1
|
Hu M, Zhu K, Wei J, Yang K, Wu L, Zong S, Wang Z. Silk fibroin-based wearable SERS biosensor for simultaneous sweat monitoring of creatinine and uric acid. Biosens Bioelectron 2024; 265:116662. [PMID: 39180829 DOI: 10.1016/j.bios.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/13/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Sweat biomarkers have the potential to offer valuable clinical insights into an individual's health and disease condition. Current sensors predominantly utilize enzymes and antibodies as biometric components to measure biomarkers present in sweat quantitatively. However, enzymes and antibodies are susceptible to interference by environmental factors, which may affect the performance of the sensor. Herein, we present a wearable microfluidic surface-enhanced Raman scattering (SERS) biosensor that enables the non-invasive and label-free detection of biomarkers in sweat. Concretely, we developed a bimetallic self-assembled anti-opal array structure with uniform hot spots, enhanced the Raman scattering effect, and integrated it into a silk fibroin-based sensing patch. Utilizing a silk fibroin substrate in the wearable SERS sensor imparts desirable properties such as softness, breathability, and biocompatibility, which enables the sensor to establish close contact with the skin without causing chemical or physical irritation. In addition, introducing microfluidic channels enables the controlled and high temporal resolution management of sweat, facilitating more efficient sweat collection. The proposed label-free SERS sensor can offer chemical 'fingerprint' information, enabling the identification of sweat analytes. As an illustration of the feasibility, we have effectively monitored the creatinine and uric acid levels in sweat. This study presents a versatile and highly sensitive approach for the simultaneous detection of biomarkers in human sweat, showcasing significant potential for application in point-of-care monitoring.
Collapse
Affiliation(s)
- Mengsu Hu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Jinxiu Wei
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
2
|
Chen ZH, Sun N, Li JP, Zheng JW, Wang YH, Zhou XS, Zheng B. SERS calibration substrate with a silent region internal standard for reliable simultaneous detection of multiple antibiotics in water. Talanta 2024; 283:127133. [PMID: 39488159 DOI: 10.1016/j.talanta.2024.127133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
As the extensive use of antibiotics has led to the rapid spread of antibiotic resistance, there is an urgent need for quantitative assessment of antibiotic residues in the environment. Surface-enhanced Raman spectroscopy (SERS) has emerged as a rapid and cost-effective detection method, but it suffers from the high variability in signal intensities, its quantitative detection remains challenging. Herein, we have developed a SERS calibration substrate with a silent region internal standard, enabling simultaneous and reliable quantitative detection of three commonly antibiotics of penicillin potassium (PP), tetracycline hydrochloride (TCH) and levofloxacin (LEV). The calibration substrate is made by assembling Au @ 4-mercaptobenzonitrile (4-MBN) @ SiO2 on silicon wafer. The chemically-inert silica shell allows the substrate to remain SERS active for more than 24 weeks in the air. The vC ≡ N of 4-MBN in the silent region of 1800-2800 cm-1 provides an effective reference for correcting Raman signal fluctuations. The relative SERS intensity by normalizing to the internal standard (IS) of vC ≡ N shows a linear response against to the logarithmic concentration with a correlation coefficient of 0.997, 0.976, 0.998 and a limit of detection (LOD) of 26.9, 28.2, 2.4 nM for PP, TCH and LEV, respectively. Furthermore, simultaneous detection and principal component analysis (PCA) of these antibiotics in lake water with a concentration range of 1-100 mg/L can achieve a sensitivity and specificity of 100 %. This novel quantitative technique of using this SERS calibration substrate shows promises as a high-throughput platform for multiple trace antibiotics analysis.
Collapse
Affiliation(s)
- Zhao-He Chen
- School of Public Health, Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Nan Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jian-Ping Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Wei Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Bin Zheng
- School of Public Health, Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
3
|
Ma C, Zhang Q, Liang J, Yang S, Zhang T, Ruan F, Tang H, Li H. Quantitative analysis of four PAHs in oily sludge by surface-enhanced Raman spectroscopy (SERS) combined with partial least squares regression (PLS) based on a novel nano-silver-silicon coupling substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124531. [PMID: 38805992 DOI: 10.1016/j.saa.2024.124531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) present in oily sludge generated by the petroleum and petrochemical industries have emerged as a prominent concern within the realm of environmental conservation. The precise determination of PAHs holds immense significance in both petroleum geochemistry and environmental protection. In this study, a combination of surface-enhanced Raman spectroscopy (SERS) and solid-liquid extraction was employed for the screening of PAHs in oily sludge. Methanol was utilized as the extraction solvent for PAHs, while nanosilver-silicon coupling substrates were employed for their detection. The SERS spectrum was acquired using a portable Raman spectrometer. The nano silver-silicon coupling substrate exhibits excellent uniformity, with relative standard deviations (RSDs) of Phenanthrene, Fluoranthrene, Fluorene and Naphthalene (Phe, Flt, Flu and Nap) being 2.8%, 1.08%, 1.41%, and 5.44% respectively. Moreover, the limits of detection (LODs) achieved remarkable values of 0.542 μg/g, 0.342 μg/g, 0.541 μg/g, and 5.132 μg/g. The quantitative analysis of PAHs in oily sludge was investigated using SERS technology combined with partial least squares (PLS). The optimal PLS calibration model was optimized by combining spectral preprocessing methods and using the SiPLS (Synergy interval partial least squares)-VIP (Variable Importance in Projection) hybrid variable selection strategy. The prediction performance of the D1st (First derivative)-WT (Wavelet transform)-SiPLS-VIP-PLS model was deemed satisfactory, as evidenced by high R2P values of 0.9851, 0.9917, and 0.9925 for Phe, Flt, and Flu respectively; additionally, the corresponding MREP values were found to be 0.0580, 0.0668, and 0.0669 respectively. However, for Nap analysis, the D1st-WT-PLS model proved to be a better calibration model with an R2P value of 0.9864 and an MREP (Mean relative error of prediction) value of 0.0713. In summary, SERS technology combined with PLS based on different spectral pretreatment methods and mixed variable selection strategies is a promising method for quantitative analysis of PAHs in oily sludge, which will provide new ideas and methods for the quantitative analysis of PAHs in oily sludge.
Collapse
Affiliation(s)
- Changfei Ma
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China
| | - Qun Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China
| | - Jing Liang
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China
| | - Shan Yang
- College of Chemistry and Materials, Weinan Normal University, Weinan 714099, China
| | - Tianlong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China
| | - Fangqi Ruan
- Department of Ultrasound, Xijing Hypertrophic Cardiomyopathy Center, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Hongsheng Tang
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | - Hua Li
- Key Laboratory of Synthetic and Natural Functional Molecular of the Ministry of Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
4
|
Atta S, Vo-Dinh T. Improved solution-based SERS detection of creatinine by inducing hydrogen-bonding interaction for effective analyte capture. Talanta 2024; 278:126373. [PMID: 38901075 DOI: 10.1016/j.talanta.2024.126373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Recently, solution-based surface-enhanced Raman scattering (SERS) detection technique has been widely recognized due to its cost-effectiveness, simplicity, and ease of use. However, solution-based SERS is limited for practical applications mainly because of the weak adsorption affinity of the target biomolecules to the surface of plasmonic nanoparticles. Herein, we developed a highly sensitive solution-based SERS sensing platform based on mercaptopropionic acid (MPA)-capped silver-coated gold nanostars (SGNS@MPA), which allows efficient enrichment on the nanostars surface for improved detection of an analyte: creatinine, a potential biomarker of chronic kidney disease (CKD). The SGNS@MPA exhibited high enrichment ability towards creatinine molecules in alkaline medium (pH-9) through multiple hydrogen bonding interaction, which causes aggregation of the nanoparticles and enhances the SERS signal of creatinine. The detection limit for creatinine was achieved at 0.1 nM, with a limit of detection (LOD) value of 14.6 pM. As a proof-of-concept demonstration, we conducted the first quantitative detection of creatinine in noninvasive human fluids, such as saliva and sweat, under separation-free conditions. We achieved a detection limit of up to 1 nM for both saliva and sweat, with LOD values as low as 0.136 nM for saliva and 0.266 nM for sweat. Overall, our molecular enrichment strategy offers a new way to improve the solution-based SERS detection technique for real-world practical applications in point-of-care settings and low-resource settings.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Durham, NC, 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Durham, NC, 27708, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
5
|
Xu Q, Ding N, Ma D, Lin H, Lin B, Ma X, Yang J, Guo L. Portable Hadamard-Transform Raman Spectrometer: A Powerful Analytical Tool for Point-of-Care Testing. Anal Chem 2024. [PMID: 39017607 DOI: 10.1021/acs.analchem.3c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
A portable Hadamard-transform Raman spectrometer with excellent performance was fabricated consisting of a 785 nm laser, an optical filter, an optical system, a control system, and a signal processing system. As the core of the spectrometer, the optical system was composed of a slit, collimator, optical grating, reflector, digital micromirror devices (DMD), lens system, and InGaAs photodetector. Compared with a conventional dispersive Raman spectrometer, the proposed Raman spectrometer adopted the DMD and corresponding controlling device (DLPC350 control chip) to collect the Raman spectrum. Thus, in our design, the gratings are fixed, while the full Raman spectrum was collected by the deflection of the micromirror. This design can greatly improve the vibration resistance ability of the spectrometer since the gratings are not rotating during the spectrum collecting. More importantly, Hadamard-transform was used as signal processing technology, which has the ability of faster calculation, the merits of high energy input, single detector multichannel simultaneous detection (imaging) ability, and high signal-to-noise ratio (SNR). Hence, the Hadamard-transform portable Raman spectrometer has the potential to be applied in the field of point-of-care testing (POCT).
Collapse
Affiliation(s)
- Qing Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Ning Ding
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Dan Ma
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - HongJian Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Bingyong Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Jie Yang
- Zhejiang Puchuang Instrument Co., LTD, Jiaxing 314033, PR China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|
6
|
Wang L, Sun J, Wang X, Lei M, Shi Z, Liu L, Xu C. Visual and quantitative lateral flow immunoassay based on Au@PS SERS tags for multiplex cardiac biomarkers. Talanta 2024; 274:126040. [PMID: 38581853 DOI: 10.1016/j.talanta.2024.126040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Rapid and sensitive detection of multiple biomarkers by lateral flow immunoassay (LFIA) remains challenging for signal amplification for commonly used nanotags. Herein, we report a novel LFIA strip for visual and highly sensitive analysis of two cardiac biomarkers based on functionalized gold nanoparticles @ polystyrene microsphere (Au@PS)microcavity as surface-enhanced Raman scattering (SERS) tags. Antibody-modified Au@PS was designed as a SERS label. The evanescent waves propagating along the surface of the PS microcavity and the localized surface plasmons of the gold nanoparticles were coupled to enhance the light-matter interaction synergistically for Raman signal enhancement. In this strategy, the proposed Au@PS SERS tags-based LFIA was carried out to quantify the content of the heart failure and infarct biomarkers synchronously within 15 min and get the limits of detection of 1 pg/mL and 10 pg/mL for cardiac troponin I (cTnI) and N-terminal natriuretic peptide precursor (NT-proBNP), respectively. The results demonstrated 10-20 folds more sensitivity than that of the standard colloidal gold strip and fluorescent strip for the same biomarkers. This novel quantitative LFIA shows promise as a high-sensitive and visual sensing method for relevant clinical and forensic analysis.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jianli Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoxuan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Milan Lei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zengliang Shi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Lei Liu
- Faculty Electronic Information Engineering, Huaiyin Institute of Technology, Huaiyin, 223003, China.
| | - Chunxiang Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
7
|
Ye H, Esfahani EB, Chiu I, Mohseni M, Gao G, Yang T. Quantitative and rapid detection of nanoplastics labeled by luminescent metal phenolic networks using surface-enhanced Raman scattering. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134194. [PMID: 38583196 DOI: 10.1016/j.jhazmat.2024.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
The escalating prevalence of nanoplastics contamination in environmental ecosystems has emerged as a significant health hazard. Conventional analytical methods are suboptimal, hindered by their inefficiency in analyzing nanoplastics at low concentrations and their time-intensive processes. In this context, we have developed an innovative approach that employs luminescent metal-phenolic networks (L-MPNs) coupled with surface-enhanced Raman spectroscopy (SERS) to separate and label nanoplastics, enabling rapid, sensitive and quantitative detection. Our strategy utilizes L-MPNs composed of zirconium ions, tannic acid, and rhodamine B to uniformly label nanoplastics across a spectrum of sizes (50-500 nm) and types (e.g., polystyrene, polymethyl methacrylate, polylactic acid). Rhodamine B (RhB) functions as a Raman reporter within these L-MPNs-based SERS tags, providing the requisite sensitivity for trace measurement of nanoplastics. Moreover, the labeling with L-MPNs aids in the efficient separation of nanoplastics from liquid media. Utilizing a portable Raman instrument, our methodology offers cost-effective, swift, and field-deployable detection capabilities, with excellent sensitivity in nanoplastic analysis and a detection threshold as low as 0.1 μg/mL. Overall, this study proposes a highly promising strategy for the robust and sensitive analysis of a broad spectrum of particle analytes, underscored by the effective labeling performance of L-MPNs when coupled with SERS techniques.
Collapse
Affiliation(s)
- Haoxin Ye
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ehsan Banayan Esfahani
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Ivy Chiu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver V6T1Z4, Canada
| | - Guang Gao
- Life Sciences Institute, The University of British Columbia, Vancouver V6T1Z2, Canada
| | - Tianxi Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver V6T1Z4, Canada.
| |
Collapse
|
8
|
Hou H, Liu Y, Li X, Liu W, Gong X. Rapid electrodeposition of Cu nanoparticle film on Ni foam as an integrated 3D free-standing electrode for non-invasive and non-enzymatic creatinine sensing. Analyst 2024; 149:2905-2914. [PMID: 38572989 DOI: 10.1039/d4an00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
High cost, inherent destabilization, and intricate fixing of enzyme molecules are the main drawbacks of enzyme-based creatinine sensors. The design of a low-cost, stabilizable, and enzyme-free creatinine sensing probe is essential to address these limitations. In this work, an integrated three-dimensional (3D) free-standing electrode was designed to serve as a non-enzymatic creatinine sensing platform and was fabricated by rapid electrodeposition of a dense copper nanoparticle film on nickel foam (Cu NP film/NF). This low-cost, stable, easy-to-fabricate, and binder-free Cu NP film/NF electrode has abundant active sites and excellent electrochemical performance. Cyclic voltammetry measurements show a wide linear range (0.25-24 mM), low detection limit (0.17 mM), and high sensitivity (306 μA mM-1 cm-2). The developed sensor shows high recovery of creatinine concentration in real urine. Besides, it has better specificity, reproducibility, and robustness in detecting creatinine. These excellent results suggest that a non-enzymatic creatinine sensor based on an integrated 3D free-standing Cu NP film/NF electrode has good potential for non-invasive detection of urinary creatinine.
Collapse
Affiliation(s)
- Hongming Hou
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Yifan Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xianglong Li
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
- Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Wenbo Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaoli Gong
- School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Zhou JW, Zheng XB, Liu HS, Wen BY, Kou YC, Zhang L, Song JJ, Zhang YJ, Li JF. Reliable quantitative detection of uric acid in urine by surface-enhanced Raman spectroscopy with endogenous internal standard. Biosens Bioelectron 2024; 251:116101. [PMID: 38324971 DOI: 10.1016/j.bios.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Abnormal levels of uric acid (UA) in urine serve as warning signs for gout and metabolic cardiovascular diseases, necessitating the monitoring of UA levels for early prevention. However, the current analytical methods employed suffer from limitations in terms of inadequate suitability for home-based applications and the requirement of non-invasive procedures. In this approach, creatinine, a metabolite with a constant excretion rate, was incorporated as an endogenous internal standard (e-IS) for calibration, presenting a rapid, pretreatment-free, and accurate strategy for quantitative determination of UA concentrations. By utilizing urine creatinine as an internal reference value to calibrate the signal fluctuation of surface-enhanced Raman spectroscopy (SERS) of UA, the quantitative accuracy can be significantly improved without the need for an external internal standard. Due to the influence of the medium, UA, which carries a negative charge, is selectively adsorbed by Au@Ag nanoparticles functionalized with hexadecyltrimethylammonium chloride (CTAC) in this system. Furthermore, a highly convenient detection method was developed, which eliminates the need for pre-processing and minimizes matrix interference by simple dilution. The method was applied to the urine detection of different volunteers, and the results were highly consistent with those obtained using the UA colorimetric kit (UACK). The detection time of SERS was only 30 s, which is 50 times faster than UACK. This quantitative strategy of using urinary creatinine as an internal standard to correct the SERS intensity of uric acid is also expected to be extended to the quantitative detection needs of other biomarkers in urine.
Collapse
Affiliation(s)
- Jing-Wen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Department of Physics, Institute of Artificial Intelligence, Xiamen Heart Research Center Affiliated with Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Xiao-Bing Zheng
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou, 310018, China
| | - Heng-Su Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Department of Physics, Institute of Artificial Intelligence, Xiamen Heart Research Center Affiliated with Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Bao-Ying Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Department of Physics, Institute of Artificial Intelligence, Xiamen Heart Research Center Affiliated with Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Yi-Chuan Kou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Department of Physics, Institute of Artificial Intelligence, Xiamen Heart Research Center Affiliated with Xiamen University, Xiamen University, Xiamen, 361005, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Jing-Jin Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Department of Physics, Institute of Artificial Intelligence, Xiamen Heart Research Center Affiliated with Xiamen University, Xiamen University, Xiamen, 361005, China.
| | - Yue-Jiao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Department of Physics, Institute of Artificial Intelligence, Xiamen Heart Research Center Affiliated with Xiamen University, Xiamen University, Xiamen, 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Department of Physics, Institute of Artificial Intelligence, Xiamen Heart Research Center Affiliated with Xiamen University, Xiamen University, Xiamen, 361005, China; Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou, 310018, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
10
|
Wang J, Jiang H, Chen Y, Zhu X, Wu Q, Chen W, Zhao Q, Wang J, Qin P. CRISPR/Cas9-mediated SERS/colorimetric dual-mode lateral flow platform combined with smartphone for rapid and sensitive detection of Staphylococcus aureus. Biosens Bioelectron 2024; 249:116046. [PMID: 38241798 DOI: 10.1016/j.bios.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Pathogenic bacteria infections pose a significant threat to global public health, making the development of rapid and reliable detection methods urgent. Here, we developed a surface-enhanced Raman scattering (SERS) and colorimetric dual-mode platform, termed smartphone-integrated CRISPR/Cas9-mediated lateral flow strip (SCC-LFS), and applied it to the ultrasensitive detection of Staphylococcus aureus (S. aureus). Strategically, functionalized silver-coated gold nanostar (AuNS@Ag) was prepared and used as the labeling material for LFS assay. In the presence of S. aureus, target gene-induced amplicons can be accurately recognized and unwound by the user-defined CRISPR/Cas9 system, forming intermediate bridges that bind many AuNS@Ag to the test line (T-line) of the strip. As a result, the T-line was colored and a recognizable SERS signal was obtained using a smartphone-integrated portable Raman spectrometer. This design not only maintains the simplicity of visual readout, but also integrates the quantitative capability of SERS, enabling the user to flexibly select the assay mode as needed. With this method, S. aureus down to 1 CFU/mL can be detected by both colorimetric and SERS modes, which is better than most existing methods. By incorporating a rapid extraction procedure, the entire assay can be completed in 45 min. The robustness and practicality of the method were further demonstrated by various real samples, indicating its considerable potential toward reliable screening of S. aureus.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Han Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Yuhong Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xiaofan Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Qian Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China
| | - Wei Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, PR China.
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Jie Wang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui, PR China.
| | - Panzhu Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China.
| |
Collapse
|
11
|
Buhas BA, Toma V, Beauval JB, Andras I, Couți R, Muntean LAM, Coman RT, Maghiar TA, Știufiuc RI, Lucaciu CM, Crisan N. Label-Free SERS of Urine Components: A Powerful Tool for Discriminating Renal Cell Carcinoma through Multivariate Analysis and Machine Learning Techniques. Int J Mol Sci 2024; 25:3891. [PMID: 38612705 PMCID: PMC11011951 DOI: 10.3390/ijms25073891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The advent of Surface-Enhanced Raman Scattering (SERS) has enabled the exploration and detection of small molecules, particularly in biological fluids such as serum, blood plasma, urine, saliva, and tears. SERS has been proposed as a simple diagnostic technique for various diseases, including cancer. Renal cell carcinoma (RCC) ranks as the sixth most commonly diagnosed cancer in men and is often asymptomatic, with detection occurring incidentally. The onset of symptoms typically aligns with advanced disease, aggressive histology, and unfavorable prognosis, and therefore new methods for an early diagnosis are needed. In this study, we investigated the utility of label-free SERS in urine, coupled with two multivariate analysis approaches: Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) and Support Vector Machine (SVM), to discriminate between 50 RCC patients and 44 healthy donors. Employing LDA-PCA, we achieved a discrimination accuracy of 100% using 13 principal components, and an 88% accuracy in discriminating between different RCC stages. The SVM approach yielded a training accuracy of 100%, a validation accuracy of 99% for discriminating between RCC and controls, and an 80% accuracy for discriminating between stages. The comparative analysis of raw and normalized SERS spectral data shows that while raw data disclose relative concentration variations in urine metabolites between the two classes, the normalization of spectral data significantly improves the accuracy of discrimination. Moreover, the selection of principal components with markedly distinct scores between the two classes serves to alleviate overfitting risks and reduces the number of components employed for discrimination. We obtained the accuracy of the discrimination between the RCC patients cases and healthy donors of 90% for three PCs and a linear discrimination function, and a 88% accuracy of discrimination between stages using six PCs, mitigating practically the risk of overfitting and increasing the robustness of our analysis. Our findings underscore the potential of label-free SERS of urine in conjunction with chemometrics for non-invasive and early RCC detection.
Collapse
Affiliation(s)
- Bogdan Adrian Buhas
- Department of Urology, La Croix du Sud Hospital, 52 Chemin de Ribaute St., 31130 Quint Fonsegrives, France; (B.A.B.); (J.-B.B.)
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Valentin Toma
- Department of Nanobiophysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur St., 400337 Cluj-Napoca, Romania;
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hospital, 52 Chemin de Ribaute St., 31130 Quint Fonsegrives, France; (B.A.B.); (J.-B.B.)
| | - Iulia Andras
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| | - Răzvan Couți
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Lucia Ana-Maria Muntean
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania;
| | - Radu-Tudor Coman
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| | - Teodor Andrei Maghiar
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Rareș-Ionuț Știufiuc
- Department of Nanobiophysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur St., 400337 Cluj-Napoca, Romania;
- Department of Pharmaceutical Physics–Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
- Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iași, Romania
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics–Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Bereyhi M, Zare-Dorabei R. High-Sensitivity Creatinine Detection via a Dual-Emission Ratiometric Fluorescence Probe Incorporating Amino-MIL-53@Mo/ZIF-8 and Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5890-5899. [PMID: 38452371 DOI: 10.1021/acs.langmuir.3c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Quantifying creatinine (Cn) in biological fluids is crucial for clinically assessing renal insufficiency, thyroid irregularities, and muscle damage. Therefore, it is crucial for human health to have a simple, quick, and accurate Cn analysis technique. In this study, we have successfully synthesized a 3D ratiometric dual-metal-organic framework, namely, the amino-MIL-53@Mo/ZIF-8 and rhodamie B heterostructure, using an internal strategy for sustained growth. The dual-MOF functions as an adsorbent and preconcentrates Cn. The pH, reaction time, and volume ratio of amino-MIL-53@Mo/ZIF-8/rhodamie B were optimized using the one-variable-at-a-time technique in this study. The quantitative study of the Cn concentration for this RF biosensor was obtained under ideal conditions (R2 = 0.9962, n = 3), encompassing the linear range of 0.35-11.1 μM. The detection and quantitation limits were 0.18 and 0.54 nM, respectively. Both intra- and interday reproducibility showed high repeatability of the RF biosensor, UV-vis, and ZETA potential studies, and the Stern-Volmer relationship was used to clarify the fluorescence quenching process. These superior sensing capabilities and the benefits of simple manufacturing, acceptable stability, and practicality make the RF biosensor intriguing for ultrasensitive Cn detection in practical applications.
Collapse
Affiliation(s)
- Mohammad Bereyhi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
13
|
Wen P, Yang F, Zhao H, Xu Y, Li S, Chen L. Novel Digital SERS-Microfluidic Chip for Rapid and Accurate Quantification of Microorganisms. Anal Chem 2024; 96:1454-1461. [PMID: 38224075 DOI: 10.1021/acs.analchem.3c03515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In this work, we present a simple and novel digital surface-enhanced Raman spectroscopy (SERS)-microfluidic chip designed for the rapid and accurate quantitative detection of microorganisms. The chip employs a high-density inverted pyramid microcavity (IPM) array to separate and isolate microbial samples. The presence or absence of target microorganisms is determined by scanning the IPM array using SERS and identifying the characteristic Raman bands. This approach allows for the "digitization" of the SERS response of each IPM, enabling quantification through the application of mathematical statistical techniques. Significantly, precise quantitative detection of yeast was achieved within a concentration range of 106-109 cells/mL, with the maximum relative standard deviation from the concentration calibrated by the cultivation method being 5.6%. This innovative approach efficiently addresses the issue of irregularities in SERS quantitative detection, which arises due to fluctuations in SERS intensity and poor reproducibility. We strongly believe that this digital SERS-microfluidic chip holds immense potential for diverse applications in the rapid detection of various microorganisms, including pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- Ping Wen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
- School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Feng Yang
- School of Artificial Intelligence, Chongqing Key Laboratory of Intelligent Perception and Blockchain, Chongqing Technology and Business University, Chongqing 400067, China
| | - Haixia Zhao
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Yi Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Shunbo Li
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Li Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Xiao J, Chen Y, Xu T, Zhang X. Hand-held Raman spectrometer-based flexible plasmonic biosensor for label-free multiplex urinalysis. Talanta 2024; 266:124966. [PMID: 37499361 DOI: 10.1016/j.talanta.2023.124966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Urinalysis is an effective strategy to non-invasively evaluate human health, and surface-enhanced Raman scattering (SERS) may be a powerful technique for use in detecting analytes in urine. Herein, we report a wearable diaper sensor based on a handheld Raman spectrometer for use in the simple, label-free identification of biomolecules (urea, creatinine, and bilirubin) in urine. The raspberry-shaped Au substrate formed on the surface of an Si wafer provides plasmonic enhancement of the SERS signals, with an excellent uniformity and stability. The SERS sensor combines the advantages of flexibility, portability, and multifunctional detection and may be used in identifying multiple analytes in urine. The sensor exhibits high sensitivities in detecting urea, creatinine, and bilirubin, with respective detection limits of 4.17 × 10-3 M, 5.90 × 10-6 M, and 1.38 × 10-7 M (signal-to-noise ratio = 3). Furthermore, we used the wearable diaper sensor to monitor biomolecules at the diagnostic threshold, facilitating non-invasive diagnosis and medical monitoring of disease-related biomarkers.
Collapse
Affiliation(s)
- Jingyu Xiao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yanxia Chen
- Beijing Key Laboratory for Sensor, Beijing Information Science and Technology University, Beijing, 100101, China
| | - Tailin Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
15
|
Zhang Q, Yang R, Liu G, Jiang S, Wang J, Lin J, Wang T, Wang J, Huang Z. Smartphone-based low-cost and rapid quantitative detection of urinary creatinine with the Tyndall effect. Methods 2024; 221:12-17. [PMID: 38006950 DOI: 10.1016/j.ymeth.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
This research aims to develop a robust and quantitative method for measuring creatinine levels by harnessing the enhanced Tyndall effect (TE) phenomenon. The envisioned sensing assay is designed for practical deployment in resource-limited settings or homes, where access to advanced laboratory facilities is limited. Its primary objective is to enable regular and convenient monitoring of renal healthcare, particularly in cases involving elevated creatinine levels. The creatinine sensing strategy is achieved based on the aggregation of gold nanoparticles (AuNPs) triggered via the direct crosslinking reaction between creatinine and AuNPs, where an inexpensive laser pointer was used as a handheld light source and a smartphone as a portable device to record the TE phenomenon enhanced by the creatinine-induced aggregation of AuNPs. After evaluation and optimization of parameters such as AuNP concentrations and TE measurement time, the subsequent proof-of-concept experiments demonstrated that the average gray value change of TE images was linearly related to the logarithm of creatinine concentrations in the range of 1-50 μM, with a limit of detection of 0.084 μM. Meanwhile, our proposed creatinine sensing platform exhibited highly selective detection in complex matrix environments. Our approach offers a straightforward, cost-effective, and portable means of creatinine detection, presenting an encouraging signal readout mechanism suitable for point-of-care (POC) applications. The utilization of this assay as a POC solution exhibits potential for expediting timely interventions and enhancing healthcare outcomes among individuals with renal health issues.
Collapse
Affiliation(s)
- Qun Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Rui Yang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350122, PR China
| | - Gang Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Shiyan Jiang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Jiarui Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Juqiang Lin
- School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, PR China
| | - Tingyin Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Jing Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China.
| | - Zufang Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
16
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
17
|
Zhou Y, Lu Y, Liu Y, Hu X, Chen H. Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies. Biosens Bioelectron 2023; 228:115231. [PMID: 36934607 DOI: 10.1016/j.bios.2023.115231] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023]
Abstract
With the progressive nanofabrication technology, plasmonic nanoparticles (PNPs) have been increasingly deployed in the field of biosensing. PNPs have favorable biocompatibility, conductivity, and tunable optical properties. In addition, the localized surface plasmon resonance (LSPR) of PNPs plays a vital role in surface-enhanced Raman scattering (SERS). PNPs-based SERS biosensing enables wide-ranging applications for sensitive detection and high spatial and temporal resolution imaging. Numerous reviews of PNPs in the field of SERS biosensing highlight the fabrication or applications in one or more fields. However, the specific strategies for the SERS biosensor construction had not been summarized systematically. Thus, this work offers a comprehensive overview of SERS enhancement strategies based on PNPs, with a focus on SERS label-free detection along with label detection sensing construction, as well as its challenges and future trends.
Collapse
Affiliation(s)
- Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
18
|
Kukkar D, Chhillar M, Kim KH. Application of SERS-based nanobiosensors to metabolite biomarkers of CKD. Biosens Bioelectron 2023; 232:115311. [PMID: 37086564 DOI: 10.1016/j.bios.2023.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
A clinical diagnosis of chronic kidney disease (CKD) is commonly achieved by estimating the serum levels of urea and creatinine (CR). Given the limitations of the conventional diagnostic assays, it is imperative to seek alternative, economical strategies for the detection of CKD-specific biomarkers with high specificity and selectivity. In this respect, surface-enhanced Raman spectroscopy (SERS) can be regarded as an ideal choice. SERS signals can be greatly amplified by noble metal nanoparticles (e.g., gold nanoparticles (GNPs)) of numerous sizes, shapes, and configurations to help achieve ultra-sensitive single molecule-level detection at 10-15 M (up to 10 orders of magnitude more sensitive than fluorescence-based detection). The irregular geometry of GNPs with spike-like tips, dimers, and aggregates with small nanogaps (i.e., due to plasmon coupling such as Raman hot spots) play a pivotal role in enhancing the specificity and sensitivity of SERS. This review critically outlines the performance of SERS-based biosensors in the ultrasensitive detection of CKD biomarkers in various body fluids in terms of basic quality assurance parameters (e.g., limit of detection, figure of merit, enhancement factor, and stability of the biosensor). Moreover, the challenges and perspectives are described with respect to the expansion of such sensing techniques in practical clinical settings.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Monika Chhillar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
19
|
Han M, Zhang J, Wei H, Zou W, Zhang M, Meng X, Chen W, Shao H, Wang C. Rapid and Robust Analysis of Coumatetralyl in Environmental Water and Human Urine Using a Portable Raman Spectrometer. ACS OMEGA 2023; 8:12878-12885. [PMID: 37065026 PMCID: PMC10099114 DOI: 10.1021/acsomega.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The widespread use and exposure of coumatetralyl (CMTT) has led to its accumulation in the environment and organisms, causing damage to ecosystems and adverse health effects in humans. Unfortunately, achieving fast detection of CMTT remains challenging. Herein, a rapid and robust surface-enhanced Raman spectroscopy (SERS) method was developed for rapid on-site detection of CMTT in environmental water and human urine. Clear trends were observed between the signal intensity and the logarithmic concentration of CMTT, ranging from 0.025 to 5.0 μg/mL with high reproducibility. The detection limits in water and human urine were as low as 1.53 and 13.71 ng/mL, respectively. The recoveries of CMTT for environmental water and urine samples were 90.2-98.2 and 82.0-87.5%, respectively, satisfactory for practical applications. The quantitative results of this approach were highly comparable to those obtained by high-performance liquid chromatography. Most importantly, it is cost-effective, operationally simple, and without a complicated sample preparation step. Detecting CMTT in water samples took only 5 min, and the detection of urine samples was completed within 8 min. This simple yet practical SERS approach offers a reliable application prospect for on-site CMTT detection in environmental water and point-of-care monitoring of poisoned patients.
Collapse
|
20
|
Lin HY, Chen WR, Lu LC, Chen HL, Chen YH, Pan M, Chen CC, Chen C, Yen TH, Wan D. Direct Thermal Growth of Gold Nanopearls on 3D Interweaved Hydrophobic Fibers as Ultrasensitive Portable SERS Substrates for Clinical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207404. [PMID: 36974592 DOI: 10.1002/smll.202207404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based biosensors have attracted much attention for their label-free detection, ultrahigh sensitivity, and unique molecular fingerprinting. In this study, a wafer-scale, ultrasensitive, highly uniform, paper-based, portable SERS detection platform featuring abundant and dense gold nanopearls with narrow gap distances, are prepared and deposited directly onto ultralow-surface-energy fluorosilane-modified cellulose fibers through simple thermal evaporation by delicately manipulating the atom diffusion behavior. The as-designed paper-based SERS substrate exhibits an extremely high Raman enhancement factor (3.9 × 1011 ), detectability at sub-femtomolar concentrations (single-molecule level) and great signal reproductivity (relative standard deviation: 3.97%), even when operated with a portable 785-nm Raman spectrometer. This system is used for fingerprinting identification of 12 diverse analytes, including clinical medicines (cefazolin, chloramphenicol, levetiracetam, nicotine), pesticides (thiram, paraquat, carbaryl, chlorpyrifos), environmental carcinogens (benzo[a]pyrene, benzo[g,h,i]perylene), and illegal drugs (methamphetamine, mephedrone). The lowest detection concentrations reach the sub-ppb level, highlighted by a low of 16.2 ppq for nicotine. This system appears suitable for clinical applications in, for example, i) therapeutic drug monitoring for individualized medication adjustment and ii) ultra-early diagnosis for pesticide intoxication. Accordingly, such scalable, portable and ultrasensitive fibrous SERS substrates open up new opportunities for practical on-site detection in biofluid analysis, point-of-care diagnostics and precision medicine.
Collapse
Affiliation(s)
- Hsin-Yao Lin
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Division of Neurosurgery, Department of Surgery, MacKay Memorial Hospital, 10449, Taipei, Taiwan
| | - Wan-Ru Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Li-Chia Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Hsuen-Li Chen
- Department of Materials Science and Engineering and Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Hsuan Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Michael Pan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Chi-Chia Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Tzung-Hai Yen
- Division of Neurosurgery, Department of Surgery, MacKay Memorial Hospital, 10449, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33378, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| |
Collapse
|
21
|
Liu J, Fan W, Lv X, Wang C. Rapid Quantitative Detection of Voriconazole in Human Plasma Using Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:47634-47641. [PMID: 36591153 PMCID: PMC9798397 DOI: 10.1021/acsomega.2c04521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
There is an increasing demand for rapid detection techniques for monitoring the therapeutic concentration of voriconazole (VRC) in human biological fluids. Herein, a rapid and selective surface-enhanced Raman scatting method for point-of-care determination of VRC in human plasma was developed via a portable Raman spectrometer. This approach has enabled the quantification of the VRC spiked into human plasma at clinical relevant concentrations. A gold nanoparticle solution (Au sol) was used as the SERS substrate, and the agglomerating conditions on its sensitivity were optimized. The method involves the formation of hot spots, and the signal of VRC molecules adsorbed on the surface of the SERS hot spot was amplified by 105. The calibration curve was linear in the range of 0.02-10 ppm, with satisfactory repeatability. The limit of detection was as low as 12.3 ppb. The variation in VRC spectra over time on different substrates demonstrated good reproducibility. Notably, the salting-out extraction method developed in this study was rapid and suitable for the quantitation of drugs in biological samples. Compared with traditional methods, this approach allows for the point-of-care quantification of VRC directly in a complex matrix, which may open up new exciting opportunities for future use of the SERS technique in clinical applications.
Collapse
Affiliation(s)
- Jing Liu
- Department
of Clinical Laboratory, The Second Affiliated Hospital of Shandong
First Medical University, Shandong First
Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, P. R. China
| | - Wufeng Fan
- Outpatient
Department, Affiliated Hospital of Shandong
University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Xiaoxia Lv
- Central
Sterile Supply Department, Affiliated Hospital
of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Cuijuan Wang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. China
| |
Collapse
|
22
|
Borse S, Murthy Z, Kailasa SK. Synthesis of red emissive copper nanoclusters with 2-mercaptopyrimidine for promoting selective and sensitive fluorescent sensing of creatinine as a kidney disease biomarker in biofluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Peng W, Zong XQ, Xie TT, Zhou JW, Yue MF, Wen BY, Wang YH, Chen J, Zhang YJ, Li JF. Ultrafast and field-based detection of methamphetamine in hair with Au nanocake-enhanced Raman spectroscopy. Anal Chim Acta 2022; 1235:340531. [DOI: 10.1016/j.aca.2022.340531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
|
24
|
Au NPs decorated holey g-C3N4 as a dual-mode sensing platform of SERS and SALDI-MS for selective discrimination of L-cysteine. J Colloid Interface Sci 2022; 626:608-618. [DOI: 10.1016/j.jcis.2022.06.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022]
|
25
|
Fu BB, Tian XD, Song JJ, Wen BY, Zhang YJ, Fang PP, Li JF. Self-Calibration 3D Hybrid SERS Substrate and Its Application in Quantitative Analysis. Anal Chem 2022; 94:9578-9585. [PMID: 35770422 DOI: 10.1021/acs.analchem.2c00436] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been widely applied in many fields as a sensitive vibrational fingerprint technique. However, SERS faces challenges in quantitative analysis due to the heterogeneity of hot spots. An internal standard (IS) strategy has been employed for correcting the variation of hot spots. However, the method suffers from limitations due to the competitive adsorption between the IS and the target analyte. In this work, we combined the IS strategy with the 3D hybrid nanostructures to develop a bifunctional SERS substrate. The substrate had two functional units. The bottom self-assembly layer consisted of Au@IS@SiO2 nanoparticles, which provided a stable reference signal and functioned as the calibration unit. The top one consisted of appropriate-sized Au octahedrons for the detection of target analytes, which was the detection unit. Within the 3D hybrid nanostructure, the calibration unit improved the SERS performance of the detection unit, which was demonstrated by the 6-fold increase of SERS intensity when compared with the 2D substrate. Meanwhile, the reproducibility of the detection was greatly improved by correcting the hot spot changes through the calibration unit. Two biomedical molecules of cotinine and creatinine in ultrapure water and artificial urine, respectively, were sensitively determined by the 3D hybrid substrate. We expect that the developed bifunctional 3D substrate will open up new ways to advance the applications of SERS.
Collapse
Affiliation(s)
- Bei-Bei Fu
- Xiamen Cardiovascular Hospital, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang-Dong Tian
- Xiamen Cardiovascular Hospital, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing-Jin Song
- Xiamen Cardiovascular Hospital, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bao-Ying Wen
- Xiamen Cardiovascular Hospital, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- Xiamen Cardiovascular Hospital, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ping-Ping Fang
- KLGHEI of Environment and Energy Chemistry, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- Xiamen Cardiovascular Hospital, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Liang L, Xiong Y, Duan Y, Zuo W, Liu L, Ye F, Zhao S. Colorimetric detection of creatinine based on specifically modulating the peroxidase-mimicking activity of Cu-Fenton system. Biosens Bioelectron 2022; 206:114121. [PMID: 35235861 DOI: 10.1016/j.bios.2022.114121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
|
27
|
Yang J, Wu Y, Wang H, Yang W, Xu Z, Liu D, Chen HJ, Zhang D. An Improved Automated High-Throughput Efficient Microplate Reader for Rapid Colorimetric Biosensing. BIOSENSORS 2022; 12:bios12050284. [PMID: 35624585 PMCID: PMC9138432 DOI: 10.3390/bios12050284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
A high-throughput instrument to measure the full spectral properties of biochemical agents is necessary for fast screening in fields such as medical tests, environmental monitoring, and food analysis. However, this need has currently not been fully met by the commercial microplate reader (CMR). In this study, we have developed an automated high-throughput efficient microplate reader (AHTEMR) platform by combining a spectrometer and high-precision ball screw two-dimensional motion slide together, for high-throughput and full-spectrum-required biochemical assays. A two-dimensional slide working on a ball screw was driven by a stepper motor with a custom-designed master control circuit and used as a motion system of the AHTEMR platform to achieve precise positioning and fast movement of the microplate during measurements. A compact spectrometer was coupled with an in-house designed optical pathway system and used to achieve rapid capture of the full spectral properties of biochemical agents. In a performance test, the AHTEMR platform successfully measured the full spectral absorbance of bovine serum albumin (BSA) and glucose solution in multiple wells of the microplate within several minutes and presented the real-time full spectral absorbance of BSA and glucose solution. Compared with the CMR, the AHTEMR is 79 times faster in full-spectrum measurements and 2.38 times more sensitive at the optimal wavelength of 562 nm. The rapid measurement also demonstrated the great capacity of the AHTEMR platform for screening out the best colorimetric wavelengths for tests of BSA and glucose development, which will provide a promising approach to achieving high-throughput and full-spectrum-required biochemical assays.
Collapse
Affiliation(s)
- Jinhu Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China; (J.Y.); (H.W.)
| | - Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China; (Y.W.); (W.Y.); (Z.X.)
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China; (J.Y.); (H.W.)
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China; (Y.W.); (W.Y.); (Z.X.)
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China; (Y.W.); (W.Y.); (Z.X.)
| | - Dong Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China; (J.Y.); (H.W.)
- Correspondence: (D.L.); (H.-J.C.); (D.Z.)
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China; (J.Y.); (H.W.)
- Correspondence: (D.L.); (H.-J.C.); (D.Z.)
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China; (Y.W.); (W.Y.); (Z.X.)
- Correspondence: (D.L.); (H.-J.C.); (D.Z.)
| |
Collapse
|
28
|
Ortega-Hernández N, Ortega-Romero M, Medeiros-Domingo M, Barbier OC, Rojas-López M. Detection of Biomarkers Associated with Acute Kidney Injury by a Gold Nanoparticle Based Colloidal Nano-Immunosensor by Fourier-Transform Infrared Spectroscopy with Principal Component Analysis. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2053982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Noelia Ortega-Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex Hacienda de San Juan Molino, Tepetitla, Tlaxcala 90700, México
| | - Manolo Ortega-Romero
- Departamento de Toxicología, Cinvestav, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
- Unidad de Investigación y Diagnóstico en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México, México
| | - Mara Medeiros-Domingo
- Unidad de Investigación y Diagnóstico en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México, México
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Cinvestav, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Marlon Rojas-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex Hacienda de San Juan Molino, Tepetitla, Tlaxcala 90700, México
| |
Collapse
|
29
|
Berge M, Dowek A, Prognon P, Legrand FX, Tfayli A, Minh Mai Lê L, Caudron E. Optimization of experimental conditions by surface enhanced Raman Scattering (SERS) spectroscopy with gold nanoparticles suspensions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120628. [PMID: 34810096 DOI: 10.1016/j.saa.2021.120628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Surface Enhanced Raman Scattering (SERS) spectroscopy is a rapid and innovative analysis technique involving metallic nanoparticles (NPs). The interaction between NPs and norepinephrine gives an exaltation of the Raman signal under certain experimental conditions. The control of the signal exaltation, crucial for sensitive analyses, remains one of the main limitations of this technique. The aim of this work is to optimize the exaltation conditions for an optimal SERS signal at two concentrations of norepinephrine (NOR) and spherical gold NPs in suspension. This first work will fix the optimal experimental conditions essential for the development of robust discriminant and quantitative analysis of catecholamine. Two complete 3-factors 3-levels experiment designs were performed at 20 µg.mL-1 and 100 µg.mL-1 norepinephrine concentrations, each experiment being repeated 3 times. The optimization factors were the process of synthesis (variation of the quantity of gold and citrate used for the three synthesis SA, SB and SC) and HCl (0.3 M, 0.5 M, 0.7 M) as well as the volume ratio of NPs and norepinephrine (0.5, 2, 3.5) for SERS acquisition. Spectral acquisitions were performed with a handheld Raman spectrometer with an excitation source at 785 nm. For each sample, 31 acquisitions were realized during 3 s every 8 s. The optimization parameter was the intensity of the characteristic band of norepinephrine at 1280 cm-1. A total of 5,042 spectra were acquired and the pre-treatment selected for all spectra was asymmetric least square combined to a smoothing of Savistsky Golay (ALS - SG). The optimal contact time between norepinephrine and NPs depends on the experimental conditions and was determined for each experiment according to the mean intensity between the three replicates. After interpretation of the experimental designs, the optimal conditions retained were the quantity of gold corresponding to SA and the HCl concentration 0.7 M for the two concentrations of norepinephrine. Indeed, the optimal volume ratio depend on the NOR concentration.
Collapse
Affiliation(s)
- Marion Berge
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France.
| | - Antoine Dowek
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| | - Patrice Prognon
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| | | | - Ali Tfayli
- Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| | - Laetitia Minh Mai Lê
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| | - Eric Caudron
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| |
Collapse
|
30
|
Carswell W, Robertson JL, Senger RS. Raman Spectroscopic Detection and Quantification of Macro- and Microhematuria in Human Urine. APPLIED SPECTROSCOPY 2022; 76:273-283. [PMID: 35102755 DOI: 10.1177/00037028211060853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hematuria refers to the presence of blood in urine. Even in small amounts, it may be indicative of disease, ranging from urinary tract infection to cancer. Here, Raman spectroscopy was used to detect and quantify macro- and microhematuria in human urine samples. Anticoagulated whole blood was mixed with freshly collected urine to achieve concentrations of 0, 0.25, 0.5, 1, 2, 6, 10, and 20% blood/urine (v/v). Raman spectra were obtained at 785 nm and data analyzed using chemometric methods and statistical tests with the Rametrix toolboxes for Matlab. Goldindec and iterative smoothing splines with root error adjustment (ISREA) baselining algorithms were used in processing and normalization of Raman spectra. Rametrix was used to apply principal component analysis (PCA), develop discriminate analysis of principal component (DAPC) models, and to validate these models using external leave-one-out cross-validation (LOOCV). Discriminate analysis of principal component models were capable of detecting various levels of microhematuria in unknown urine samples, with prediction accuracies of 91% (using Goldindec spectral baselining) and 94% (using ISREA baselining). Partial least squares regression (PLSR) was then used to estimate/quantify the amount of blood (v/v) in a urine sample, based on its Raman spectrum. Comparing actual and predicted (from Raman spectral computations) hematuria levels, a coefficient of determination (R2) of 0.91 was obtained over all hematuria levels (0-20% v/v), and an R2 of 0.92 was obtained for microhematuria (0-1% v/v) specifically. Overall, the results of this preliminary study suggest that Raman spectroscopy and chemometric analyses can be used to detect and quantify macro- and microhematuria in unprocessed, clinically relevant urine specimens.
Collapse
Affiliation(s)
- William Carswell
- Department of Biological Systems Engineering, 1757Virginia Tech, Blacksburg, Virginia, USA
| | - John L Robertson
- Department of Biomedical Engineering and Mechanics, 1757Virginia Tech, Blacksburg, Virginia, USA
- DialySensors, Inc., Blacksburg, Virginia, USA
| | - Ryan S Senger
- Department of Biological Systems Engineering, 1757Virginia Tech, Blacksburg, Virginia, USA
- DialySensors, Inc., Blacksburg, Virginia, USA
- Department of Chemical Engineering, 1757Virginia Tech, Blacksburg, Virginia, USA
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
31
|
Aitekenov S, Sultangaziyev A, Abdirova P, Yussupova L, Gaipov A, Utegulov Z, Bukasov R. Raman, Infrared and Brillouin Spectroscopies of Biofluids for Medical Diagnostics and for Detection of Biomarkers. Crit Rev Anal Chem 2022; 53:1561-1590. [PMID: 35157535 DOI: 10.1080/10408347.2022.2036941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This review surveys Infrared, Raman/SERS and Brillouin spectroscopies for medical diagnostics and detection of biomarkers in biofluids, that include urine, blood, saliva and other biofluids. These optical sensing techniques are non-contact, noninvasive and relatively rapid, accurate, label-free and affordable. However, those techniques still have to overcome some challenges to be widely adopted in routine clinical diagnostics. This review summarizes and provides insights on recent advancements in research within the field of vibrational spectroscopy for medical diagnostics and its use in detection of many health conditions such as kidney injury, cancers, cardiovascular and infectious diseases. The six comprehensive tables in the review and four tables in supplementary information summarize a few dozen experimental papers in terms of such analytical parameters as limit of detection, range, diagnostic sensitivity and specificity, and other figures of merits. Critical comparison between SERS and FTIR methods of analysis reveals that on average the reported sensitivity for biomarkers in biofluids for SERS vs FTIR is about 103 to 105 times higher, since LOD SERS are lower than LOD FTIR by about this factor. High sensitivity gives SERS an edge in detection of many biomarkers present in biofluids at low concentration (nM and sub nM), which can be particularly advantageous for example in early diagnostics of cancer or viral infections.HighlightsRaman, Infrared spectroscopies use low volume of biofluidic samples, little sample preparation, fast time of analysis and relatively inexpensive instrumentation.Applications of SERS may be a bit more complicated than applications of FTIR (e.g., limited shelf life for nanoparticles and substrates, etc.), but this can be generously compensated by much higher (by several order of magnitude) sensitivity in comparison to FTIR.High sensitivity makes SERS a noninvasive analytical method of choice for detection, quantification and diagnostics of many health conditions, metabolites, and drugs, particularly in diagnostics of cancer, including diagnostics of its early stages.FTIR, particularly ATR-FTIR can be a method of choice for efficient sensing of many biomarkers, present in urine, blood and other biofluids at sufficiently high concentrations (mM and even a few µM)Brillouin scattering spectroscopy detecting visco-elastic properties of probed liquid medium, may also find application in clinical analysis of some biofluids, such as cerebrospinal fluid and urine.
Collapse
Affiliation(s)
- Sultan Aitekenov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Alisher Sultangaziyev
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Perizat Abdirova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Lyailya Yussupova
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities (SSH), Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
32
|
Liu YQ, Zhu W, Hu JM, Shen AG. Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. NANOSCALE ADVANCES 2021; 3:6568-6579. [PMID: 36132655 PMCID: PMC9417754 DOI: 10.1039/d1na00464f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/19/2021] [Indexed: 05/07/2023]
Abstract
The reliability and reproducibility of surface-enhanced Raman scattering (SERS) technology is still a great challenge in bio-related analysis. Prussian blue (PB)-based SERS tags have attracted increasing interest for improving these deficiencies due to its unique Raman band (near 2156 cm-1) in the Raman-silent region, providing zero-background bio-Raman labels without interference from endogenous biomolecules. Moreover, the stable PB shell consisting of multiple layers of CN- reporters ensure a stable and strong Raman signal output, avoiding the desorption of the Raman reporter from the plasmonic region by the competitive adsorption of the analyte. More importantly, they possess outstanding multiplexing potential in biological analysis owing to the adjustable Raman shift with unique narrow spectral widths. Despite more attention having been attracted to the structure and preparation of PB-based SERS tags for their better biological applications over the past five years, there is still a great challenge for SERS suitable for applications in the actual environment. The biological applications of PB-based SERS tags are comprehensively recounted in this minireview, mainly focusing on quantification analysis, multiple-spectral analysis and cell-imaging joint phototherapy. The prospects of PB-based SERS tags in clinical diagnosis and treatment are also discussed. This review aims to draw attention to the importance of SERS tags and provide a reference for the design and application of PB-based SERS tags in future bio-applications.
Collapse
Affiliation(s)
- Ya-Qin Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei Zhu
- School of Printing and Packaging, Wuhan University Wuhan 430079 China
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University Wuhan 430079 China
| |
Collapse
|
33
|
Li J, Li Z, Dou Y, Su J, Shi J, Zhou Y, Wang L, Song S, Fan C. A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. Chem Commun (Camb) 2021; 57:4726-4729. [PMID: 33977964 DOI: 10.1039/d1cc00825k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A nano-integrated portable enzymatic microfluidic electrochemical biochip was developed for single-step point-of-care testing of creatinine. The biochip could automatically eliminate a lot of interferences from practical biological samples and enzymatic intermediate products. Gold nanostructure- and carbon nanotube-based screen-printed carbon electrodes were integrated into microfluidic structures to improve the detection performance for creatinine. The microfluidic electrochemical biochip holds promise to become a practical device for medical diagnosis, especially POCT.
Collapse
Affiliation(s)
- Jianyong Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenhua Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanzhi Dou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | | | - Yi Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China and The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Shiping Song
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China and The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Chunhai Fan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China and Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
34
|
Yang F, Wen P, Li G, Zhang Z, Ge C, Chen L. High-performance surface-enhanced Raman spectroscopy chip integrated with a micro-optical system for the rapid detection of creatinine in serum. BIOMEDICAL OPTICS EXPRESS 2021; 12:4795-4806. [PMID: 34513225 PMCID: PMC8407812 DOI: 10.1364/boe.434053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 05/07/2023]
Abstract
To improve the sensitivity of disease biomarker detection, we proposed a high-performance surface-enhanced Raman spectroscopy (SERS) chip integrated with a micro-optical system (MOS). The MOS, which is based on the micro-reflecting cavity and the micro-lens, optimizes the optical matching characteristics of the SERS substrate and the Raman detection system, and greatly improves the SERS detection sensitivity by improving the collection efficiency of the Raman scattering signal. A uniform single layer of silver nanoparticles on a gold film was prepared as the SERS substrate using a liquid-liquid interface self-assembly method. The micro-reflecting cavity and micro-lens were prepared using micro-processing technology. The SERS chip was constructed based on the MOS and the Au film-based SERS substrate, and experimental results showed an EF of 1.46×108, which is about 22.4 times higher than that of the Si-based SERS substrate. The chip was used for the detection of creatinine and the detection limit of creatinine in aqueous solution was 1 µM while the detection limit in serum was 5 µM. In addition, SERS testing was conducted on serum samples from normal people and patients with chronic renal impairment. Principal component analysis and linear discriminant analysis were used for modeling and identification, and the results showed a 90% accuracy of blind sample detection. These results demonstrate the value of this SERS chip for both research and practical applications in the fields of disease diagnosis and screening.
Collapse
Affiliation(s)
- Feng Yang
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
- School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Ping Wen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
- School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Gang Li
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Zhisen Zhang
- School of Intelligent Manufacturing, Panzhihua University, Panzhihua 617000, China
| | - Chuang Ge
- Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
35
|
Wen P, Yang F, Ge C, Li S, Xu Y, Chen L. Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection. NANOTECHNOLOGY 2021; 32:395502. [PMID: 34161934 DOI: 10.1088/1361-6528/ac0ddd] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Serum creatinine is a key biomarker for the diagnosis and monitoring of kidney disease. Rapid and sensitive creatinine detection is thus important. Here, we propose a high-performance nano-Ag/Au@Au film composite SERS substrate for the rapid detection of creatinine in human serum. Au nanoparticles (AuNPs) and Ag nanoparticles (AgNPs) with uniform particle size were synthesized by a chemical reduction method, and the nano-Ag/Au@Au film composite SERS substrate was successfully prepared via a consecutive layer-on-layer deposition using an optimized liquid-liquid interface self-assembly method. The finite element simulation analysis showed that due to the multi-dimensional plasmonic coupling effect formed between the AuNPs, AgNPs, and the Au film, the intensity of the local electromagnetic field was greatly improved, and a very high enhancement factor (EF) was obtained. Experimental results showed that the limit of detection (LOD) of this composite SERS substrate for rhodamine 6G (R6G) molecules was as low as 1 × 10-13M, and the Raman EF was 15.7 and 2.9 times that of the AuNP and AgNP monolayer substrates respectively. The results of different batch tests and SERS mapping showed that the relative standard deviations of the Raman intensity of R6G at 612 cm-1were 12.5% and 11.7%, respectively. Finally, we used the SERS substrate for the label-free detection of human serum creatinine. The results showed that the LOD of this SERS substrate for serum creatinine was 5 × 10-6M with a linear correlation coefficient of 0.96. In conclusion, the SERS substrate has high sensitivity, good uniformity, simple preparation, and has important developmental potential for the rapid detection and application of disease biomarkers.
Collapse
Affiliation(s)
- Ping Wen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, People's Republic of China
- School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, People's Republic of China
| | - Feng Yang
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, People's Republic of China
- School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, People's Republic of China
| | - Chuang Ge
- Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Shunbo Li
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Li Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
36
|
Chen QQ, Hou RN, Zhu YZ, Wang XT, Zhang H, Zhang YJ, Zhang L, Tian ZQ, Li JF. Au@ZIF-8 Core-Shell Nanoparticles as a SERS Substrate for Volatile Organic Compound Gas Detection. Anal Chem 2021; 93:7188-7195. [PMID: 33945260 DOI: 10.1021/acs.analchem.0c05432] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a promising ultrasensitive analysis technology due to outstanding molecular fingerprint identification. However, the measured molecules generally need to be adsorbed on a SERS substrate, which makes it difficult to detect weakly adsorbed molecules, for example, the volatile organic compound (VOC) molecules. Herein, we developed a kind of a SERS detection method for weak adsorption molecules with Au@ZIF-8 core-shell nanoparticles (NPs). The well-uniformed single- and multicore-shell NPs can be synthesized controllably, and the shell thickness of the ZIF-8 was able to be precisely controlled (from 3 to 50 nm) to adjust the distance and electromagnetic fields between metal nanoparticles. After analyzing the chemical and physical characterization, Au@ZIF-8 core-shell NPs were employed to detect VOC gas by SERS. In contrast with multicore or thicker-shell nanoparticles, Au@ZIF-8 with a shell thickness of 3 nm could efficiently probe various VOC gas molecules, such as toluene, ethylbenzene, and chlorobenzene. Besides, we were capable of observing the process of toluene gas adsorption and desorption using real-time SERS technology. As observed from the experimental results, this core-shell nanostructure has a promising prospect in diverse gas detection and is expected to be applied to the specific identification of intermediates in catalytic reactions.
Collapse
Affiliation(s)
- Qing-Qi Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Ruo-Nan Hou
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yue-Zhou Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Ting Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hua Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhong-Qun Tian
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
37
|
António M, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021; 230:122345. [PMID: 33934794 DOI: 10.1016/j.talanta.2021.122345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Urine is a biofluid easy to collect through a non-invasive technique that allows collecting a large volume of sample. The use of urine for disease diagnosis is not yet well explored. However, it has gained attention over the last three years. It has been applied in the diagnosis of several illnesses such as kidney disease, bladder cancer, prostate cancer and cardiovascular diseases. In the last decade, gold nanoparticles (Au NPs) have attracted attention in biosensors' development for the diagnosis of diseases due to their electrical and optical properties, ability to conjugate with biomolecules, high sensitivity, and selectivity. Therefore, this article aims to present a comprehensive view of state of the art on the advances made in the quantification of analytes in urinary samples using AuNPs based assays, with a focus on protein analysis. The type of diagnosis methods, the Au NPs synthesis approaches and the strategies for surface modification aiming at selectivity towards the different targets are highlighted.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal; Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal; LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
38
|
Ibáñez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Detection of dithiocarbamate, chloronicotinyl and organophosphate pesticides by electrochemical activation of SERS features of screen-printed electrodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119174. [PMID: 33234478 DOI: 10.1016/j.saa.2020.119174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Enhancement of Raman intensity due to the electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity traditionally associated with Raman spectroscopy. Furthermore, activation of metallic screen-printed electrodes (SPEs) by electrochemical route leads to the reproducible generation of nanostructures with excellent SERS properties. EC-SERS procedure proposed in this work for the detection of several pesticides (thiram, imidacloprid and chlorpyrifos) with different nature, uses gold SPEs as SERS substrates, but also includes a preconcentration step as the initial and essential stage. Taking into account the small volume of solution employed, only 60 µL, the preconcentration cannot be performed for more than 15 min in order to ensure the proper contact of the solution with WE, RE and CE. Furthermore, selected temperature, 34 °C, is not very high to allow the exhaustive control of the drop volume. Optimization of preconcentration parameters (time and temperature) displays a crucial step, particularly in the detection of low concentrations of pesticides, because it will provide higher Raman intensity in EC-SERS experiments. After the initial step, gold SPEs were electrochemically activated by cyclic voltammetry, allowing the detection of very low concentration (µg·L-1) of pesticides due to the generation of fresh nanostructures with SERS effect.
Collapse
Affiliation(s)
- David Ibáñez
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain.
| | - María Begoña González-García
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain
| | - David Hernández-Santos
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain
| | - Pablo Fanjul-Bolado
- Metrohm DropSens, S.L. Vivero Ciencias de la Salud, C/Colegio Santo Domingo de Guzmán s/n, 33010 Oviedo (Asturias), Spain.
| |
Collapse
|
39
|
Jiang L, Wang L, Zhan DS, Jiang WR, Fodjo EK, Hafez ME, Zhang YM, Zhao H, Qian RC, Li DW. Electrochemically renewable SERS sensor: A new platform for the detection of metabolites involved in peroxide production. Biosens Bioelectron 2021; 175:112918. [PMID: 33383430 DOI: 10.1016/j.bios.2020.112918] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
The accurate detection of hydrogen peroxide (H2O2)-involved metabolites plays a significant role in the early diagnosis of metabolism-associated diseases, whereas most of current metabolite-sensing systems are often hindered by low sensitivity, interference of coexisting species, or tedious preparation. Herein, an electrochemistry-regenerated surface-enhanced Raman scattering (SERS) sensor was developed to serve as a universal platform for detecting H2O2-involved metabolites. The SERS sensor was constructed by modifying newly synthesized 2-mercaptohydroquinone (2-MHQ) molecules on the surface of gold nanoparticles (AuNPs) that were electrochemically predeposited on an ITO electrode. Metabolites were detected through the changes in the SERS spectrum as a result of the reaction of 2-MHQ with H2O2 induced by the metabolites. Combining the superiority of SERS fingerprint identification and the specificity of the related enzymatic reactions producing H2O2, the designed SERS sensor was highly selective in detecting glucose and uric acid as models of H2O2-involved metabolite with limits of detection (LODs) of 0.159 μM and 0.0857 μM, respectively. Moreover, the sensor maintained a high SERS activity even after more than 10 electrochemical regenerations within 2 min, demonstrating its effectiveness for the rapid detection of various metabolites with electrochemistry-driven regulation. Importantly, the presented SERS sensor showed considerable practicability for the detection of metabolites in real serum samples. Accordingly, the SERS sensor is a new detection platform for H2O2-involved metabolites detection in biological fluids, which may aid the early diagnosis of metabolism-related diseases.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Lu Wang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - De-Sheng Zhan
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Wen-Rong Jiang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yan-Mei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
40
|
Giansante S, Giana HE, Fernandes AB, Silveira L. Analytical performance of Raman spectroscopy in assaying biochemical components in human serum. Lasers Med Sci 2021; 37:287-298. [PMID: 33537931 DOI: 10.1007/s10103-021-03247-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/05/2021] [Indexed: 01/17/2023]
Abstract
Chronic non-infectious diseases are important to research as they are the main causes of death in Brazil and worldwide. One very important chronic non-infectious disease is cardiovascular disease, whose risk factors (diabetes, dyslipidemia, and renal failure) can be detected through assessments of serum biochemical components. The objective of this study was to evaluate the analytical performance of Raman spectroscopy for analysis of lipid profile (total cholesterol, triglycerides, and HDL cholesterol), non-protein nitrogenous compounds (urea and creatinine), and glucose in 242 human serum samples. Models to discriminate and quantify the samples were developed using the predicted concentration by quantitative regression model based on partial least squares (PLS). The analytical error for the "leave-one-out" cross-validation based on the predicted PLS concentration was 10.5 mg/dL for total cholesterol, 21.4 mg/dL for triglyceride, 13.0 mg/dL for HDL cholesterol, 4.9 mg/dL for urea, 0.21 mg/dL for creatinine, and 15.4 mg/dL for glucose. The Kappa coefficient indicate very good agreement for cholesterol (0.83), good for triglyceride (0.77), urea (0.70) and creatinine (0.66), and fair for HDL cholesterol (0.38) and glucose (0.30). The results of the analytical performance demonstrated that Raman spectroscopy can be considered an important methodology to screen the population, especially for serum triglycerides and cholesterol.
Collapse
Affiliation(s)
- Stella Giansante
- Center for Innovation, Technology and Education - CITÉ, Universidade Anhembi Morumbi - UAM, Parque Tecnológico de São José dos Campos, Estr. Dr. Altino Bondensan, 500, São José dos Campos, SP, 12247-016, Brazil
| | - Hector Enrique Giana
- Laboratory of Clinical Analyses Oswaldo Cruz, Praça Cândida Maria Cesar Sawaya Giana, 128, Jardim Nova América, São José dos Campos, SP, 12243-003, Brazil
| | - Adriana Barrinha Fernandes
- Center for Innovation, Technology and Education - CITÉ, Universidade Anhembi Morumbi - UAM, Parque Tecnológico de São José dos Campos, Estr. Dr. Altino Bondensan, 500, São José dos Campos, SP, 12247-016, Brazil
| | - Landulfo Silveira
- Center for Innovation, Technology and Education - CITÉ, Universidade Anhembi Morumbi - UAM, Parque Tecnológico de São José dos Campos, Estr. Dr. Altino Bondensan, 500, São José dos Campos, SP, 12247-016, Brazil.
| |
Collapse
|
41
|
Aitekenov S, Gaipov A, Bukasov R. Review: Detection and quantification of proteins in human urine. Talanta 2021; 223:121718. [PMID: 33303164 PMCID: PMC7554478 DOI: 10.1016/j.talanta.2020.121718] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/31/2022]
Abstract
Extensive medical research showed that patients, with high protein concentration in urine, have various kinds of kidney diseases, referred to as proteinuria. Urinary protein biomarkers are useful for diagnosis of many health conditions - kidney and cardio vascular diseases, cancers, diabetes, infections. This review focuses on the instrumental quantification (electrophoresis, chromatography, immunoassays, mass spectrometry, fluorescence spectroscopy, the infrared spectroscopy, and Raman spectroscopy) of proteins (the most of all albumin) in human urine matrix. Different techniques provide unique information on what constituents of the urine are. Due to complex nature of urine, a separation step by electrophoresis or chromatography are often used for proteomics study of urine. Mass spectrometry is a powerful tool for the discovery and the analysis of biomarkers in urine, however, costs of the analysis are high, especially for quantitative analysis. Immunoassays, which often come with fluorescence detection, are major qualitative and quantitative tools in clinical analysis. While Infrared and Raman spectroscopies do not give extensive information about urine, they could become important tools for the routine clinical diagnostics of kidney problems, due to rapidness and low-cost. Thus, it is important to review all the applicable techniques and methods related to urine analysis. In this review, a brief overview of each technique's principle is introduced. Where applicable, research papers about protein determination in urine are summarized with the main figures of merits, such as the limit of detection, the detectable range, recovery and accuracy, when available.
Collapse
Affiliation(s)
- Sultan Aitekenov
- School of Sciences and Humanities, Department of Chemistry, Nazarbaev University, Nur-Sultan, Kazakhstan
| | - Abduzhappar Gaipov
- School of Medicine, Department of Clinical Sciences, Nazarbaev University, Nur-Sultan, Kazakhstan
| | - Rostislav Bukasov
- School of Sciences and Humanities, Department of Chemistry, Nazarbaev University, Nur-Sultan, Kazakhstan.
| |
Collapse
|
42
|
Wu Y, Liu Y, Tang X, Cheng Z, Liu H. Tunable plasmonics of hollow raspberry-like nanogold for the robust Raman scattering detection of antibiotics on a portable Raman spectrometer. Analyst 2020; 145:5854-5860. [PMID: 32661529 DOI: 10.1039/d0an01049a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is important to develop novel sensors for the simple, rapid, and quantitative detection of residual antibiotics in food, considering their potential threats to human health. Herein, we report the successful fabrication of raspberry-like nanogold (R-like Au) structures with rough surfaces and partially hollow structures for the rapid and sensitive detection of antibiotics in duck meats on a portable Raman spectrometer. The R-like Au with tunable plasmonic wavelengths was fabricated by a two-step method. Ag particles as seeds were substituted by Au particles through a replacement reaction; moreover, the surface plasmon resonances (SPRs) of R-like Au red-shifted with the increase in the Au ion concentration. The R-like Au with a diameter of about 120 nm that matched well with the 785 nm laser on the portable Raman spectrometer was used as an excellent surface-enhanced Raman spectroscopy (SERS) active platform for detecting two kinds of antibiotics, namely, nitrofurantoin (NFT) and nitrofurazone (NFZ), in spiked duck meats. Both of them have sufficient sensitivity (0.05-10 mg L-1), good linear relationship (R2 > 0.99) and high recovery in quantitative SERS analysis. The platform is simple without the need for complex pretreatment of the food samples or use of large scale Raman spectrometers, promising easy implementation for the on-site analysis of residuals of antibiotics in food.
Collapse
Affiliation(s)
- Yiping Wu
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei, Anhui 230601, China.
| | | | | | | | | |
Collapse
|
43
|
Gomes PC, Rickard JJ, Goldberg Oppenheimer P. Electrofluidynamic Patterning of Tailorable Nanostructured Substrates for Surface-Enhanced Raman Scattering. ACS APPLIED NANO MATERIALS 2020; 3:6774-6784. [PMID: 32743351 PMCID: PMC7386576 DOI: 10.1021/acsanm.0c01190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The unique attributes of surface enhanced Raman spectroscopy (SERS) make it well suited to address the challenges associated with portable diagnostics. However, despite the remarkable progress in this field, where the instrumentation has made great strides forward providing a route to the miniaturization of sensing devices, to date producing three-dimensional low-cost SERS substrates which simultaneously fulfill the multitude of criteria of high sensitivity, reproducibility, tunability, multiplexity, and integratability for rapid sensing has not yet been accomplished. Successful implementation of SERS requires readily fine-tuned nanostructures, which create a high enhancement. Here, an advanced electrofluidynamic patterning (EFDP) technique enables rapid fabrication of SERS active topographic morphologies with high throughput and at a nanoresolution via the spatial and lateral modulation of the dielectric discontinuity due to the high electric field generated across the polymer nanofilm and air gap. The subsequent formation of displacement charges within the nanofilm by coupling to the electric field yield a destabilizing electrostatic pressure and amplification of EFDP instabilities enabling the controllable pattern formation. The top of each gold coated EFDP fabricated pillar generates controllable high SERS enhancement by coupling of surface plasmon modes on top of the pillar, with each nanostructure acting as an individual sensing unit. The absolute enhancement factor depends on the topology as well as the tunable dimensions of the nanostructured units, and these are optimized in the design and engineering of the dedicated EFDP apparatus for reproducible, low-cost fabrication of the three-dimensional nanoarchitectures on macrosurfaces, rendering them for easy integration in further lab-on-a-chip devices. This unique combination of nanomaterials and nanospectroscopic systems lay the platform for a variety of applications in chemical and biological sensing.
Collapse
Affiliation(s)
- Paulo
De Carvalho Gomes
- School
of Chemical Engineering, Advanced Nanomaterials Structures and Applications
Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | | | - Pola Goldberg Oppenheimer
- School
of Chemical Engineering, Advanced Nanomaterials Structures and Applications
Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Healthcare
Technologies Institute, Institute of Translational
Medicine, Mindelsohn Way, Birmingham B15 2TH, U.K.
| |
Collapse
|