientated to the reduction of NO2--N, NO-N and oxygen. Therefore, enhanced nitrogen removal could be attained through the co-respiration of nitrate and oxygen by means of NH4+-N oxidation.
Collapse
Affiliation(s)
- Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guoliang Yan
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd, Beijing 100083, China
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| |
Collapse
|
29
|
Chen L, Li W, Zhao Y, Zhang S, Meng L. Mechanism of sulfur-oxidizing inoculants and nitrate on regulating sulfur functional genes and bacterial community at the thermophilic compost stage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116733. [PMID: 36372033 DOI: 10.1016/j.jenvman.2022.116733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The emission of H2S odors predominantly occurred at the thermophilic phase of composting, which could cause odorous gas pollution and reduce the fertilizer value of composting products. And sulfur-oxidizing bacteria (SOB) possess oxidative capacities for inorganic sulfur compounds with nitrate applied as electron acceptors. Therefore, this study aimed to assess the effectiveness of combined additives (SOB inoculants and nitrate) on the bacterial community diversity, sulfur-oxidizing gene abundances, and metabolic function prediction at the thermophilic stage of sewage sludge composting. The highest sulfate contents were increased by 1.02-1.34 folds, and the abundances of the sulfur-oxidizing genes (sqr, pdo, sox, and sor) were also enhanced by adding the combined additives. Network patterns revealed a strengthened interaction of inoculants and sulfur functional genes. Microbial functional pathways predicted higher metabolic levels of carbohydrate and amino acid metabolisms with the addition of combined additives, and the predicted relative abundances of sulfur metabolism and nitrogen metabolism were increased by 19.3 ± 2.5% and 24.7 ± 4.1%, respectively. Heatmap analysis showed that the SOB might have a competitive advantage over the indigenous denitrifying bacteria in using nitrate for biochemical reactions. Correlation analyses suggested that sulfur-oxidizing efficacy could be indirectly affected by the environmental parameters through changing the structure of bacterial community. These findings provide new insights toward an optimized inoculation strategy of using SOB and nitrate to enhance sulfur preservation and modulate the bacterial communities at the thermophilic phase of sewage sludge composting.
Collapse
Affiliation(s)
- Li Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
30
|
Hu Z, Zhao Q, Zhang X, Ning X, Liang H, Cao W. Winter Green Manure Decreases Subsoil Nitrate Accumulation and Increases N Use Efficiencies of Maize Production in North China Plain. PLANTS (BASEL, SWITZERLAND) 2023; 12:311. [PMID: 36679024 PMCID: PMC9866620 DOI: 10.3390/plants12020311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Planting a deep-rooted green manure (GM) (more than 1.0 m depth) greatly improves soil fertility and reduces the loss of nutrients. However, few studies have examined the response of soil nitrogen (N) distribution in the soil profile and subsoil N recovery to the long-term planting and incorporation of deep-rooted GM. Based on a 12-year (2009−2021) experiment of spring maize-winter GMs rotation in the North China Plain (NCP), this study investigated the effects of different GMs that were planted over the winter, including ryegrass (RrG, Lolium L.) (>1.0 m), Orychophragmus violaceus (OrV, Orychophragmus violaceus L.) (>0.8 m), and hairy vetch (VvR, Vicia villosa Roth.) (>1.0 m), on the spring maize yield, N distribution in the deep soil profile, N use efficiencies, functional gene abundances involving soil nitrification−denitrification processes and N2O production. Compared with the winter fallow, the maize yield significantly increased by 11.6% after 10 years of green manuring, and water storage in 0−200 cm soil profile significantly increased by 5.0−17.1% at maize seedling stage. The total N content in the soil layer at 0−90 cm increased by 15.8−19.7%, while the nitrate content in the deep soil layer (80−120 cm) decreased by 17.8−39.6%. Planting GM significantly increased the N recovery rate (10.4−32.7%) and fertilizer N partial productivity (4.6−13.3%). Additionally, the topsoil N functional genes (ammonia-oxidizing archaea amoA, ammonia-oxidizing bacterial amoA, nirS, nirK) significantly decreased without increasing N2O production potential. These results indicated that long-term planting of the deep-rooted GM effectively reduce the accumulation of nitrates in the deep soil and improve the crop yield and N use efficiencies, demonstrating a great value in green manuring to improve the fertility of the soil, increase the crop yield, and reduce the risk of N loss in NCP.
Collapse
Affiliation(s)
- Zonghui Hu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Qiu Zhao
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xinjian Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xiaoguang Ning
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Hao Liang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
31
|
Piechota G, Unpaprom Y, Dong CD, Kumar G. Recent advances in biowaste management towards sustainable environment. BIORESOURCE TECHNOLOGY 2023; 368:128326. [PMID: 36396035 DOI: 10.1016/j.biortech.2022.128326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bio-wastes and their utilization has been increasing enormously, due to its generation and management practices towards making the clearner environment. Bio-waste disposal that follow the emerging global human population has commended the hunt to certain methods sustainably for the bio-waste management to overwhelmed the ecological issues, prompted by means of the collection of such waste materials. The bio-conversion process of the various bio-wastes into high value added products seems to be practicable in various venues in terms of technological and financial supports. Thereby, this preface presentat about of bio-wastes management and new trends towards circular economy and challenges to acheive it by considering the Virtual Special Issue (VSI) dedicated in Bioresourse Technology Journal.
Collapse
Affiliation(s)
- Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
| | - Yuwalee Unpaprom
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| | - Cheng-Di Dong
- Research Center for Environmental Medicine, Kaohsiung University, Kaohsiung City 807, Taiwan
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway.
| |
Collapse
|
32
|
Wang N, Zhao K, Li F, Peng H, Lu Y, Zhang L, Pan J, Jiang S, Chen A, Yan B, Luo L, Huang H, Li H, Wu G, Zhang J. Characteristics of carbon, nitrogen, phosphorus and sulfur cycling genes, microbial community metabolism and key influencing factors during composting process supplemented with biochar and biogas residue. BIORESOURCE TECHNOLOGY 2022; 366:128224. [PMID: 36328174 DOI: 10.1016/j.biortech.2022.128224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling functional genes and bacterial and fungal communities during composting with biochar and biogas residue amendments were studied. Correlations between microbial community structure, functional genes and physicochemical properties were investigated by network analysis and redundancy analysis. It was shown that the gene of acsA abundance accounted for about 50% of the C-related genes. Biogas residue significantly decreased the abundance of denitrification gene nirK. Biogas residues can better promote the diversity of bacteria and fungi during composting. Biochar significantly increased the abundance of Humicola. Redundancy analysis indicated that pile temperature, pH, EC were the main physicochemical factors affecting the microbial community. WSC and NO3--N have significant correlation with C, N, P, S functional genes. The research provides a theoretical basis for clarifying the metabolic characteristics of microbial communities during composting and for the application of biochar and biogas residues in composting.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Keqi Zhao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Hua Peng
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Yaoxiong Lu
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hui Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
33
|
Bao J, Lv Y, Qv M, Li Z, Li T, Li S, Zhu L. Evaluation of key microbial community succession and enzyme activities of nitrogen transformation in pig manure composting process through multi angle analysis. BIORESOURCE TECHNOLOGY 2022; 362:127797. [PMID: 35987437 DOI: 10.1016/j.biortech.2022.127797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This experiment aimed to investigate changes in enzyme activity, microbial succession, and nitrogen conversion caused by different initial carbon-to-nitrogen ratios of 25:1, 35:1 and 20:1 (namely CK, T1 and T2) during pig manure composting. The results showed that the lower carbon-to-nitrogen ratio (T2) after composting retained 19.64 g/kg of TN which was more than 16.74 and 17.32 g/kg in treatments of CK and T1, respectively, but excessive conversion of ammonium nitrogen to ammonia gas resulted in nitrogen loss. Additional straw in T1 could play the role as a bulking agent. After composting, TN in T1 retained the most, and TN contents were 63.51 %, 67.34 % and 56.24 % in CK, T1 and T2, respectively. Network analysis indicated that many types of microorganisms functioned as a whole community at various stages of nitrogen cycle. This study suggests that microbial community structure modification might be a good strategy to reduce ammonium nitrogen loss.
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Mingxiang Qv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Tianrui Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
34
|
Lin X, Wang N, Li F, Yan B, Pan J, Jiang S, Peng H, Chen A, Wu G, Zhang J, Zhang L, Huang H, Luo L. Evaluation of the synergistic effects of biochar and biogas residue on CO 2 and CH 4 emission, functional genes, and enzyme activity during straw composting. BIORESOURCE TECHNOLOGY 2022; 360:127608. [PMID: 35840030 DOI: 10.1016/j.biortech.2022.127608] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
This study examined the effects of biochar, biogas residue, and their combined amendments on CO2 and CH4 emission, enzyme activity, and related functional genes during rice straw composting. Results showed that the biogas residue increased CO2 and CH4 emissions by 13.07 % and 74.65 %, while biochar had more obvious inhibition. Biogas residue addition enhanced functional gene abundance more than biochar. Biogas residue raised the methanogens mcrA gene by 2.5 times. Biochar improved the Acetyl-CoA synthase and β-glucosidase activities related to carbon fixation and decreased coenzyme activities related to methanogens. Biochar and biogas residue combined amendments enhanced the acsB gene abundance for CO2 assimilation process and decreased methyl-coenzyme M reductase α subunit activity. Pearson correlation analysis indicated that organic matter was the significant variable affecting CO2 and CH4 emissions (P < 0.01). These results indicated biochar played significant roles in carbon loss and greenhouse emissions caused by biogas residue incorporation during composting.
Collapse
Affiliation(s)
- Xu Lin
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Nanyi Wang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Fanghong Li
- College of Resources and Environment, Hunan Agricultural University, 410128, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shilin Jiang
- College of Resources and Environment, Hunan Agricultural University, 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410029, China
| | - Hua Peng
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, China.
| | - Lihua Zhang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 410128, China
| |
Collapse
|
35
|
Hashim S, Waqas M, Rudra RP, Akhtar Khan A, Mirani AA, Sultan T, Ehsan F, Abid M, Saifullah M. On-Farm Composting of Agricultural Waste Materials for Sustainable Agriculture in Pakistan. SCIENTIFICA 2022; 2022:5831832. [PMID: 35979342 PMCID: PMC9377972 DOI: 10.1155/2022/5831832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Agriculture is the economic backbone of Pakistan. 67% of country's population resides in rural areas and primarily depends on agriculture. Pakistan's soils are poor in OM and have a low C : N ratio, and the overall fertility status is insufficient to support increased crop yields. Compost is an excellent alternative solution for improving soil OM content. However, this excellent alternative supply in Pakistan has yet to be used. Mass volumes of leaves, grass clippings, plant stalks, vines, weeds, twigs, and branches are burned daily. In this study, different compost piles (P1, P2, and P3) of compost were made using different agricultural and animal waste combinations to assess temperature, pH, and NPK. Results revealed that P3 demonstrated the most successful composting procedure. The temperature and pH levels throughout the composting process were determined in a specified range of 42-45oC and 6.1-8.3, respectively. Total nitrogen content ranged from 81.5 to 2175 ppm in farm compost. Total phosphorus concentrations range from 1.33 to 13.98 ppm, and potassium levels, on the other hand, range from 91.53 to 640 ppm in farm compost. The overall nitrogen concentration grew progressively between each pile at the end of a week. The varied concentrations revealed that adding various forms of agricultural waste would result in a variation in the quantity of NPK owing to microbial activity. On-farm composting has emerged as an effective technique for the sustainability of agricultural activities, capable of resolving crucial problems like crop residues and livestock waste disposal. Based on this study's results, the pile (P3) combination shows the best NPK value performance and is recommended for agricultural uses to overcome the OM deficiency.
Collapse
Affiliation(s)
- Sarfraz Hashim
- Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Waqas
- Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | | | - Alamgir Akhtar Khan
- Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Asif Ali Mirani
- Director Agri. Mechanization, Agricultural Engineering Division, Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Tariq Sultan
- Director Agri. Mechanization, Agricultural Engineering Division, Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Farrukh Ehsan
- Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Abid
- Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Muhammad Saifullah
- Department of Agricultural Engineering, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| |
Collapse
|