1
|
Li SY, Lu ZH, Leung J, Su Y, Yu B, Kwok T. Dietary patterns modify the association between body mass index and mortality in older adults. Clin Nutr 2025; 46:20-29. [PMID: 39862690 DOI: 10.1016/j.clnu.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/15/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND The potential modifying roles of dietary patterns in the association between body mass index (BMI) and mortality in older adults remain unclear. This study aimed to examine the stratified and combined associations of dietary patterns and BMI with all-cause, cancer and cardiovascular disease (CVD) mortality. METHODS This prospective cohort study included 3982 Chinese community-dwelling older adults between 2001 and 2003. A 280-item validated food frequency questionnaire was used to calculate five dietary indies: Diet Quality Index-International (DQI-I), Dietary Inflammatory Index (DII), Mediterranean Diet Score (MDS), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet. Higher DQI-I scores indicate better overall diet quality, while higher DII scores represent a pro-inflammatory diet. Higher MDS, DASH, and MIND scores indicate greater adherence to these healthy dietary patterns. Mortality data were obtained from official records. Hazard ratios (HRs) and 95 % confidence intervals (CIs) were estimated using Cox proportional hazards models. RESULTS Over a median follow-up of 16.8 years, there were 1879 all-cause deaths, 561 cancer deaths, and 386 CVD deaths. The J-shaped associations between BMI with all-cause and cancer mortality were weaker in healthier dietary patterns (DQI-I, MDS, DASH, MIND ≥median or DII CONCLUSIONS Higher diet quality attenuated the increased risks of all-cause and cancer mortality associated with underweight or obesity in older adults. Anti-inflammatory and antioxidative diets may protect against CVD mortality associated with obesity.
Collapse
Affiliation(s)
- Shu-Yi Li
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Zhi-Hui Lu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason Leung
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Blanche Yu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Su S, Tian L. Association Between Dietary Tryptophan Intake and Bone Health: A Cross-Sectional Study. Calcif Tissue Int 2024; 116:6. [PMID: 39673557 DOI: 10.1007/s00223-024-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
The relationship between dietary tryptophan intake and the risk of low bone mineral density (LBMD) has not been thoroughly evaluated. This study aimed to examine the relationship between dietary tryptophan intake and LBMD. A total of 12,003 participants aged 50 years and older with complete data on bone mineral density (BMD) and tryptophan intake from the National Health and Nutrition Examination Survey (NHANES) 2005 to 2020 were included in this cross-sectional study. The median dietary tryptophan intake among the 12,003 participants was 1822.14 mg/day, with significantly lower levels observed in individuals with LBMD compared to those with normal bone mass (1740.45 mg/day vs. 2041.39 mg/day, p < 0.001). For every 2.7-fold increase in dietary tryptophan intake, the risk of low BMD decreases by 22%. When dietary tryptophan intake was categorized into quartiles, significantly lower risks of LBMD were observed in the third [Odds Ratio (OR) = 0.68, 95% confidence interval (CI): 0.51-0.91] and fourth (OR = 0.65, 95% CI: 0.49-0.87) quartiles compared to the reference group after multivariable adjustment. Moreover, the restricted cubic spline (RCS) results revealed a negative nonlinear relationship between dietary tryptophan intake and LBMD (p for overall < 0.001, p for nonlinear < 0.05), with this correlation remaining consistent across various population subgroups and exhibiting no significant interaction according to stratification variables. Sensitivity analyses further substantiated these findings. Overall, we found that increased dietary tryptophan intake may be associated with a lower risk of LBMD among individuals aged ≥ 50 years, highlighting the importance of optimizing tryptophan nutrition for reducing osteoporosis risk.
Collapse
Affiliation(s)
- Shan Su
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China.
| |
Collapse
|
3
|
Yi B, Li Z, Zhao Y, Yan H, Xiao J, Zhou Z, Cui Y, Yang S, Bi J, Yang H, Guo N, Zhao M. Serum metabolomics analyses reveal biomarkers of osteoporosis and the mechanism of Quanduzhong capsules. J Pharm Biomed Anal 2024; 246:116198. [PMID: 38754154 DOI: 10.1016/j.jpba.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
With the aging of the population, the prevalence of osteoporosis (OP) is rising rapidly, making it an important public health concern. Early screening and effective treatment of OP are the primary challenges facing the management of OP today. Quanduzhong capsule (QDZ) is a single preparation composed of Eucommia ulmoides Oliv., which is included in the Pharmacopoeia of the People's Republic of China. It is used to treat OP in clinical practice, but its mechanisms are unclear. This study involved 30 patients with OP, 30 healthy controls (HC), and 28 OP patients treated with QDZ to identify potential biomarkers for the early diagnosis of OP and to investigate the potential mechanism of QDZ in treating OP. The serum samples were analyzed using targeted amino acid metabolomics. Significant differences in amino acid metabolism were identified between the OP cohort and the HC group, as well as between OP patients before and after QDZ treatment. Compared with HC, the serum levels of 14 amino acids in OP patients changed significantly. Kynurenine, arginine, citrulline, methionine, and their combinations are expected to be potential biomarkers for OP diagnosis. Notably, QDZ reversed the changes in levels of 10 amino acids in the serum of OP patients and significantly impacted numerous metabolic pathways during the treatment of OP. This study focuses on screening potential biomarkers for the early detection of OP, which offers a new insight into the mechanism study of QDZ in treating OP.
Collapse
Affiliation(s)
- Bojiao Yi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zeyu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yurou Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junping Xiao
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Zhigang Zhou
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Yu Cui
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Shuyin Yang
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Jingbo Bi
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Li SY, Lu ZH, Su Y, Leung JCS, Kwok TCY. Dietary inflammatory index, mediating biomarkers and incident frailty in Chinese community-dwelling older adults. J Nutr Health Aging 2024; 28:100304. [PMID: 38924861 DOI: 10.1016/j.jnha.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES Diet can modulate systemic inflammation, while inflammation is a critical contributory factor of frailty. However, longitudinal data on the association between dietary inflammatory index (DII) and frailty are limited, and the intermediate mechanisms remain unclear. This study aimed to examine the association between DII and incident frailty and the potential mediating roles of frailty-related biomarkers. DESIGN Prospective cohort study. SETTING The Mr. OS and Ms. OS (Hong Kong) study. PARTICIPANTS A total of 3,035 community-dwelling men and women aged above 65 years without frailty at baseline were included. MEASUREMENTS DII scores were calculated using the locally validated food frequency questionnaire. Incident frailty at year four was defined using the Fried frailty phenotype. Logistic regression was used to examine the association between DII and frailty onset. Mediation analysis was used to explore the mediating roles of frailty-related biomarkers in the DII-frailty association. RESULTS During four years of follow-up, 208 individuals developed frailty. Compared with the lowest tertile of DII, the highest tertile was associated with an increased risk of incident frailty (OR: 1.82; 95% CI: 1.17-2.82; p = 0.008) after adjustment for relevant confounders. The DII-frailty association was significant in men but not in women. Furthermore, increasing serum homocysteine, decreasing serum folate, and reducing estimated glomerular filtration rate (eGFR) mediated 11.6%, 7.1%, and 9.6 % of the total relation between DII and frailty onset, respectively. CONCLUSION In this cohort study, a pro-inflammatory diet was associated with a higher risk of frailty onset, mediated by homocysteine, folate, and renal function.
Collapse
Affiliation(s)
- Shu-Yi Li
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Zhi-Hui Lu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jason C S Leung
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China
| | - Timothy C Y Kwok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Carbone L, Bůžková P, Robbins JA, Fink HA, Barzilay JI, Elam RE, Isales C. Association of serum levels of phenylalanine and tyrosine with hip fractures and frailty in older adults: The cardiovascular health study. Arch Osteoporos 2024; 19:51. [PMID: 38898169 DOI: 10.1007/s11657-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
This study examined if the amino acids phenylalanine or tyrosine contribute to risk of hip fracture or frailty in older adults. We determined that neither phenylalanine nor tyrosine are important predictors of hip fracture or frailty. We suggest advice on protein intake for skeletal health consider specific amino acid composition. PURPOSE Protein is essential for skeletal health, but the specific amino acid compositions of protein may have differential associations with fracture risk. The aim of this study was to determine the association of serum levels of the aromatic amino acids phenylalanine and tyrosine with risk for incident hip fractures over twelve years of follow-up and cross sectional associations with frailty. METHODS We included 131 older men and women from the Cardiovascular Health Study (CHS) who sustained a hip fracture over twelve years of follow-up and 131 men and women without an incident hip fracture over this same period of time. 42% of this cohort were men and 95% were Caucasian. Weighted multivariable Cox hazards molecules were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI) of incident hip fracture associated with a one standard deviation (SD) higher serum level of phenylalanine or tyrosine. Relative risk regression was used to determine the cross-sectional association of these amino acids with Freid's frailty index. RESULTS Neither serum levels of phenylalanine (HR 0.85 (95% CI 0.62-1.16) or tyrosine (HR 0.82 (95% CI 0.62-1.1) were significantly associated with incident hip fractures or cross sectionally with frailty (frail compared with prefrail/not frail) (HR 0.92 (95% CI 0.48-1.76) and HR (0.86 (95% CI 0.46-1.61) respectively. CONCLUSION Phenylalanine and tyrosine are not significant contributors to hip fractures or frailty in older men and women.
Collapse
Affiliation(s)
- Laura Carbone
- Division of Rheumatology, Department of Medicine, J. Harold Harrison, MD, Distinguished University Chair in Rheumatology, Augusta University, Augusta, GA, USA.
- Charlie Norwood Veterans Affairs Medical Center, VeteransAffairsHealthCareSystem, Augusta, GA, USA.
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - John A Robbins
- Department of Medicine, University of California, Davis, CA, USA
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, EmoryUniversitySchoolof Medicine, Atlanta, GA, USA
| | - Rachel E Elam
- Charlie Norwood Veterans Affairs Medical Center, VeteransAffairsHealthCareSystem, Augusta, GA, USA
- Division of Rheumatology, DepartmentofMedicine, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Charlie Norwood Veterans Affairs Medical Center, VeteransAffairsHealthCareSystem, Augusta, GA, USA
- Division of Endocrinology, Department of Medicine, J. Harold Harrison, MD, Distinguished University Chair in Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
Urano T, Kuroda T, Uenishi K, Shiraki M. Serum branched-chain amino acid levels are associated with fracture risk in Japanese women. Geriatr Gerontol Int 2024; 24:603-608. [PMID: 38745353 DOI: 10.1111/ggi.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
AIM Branched-chain amino acids (BCAAs) have been shown to exert beneficial effects on muscle and bone metabolism; however, no studies to date have investigated whether BCAAs have beneficial effects on bone fractures. Herein, we aim to prospectively investigate the relationship between serum BCAA concentrations and the occurrence of vertebral fractures (VFs) in Japanese women. METHODS During the observation period (7.5 ± 6.1 years), 188 of 983 participants experienced VF. Kaplan-Meier analyses were conducted to examine time-dependent variations in the vertebral compression fracture occurrence rate. Patients were stratified into quartiles based on serum BCAA concentration for this analysis. RESULTS The analysis results indicated that the group with the lowest BCAA level developed VFs significantly earlier and with a higher frequency than the other groups (P < 0.001). A Cox proportional hazards model showed that BCAA concentration was a significant risk factor for incident fracture, even after adjusting for possible confounding factors. A series of multiple regression analyses were performed to identify factors related to serum BCAA concentration, with the results identifying levels of glycated hemoglobin (P < 0.001), adiponectin (P < 0.001), and NOx (P = 0.011) as significant factors associated with serum BCAA. CONCLUSIONS Overall, the present study revealed that a lower serum BCAA level was an independent risk factor for incident VF in postmenopausal women. Geriatr Gerontol Int 2024; 24: 603-608.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, International University of Health and Welfare School of Medicine, Narita City, Japan
| | | | - Kazuhiro Uenishi
- Division of Nutritional Physiology, Kagawa Nutrition University, Sakado, Japan
| | - Masataka Shiraki
- Research Institute and Practice for Involutional Diseases, Azumino City, Japan
| |
Collapse
|
7
|
Groenendijk I, de Groot LCPGM, Tetens I, Grootswagers P. Discussion on protein recommendations for supporting muscle and bone health in older adults: a mini review. Front Nutr 2024; 11:1394916. [PMID: 38840697 PMCID: PMC11150820 DOI: 10.3389/fnut.2024.1394916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Muscle and bone tissues are interconnected, and both rely on an adequate protein intake. Recommendations for protein intake for older adults specifically vary across countries. The purpose of this narrative review is to discuss the existing evidence for protein recommendations for supporting muscle and bone health in older adults and to evaluate if a protein intake above the current population reference intake (PRI) for older adults would be scientifically justified. First, this review summarizes the protein recommendations from bodies setting dietary reference values, expert groups, and national health organizations. Next, relevant studies investigating the impact of protein on muscle and bone health in older adults are discussed. In addition, the importance of protein quality for muscle and bone health is addressed. Lastly, a number of research gaps are identified to further explore the added value of a protein intake above the PRI for older adults.
Collapse
Affiliation(s)
- Inge Groenendijk
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | | | - Inge Tetens
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Peng R, Song C, Gou S, Liu H, Kang H, Dong Y, Xu Y, Hu P, Cai K, Feng Q, Guan H, Li F. Gut Clostridium sporogenes-derived indole propionic acid suppresses osteoclast formation by activating pregnane X receptor. Pharmacol Res 2024; 202:107121. [PMID: 38431091 DOI: 10.1016/j.phrs.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. A dramatic decrease in estrogen levels in postmenopausal women leads to osteoclast overactivation, impaired bone homeostasis, and subsequent bone loss. Changes in the gut microbiome affect bone mineral density. However, the role of the gut microbiome in estrogen deficiency-induced bone loss and its underlying mechanism remain unknown. In this study, we found that the abundance of Clostridium sporogenes (C. spor.) and its derived metabolite, indole propionic acid (IPA), were decreased in ovariectomized (OVX) mice. In vitro assays suggested that IPA suppressed osteoclast differentiation and function. At the molecular level, IPA suppressed receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced pregnane X receptor (PXR) ubiquitination and degradation, leading to increased binding of remaining PXR with P65. In vivo daily IPA administration or repeated C. spor. colonization protected against OVX-induced bone loss. To protect live bacteria from the harsh gastric environment and delay the emptying of orally administered C. spor. from the intestine, a C. spor.-encapsulated silk fibroin (SF) hydrogel system was developed, which achieved bone protection in OVX mice comparable to that achieved with repeated germ transplantation or daily IPA administration. Overall, we found that gut C. spor.-derived IPA was involved in estrogen deficiency-induced osteoclast overactivation by regulating the PXR/P65 complex. The C. spor.-encapsulated SF hydrogel system is a promising tool for combating postmenopausal osteoporosis without the disadvantages of repeated germ transplantation.
Collapse
Affiliation(s)
- Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Song
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Haiyang Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peixuan Hu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Hanfeng Guan
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Liang B, Shi X, Wang X, Ma C, Leslie WD, Lix LM, Shi X, Kan B, Yang S. Association between amino acids and recent osteoporotic fracture: a matched incident case-control study. Front Nutr 2024; 11:1360959. [PMID: 38567247 PMCID: PMC10985241 DOI: 10.3389/fnut.2024.1360959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Context Osteoporotic fracture is a major public health issue globally. Human research on the association between amino acids (AAs) and fracture is still lacking. Objective To examine the association between AAs and recent osteoporotic fractures. Methods This age and sex matched incident case-control study identified 44 recent x-ray confirmed fracture cases in the Second Hospital of Jilin University and 88 community-based healthy controls aged 50+ years. Plasma AAs were measured by high performance liquid chromatography coupled with mass spectrometry. After adjusting for covariates (i.e., body mass index, milk intake >1 time/week, falls and physical activity), we conducted conditional logistical regression models to test the association between AAs and fracture. Results Among cases there were 23 (52.3%) hip fractures and 21 (47.7%) non-hip fractures. Total, essential, and non-essential AAs were significantly lower in cases than in controls. In the multivariable conditional logistic regression models, after adjusting for covariates, each standard deviation increase in the total (odds ratio [OR]: 0.304; 95% confidence interval [CI]: 0.117-0.794), essential (OR: 0.408; 95% CI: 0.181-0.923) and non-essential AAs (OR: 0.290; 95%CI: 0.107-0.782) was negatively associated with recent fracture. These inverse associations were mainly found for hip fracture, rather than non-hip fractures. Among these AAs, lysine, alanine, arginine, glutamine, histidine and piperamide showed the significantly negative associations with fracture. Conclusion There was a negative relationship between AAs and recent osteoporotic fracture; such relationship appeared to be more obvious for hip fracture.
Collapse
Affiliation(s)
- Bing Liang
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiao tong University, Xi’an, China
| | - Xinyan Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xinwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chao Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - William D. Leslie
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Lisa M. Lix
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shuman Yang
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Da W, Jiang W, Tao L. ROS/MMP-9 mediated CS degradation in BMSC inhibits citric acid metabolism participating in the dual regulation of bone remodelling. Cell Death Discov 2024; 10:77. [PMID: 38355572 PMCID: PMC10866869 DOI: 10.1038/s41420-024-01835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
It is necessary to figure out the abnormal energy metabolites at the cellular level of postmenopausal osteoporosis (PMOP) bone microenvironment. In this study, we constructed PMOP model by ovariectomy and identified 9 differential metabolites compared with control femur by energy metabolomic. The enrichment analysis of differential metabolites revealed that tricarboxylic acid cycle, glucagon pathway and purinergic signaling pathway were the main abnormal metabolic processes. Citric acid was identified as the key metabolite by constructing compound reaction-enzyme-gene network. The functional annotation of citric acid targets identified by network pharmacological tools indicated that matrix metalloproteinase 9 (MMP-9) may be involved in regulating citric acid metabolism in the osteogenic differentiation of bone marrow mesenchymal stem cell (BMSC). Molecular docking shows that the interaction forces between MMP-9 and citric acid synthase (CS) is -638, and there are multiple groups of residues used to form hydrogen bonds. Exogenous H2O2 promotes the expression of MMP-9 in BMSC to further degrade CS resulting in a decrease in mitochondrial citric acid synthesis, which leads to the disorder of bone remodeling by two underlying mechanisms ((1) the decreased histone acetylation inhibits the osteogenic differentiation potential of BMSC; (2) the decreased bone mineralization by citric acid deposition). MMP-9-specific inhibitor (MMP-9-IN-1) could significantly improve the amount of CS in BMSC to promote cellular citric acid synthesis, and further enhance bone remodeling. These findings suggest inhibiting the degradation of CS by MMP-9 to promote the net production of citric acid in osteogenic differentiation of BMSC may be a new direction of PMOP research.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedics Surgery, Orthopedic Research Institute, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen Jiang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Feng Q, Song X, Liu L, Zhou X, Chen Z. Plasma serotonin precursors and metabolite are correlated with bone mineral density and bone turnover markers in patients with postmenopausal osteoporosis. J Orthop Surg (Hong Kong) 2024; 32:10225536231187181. [PMID: 38613416 DOI: 10.1177/10225536231187181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Serotonin (5-HT) precursors regulate bone remodeling. This study aims to investigate the correlation of plasma 5-HT precursors and metabolite with bone mineral density (BMD) and bone turnover markers in postmenopausal osteoporosis (PMOP) patients. METHODS The age, body mass index (BMI), and years since menopause (YSM) were documented for 348 postmenopausal women in normal/osteopenia/osteoporosis (OP) groups, with lumbar spine and femoral neck BMD measured. Serum bone turnover markers (PINP/β-CTX) and plasma 5-HT, 5-HT precursors (Trp/5-HTP) and metabolite (5-HIAA) were measured by ELISA. OP patients were allocated to high/low expression groups following ROC analysis of 5-HT/Trp/5-HTP/5-HIAA. The relationship of plasma 5-HT/Trp/5-HTP/5-HIAA, BMD, and bone turnover markers with PMOP was analyzed using logistic regression analysis. The correlation of plasma 5-HT/Trp/5-HTP/5-HIAA with BMD and bone turnover markers was analyzed using Pearson's correlation analysis, followed by logistic regression analysis of the relationship between plasma 5-HT/Trp/5-HTP/5-HIAA and BMD, bone turnover markers and PMOP. RESULTS BMI, YSM, BMD and PINP, and β-CTX levels differed among groups. Levels of plasma 5-HT precursors/metabolite were increased in OP patients. Individuals with high 5-HT precursors/metabolite levels had low BMD and high PINP/β-CTX levels. The 5-HT precursors/metabolite negatively-correlated with BMD and positively-correlated with PINP/β-CTX. BMI, YSM, BMD, and PINP/β-CTX/Trp/5-HTP/5-HT related to PMOP and were independent risk factors for OP. CONCLUSION Plasma 5-HT precursors and metabolite negatively-correlate with BMD and positively-correlate with PINP/β-CTX in PMOP patients. Peripheral 5-HT precursors and metabolite level may be a new direction of treatment of PMOP and bone metabolism-related disorders.
Collapse
Affiliation(s)
- Qinying Feng
- Central Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Xiaoyu Song
- Central Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Li Liu
- Department of Clinical Examination, Maternal and Child Health Hospital, Guiyang, China
| | - Xinzhong Zhou
- Central Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Zhihao Chen
- Central Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
12
|
Su Y, Zhou B, Kwok T. Fracture risk prediction in old Chinese people-a narrative review. Arch Osteoporos 2023; 19:3. [PMID: 38110842 DOI: 10.1007/s11657-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
With aging, the burden of osteoporotic fracture (OF) increases substantially, while China is expected to carry the greatest part in the future. The risk of fracture varies greatly across racial groups and geographic regions, and systematically organized evidence on the potential predictors for fracture risk is needed for Chinese. This review briefly introduces the epidemiology of OF and expands on the predictors and predictive tools for the risk of OF, as well as the challenges for their potential translation in the old Chinese population. There are regional differences of fracture incidence among China. The fracture incidences in Hong Kong and Taiwan have decreased in recent years, while it is still increasing in mainland China. Although the application of dual-energy X-ray absorptiometry (DXA) is limited among old Chinese in the mainland, bone mineral density (BMD) by DXA has a predictive value similar to that worldwide. Other non-DXA modalities, especially heel QUS, are helpful in assessing bone health. The fracture risk assessment tool (FRAX) has a good discrimination ability for OFs, especially the FRAX with BMD. And some clinical factors have added value to FRAX, which has been verified in old Chinese. In addition, although the application of the osteoporosis self-assessment tool for Asians (OSTA) in Chinese needs further validation, it may help identify high-risk populations in areas with limited resources. Moreover, the translation use of the muscle quality and genetic or serum biomarkers in fracture prediction needs further works. More applicable and targeted fracture risk predictors and tools are still needed for the old Chinese population.
Collapse
Affiliation(s)
- Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Bei Zhou
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Timothy Kwok
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
13
|
Fu Y, Wang W, Zhao M, Zhao J, Tan M. Efficacy of the Chinese herbal medicine Jintiange capsules in the postoperative treatment of osteoporotic vertebral compression fractures: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1289818. [PMID: 38162884 PMCID: PMC10754969 DOI: 10.3389/fmed.2023.1289818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Background In traditional Chinese medicine, Jintiange capsules are frequently used to treat metabolic bone diseases and strengthen bones and tendons. The main component of Jintiange capsules is bionic tiger bone powder. However, the active ingredients and proteins are derived from other animal bones, with chemical profiles similar to that of natural tiger bone. This study aimed to explore the efficacy of Jintiange capsules, a Chinese herbal medicine, in the postoperative treatment of osteoporotic vertebral compression fractures (OVCFs). Methods In this systematic review, literature was retrieved using PubMed, the Cochrane Library, the Chinese National Knowledge Infrastructure, the Web of Science, the Wanfang Database, the Chinese Biomedical Literature Database, and the Chinese VIP Database from inception to July 2023. The primary outcome measures were the bone mineral density (BMD) and effective rate. The secondary outcome measures were the visual analog pain score (VAS), Oswestry disability index (ODI), Cobb's angle, serum osteocalcin, serum alkaline phosphatase, and adverse events. RevMan 5.4 and STATA 17.0 software were used for data analysis. Results We enrolled randomized controlled trials (RCTs) focusing on 1,642 patients in the meta-analysis. The meta-analysis illustrated that Jintiange capsules significantly increased the BMD of the lumbar spine (p < 0.00001), femoral neck (p = 0.0005), and whole body (p = 0.01). The subgroup analysis of Jintiange capsules combination therapy showed that the BMD of the lumbar spine and whole body was significantly improved with Jintiange capsules (p < 0.00001). The test for the overall effect showed that Jintiange capsules had a significantly higher effective rate than the control groups (p = 0.003). Additionally, the overall effect test showed that Jintiange capsules decreased the VAS and ODI (p < 0.00001) and Cobb's angle (p = 0.02), and improved serum OC and ALP (p < 0.00001) compared with the controls. Furthermore, the pooled analysis of adverse reactions showed no serious impacts on the treatment of OVCFs. Conclusion Jintiange capsules demonstrate high safety and efficacy in the treatment of OVCFs, including increasing BMD, the lift effect rate, serum OC levels, and pain relief, decreasing the ODI, serum ALP levels, and adverse events, and improving Cobb's angle. Additional research is required to validate the efficacy of Jintiange capsules for the postoperative treatment of OVCFs.Systematic review registration: https://www.crd.york.ac.uk/PROSPERO.
Collapse
Affiliation(s)
- Yongsheng Fu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weiguo Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghua Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianpeng Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingyue Tan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Carbone L, Bůžková P, Fink HA, Robbins JA, Barzilay JI, Elam RE, Isales C, Connelly MA, Mukamal KJ. Plasma Levels of Branched Chain Amino Acids, Incident Hip Fractures, and Bone Mineral Density of the Hip and Spine. J Clin Endocrinol Metab 2023; 108:e1358-e1364. [PMID: 37200158 PMCID: PMC11009785 DOI: 10.1210/clinem/dgad275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Branched chain amino acids (BCAA) are building blocks for protein, an essential component of bone. However, the association of plasma levels of BCAA with fractures in populations outside of Hong Kong or with hip fractures in particular is not known. The purpose of these analyses was to determine the relationship of BCAA including valine, leucine, and isoleucine and total BCAA (SD of the sum of Z-scores for each BCAA) with incident hip fractures and bone mineral density (BMD) of the hip and lumbar spine in older African American and Caucasian men and women in the Cardiovascular Health Study. DESIGN Longitudinal analyses of association of plasma levels of BCAA with incident hip fractures and cross-sectional BMD of the hip and lumbar spine from the Cardiovascular Health Study. SETTING Community. PARTICIPANTS A total of 1850 men (38% of cohort) and women; mean age 73 years. MAIN OUTCOME MEASURES Incident hip fractures and cross-sectional BMD of the total hip, femoral neck, and lumbar spine. RESULTS In fully adjusted models, over 12 years of follow-up, we observed no significant association between incident hip fracture and plasma values of valine, leucine, isoleucine, or total BCAA per 1 SD higher of each BCAA. Plasma values of leucine but not valine, isoleucine, or total BCAA, were positively and significantly associated with BMD of the total hip (P = .03) and femoral neck (P = .02), but not the lumbar spine (P = .07). CONCLUSIONS Plasma levels of the BCAA leucine may be associated with higher BMD in older men and women. However, given the lack of significant association with hip fracture risk, further information is needed to determine whether BCAAs would be novel targets for osteoporosis therapies.
Collapse
Affiliation(s)
- Laura Carbone
- J. Harold Harrison, MD, Distinguished University Chair in Rheumatology, Division of Rheumatology, Department of Medicine, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA 30912, USA
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
| | - John A Robbins
- Department of Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rachel E Elam
- Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA 30912, USA
- Division of Rheumatology, Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Carlos Isales
- Charlie Norwood Veterans Affairs Medical Center, Veterans Affairs Health Care System, Augusta, GA 30912, USA
- J. Harold Harrison, MD, Distinguished University Chair in Aging, Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | | | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
15
|
Grahnemo L, Eriksson AL, Nethander M, Johansson R, Lorentzon M, Mellström D, Pettersson-Kymmer U, Ohlsson C. Low Circulating Valine Associate With High Risk of Hip Fractures. J Clin Endocrinol Metab 2023; 108:e1384-e1393. [PMID: 37178220 PMCID: PMC10583993 DOI: 10.1210/clinem/dgad268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
CONTEXT Hip fractures constitute a major health concern. An adequate supply of amino acids is crucial to ensure optimal acquisition and remodeling of bone. Circulating amino acid levels have been proposed as markers of bone mineral density, but data on their ability to predict incident fractures are scarce. OBJECTIVES To investigate the associations between circulating amino acids and incident fractures. METHODS We used UK Biobank (n = 111 257; 901 hip fracture cases) as a discovery cohort and the Umeå Fracture and Osteoporosis (UFO) hip fracture study (hip fracture cases n = 2225; controls n = 2225) for replication. Associations with bone microstructure parameters were tested in a subsample of Osteoporotic Fractures in Men Sweden (n = 449). RESULTS Circulating valine was robustly associated with hip fractures in the UK Biobank (HR per SD increase 0.79, 95% CI 0.73-0.84), and this finding was replicated in the UFO study (combined meta-analysis including 3126 incident hip fracture cases, odds ratio per SD increase 0.84, 95% CI 0.80-0.88). Detailed bone microstructure analyses showed that high circulating valine was associated with high cortical bone area and trabecular thickness. CONCLUSION Low circulating valine is a robust predictor of incident hip fractures. We propose that circulating valine may add information for hip fracture prediction. Future studies are warranted to determine whether low valine is causally associated with hip fractures.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Anna L Eriksson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Sahlgrenska Academy, Bioinformatics and Data Centre, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Robert Johansson
- The Biobank Research Unit, Umeå University, SE-90187 Umeå, Sweden
| | - Mattias Lorentzon
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Geriatric Medicine, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
- Mary McKillop Institute for Health Research, Australian Catholic University, 3000 VIC, Melbourne, Australia
| | - Dan Mellström
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg and Geriatric Medicine, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Ulrika Pettersson-Kymmer
- Clinical Pharmacology, Department of Integrative Medical Biology, Umeå University, SE-90197 Umeå, Sweden
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Region Västra Götaland, Department of Drug Treatment, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
16
|
Carbone L, Bůžková P, Fink HA, Robbins JA, Barzilay JI, Elam RE, Isales C. The Association of Tryptophan and Its Metabolites With Incident Hip Fractures, Mortality, and Prevalent Frailty in Older Adults: The Cardiovascular Health Study. JBMR Plus 2023; 7:e10801. [PMID: 37808397 PMCID: PMC10556266 DOI: 10.1002/jbm4.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 10/10/2023] Open
Abstract
Amino acids are the building blocks of proteins, and sufficient protein intake is important for skeletal health. We utilized stored serum from the Cardiovascular Health Study in 1992-1993 to examine the relationship between levels of the essential amino acid tryptophan (trp) and its oxidized and nonoxidized metabolites to risk for incident hip fractures and mortality over 12 years of follow-up. We included 131 persons who sustained a hip fracture during this time period and 131 without a hip fracture over these same 12 years of follow-up; 58% female and 95% White. Weighted multivariable Cox hazards models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI) of incident hip fracture associated with a one standard deviation (SD) higher trp or its metabolites exposure. Relative risk regression was used to evaluate the cross-sectional association of trp and its metabolites with frailty. Higher serum levels of trp were significantly associated with lower risk of incident hip fractures (HR = 0.75 per SD of trp (95% CI 0.57-0.99) but were not significantly associated with mortality or frailty status by Freid's frailty index. There were no statistically significant associations between any of the oxidized or nonoxidized products of trp with incident hip fractures (p ≥ 0.64), mortality (p ≥ 0.20), or cross-sectional frailty status (p ≥ 0.13) after multiple testing adjustment. Randomized clinical trials examining whether increasing trp intake is beneficial for osteoporosis are needed. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Laura Carbone
- Division of Rheumatology, Department of MedicineAugusta UniversityAugustaGAUSA
- Charlie Norwood Veterans Affairs Medical CenterVeterans Affairs Health Care SystemAugustaGAUSA
| | - Petra Bůžková
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - Howard A Fink
- Geriatric Research Education and Clinical CenterVeterans Affairs Health Care SystemMinneapolisMNUSA
| | - John A Robbins
- Department of MedicineUniversity of California DavisDavisCAUSA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of GeorgiaEmory University School of MedicineAtlantaGAUSA
| | - Rachel E Elam
- Division of Rheumatology, Department of MedicineAugusta UniversityAugustaGAUSA
- Charlie Norwood Veterans Affairs Medical CenterVeterans Affairs Health Care SystemAugustaGAUSA
| | - Carlos Isales
- Charlie Norwood Veterans Affairs Medical CenterVeterans Affairs Health Care SystemAugustaGAUSA
- Division of Endocrinology, Department of MedicineAugusta UniversityAugustaGAUSA
| |
Collapse
|
17
|
Fung E, Ng KH, Kwok T, Lui LT, Palaniswamy S, Chan Q, Lim LL, Wiklund P, Xie S, Turner C, Elshorbagy AK, Refsum H, Leung JCS, Kong APS, Chan JCN, Järvelin MR, Woo J. Divergent Survival Outcomes Associated with Elevated Branched-Chain Amino Acid Levels among Older Adults with or without Hypertension and Diabetes: A Validated, Prospective, Longitudinal Follow-Up Study. Biomolecules 2023; 13:1252. [PMID: 37627317 PMCID: PMC10452866 DOI: 10.3390/biom13081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Branched-chain amino acids are critical metabolic intermediates that can indicate increased risk of cardiometabolic disease when levels are elevated or, alternatively, suggest sufficient mitochondrial energy metabolism and reserve in old age. The interpretation of BCAA levels can be context-dependent, and it remains unclear whether abnormal levels can inform prognosis. This prospective longitudinal study aimed to determine the interrelationship between mortality hazard and fasting serum BCAA levels among older men and women aged ≥65 years with or without hypertension and diabetes mellitus. At baseline (0Y), fasting serum BCAA concentration in 2997 community-living older men and women were measured. Approximately 14 years later (14Y), 860 study participants returned for repeat measurements. Deaths were analysed and classified into cardiovascular and non-cardiovascular causes using International Classification of Diseases codes. Survival analysis and multivariable Cox regression were performed. During a median follow-up of 17Y, 971 (78.6%) non-cardiovascular and 263 (21.4%) cardiovascular deaths occurred among 1235 (41.2%) deceased (median age, 85.8 years [IQR 81.7-89.7]). From 0Y to 14Y, BCAA levels declined in both sexes, whereas serum creatinine concentration increased (both p < 0.0001). In older adults without hypertension or diabetes mellitus, the relationship between mortality hazard and BCAA level was linear and above-median BCAA levels were associated with improved survival, whereas in the presence of cardiometabolic disease the relationship was U-shaped. Overall, adjusted Cox regression determined that each 10% increment in BCAA concentration was associated with a 7% (p = 0.0002) and 16% (p = 0.0057) reduction in mortality hazard estimated at 0Y and 14Y, respectively. Our findings suggested that abnormally high or low (dyshomeostatic) BCAA levels among older adults with hypertension and/or diabetes mellitus were associated with increased mortality, whereas in those with neither disease, increased BCAA levels was associated with improved survival, particularly in the oldest-old.
Collapse
Affiliation(s)
- Erik Fung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Cardiac Research Centre and Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR, China
- Neural, Vascular, Metabolic Biology Programme, and Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Cardiology, Department of Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Kwan Hung Ng
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Cardiac Research Centre and Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Jockey Club Centre for Osteoporosis Care and Control, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Leong-Ting Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Cardiac Research Centre and Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Saranya Palaniswamy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Lee-Ling Lim
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China
| | - Petri Wiklund
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
- The Exercise Translational Medicine Center and Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suyi Xie
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Cardiac Research Centre and Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Amany K. Elshorbagy
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria 21526, Egypt
- Department of Public Health and Primary Healthcare, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Jason C. S. Leung
- CUHK Jockey Club Centre for Osteoporosis Care and Control, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alice P. S. Kong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Asia Diabetes Foundation, Shatin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
- Unit of Primary Health Care, Oulu University Hospital, 90014 Oulu, Finland
| | - Jean Woo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Jockey Club Institute of Ageing, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
De Paepe B. What Nutraceuticals Can Do for Duchenne Muscular Dystrophy: Lessons Learned from Amino Acid Supplementation in Mouse Models. Biomedicines 2023; 11:2033. [PMID: 37509672 PMCID: PMC10377666 DOI: 10.3390/biomedicines11072033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), the severest form of muscular dystrophy, is characterized by progressive muscle weakness with fatal outcomes most often before the fourth decade of life. Despite the recent addition of molecular treatments, DMD remains a disease without a cure, and the need persists for the development of supportive therapies aiming to help improve patients' quality of life. This review focuses on the therapeutical potential of amino acid and derivative supplements, summarizing results obtained in preclinical studies in murine disease models. Several promising compounds have emerged, with L-arginine, N-acetylcysteine, and taurine featuring among the most intensively investigated. Their beneficial effects include reduced inflammatory, oxidative, fibrotic, and necrotic damage to skeletal muscle tissues. Improvement of muscle strength and endurance have been reported; however, mild side effects have also surfaced. More explorative, placebo-controlled and long-term clinical trials would need to be conducted in order to identify amino acid formulae that are safe and of true benefit to DMD patients.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology, Ghent University & Neuromuscular Reference Center, Ghent University Hospital, Route 830, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
19
|
Lau KT, Krishnamoorthy S, Sing CW, Cheung CL. Metabolomics of Osteoporosis in Humans: A Systematic Review. Curr Osteoporos Rep 2023; 21:278-288. [PMID: 37060383 DOI: 10.1007/s11914-023-00785-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW To systematically review recent studies investigating the association between metabolites and bone mineral density (BMD) in humans. METHODS Using predefined keywords, we searched literature published from Jan 1, 2019 to Feb 20, 2022 in PubMed, Web of Science, Embase, and Scopus. Studies that met the predefined exclusion criteria were excluded. Among the included studies, we identified metabolites that were reported to be associated with BMD by at least three independent studies. RECENT FINDINGS A total of 170 studies were retrieved from the databases. After excluding studies that did not meet our predefined inclusion criteria, 16 articles were used in this review. More than 400 unique metabolites in blood were shown to be significantly associated with BMD. Of these, three metabolites were reported by ≥ 3 studies, namely valine, leucine and glycine. Glycine was consistently shown to be inversely associated with BMD, while valine was consistently observed to be positively associated with BMD. Inconsistent associations with BMD was observed for leucine. With advances in metabolomics technology, an increasing number of metabolites associated with BMD have been identified. Two of these metabolites, namely valine and glycine, were consistently associated with BMD, highlighting their potential for clinical application in osteoporosis. International collaboration with a larger population to conduct clinical studies on these metabolites is warranted. On the other hand, given that metabolomics could be affected by genetics and environmental factors, whether the inconsistent association of the metabolites with BMD is due to the interaction between metabolites and genes and/or lifestyle warrants further study.
Collapse
Affiliation(s)
- Kat-Tik Lau
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Suhas Krishnamoorthy
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Chor-Wing Sing
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Ching Lung Cheung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Pak Shek Kok, Hong Kong.
| |
Collapse
|
20
|
Increased Dietary Intakes of Total Protein, Animal Protein and White Meat Protein Were Associated with Reduced Bone Loss—A Prospective Analysis Based on Guangzhou Health and Nutrition Cohort, South China. Nutrients 2023; 15:nu15061432. [PMID: 36986162 PMCID: PMC10051092 DOI: 10.3390/nu15061432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, we aimed to prospectively investigate the relationships between different types of dietary protein and changes in bone mass in Chinese middle-aged and elderly people. Dietary intakes were evaluated by means of a validated food frequency questionnaire. Bone mineral density (BMD) was measured using a dual-energy bone densitometer at multiple bone sites. Multivariable regression models were applied to investigate the associations of the participants’ dietary intakes of total protein, intakes of protein from various sources, and amino acid intakes with the annualized changes in BMD during a 3-year follow-up. A total of 1987 participants aged 60.3 ± 4.9 years were included in the analyses. Multivariable linear regression results showed that dietary intakes of total protein, animal protein, and protein from white meat were positively correlated with BMD changes, with standardized coefficients (β) of 0.104, 0.073, and 0.074 at the femur neck (p < 0.01) and 0.118, 0.067, and 0.067 at the trochanter (p < 0.01), respectively. With each increase of 0.1g·kg−1·d−1 in animal protein and white meat protein intakes, the BMD losses were reduced by 5.40 and 9.24 mg/cm2 at the femur neck (p < 0.05) and 1.11 and 1.84 mg/cm2 at the trochanter (p < 0.01), respectively. Our prospective data, obtained from Chinese adults, showed that dietary total and animal protein, especially protein from white meat, could significantly reduce bone loss at the femur neck and trochanter.
Collapse
|
21
|
Galvez-Fernandez M, Rodriguez-Hernandez Z, Grau-Perez M, Chaves FJ, Garcia-Garcia AB, Amigo N, Monleon D, Garcia-Barrera T, Gomez-Ariza JL, Briongos-Figuero LS, Perez-Castrillon JL, Redon J, Tellez-Plaza M, Martin-Escudero JC. Metabolomic patterns, redox-related genes and metals, and bone fragility endpoints in the Hortega Study. Free Radic Biol Med 2023; 194:52-61. [PMID: 36370960 DOI: 10.1016/j.freeradbiomed.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants. MATERIAL AND METHODS In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay. RESULTS The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk. CONCLUSIONS Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, 28029, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Avenida de Orellana, s/n, 28911, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Zulema Rodriguez-Hernandez
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Monforte de Lemos, 5, 28029, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Camí de Vera, s/n, 46022, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, 28029, Madrid, Spain; INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - F Javier Chaves
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain; CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Nuria Amigo
- Biosfer Teslab, Plaça de Prim, 10, 43201, Tarragona, Spain; Department of Basic Medical Sciences, Universidad de Rovira I virgili, Carrer de Sant Llorenç, 21, 43201, Tarragona, Spain
| | - Daniel Monleon
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain; Department of Pathology, School of Medicine, Universidad de Valencia, Avenida de Blasco Ibáñez, 15, 46010, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| | - Tamara Garcia-Barrera
- Department of Chemistry, Universidad de Huelva, Avenida de las Fuerzas Armadas, 21007, Huelva, Spain
| | - Jose L Gomez-Ariza
- Department of Chemistry, Universidad de Huelva, Avenida de las Fuerzas Armadas, 21007, Huelva, Spain
| | - Laisa S Briongos-Figuero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Jose L Perez-Castrillon
- Department of Internal Medicine, Hospital Universitario Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| | - Josep Redon
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, 28029, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Monforte de Lemos, 5, 28029, Madrid, Spain; INCLIVA Biomedical Research Institute, Menéndez y Pelayo, 4, 46010, Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, Calle Dulzaina, 2, 47012, Valladolid, Spain
| |
Collapse
|
22
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Shen Y, Wang N, Zhang Q, Liu Y, Wu Q, He Y, Wang Y, Wang X, Zhao Q, Zhang Q, Qin L, Zhang Q. Jin-Tian-Ge ameliorates ovariectomy-induced bone loss in rats and modulates osteoblastogenesis and osteoclastogenesis in vitro. Chin Med 2022; 17:78. [PMID: 36195960 PMCID: PMC9533506 DOI: 10.1186/s13020-022-00627-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tiger bone, which had been one of the most famous traditional Chinese medicine for 2000 years, was originate from the skeleton of Panthera tigris L., and had the actions of anti-inflammatory, analgesic, immune-regulatory and promoting healing of bone fracture, and was used for the treatment of osteoporosis and rheumatoid arthritis. Jin-Tian-Ge (JTG), the artificial tiger bone powder, were prepared from skeletons of several farmed animals to substitute the natural tiger bone, and has been used for the treatment of osteoporosis in clinical practice. However, the characteristic and mechanism of action of JTG for the therapy of osteoporosis need to be further evidenced by using modern pharmacological methods. The aim of this work is to investigate the bone-protective effects of JTG, and explore the possible underlying mechanism. METHODS Ovariectomy (OVX) rats were orally administrated JTG or estradiol valerate (EV) for 12 weeks. We investigated the pharmacodynamic effects of JTG on anti-bone loss in OVX rats, and also investigated the role of JTG in promoting osteogenesis and inhibiting osteoclast differentiation. RESULTS JTG increased the bone mineral density (BMD), improved the bone microarchitecture and biomechanical properties in ovariectomized rast, whereas reversed the bone high turnover in OVX rats as evidenced by serum biochemical markers in OVX rats. JTG increased osteogenic differentiation of BMSCs in vitro, and up-regulated the expression of the key proteins of BMP and Wnt/β-catenin pathways. JTG also inhibited the osteoclastogenesis of BMM as evidenced by the alteration of the TRAP activity, F-actin construction and the expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, Cathepsin K (Ctsk) and matrix metallopeptidase 9 (MMP9) of OCs induced with RANKL and LPS, reduced the expression and phosphorylation of NF-κB in OCs. CONCLUSIONS JTG prevented bone loss in OVX rats and increased osteogenic differentiation of BMSCs through regulation of the BMP and Wnt/β-catenin pathway, inhibited osteoclastogenesis by suppressing the NF-κB pathway, suggesting that JTG had the potentials for prevention and treatment of osteoporosis by modulating formation and differentiation of osteoblast and osteoclast.
Collapse
Affiliation(s)
- Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Na Wang
- Ginwa Enterprise (Group) INC, Xi'an, 710069, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Yuling Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Qudi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Yuqiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yang Wang
- Zhejiang Traditional Chinese Medicine & Health Industry Group CO., LTD, Hangzhou, 310016, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Qiming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China.
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China.
| |
Collapse
|
24
|
Role of Essential Amino Acids in Age-Induced Bone Loss. Int J Mol Sci 2022; 23:ijms231911281. [PMID: 36232583 PMCID: PMC9569615 DOI: 10.3390/ijms231911281] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Age-induced osteoporosis is a global problem. Essential amino acids (EAAs) work as an energy source and a molecular pathway modulator in bone, but their functions have not been systematically reviewed in aging bone. This study aimed to discuss the contribution of EAAs on aging bone from in vitro, in vivo, and human investigations. In aged people with osteoporosis, serum EAAs were detected changing up and down, without a well-established conclusion. The supply of EAAs in aged people either rescued or did not affect bone mineral density (BMD) and bone volume. In most signaling studies, EAAs were proven to increase bone mass. Lysine, threonine, methionine, tryptophan, and isoleucine can increase osteoblast proliferation, activation, and differentiation, and decrease osteoclast activity. Oxidized L-tryptophan promotes bone marrow stem cells (BMSCs) differentiating into osteoblasts. However, the oxidation product of tryptophan called kynurenine increases osteoclast activity, and enhances the differentiation of adipocytes from BMSCs. Taken together, in terms of bone minerals and volume, more views consider EAAs to have a positive effect on aging bone, but the function of EAAs in bone metabolism has not been fully demonstrated and more studies are needed in this area in the future.
Collapse
|
25
|
Panahi N, Fahimfar N, Roshani S, Arjmand B, Gharibzadeh S, Shafiee G, Migliavacca E, Breuille D, Feige JN, Grzywinski Y, Corthesy J, Razi F, Heshmat R, Nabipour I, Farzadfar F, Soltani A, Larijani B, Ostovar A. Association of amino acid metabolites with osteoporosis, a metabolomic approach: Bushehr elderly health program. Metabolomics 2022; 18:63. [PMID: 35915271 DOI: 10.1007/s11306-022-01919-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION AND OBJECTIVES Amino acids are the most frequently reported metabolites associated with low bone mineral density (BMD) in metabolomics studies. We aimed to evaluate the association between amino acid metabolic profile and bone indices in the elderly population. METHODS 400 individuals were randomly selected from 2384 elderly men and women over 60 years participating in the second stage of the Bushehr elderly health (BEH) program, a population-based prospective cohort study that is being conducted in Bushehr, a southern province of Iran. Frozen plasma samples were used to measure 29 amino acid and derivatives metabolites using the UPLC-MS/MS-based targeted metabolomics platform. We conducted Elastic net regression analysis to detect the metabolites associated with BMD of different sites and lumbar spine trabecular bone score, and also to examine the ability of the measured metabolites to differentiate osteoporosis. RESULTS We adjusted the analysis for possible confounders (age, BMI, diabetes, smoking, physical activity, vitamin D level, and sex). Valine, leucine, isoleucine, and alanine in women and tryptophan in men were the most important amino acids inversely associated with osteoporosis (OR range from 0.77 to 0.89). Sarcosine, followed by tyrosine, asparagine, alpha aminobutyric acid, and ADMA in women and glutamine in men and when both women and men were considered together were the most discriminating amino acids detected in individuals with osteoporosis (OR range from 1.15 to 1.31). CONCLUSION We found several amino acid metabolites associated with possible bone status in elderly individuals. Further studies are required to evaluate the utility of these metabolites as clinical biomarkers for osteoporosis prediction and their effect on bone health as dietary supplements.
Collapse
Affiliation(s)
- Nekoo Panahi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Roshani
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Eugenia Migliavacca
- Nestlé Institute of Health Sciences, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - Denis Breuille
- Nestlé Institute of Health Sciences, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - Yohan Grzywinski
- Institute of Food Safety and Analytical Science, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - John Corthesy
- Institute of Food Safety and Analytical Science, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Soltani
- Evidence-Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Go M, Shin E, Jang SY, Nam M, Hwang GS, Lee SY. BCAT1 promotes osteoclast maturation by regulating branched-chain amino acid metabolism. Exp Mol Med 2022; 54:825-833. [PMID: 35760874 PMCID: PMC9256685 DOI: 10.1038/s12276-022-00775-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022] Open
Abstract
Branched-chain aminotransferase 1 (BCAT1) transfers the amine group on branched-chain amino acids (BCAAs) to alpha-ketoglutarate. This generates glutamate along with alpha-keto acids that are eventually oxidized to provide the cell with energy. BCAT1 thus plays a critical role in sustaining BCAA concentrations and availability as an energy source. Osteoclasts have high metabolic needs during differentiation. When we assessed the levels of amino acids in bone marrow macrophages (BMMs) that were undergoing receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, we found that the BCAA levels steadily increase during this process. In vitro analyses then showed that all three BCAAs but especially valine were needed for osteoclast maturation. Moreover, selective inhibition of BCAT1 with gabapentin significantly reduced osteoclast maturation. Expression of enzymatically dead BCAT1 also abrogated osteoclast maturation. Importantly, gabapentin inhibited lipopolysaccharide (LPS)-induced bone loss of calvaria in mice. These findings suggest that BCAT1 could serve as a therapeutic target that dampens osteoclast formation.
Collapse
Affiliation(s)
- Miyeon Go
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eunji Shin
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea.,Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea. .,Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| | - Soo Young Lee
- Department of Life Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
27
|
Su Y, Elshorbagy A, Turner C, Refsum H, Kwok T. The Association of Circulating Amino Acids and Dietary Inflammatory Potential with Muscle Health in Chinese Community-Dwelling Older People. Nutrients 2022; 14:nu14122471. [PMID: 35745201 PMCID: PMC9229609 DOI: 10.3390/nu14122471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acids (AAs) and dietary inflammatory potential play essential roles in muscle health. We examined the associations of dietary inflammatory index (DII) of habitual diet with serum AA profile, and ascertained if the associations between DII and muscle outcomes were mediated by serum AAs, in 2994 older Chinese community-dwelling men and women (mean age 72 years) in Hong Kong. Higher serum branched chain AAs (BCAAs), aromatic AAs and total glutathione (tGSH) were generally associated with better muscle status at baseline. A more pro-inflammatory diet, correlating with higher serum total homocysteine and cystathionine, was directly (90.2%) and indirectly (9.8%) through lower tGSH associated with 4-year decline in hand grip strength in men. Higher tGSH was associated with favorable 4-year changes in hand grip strength, gait speed and time needed for 5-time chair stands in men and 4-year change in muscle mass in women. Higher leucine and isoleucine were associated with decreased risk of sarcopenia in men; the associations were abolished after adjustment for BMI. In older men, perturbations in serum sulfur AAs metabolism may be biomarkers of DII related adverse muscle status, while the lower risk of sarcopenia with higher BCAAs may partly be due to preserved BMI.
Collapse
Affiliation(s)
- Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China;
| | - Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria 21526, Egypt;
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Helga Refsum
- Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2632-3128; Fax: +852-2637-3852
| |
Collapse
|
28
|
The association of serum sulfur amino acids and related metabolites with incident diabetes: a prospective cohort study. Eur J Nutr 2022; 61:3161-3173. [PMID: 35415822 DOI: 10.1007/s00394-022-02872-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
AIM Plasma total cysteine (tCys) is associated with fat mass and insulin resistance, whereas taurine is inversely related to diabetes risk. We investigated the association of serum sulfur amino acids (SAAs) and related amino acids (AAs) with incident diabetes. METHODS Serum AAs were measured at baseline in 2997 subjects aged ≥ 65 years. Diabetes was recorded at baseline and after 4 years. Logistic regression evaluated the association of SAAs [methionine, total homocysteine (tHcy), cystathionine, tCys, and taurine] and related metabolites [serine, total glutathione (tGSH), glutamine, and glutamic acid] with diabetes risk. RESULTS Among 2564 subjects without diabetes at baseline, 4.6% developed diabetes. Each SD increment in serum tCys was associated with a 68% higher risk (95% CI 1.27, 2.23) of diabetes [OR for upper vs. lower quartile 2.87 (1.39, 5.91)], after full adjustments (age, sex, other AAs, adiposity, eGFR, physical activity, blood pressure, diet and medication); equivalent ORs for cystathionine were 1.33 (1.08, 1.64) and 1.68 (0.85, 3.29). Subjects who were simultaneously in the upper tertiles of both cystathionine and tCys had a fivefold risk [OR = 5.04 (1.55, 16.32)] of diabetes compared with those in the lowest tertiles. Higher serine was independently associated with a lower risk of developing diabetes [fully adjusted OR per SD = 0.68 (0.54, 0.86)]. Glutamic acid and glutamine showed positive and negative associations, respectively, with incident diabetes in age- and sex-adjusted analysis, but only the glutamic acid association was independent of other confounders [fully adjusted OR per SD = 1.95 (1.19, 3.21); for upper quartile = 7.94 (3.04, 20.75)]. tGSH was inversely related to diabetes after adjusting for age and sex, but not other confounders. No consistent associations were observed for methionine, tHcy or taurine. CONCLUSION Specific SAAs and related metabolites show strong and independent associations with incident diabetes. This suggests that perturbations in the SAA metabolic pathway may be an early marker for diabetes risk.
Collapse
|
29
|
Lawenius L, Gustafsson KL, Wu J, Nilsson KH, Movérare-Skrtic S, Schott EM, Soto-Girón MJ, Toledo GV, Sjögren K, Ohlsson C. Development of a synbiotic that protects against ovariectomy-induced trabecular bone loss. Am J Physiol Endocrinol Metab 2022; 322:E344-E354. [PMID: 35156423 DOI: 10.1152/ajpendo.00366.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
The gut microbiome has the capacity to regulate bone mass. The aim of this study was to develop a nutritional synbiotic dietary assemblage at an optimal dose to maintain bone mass in ovariectomized (Ovx) mice. We performed genomic analyses and in vitro experiments in a large collection of bacterial and fungal strains (>4,000) derived from fresh fruit and vegetables to identify candidates with the synergistic capacity to produce bone-protective short-chain fatty acids (SCFA) and vitamin K2. The candidate SBD111-A, composed of Lactiplantibacillus plantarum, Levilactobacillus brevis, Leuconostoc mesenteroides, Pseudomonas fluorescens, and Pichia kudriavzevii together with prebiotic dietary fibers, produced high levels of SCFA in vitro and protected against Ovx-induced trabecular bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and enriched specific pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids in the gut microbiome.NEW & NOTEWORTHY We performed genomic analyses and in vitro experiments in a collection of bacterial and fungal strains. We identified a combination (SBD111-A) that produced high levels of SCFA in vitro and protected against ovariectomy-induced bone loss in a dose-dependent manner in mice. Metagenomic sequencing revealed that SBD111-A changed the taxonomic composition and function of the gut microbiome and enriched pathways for synthesis of bone-protective SCFA, vitamin K2, and branched-chain amino acids.
Collapse
Affiliation(s)
- Lina Lawenius
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin L Gustafsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | | - Klara Sjögren
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
30
|
Higher fruit and vegetable variety associated with lower risk of cognitive impairment in Chinese community-dwelling older men: a 4-year cohort study. Eur J Nutr 2022; 61:1791-1799. [PMID: 35031888 DOI: 10.1007/s00394-021-02774-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE Few studies have examined the variety in fruit and vegetable (FV) intake with cognitive impairment in older adults. This study examined the associations of variety in fruit, vegetable and combined FV with 4-year incident cognitive impairment in Chinese community-dwelling older adults. METHODS Data was derived from a cohort study among Chinese community-dwelling older adults aged ≥ 65 years in Hong Kong. At baseline, a validated food frequency questionnaire was used to assess variety in fruit, vegetable and combined FV. Cognitive impairment was defined as a Community Screening Instrument of Dementia score of < 29.5 points and/or Mini-Mental State Examination score of < 27 points. Adjusted multiple logistic regression was performed to examine the associations. Results are presented as odds ratio (OR) and 95% confidence interval (CI). RESULTS Of the 1518 participants [median age: 70 years (IQR 68-74), 32.7% women] included at baseline, 300 men and 111 women were newly identified as cognitively impaired at the 4-year follow-up. In men, higher variety in vegetable (adjusted OR: 0.97, 95% CI 0.95-0.99, p = 0.029) and combined FV (adjusted OR: 0.98, 95% CI 0.96-0.98, p = 0.039) were significantly associated with a lower risk of cognitive impairment. Fruit variety was not associated with cognitive impairment. In women, there were no associations between variety in fruit, vegetable and combined FV with cognitive impairment in the adjusted model. CONCLUSION Independent of FV quantity, higher variety in vegetable and combined FV were associated with lower risk of cognitive impairment in Chinese community-dwelling older adults, and these associations were only observed in men.
Collapse
|
31
|
Lu L, Tang M, Li J, Xie Y, Li Y, Xie J, Zhou L, Liu Y, Yu X. Gut Microbiota and Serum Metabolic Signatures of High-Fat-Induced Bone Loss in Mice. Front Cell Infect Microbiol 2022; 11:788576. [PMID: 35004355 PMCID: PMC8727351 DOI: 10.3389/fcimb.2021.788576] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background Accumulating evidence indicates that high-fat diet (HFD) is a controllable risk factor for osteoporosis, but the underlying mechanism remains to be elucidated. As a primary biological barrier for nutrient entry into the human body, the composition and function of gut microbiota (GM) can be altered rapidly by HFD, which may trigger abnormal bone metabolism. In the current study, we analyzed the signatures of GM and serum metabolomics in HFD-induced bone loss and explored the potential correlations of GM and serum metabolites on HFD-related bone loss. Methods We conducted a mouse model with HFD-induced bone loss through a 12-week diet intervention. Micro-CT, Osmium-μCT, and histological analyses were used to observe bone microstructure and bone marrow adipose tissue. Quantitative Real-Time PCR was applied to analyze gene expression related to osteogenesis, adipogenesis, and osteoclastogenesis. Enzyme-linked immunosorbent assay was used to measure the biochemical markers of bone turnover. 16s rDNA sequencing was employed to analyze the abundance of GM, and UHPLC-MS/MS was used to identify serum metabolites. Correlation analysis was performed to explore the relationships among bone phenotypes, GM, and the metabolome. Results HFD induced bone loss accompanied by bone marrow adipose tissue expansion and bone formation inhibition. In the HFD group, the relative abundance of Firmicutes was increased significantly, while Bacteroidetes, Actinobacteria, Epsilonbacteraeota, and Patescibacteria were decreased compared with the ND group. Association analysis showed that thirty-two bacterial genera were significantly related to bone volume per tissue volume (BV/TV). One hundred and forty-five serum metabolites were identified as differential metabolites associated with HFD intervention, which were significantly enriched in five pathways, such as purine metabolism, regulation of lipolysis in adipocyte and cGMP-PKG signaling pathway. Sixty-four diffiential metabolites were matched to the MS2 spectra; and ten of them were positively correlated with BV/TV and five were negatively correlated with BV/TV. Conclusions These findings indicated that the alternations of GM and serum metabolites were related to HFD-induced bone loss, which might provide new insights into explain the occurrence and development of HFD-related osteoporosis. The regulatory effects of GM and metabolites associated with HFD on bone homeostasis required further exploration.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Department of Integrated Traditional Chinese and Western Medicine, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengjia Tang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xie
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujue Li
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Jinwei Xie
- Department of Orthopaedic Surgery and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhou
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Estrella-Parra EA, Espinosa-González AM, García-Bores AM, Nolasco-Ontiveros E, Rivera-Cabrera JC, Hernández-Delgado CT, Peñalosa-Castro I, Avila-Acevedo JG. Metabolomics: From Scientific Research to the Clinical Diagnosis. PRINCIPLES OF GENETICS AND MOLECULAR EPIDEMIOLOGY 2022:77-86. [DOI: 10.1007/978-3-030-89601-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Wang X, Shen Y, Zhuang X, Wang N, Zhang Q, Zhu L, Liu Y, Lu X, Qin L, Zhang Q. Jintiange Capsule Alleviates Rheumatoid Arthritis and Reverses Changes of Serum Metabolic Profile in Collagen-Induced Arthritic Rats. J Inflamm Res 2021; 14:6685-6706. [PMID: 34949931 PMCID: PMC8688834 DOI: 10.2147/jir.s338107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Jintiange capsule (JTG), an approved drug developed as a substitute for tiger bone (TB), has been clinically applied for osteoporosis therapy since 2003. The drug is composed of bionic TB powder, in which peptides and proteins are primarily enriched from other bone extracts. However, as a precious material of traditional Chinese medicine (TCM), TB has been mainly understood and used in TCM to relieve osteoporosis, rheumatoid arthritis and bone injury. Inspired by those, the purpose of this study was to investigate whether JTG also had an effect on relieving rheumatoid arthritis in collagen-induced arthritic (CIA) rats and explore potential mechanism from the perspective of serum metabolic profile changes. Methods JTG was analyzed using Nano LC-MS/MS and orally administered in CIA rats for 6 weeks. After administration, intervention effects of JTG on synovial inflammation, bone micro-architecture and bone metabolism were studied, and the impact of JTG on serum metabolic profiles in CIA rats was investigated by metabolomics. Results Nine bioactive peptides were identified in JTG. In animal treatments, JTG alleviated paw swelling (P < 0.01), arthritic severity (P < 0.01) and synovial tissue proliferation, as well as inflammatory cell infiltration of ankle joint, decreased bone loss, improved microstructure of bone in CIA rats by regulating bone absorption and formation, specifically increasing bone mineral density (BMD) (P < 0.05), bone volume fraction (BVF) (P < 0.05), trabecular number (Tb.N) (P < 0.05) and decreasing trabecular separation (Tb.Sp) (P < 0.05). Besides, serum IL-6 was down-regulated remarkably in CIA rats (P < 0.05). Furthermore, metabolomics analysis revealed that 32 metabolites were regulated significantly (P < 0.05) by comparison between CIA model and JTG in 360 mg/kg dose. The pathway analysis implied that JTG was involved in regulation of biosynthesis of phenylalanine. Conclusion JTG alleviates rheumatoid arthritis and reverses changes in serum metabolic profile in CIA rats. ![]()
Point your SmartPhone at the code above. If you have a QR code reader, the video abstract will appear. Or use: https://youtu.be/fgIlcSWmw_Y
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Xinying Zhuang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Na Wang
- Ginwa Enterprise (Group) INC, Xi'an, 710069, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Lulin Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yuling Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| |
Collapse
|
34
|
Panahi N, Arjmand B, Ostovar A, Kouhestani E, Heshmat R, Soltani A, Larijani B. Metabolomic biomarkers of low BMD: a systematic review. Osteoporos Int 2021; 32:2407-2431. [PMID: 34309694 DOI: 10.1007/s00198-021-06037-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Due to the metabolic nature of osteoporosis, this study was conducted to identify metabolomic studies investigating the metabolic profile of low bone mineral density (BMD) and osteoporosis. A comprehensive systematic literature search was conducted through PubMed, Web of Science, Scopus, and Embase databases up to April 08, 2020, to identify observational studies with cross-sectional or case-control designs investigating the metabolic profile of low BMD in adults using biofluid specimen via metabolomic platform. The quality assessment panel specified for the "omics"-based diagnostic research (QUADOMICS) tool was used to estimate the methodologic quality of the included studies. Ten untargeted and one targeted approach metabolomic studies investigating biomarkers in different biofluids through mass spectrometry or nuclear magnetic resonance platforms were included in the systematic review. Some metabolite panels, rather than individual metabolites, showed promising results in differentiating low BMD from normal. Candidate metabolites were of different categories including amino acids, followed by lipids and carbohydrates. Besides, certain pathways were suggested by some of the studies to be involved. This systematic review suggested that metabolic profiling could improve the diagnosis of low BMD. Despite valuable findings attained from each of these studies, there was great heterogeneity regarding the ethnicity and age of participants, samples, and the metabolomic platform. Further longitudinal studies are needed to validate the results and confirm the predictive role of metabolic profile on low BMD and fracture. It is also mandatory to address and minimize the heterogeneity in future studies by using reliable quantitative methods. Summary: Due to the metabolic nature of osteoporosis, researchers have considered metabolomic studies recently. This systematic review showed that metabolic profiling including different categories of metabolites could improve the diagnosis of low BMD. However, great heterogeneity was observed and it is mandatory to address and minimize the heterogeneity in future studies.
Collapse
Affiliation(s)
- N Panahi
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - B Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - A Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - E Kouhestani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - A Soltani
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - B Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Liu ZM, Huang Q, Li SY, Liu YP, Wu Y, Zhang SJ, Li BL, Chen YM. A 1:1 matched case-control study on dietary protein intakes and hip fracture risk in Chinese elderly men and women. Osteoporos Int 2021; 32:2205-2216. [PMID: 33890124 DOI: 10.1007/s00198-021-05960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
UNLABELLED The role of protein intake in bone has been controversial. Our case-control study among Chinese elderly concluded that a higher consumption of protein, even substituted for fat, is associated with lowered hip fracture risk. Differences in protein sources, amino acids composition, gender, and calcium sufficiency may explain the inconsistency. PURPOSE The aim of the study was to investigate the association of dietary protein intakes with hip fracture risk among Chinese elderly. METHODS This was a 1:1 age and sex matched cross-sectional study of case-control design among 1070 pairs of elderly Chinese people aged 55 to 80 years. Patients who were newly diagnosed (within 2-week) hip fracture by X-ray were recruited from four hospitals in Guangdong Province of China. Dietary intakes were evaluated by a validated food frequency questionnaire for total protein, protein from different sources, amino acids profiles, and estimated renal acid load in diet. RESULTS Daily average intakes of total protein were 58.1±27.0 (women) and 65.7±31.8 (men) g/d for cases, and 66.8±21.5 (women) and 72.1±24.4 (men) for controls (p<0.001). Multivariable regression indicated that, compared with the lowest quartile, the highest quartile of consumption of energy adjusted total protein [OR: 0.360 (0.206~0.630) for women and 0.381 (0.153~0.949) for men] and animal protein [0.326 (0.183, 0.560) for women and 0.335 (0.136~0.828) for men] was significantly associated with the lowered risk of hip fracture in a dose-response manner (all p for trend <0.05). A significant hip fracture risk reduction was observed in women with higher intakes of sulfur amino acids [OR: 0.464 (0.286~0.753)] and aromatic amino acids [0.537 (0.326~0.884)] but not in men. Subgroup analysis suggested that these associations were more evident in elderly with lower body mass index and dietary calcium intake less than 400 mg/d. CONCLUSIONS A higher level of protein intake, even substituted for fat, is associated with lowered hip fracture risk.
Collapse
Affiliation(s)
- Z-M Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Q Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - S-Y Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Y-P Liu
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Zhongshan Road 2, Guangzhou, 510080, China
| | - Y Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - S-J Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - B-L Li
- Guangzhou Orthopaedics Trauma Hospital, Guangzhou, China
| | - Y-M Chen
- Department of Medical Statistics & Epidemiology, School of Public Health, Sun Yat-sen University, Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
36
|
Kositsawat J, Duque G, Kirk B. Nutrients with anabolic/anticatabolic, antioxidant, and anti-inflammatory properties: Targeting the biological mechanisms of aging to support musculoskeletal health. Exp Gerontol 2021; 154:111521. [PMID: 34428477 DOI: 10.1016/j.exger.2021.111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/12/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022]
Abstract
Old age is associated with declines in bone density and muscle mass and function, which predisposes to mobility disability, falls, and fractures. Poor nutritional status, a risk factor for several age-related pathologies, becomes prevalent in old age and contributes to the structural and functional changes of the musculoskeletal system that increases the risk of osteoporosis, sarcopenia, osteosarcopenia, and physical frailty. The biological mechanisms underpinning these pathologies often overlap and include loss of proteostasis, impaired redox functioning, and chronic low-grade inflammation. Thus, provision of nutrients with anabolic/anticatabolic, antioxidant, and anti-inflammatory properties may be an effective strategy to offset these age-related pathologies. We searched PUBMED for pre-clinical and clinical work examining the effects of nutrients with a combined effect on muscle and bone. This review summarizes recent evidence on the mechanisms of action and potential clinical use of nutrients that concomitantly improve muscle and bone health in older persons.
Collapse
Affiliation(s)
- Jatupol Kositsawat
- Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC 3021, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Ben Kirk
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC 3021, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC 3021, Australia.
| |
Collapse
|
37
|
Serum Metabolite Profile Associated with Sex-Dependent Visceral Adiposity Index and Low Bone Mineral Density in a Mexican Population. Metabolites 2021; 11:metabo11090604. [PMID: 34564420 PMCID: PMC8472083 DOI: 10.3390/metabo11090604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
Recent evidence shows that obesity correlates negatively with bone mass. However, traditional anthropometric measures such as body mass index could not discriminate visceral adipose tissue from subcutaneous adipose tissue. The visceral adiposity index (VAI) is a reliable sex-specified indicator of visceral adipose distribution and function. Thus, we aimed to identify metabolomic profiles associated with VAI and low bone mineral density (BMD). A total of 602 individuals from the Health Workers Cohort Study were included. Forty serum metabolites were measured using the targeted metabolomics approach, and multivariate regression models were used to test associations of metabolomic profiles with anthropometric, clinical, and biochemical parameters. The analysis showed a serum amino acid signature composed of glycine, leucine, arginine, valine, and acylcarnitines associated with high VAI and low BMD. In addition, we found a sex-dependent VAI in pathways related to primary bile acid biosynthesis, branched-chain amino acids, and the biosynthesis of pantothenate and coenzyme A (CoA). In conclusion, a metabolic profile differs by VAI and BMD status, and these changes are gender-dependent.
Collapse
|
38
|
Yeung SSY, Zhu ZLY, Kwok T, Woo J. Serum Amino Acids Patterns and 4-Year Sarcopenia Risk in Community-Dwelling Chinese Older Adults. Gerontology 2021; 68:736-745. [PMID: 34515116 DOI: 10.1159/000518412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Dietary protein intake and serum amino acids (AAs) are factors controlling the rate of muscle protein synthesis and catabolism. This study examined the association between serum AAs patterns and incident sarcopenia in community-dwelling older adults. METHODS Chinese older adults in Hong Kong aged ≥65 years attended a health check at baseline and 4-year follow-up. At baseline, fasting blood was collected to measure 17 serum AAs. Serum AAs patterns were identified using principal component analysis. Dietary protein intake was assessed using a validated food frequency questionnaire. A composite score was computed by summing the principal component score and sex-standardized protein intake. Six composite scores representing each AAs pattern were available for each participant. Sarcopenia was defined using the updated version of the Asian Working Group for Sarcopenia. Crude and adjusted multiple logistic regressions were performed to examine the associations between each of the 6 composite scores and sarcopenia over 4 years. Results are presented as odds ratio (OR) and 95% confidence interval (CI). To address multiple testing, a Bonferroni correction was applied using a corrected significance level of p < 0.008 (α 0.05/6 patterns). RESULTS Data of 2,610 participants (mean age 71.6 years, 45.4% men) were available. In men, serum AAs patterns characterized by high branched-chain AAs (BCAAs) (OR 0.77, 95% CI 0.69-0.87, p < 0.001) and tyrosine, tryptophan, and phenylalanine (OR 0.79, 95% CI 0.71-0.89, p < 0.001) were significantly associated with a lower risk of sarcopenia over 4-year follow-up. After adjusting for confounders, the associations were no longer significant. In women, serum AAs patterns characterized by glutamine, glutamic acid, and methionine (OR 1.28, 95% CI 1.11-1.47, p = 0.001) and arginine, taurine, and serine (OR 1.20, 95% CI 1.06-1.35, p = 0.003) were associated with a higher risk of sarcopenia. After adjusting for confounders, serum AAs pattern characterized by high BCAAs (adjusted OR 1.52, 95% CI 1.25-1.86, p < 0.001) and arginine, taurine, and serine (adjusted OR 1.30, 95% CI 1.09-1.56, p = 0.004) were significantly associated with a higher risk of sarcopenia. No association between other AAs patterns with incident sarcopenia was found. CONCLUSIONS In community-dwelling Chinese older adults, serum AAs patterns characterized by high BCAAs and nonessential AAs (arginine, taurine, and serine) were associated with a higher risk of sarcopenia in women. Findings may allow identifying new targets for interventions.
Collapse
Affiliation(s)
- Suey S Y Yeung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Zoe L Y Zhu
- The First Affiliated Hospital, Sun Yat-sen University, Zhongshan, China.,Zhongshan City People's Hospital, Zhongshan, China
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| | - Jean Woo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China.,Centre for Nutritional Studies, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
| |
Collapse
|
39
|
Zhang P, Chen H, Shen G, Zhang Z, Yu X, Shang Q, Zhao W, Li D, Li P, Chen G, Liang D, Jiang X, Ren H. Network pharmacology integrated with experimental validation reveals the regulatory mechanism of plastrum testudinis in treating senile osteoporosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114198. [PMID: 33984459 DOI: 10.1016/j.jep.2021.114198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plastrum testudinis (PT) has been used in traditional Chinese medicine to treat bone diseases such as senile osteoporosis (SOP) for thousands of years. However, the underlying mechanisms remain largely unknown. AIM OF THE STUDY This study aims to investigate the possible molecular mechanism of PT in the treatment of SOP using an integrated strategy of network pharmacology and experimental validation. MATERIALS AND METHODS The compounds of PT and its targets were identified through the BATMAN-TCM database. The SOP-related targets were retrieved from the GeneCards database. Protein-protein interaction information was obtained by inputting the intersection targets into the STRING database. Cytoscape software was used to construct a protein-protein interaction network and a PT-compound-target-SOP network. Using Cytoscape and R software, we conducted GO function and KEGG pathway enrichment analyses. We also conducted in vivo and in vitro experiments to verify the network pharmacology findings. RESULTS In total, 6 active compounds and 342 targets of PT were screened, of which 57 common targets were related to SOP. The GO biological process enrichment analysis identified 880 entries, mainly relating to the regulation of hormone response, the cell apoptotic process, the apoptotic signaling pathway, NF-kappaB transcription factor activity, fatty acid transportation, osteoclast differentiation, macrophage activation, and inflammatory response. The KEGG pathway enrichment analysis identified 52 entries, including 14 related signaling pathways, which mainly involved the TNF, MAPK, IL-17, AGE-RAGE, estrogen, relaxin, and other signaling pathways. Our in vivo experiments confirmed that PT alleviates SOP, while the in vitro experiments demonstrated that PT exerts a suppressive effect on osteoclast differentiation and bone resorption in a concentration-dependent manner. Furthermore, we observed that PT downregulates the expression of osteoclast-specific genes, including C-FOS, TNF, and BDNF, in the MAPK signaling pathway. CONCLUSION Through network pharmacology and experimental validation, this study is the first to report that PT downregulates the expression of osteoclast-specific genes, including C-FOS, TNF, and BDNF, in the MAPK signaling pathway, thus exerting a suppressive effect on osteoclast differentiation and bone resorption, which may be the molecular mechanism for PT treatment of SOP.
Collapse
Affiliation(s)
- Peng Zhang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Honglin Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Gengyang Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhida Zhang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Shang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenhua Zhao
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Danyun Li
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Peixin Li
- The Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Guifeng Chen
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Hui Ren
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
40
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Garcia-Alfaro P, Rodriguez I, Pascual MA. Evaluation of the relationship between homocysteine levels and bone mineral density in postmenopausal women. Climacteric 2021; 25:179-185. [PMID: 33982610 DOI: 10.1080/13697137.2021.1921729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The current study aimed to evaluate the relationship between homocysteine (Hcy) levels and bone mineral density (BMD) in postmenopausal women. METHODS The present, cross-sectional study included 760 postmenopausal women. The following variables were recorded: age, age at menopause, body mass index (BMI), BMD (measured by dual-energy X-ray absorptiometry [DXA] scanning and expressed as lumbar, femoral neck and total hip T-scores), smoking status, biochemical parameters (Hcy, creatinine, calcium, phosphorus, vitamin D and parathormone levels) and vitamin D supplementation. RESULTS The mean age of the sample population was 56.4 ± 5.77 years and the mean age at menopause was 49.9 ± 3.62 years. The mean BMI was 25.2 ± 4.49 kg/m2. In the current study, a comparison of the subjects with osteoporosis, osteopenia and normal BMD revealed that the subjects in the low BMD group were significantly older (p < 0.001), had a lower age at menopause (p < 0.001) and had lower BMI (p < 0.001). There was no statistically significant difference among the groups with regard to the plasma levels of Hcy (p = 0.946). The levels of Hcy were positively correlated to the creatinine levels (r = 0.21). The present study did not observe any significant correlations between the Hcy levels and other parameters. CONCLUSIONS In the present study, 15.3% of the subjects had hyperhomocysteinemia and 62.11% had low BMD. The current results obtained from a group of postmenopausal women suggest that the plasma levels of Hcy are not related to BMD in the lumbar spine (L1-L4), femoral neck and total hip. In the current study, age, age at menopause and low BMI were observed to be associated with low BMD.
Collapse
Affiliation(s)
- P Garcia-Alfaro
- Department of Obstetrics, Gynecology and Reproduction, Woman's Health Dexeus, Hospital Universitario Dexeus, Barcelona, Spain
| | - I Rodriguez
- Department of Obstetrics, Gynecology and Reproduction, Woman's Health Dexeus, Hospital Universitario Dexeus, Barcelona, Spain
| | - M A Pascual
- Department of Obstetrics, Gynecology and Reproduction, Woman's Health Dexeus, Hospital Universitario Dexeus, Barcelona, Spain
| |
Collapse
|
42
|
Da W, Tao L, Zhu Y. The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:675385. [PMID: 34054735 PMCID: PMC8150001 DOI: 10.3389/fendo.2021.675385] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the mechanism underlying bone metabolic disorders based on energy metabolism has been heavily researched. Bone resorption by osteoclasts plays an important role in the occurrence and development of osteoporosis. However, the mechanism underlying the osteoclast energy metabolism disorder that interferes with bone homeostasis has not been determined. Bone resorption by osteoclasts is a process that consumes large amounts of adenosine triphosphate (ATP) produced by glycolysis and oxidative phosphorylation. In addition to glucose, fatty acids and amino acids can also be used as substrates to produce energy through oxidative phosphorylation. In this review, we summarize and analyze the energy-based phenotypic changes, epigenetic regulation, and coupling with systemic energy metabolism of osteoclasts during the development and progression of osteoporosis. At the same time, we propose a hypothesis, the compensatory recovery mechanism (involving the balance between osteoclast survival and functional activation), which may provide a new approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
| | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
43
|
Cui Z, Feng H, He B, He J, Tian Y. Relationship Between Serum Amino Acid Levels and Bone Mineral Density: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 2021; 12:763538. [PMID: 34858335 PMCID: PMC8630695 DOI: 10.3389/fendo.2021.763538] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study aimed to explore the association between serum amino acids (AAs) levels and bone mineral density (BMD). METHODS We performed a two-sample Mendelian randomization (MR) analysis to analyze the associations between the levels of eight AAs and BMD values by using summary-level genome-wide association study (GWAS) data. We applied the MR Steiger filtering method and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global test to check for and remove single nucleotide polymorphisms (SNPs) that were horizontally pleiotropic. The associations were estimated with the inverse variance weighted (IVW), MR-Egger, weighted median and MR Robust Adjusted Profile Score (MR.RAPS) methods. RESULTS Our study found that genetically increased isoleucine (Ile) [IVW: effect = 0.1601, 95% confidence interval (CI) = 0.0604 ~ 0.2597, p = 0.0016] and valine (Val) levels (IVW: effect = 0.0953, 95% CI = 0.0251 ~ 0.1655, p = 0.0078) were positively associated with total body BMD (TB-BMD). The results also revealed that genetically increased tyrosine (Tyr) levels were negatively associated with TB-BMD (IVW: effect = -0.1091, 95% CI = -0.1863 ~ -0.0320, p = 0.0055). CONCLUSIONS In this study, associations between serum AA levels and BMD were established. These findings underscore the important role that serum AAs play in the development of osteoporosis and provide evidence that osteoporosis can be prevented and treated by the intake of certain AAs.
Collapse
Affiliation(s)
- Zhiyong Cui
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Hui Feng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Baichuan He
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Jinyao He
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Peking University Third Hospital, Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Tian,
| |
Collapse
|
44
|
A Multi-Omic Analysis for Low Bone Mineral Density in Postmenopausal Women Suggests a RELATIONSHIP between Diet, Metabolites, and Microbiota. Microorganisms 2020; 8:microorganisms8111630. [PMID: 33105628 PMCID: PMC7690388 DOI: 10.3390/microorganisms8111630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The effect of microbiota composition and its health on bone tissue is a novel field for research. However, their associations with bone mineral density (BMD) have not been established in postmenopausal women. The present study investigates the relation of diet, the microbiota composition, and the serum metabolic profile in postmenopausal women with normal-BMD or with low-BMD. Ninety-two Mexican postmenopausal women were classified into normal-BMD (n = 34) and low-BMD (n = 58). The V4 hypervariable region was sequenced using the Miseq platform. Serum vitamin D was determined by chemiluminescence immunoassay. Serum concentrations of acyl-carnitines and amino acids were determined by electrospray tandem mass spectrometry. Diet was assessed by a food frequency questionnaire. The low-BMD group had fewer observed species, higher abundance of γ-Proteobacteria, lower consumption of lycopene, and lower concentrations of leucine, valine, and tyrosine compared with the normal-BMD group. These amino acids correlated positively with the abundance of Bacteroides. Lycopene consumption positively correlated with Oscillospira and negatively correlated with Pantoea genus abundance. Finally, the intestinal microbiota of women with vitamin D deficiency was related to Erysipelotrichaceae and Veillonellaceae abundance compared to the vitamin D non-deficient group. Associations mediated by the gut microbiota between diet and circulating metabolites with low-BMD were identified.
Collapse
|
45
|
Fisher L, Fisher A, Smith PN. Helicobacter pylori Related Diseases and Osteoporotic Fractures (Narrative Review). J Clin Med 2020; 9:E3253. [PMID: 33053671 PMCID: PMC7600664 DOI: 10.3390/jcm9103253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) and osteoporotic fractures (OFs) are common multifactorial and heterogenic disorders of increasing incidence. Helicobacter pylori (H.p.) colonizes the stomach approximately in half of the world's population, causes gastroduodenal diseases and is prevalent in numerous extra-digestive diseases known to be associated with OP/OF. The studies regarding relationship between H.p. infection (HPI) and OP/OFs are inconsistent. The current review summarizes the relevant literature on the potential role of HPI in OP, falls and OFs and highlights the reasons for controversies in the publications. In the first section, after a brief overview of HPI biological features, we analyze the studies evaluating the association of HPI and bone status. The second part includes data on the prevalence of OP/OFs in HPI-induced gastroduodenal diseases (peptic ulcer, chronic/atrophic gastritis and cancer) and the effects of acid-suppressive drugs. In the next section, we discuss the possible contribution of HPI-associated extra-digestive diseases and medications to OP/OF, focusing on conditions affecting both bone homeostasis and predisposing to falls. In the last section, we describe clinical implications of accumulated data on HPI as a co-factor of OP/OF and present a feasible five-step algorithm for OP/OF risk assessment and management in regard to HPI, emphasizing the importance of an integrative (but differentiated) holistic approach. Increased awareness about the consequences of HPI linked to OP/OF can aid early detection and management. Further research on the HPI-OP/OF relationship is needed to close current knowledge gaps and improve clinical management of both OP/OF and HPI-related disorders.
Collapse
Affiliation(s)
- Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne 3199, Australia
| | - Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| | - Paul N Smith
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| |
Collapse
|
46
|
Su Y, Leung J, Lee J, Ho KF, Kwok T. The effect of physical activity on dose-relationship between serum 25-hydroxyvitamin D and cardiovascular health events in older adults. Nutr Metab Cardiovasc Dis 2020; 30:656-665. [PMID: 32151483 PMCID: PMC7203507 DOI: 10.1016/j.numecd.2019.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/09/2019] [Accepted: 12/05/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Reverse J- or U-shaped associations between serum 25-hydroxyvitamin D (25[OH]D) concentrations and cardiovascular outcomes have been reported, which need clarifications in older adults. Physical activity, correlating with both serum 25[OH]D concentration and cardiovascular health, may have an effect on the dose-relationships. METHODS AND RESULTS At baseline, 2790 participants aged 65 years and over, free of vitamin D supplementation use, had assays for serum 25[OH]D concentrations and health related characteristics and measurements, were followed up for cardiovascular events and death by up to 7 and 15 years, respectively. The dose-response associations of serum 25[OH]D concentrations with cardiovascular events and mortality risk were examined using Cox regression models. After adjusting for physical activity and other covariates, serum 25[OH]D concentration was non-linearly associated with cardiovascular mortality risk (U-shaped, P = 0.009). According to the Institute of Medicine categories, the HR(95% CI) of cardiovascular mortality risk separately in deficient (<25 nmol/L), inadequate (25 to < 50 nmol/L) and potentially harmful (≥125 nmol/L) level was 1.67 (0.23, 12.01), 1.66 (1.25, 2.20) and 2.21 (0.30, 16.37), respectively. The risk of 25[OH]D inadequacy for cardiovascular mortality was significantly attenuated by increased physical activity, especially leisure activity (P for trend = 0.008 and 0.021, respectively). No significant finding was observed for incident cardiovascular events. CONCLUSION Both lower and higher serum 25[OH]D concentrations were associated with risk of cardiovascular mortality in Chinese community-dwelling older adults. Physical activity may attenuate the cardiovascular mortality risk of vitamin D inadequacy, but its role in individuals with higher 25[OH]D concentrations remains unclear.
Collapse
Affiliation(s)
- Yi Su
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Leung
- Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jenny Lee
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Medicine and Geriatrics, Alice Ho Miu Ling Nethersole Hospital and Tai Po Hospital, Hong Kong SAR, China
| | - Kin-Fai Ho
- Division of Occupational and Environmental Health, Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Timothy Kwok
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|