1
|
Capone F, Motolese F, Cruciani A, Rossi M, Musumeci G, Norata D, Marano M, Pilato F, Di Lazzaro V. The effects of transcutaneous auricular vagus nerve stimulation (taVNS) on cholinergic neural networks in humans: A neurophysiological study. Clin Neurophysiol 2025; 169:47-52. [PMID: 39612592 DOI: 10.1016/j.clinph.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The mechanisms of actions of transcutaneous auricular vagus nerve stimulation (taVNS) are still unclear, however the activity of the cholinergic system seems to be critical for the induction of VNS-mediated plasticity. Transcranial Magnetic Stimulation (TMS) is a well-suited, non-invasive tool to investigate cortical microcircuits involving different neurotransmitters. Herein, we evaluated the effect of taVNS on short-latency afferent inhibition (SAI), a TMS paradigm specifically measuring cholinergic neurotransmission. METHODS Fifteen healthy subjects participated in this randomized placebo-controlled double-blind study. Each subject underwent two different sessions of 1-hour exposure to taVNS (real and sham) separated by a minimum of 48 h. Real taVNS was administered at left external acoustic meatus, while sham stimulation was performed at left ear lobe. We evaluated SAI bilaterally over the motor cortex before and after exposure to taVNS. RESULTS No side effects were reported by any of the participants. Statistical analysis did not show any significant effect of taVNS on SAI. CONCLUSIONS Our study demonstrated that cholinergic circuits explored by SAI are different from circuits engaged by taVNS. SIGNIFICANCE Since the influence of VNS on cholinergic neurotransmission has been exhaustively demonstrated in animal models, further studies are mandatory to understand the actual impact of VNS on cholinergic circuits in humans.
Collapse
Affiliation(s)
- Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy.
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Mariagrazia Rossi
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Gabriella Musumeci
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Davide Norata
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Massimo Marano
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psichiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128 Roma, Italy
| |
Collapse
|
2
|
Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neurosci Biobehav Rev 2024; 169:105990. [PMID: 39716559 DOI: 10.1016/j.neubiorev.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
The rising prevalence of treatment-resistant neuropsychiatric disorders underscores the need for innovative and effective treatment strategies. The gut microbiota (GM) plays a pivotal role in the progression of these diseases, influencing the brain and mental health through the gut-brain axis (GBA). The vagus nerve plays a significant role in the GBA, making it a key area of focus for potential novel therapeutic interventions. Vagus nerve stimulation (VNS) was introduced and approved as a treatment for refractory forms of some neuropsychological disorders, such as depression and epilepsy. Considering its impact on several brain regions that play a vital part in mood, motivation, affection, and cognitive function, the VNS has shown significant therapeutic potential for treating a variety of neuropsychiatric disorders. Using VNS to target the bidirectional communication pathways linking the GM and the VN could present an exciting and novel approach to treating neuropsychological disorders. Imbalances in the GM, such as dysbiosis, can impair the communication pathways between the gut and the brain, contributing to the development of neuropsychological disorders. VNS shows potential for modulating these interconnected systems, helping to restore balance. Interestingly, the composition of the GM may also influence the effectiveness of VNS, as it has the potential to modify the brain's response to this therapeutic approach. This study provides a comprehensive analysis of a relatively unexplored but noteworthy interaction between VNS and GM in the treatment of neuropsychiatric disorders. In addition, we discussed the mechanisms, therapeutic potential, and clinical implications of VNS on the GBA across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Navid Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Payami
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, Münster University, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
3
|
Hu Y, Xiong R, Pan S, Huang K. A narrative review of vagus nerve stimulation in stroke. J Cent Nerv Syst Dis 2024; 16:11795735241303069. [PMID: 39677973 PMCID: PMC11645777 DOI: 10.1177/11795735241303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Stroke is a significant health concern impacting society and the health care system. Reperfusion therapy for acute ischemic stroke and standard rehabilitative therapies may not always be effective at improving post-stroke neurological function, and developing alternative strategies is particularly important. Vagus nerve stimulation (VNS) is a treatment option currently approved by the Food and Drug Administration (FDA) for intractable epilepsy, refractory depression, primary headache disorders, obesity, and moderate to severe upper-limb motor dysfunction in chronic ischemic stroke patients. Moreover, VNS has demonstrated potential efficacy in various conditions, including autoimmune diseases, disorders of consciousness, Alzheimer's disease, Parkinson's disease, traumatic brain injury, stroke, and other diseases. Although the popularity and application of VNS continue to increase rapidly, the field generally lacks a consensus on the optimal stimulation parameters. The stimulation parameters for VNS are directly related to the clinical outcome, and determining the optimal stimulation conditions for VNS has become an essential concern in its clinical application. This review summarizes the current evidence on VNS for stroke in preclinical models and clinical trials in humans, paying attention to the current types and stimulation parameters of VNS, highlighting the mechanistic pathways involved in the beneficial effects of VNS, critically evaluating clinical implementation challenges and proposing some suggestions for its future research directions. Achieving safe and effective clinical transformation of VNS requires further animal and clinical studies to determine the optimal stimulation parameters and therapeutic mechanisms.
Collapse
Affiliation(s)
- Yanhong Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiqi Xiong
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zhang S, Zhao Y, Qin Z, Han Y, He J, Zhao B, Wang L, Duan Y, Huo J, Wang T, Wang Y, Rong P. Transcutaneous Auricular Vagus Nerve Stimulation for Chronic Insomnia Disorder: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2451217. [PMID: 39680406 DOI: 10.1001/jamanetworkopen.2024.51217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
IMPORTANCE Evidence from randomized clinical trials of transcutaneous auricular vagus nerve stimulation (taVNS) for chronic insomnia disorder is lacking. OBJECTIVE To evaluate the efficacy and safety of taVNS for chronic insomnia compared with the sham taVNS. DESIGN, SETTING, and PARTICIPANTS This randomized clinical trial was conducted from October 2021 to December 2022 at a single center in Beijing, China. Patients with chronic insomnia disorder with a Pittsburgh Sleep Quality Index (PSQI) of at least 8 were enrolled. Statistical analysis was performed from June to September 2023. INTERVENTIONS Patients were allocated to the active taVNS group or sham taVNS group with a 1:1 ratio. Both groups received the stimulation for 30 minutes each time, twice a day, 5 consecutive days a week, with an 8-week treatment and a 12-week follow-up. MAIN OUTCOMES AND MEASURES The primary end point was the mean change from baseline through week 8 in PSQI scores. Minimal clinically important difference was 2.5 points. Secondary outcomes included mental health, sleepiness, and fatigue. Safety was also evaluated. RESULTS A total of 72 participants were randomized to either active taVNS group (36 participants; mean [SD] age, 45.2 [14.5] years; 27 [75.0%] female) or the sham taVNS group (36 participants; mean [SD] age, 44.6 [13.9] years; 31 [86.1%] female); 68 participants completed the 8-week intervention. The least-square mean changes from baseline to week 8 in PSQI were -8.2 (95% CI, -9.3 to -7.0) points in the taVNS group and -3.9 (95% CI, -5.1 to -2.7) points in the sham group. Both groups experienced statistically significant improvements from before to after the intervention. However, active taVNS showed a clinically meaningful 4.2-point greater reduction (95% CI, -5.9 to -2.6 points; P < .001; Cohen d effect size, 1.2) in PSQI compared with the sham group (minimal clinically important difference = 2.5 points). Secondary outcomes, including mental health and fatigue, showed similar favorable results. The efficacy of taVNS was sustained throughout the 20-week study period. CONCLUSIONS AND RELEVANCE In this randomized clinical trial, taVNS significantly reduced insomnia severity. Clinically meaningful enhancements in PSQI scores were observed compared with sham stimulation, with the benefits of taVNS sustained over a 20-week period. Future multicenter clinical trials with large sample sizes are needed to validate its effectiveness across diverse populations. Trial Registration Chinese Clinical Trial Registry: ChiCTR2100051319.
Collapse
Affiliation(s)
- Shuai Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Geriatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongshi Qin
- Clinical Research Institute, Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Ying Han
- Acupuncture and Moxibustion Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, China
| | - Bin Zhao
- Department of Acupuncture, College of traditional Chinese medicine, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Duan
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jin Huo
- Acupuncture and Moxibustion Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tuoran Wang
- Acupuncture and Moxibustion Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Gök Dağıdır H, Bukan N, Bahcelioglu M, Çalıkuşu A, Alim E, Dizakar SÖ, Topa E, Bolay H. tVNS alters inflammatory response in adult VPA‐induced mouse model of autism: evidence for sexual dimorphism. FEBS Open Bio 2024. [DOI: 10.1002/2211-5463.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 01/05/2025] Open
Abstract
Autism is a neurodevelopmental disorder with limited treatment alternatives and which incidence is increasing. Some research suggests that vagus nerve simulation might lead to the reduction of certain symptom. Therefore, we aimed to examine the effect of bilateral transcutaneous auricular vagus nerve stimulation (tVNS) on the inflammatory response in an adult valproic acid (VPA) induced mouse (C57BL6) model of autism for the first time. The autism model was induced by oral VPA administration (600 mg·kg−1) to C57BL/6 pregnant mice on E12.5 days. The study included three groups: the VPA Transcutaneous Auricular Stimulation Group (VPA + tVNS), the VPA Control Group (VPA + sham), and the Healthy Control Group (Control + sham). Each group included 16 mice (8 M/8 F). Our results show that serum IL‐1β and IL‐6 levels were significantly higher in male VPA‐exposed mice than controls. However, IL‐1β was significantly lower, and IL‐6, TNF‐ α, and IL‐22 were not different in female VPA‐exposed mice compared to the control group. Brain NLRP3 levels were significantly higher in both sexes in the VPA autism model (P < 0.05). tVNS application increased brain NLRP3 levels in both sexes and reduced serum IL‐1β levels in male mice. We conclude that cytokine dysregulation is associated with the VPA‐induced adult autism model, and the inflammatory response is more pronounced in male mice. tVNS application altered the inflammatory response and increased brain NLPR3 levels in both sexes. Further studies are needed to understand the beneficial or detrimental role of the inflammatory response in autism and its sexual dimorphism.
Collapse
Affiliation(s)
- Hale Gök Dağıdır
- Department of Medical Biochemistry, Faculty of Medicine Gazi University Ankara Turkey
- Neuroscience and Neurotechnology Center of Excellence (NÖROM) Gazi University Ankara Turkey
| | - Neslihan Bukan
- Department of Medical Biochemistry, Faculty of Medicine Gazi University Ankara Turkey
| | - Meltem Bahcelioglu
- Faculty of Medicine, Department of Anatomy, and Neuroscience and Neurotechnology Center of Excellence NÖROM Gazi University Ankara Turkey
| | - Ayşen Çalıkuşu
- Department of Neuroscience, Institute of Health Sciences Gazi University Ankara Turkey
| | - Ece Alim
- Faculty of Medicine, Department of Anatomy, and Neuroscience and Neurotechnology Center of Excellence NÖROM Gazi University Ankara Turkey
| | - Saadet Özen Dizakar
- Department of Histology and Embryology, Faculty of Medicine İzmir Bakırcay University Turkey
| | - Elif Topa
- Neuropsychiatry Education, Research and Application Center (NPM) Gazi University Ankara Turkey
| | - Hayrunnisa Bolay
- Department of Neurology and Algology, Neuropsychiatry Education, Research and Application Center (NPM), Neuroscience and Neurotechnology Center of Excellence NÖROM Gazi University Ankara Turkey
| |
Collapse
|
6
|
Gálvez-García G, Mena-Chamorro P, Espinoza-Palavicino T, Romero-Arias T, Barramuño-Medina M, Bascour-Sandoval C. Mixing transcutaneous vagal nerve stimulation and galvanic cutaneous stimulation to decrease simulator adaptation syndrome. Front Psychol 2024; 15:1476021. [PMID: 39417028 PMCID: PMC11479896 DOI: 10.3389/fpsyg.2024.1476021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose Simulator Adaptation Syndrome arises from a perceptual discordance between expected and actual motion, giving rise to symptoms such as nausea and disorientation. This research focused on determining the benefit of Transcutaneous Vagal Nerve Stimulation (tVNS) and Galvanic Cutaneous Stimulation (GCS), where both were applied in conjunction, as compared to their administration in isolation, to decrease Simulator Adaptation Syndrome (SAS). Method A driving simulation study was proposed where SAS, body balance, and driving performance were measured. These measurements were taken during seven different stimulation scenarios with a baseline condition without stimulation compared against tVNS and GCS conditions. Results The main result showed that the combination of tVNS and GCS reduced SAS and improved body balance and driving performance more successfully than their administration in isolation. Conclusion Similar neuromodulation in the temporoparietal junction is proposed to mitigate SAS for GCS and tVNS (although additional explanations are discussed). Applying both techniques simultaneously is encouraged to decrease SAS in future interventions.
Collapse
Affiliation(s)
- Germán Gálvez-García
- Departamento de Psicología, Universidad de La Frontera, Temuco, Chile
- Departamento de Psicología Básica, Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Salamanca, Campus Ciudad Jardín, Salamanca, Spain
| | | | | | - Tatiana Romero-Arias
- Facultad de Ciencias de la Salud, Universidad Europea de Canarias, La Orotava, Spain
| | - Mauricio Barramuño-Medina
- Programa de Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | | |
Collapse
|
7
|
Chen L, Gao H, Wang Z, Gu B, Zhou W, Pang M, Zhang K, Liu X, Ming D. Vagus nerve electrical stimulation in the recovery of upper limb motor functional impairment after ischemic stroke. Cogn Neurodyn 2024; 18:3107-3124. [PMID: 39555282 PMCID: PMC11564590 DOI: 10.1007/s11571-024-10143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/15/2024] [Indexed: 11/19/2024] Open
Abstract
Ischemic stroke (IS) is characterized by high mortality, disability rates, and a high risk of recurrence. Motor dysfunction, such as limb hemiparesis, dysphagia, auditory disorders, and speech disorders, usually persists after stroke, which imposes a heavy burden on society and the health care system. Traditional rehabilitation therapies may be ineffective in promoting functional recovery after stroke, and alternative strategies are urgently needed. The Food and Drug Administration (FDA) has approved invasive vagus nerve stimulation (iVNS) for the improvement of refractory epilepsy, treatment-resistant depression, obesity, and moderate to severe upper limb motor impairment following chronic ischemic stroke. Additionally, the FDA has approved transcutaneous vagus nerve stimulation (tVNS) for the improvement of cluster headaches and acute migraines. Recent studies have demonstrated that vagus nerve stimulation (VNS) has neuroprotective effects in both transient and permanent cerebral ischemia animal models, significantly improving upper limb motor impairments, auditory deficits, and swallowing difficulties. Firstly, this article reviews two potential neuronal death pathways following IS, including autophagy and inflammatory responses. Then delves into the current status of preclinical and clinical research on the functional recovery following IS with VNS, as well as the potential mechanisms mediating its neuroprotective effects. Finally, the optimal parameters and timing of VNS application are summarized, and the future challenges and directions of VNS in the treatment of IS are discussed. The application of VNS in stroke rehabilitation research has reached a critical stage, and determining how to safely and effectively translate this technology into clinical practice is of utmost importance. Further preclinical and clinical studies are needed to elucidate the therapeutic mechanisms of VNS.
Collapse
Affiliation(s)
- Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Huixin Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Bin Gu
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Wanqi Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| |
Collapse
|
8
|
RoaFiore L, Meyer T, Peixoto T, Irazoqui P. Label-free functional imaging of vagus nerve stimulation-evoked potentials at the cortical surface. NPJ BIOSENSING 2024; 1:11. [PMID: 39286049 PMCID: PMC11404031 DOI: 10.1038/s44328-024-00012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024]
Abstract
Vagus nerve stimulation (VNS) is an FDA-approved stimulation therapy to treat patients with refractory epilepsy. In this work, we use a coherent holographic imaging system to characterize vagus nerve-evoked potentials (VEPs) in the cortex in response to VNS stimulation paradigms without electrode placement or any genetic, structural, or functional labels. We analyze stimulation amplitude up to saturation, pulse width up to 800 μs, and frequency from 10 Hz to 30 Hz, finding that stimulation amplitude strongly modulates VEPs response magnitude (effect size 0.401), while pulse width has a moderate modulatory effect (effect size 0.127) and frequency has almost no modulatory effect (effect size 0.009) on the evoked potential magnitude. We find mild interactions between pulse width and frequency. This non-contact label-free functional imaging technique may serve as a non-invasive rapid-feedback tool to characterize VEPs and may increase the efficacy of VNS in patients with refractory epilepsy.
Collapse
Affiliation(s)
- Laura RoaFiore
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Trevor Meyer
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Thaissa Peixoto
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
| | - Pedro Irazoqui
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
9
|
Camargo L, Pacheco-Barrios K, Gianlorenço AC, Menacho M, Choi H, Song JJ, Fregni F. Evidence of bottom-up homeostatic modulation induced taVNS during emotional and Go/No-Go tasks. Exp Brain Res 2024; 242:2069-2081. [PMID: 38963558 DOI: 10.1007/s00221-024-06876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Bilateral transcutaneous auricular vagus nerve stimulation (taVNS) - a non-invasive neuromodulation technique - has been investigated as a safe and feasible technique to treat many neuropsychiatric conditions. such as epilepsy, depression, anxiety, and chronic pain. Our aim is to investigate the effect of taVNS on neurophysiological processes during emotional and Go/No-Go tasks, and changes in frontal alpha asymmetry. We performed a randomized, double-blind, sham-controlled trial with 44 healthy individuals who were allocated into two groups (the active taVNS group and the sham taVNS group). Subjects received one session of taVNS (active or sham) for 60 min. QEEG was recorded before and after the interventions, and the subjects were assessed while exposed to emotional conditions with sad and happy facial expressions, followed by a Go/No-Go trial. The results demonstrated a significant increase in N2 amplitude in the No-Go condition for the active taVNS post-intervention compared to the sham taVNS after adjusting by handedness, mood, and fatigue levels (p = 0.046), significantly reduced ERD during sad conditions after treatment (p = 0.037), and increased frontal alpha asymmetry towards the right frontal hemisphere during the emotional task condition (p = 0.046). Finally, we observed an interesting neural signature in this study that suggests a bottom-up modulation from brainstem/subcortical to cortical areas as characterized by improved lateralization of alpha oscillations towards the frontal right hemisphere, and changes in ERP during emotional and Go/No-Go tasks that suggests a better subcortical response to the tasks. Such bottom-up effects may mediate some of the clinical effects of taVNS.
Collapse
Affiliation(s)
- Lucas Camargo
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America
| | - Kevin Pacheco-Barrios
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America
- Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
| | - Anna Carolyna Gianlorenço
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America
- Neurosciences Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Maryela Menacho
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America
- Neurosciences Laboratory, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
- Neurive Co., Ltd, Gimhae, Republic of Korea
| | - Jae-Jun Song
- Neurive Co., Ltd, Gimhae, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, 1575 Cambridge Street, Boston, MA, United States of America.
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Carroll AM, Pruitt DT, Riley JR, Danaphongse TT, Rennaker RL, Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation during training fails to improve learning in healthy rats. Sci Rep 2024; 14:18955. [PMID: 39147873 PMCID: PMC11327266 DOI: 10.1038/s41598-024-69666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
Learning new skills requires neuroplasticity. Vagus nerve stimulation (VNS) during sensory and motor events can increase neuroplasticity in networks related to these events and might therefore serve to facilitate learning on sensory and motor tasks. We tested if VNS could broadly improve learning on a wide variety of tasks across different skill domains in healthy, female adult rats. VNS was paired with presentation of stimuli or on successful trials during training, strategies known to facilitate plasticity and improve recovery in models of neurological disorders. VNS failed to improve either rate of learning or performance for any of the tested tasks, which included skilled forelimb motor control, speech sound discrimination, and paired-associates learning. These results contrast recent findings from multiple labs which found VNS pairing during training produced learning enhancements across motor, auditory, and cognitive domains. We speculate that these contrasting results may be explained by key differences in task designs, training timelines and animal handling approaches, and that while VNS may be able to facilitate rapid and early learning processes in healthy subjects, it does not broadly enhance learning for difficult tasks.
Collapse
Affiliation(s)
- Alan M Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - David T Pruitt
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jonathan R Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Tanya T Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Crystal T Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
11
|
Cibulcova V, Koenig J, Jackowska M, Jandackova VK. Influence of a 2-week transcutaneous auricular vagus nerve stimulation on memory: findings from a randomized placebo controlled trial in non-clinical adults. Clin Auton Res 2024; 34:447-462. [PMID: 39039354 DOI: 10.1007/s10286-024-01053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Memory plays an essential role in daily life and is one of the first functions to deteriorate in cognitive impairment and dementia. Transcutaneous vagus nerve stimulation (tVNS) is a promising therapeutic method; however, its ability to enhance memory is underexplored, especially considering long-term stimulation. We aimed to investigate the effect of a 2-week course of auricular tVNS (taVNS) on memory in a non-clinical population. METHODS This single-blind randomized placebo-wait-list controlled trial recruited 76 participants (30 men; mean age 48.32 years) and randomized them into four groups: early active/sham taVNS and late active/sham taVNS. Participation in the study lasted 4 weeks; early groups underwent 2 weeks intervention immediately following the first study site visit (days 0-13) and late groups 2 weeks after the first study site visit (days 14-27). Active and sham taVNS included 2 weeks of daily 4-h neurostimulation at the tragus or earlobe, respectively. To assess memory, we used the Rey Auditory Verbal Learning Test. RESULTS Two weeks of active taVNS, but not sham taVNS, improved immediate recall and short-term memory score both in early and late groups. Furthermore, the improvements persisted over subsequent follow-up in early active taVNS. Importantly, the effect of active taVNS was superior to sham for immediate recall in both early and late groups. There were no statistical differences in delayed recall. CONCLUSION Our findings suggest that taVNS has potential to improve memory, particularly immediate recall, and may be an effective method in preventing memory loss and mitigating cognitive aging.
Collapse
Affiliation(s)
- Veronika Cibulcova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 703 00, Czech Republic.
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Ostrava, Czech Republic.
| | - Julian Koenig
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | | | - Vera Kr Jandackova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 703 00, Czech Republic
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
12
|
Ferreira LMA, Brites R, Fraião G, Pereira G, Fernandes H, de Brito JAA, Pereira Generoso L, Maziero Capello MG, Pereira GS, Scoz RD, Silva JRT, Silva ML. Transcutaneous auricular vagus nerve stimulation modulates masseter muscle activity, pain perception, and anxiety levels in university students: a double-blind, randomized, controlled clinical trial. Front Integr Neurosci 2024; 18:1422312. [PMID: 39051059 PMCID: PMC11266314 DOI: 10.3389/fnint.2024.1422312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Chronic anxiety is a statemarked by sustained activation of the masseter muscle, manifesting in both mental and physical strain. This prolonged tension can significantly impact mental wellbeing and cognitive abilities, posing a risk for a range of health complications. This double-blind, randomized, controlled clinical trial investigated the impact of transcutaneous auricular vagus nerve stimulation (TAVNS) on masseter muscle activity, pressure pain threshold (PPT), and anxiety levels in university students with elevated anxiety. Methods Forty-two participants meeting inclusion criteria were randomly assigned to either active TAVNS or sham TAVNS groups. Various parameters, including masseter muscle electromyographic (EMG) signals, PPT, and Beck Anxiety Inventory (BAI) scores, were assessed before pretreatment, immediately after the intervention week, and 2 weeks follow-up. Results Active TAVNS significantly reduced both left and right masseter activation during resting mandibular position, persisting for 2 weeks post-intervention. Additionally, TAVNS induced a lasting decrease in both left and right masseter PPT, indicative of altered pain perception. Notably, BAI scores showed a substantial reduction, emphasizing TAVNS as a potential intervention for anxiety, with effects maintained at the 2-week follow-up. Discussion This study provides comprehensive insights into the multifaceted effects of TAVNS on physiological and psychological aspects associated with anxiety in university students. The promising results underscore TAVNS as a potential neuromodulatory intervention for anxiety-related conditions, warranting further research and clinical exploration. Clinical Trial Registration https://ensaiosclinicos.gov.br/rg/RBR-4s4kt2r.
Collapse
Affiliation(s)
- Luciano Maia Alves Ferreira
- Neuromodulation and Pain Unit (NeuroPain), Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Ricardo Brites
- Neuromodulation and Pain Unit (NeuroPain), Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Gonçalo Fraião
- Neuromodulation and Pain Unit (NeuroPain), Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Gonçalo Pereira
- Neuromodulation and Pain Unit (NeuroPain), Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Henrique Fernandes
- Neuromodulation and Pain Unit (NeuroPain), Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - José Américo Almeida de Brito
- Neuromodulation and Pain Unit (NeuroPain), Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Laura Pereira Generoso
- Laboratory of Neuroscience, Neuromodulation and Study of Pain (LANNED), Federal University of Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Maria Gabriela Maziero Capello
- Laboratory of Neuroscience, Neuromodulation and Study of Pain (LANNED), Federal University of Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Gabrielly Santos Pereira
- Laboratory of Neuroscience, Neuromodulation and Study of Pain (LANNED), Federal University of Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Robson Dias Scoz
- Neuromodulation and Pain Unit (NeuroPain), Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Josie Resende Torres Silva
- Laboratory of Neuroscience, Neuromodulation and Study of Pain (LANNED), Federal University of Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Marcelo Lourenço Silva
- Laboratory of Neuroscience, Neuromodulation and Study of Pain (LANNED), Federal University of Alfenas - UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
13
|
Giraudier M, Ventura-Bort C, Weymar M. Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the P300: Do Stimulation Duration and Stimulation Type Matter? Brain Sci 2024; 14:690. [PMID: 39061430 PMCID: PMC11274684 DOI: 10.3390/brainsci14070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has attracted increasing interest as a neurostimulation tool with potential applications in modulating cognitive processes such as attention and memory, possibly through the modulation of the locus-coeruleus noradrenaline system. Studies examining the P300 brain-related component as a correlate of noradrenergic activity, however, have yielded inconsistent findings, possibly due to differences in stimulation parameters, thus necessitating further investigation. In this event-related potential study involving 61 participants, therefore, we examined how changes in taVNS parameters, specifically stimulation type (interval vs. continuous stimulation) and duration, influence P300 amplitudes during a visual novelty oddball task. Although no effects of stimulation were found over the whole cluster and time window of the P300, cluster-based permutation tests revealed a distinct impact of taVNS on the P300 response for a small electrode cluster, characterized by larger amplitudes observed for easy targets (i.e., stimuli that are easily discernible from standards) following taVNS compared to sham stimulation. Notably, our findings suggested that the type of stimulation significantly modulated taVNS effects on the P300, with continuous stimulation showing larger P300 differences (taVNS vs. sham) for hard targets and standards compared to interval stimulation. We observed no interaction effects of stimulation duration on the target-related P300. While our findings align with previous research, further investigation is warranted to fully elucidate the influence of taVNS on the P300 component and its potential utility as a reliable marker for neuromodulation in this field.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Campus Golm, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany; (C.V.-B.); (M.W.)
| | | | | |
Collapse
|
14
|
Abdennadher M, Rohatgi P, Saxena A. Vagus Nerve Stimulation Therapy in Epilepsy: An Overview of Technical and Surgical Method, Patient Selection, and Treatment Outcomes. Brain Sci 2024; 14:675. [PMID: 39061416 PMCID: PMC11275221 DOI: 10.3390/brainsci14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Epilepsy affects over 65 million people worldwide. One-third of people with epilepsy do not respond to medication and may benefit from surgery. Vagus nerve stimulation (VNS) is the first neuromodulation therapy for the treatment of drug-resistant epilepsy. This method is used in combination with anti-seizure medications in adults and in the pediatric population. VNS has also been demonstrated to have benefits for some epilepsy comorbidities, such as depression, and can be used in combination with other neuromodulation therapies in epilepsy. The authors present an overview of VNS physiology, patient selection, surgery and risks, neuromodulation therapy, and application to epilepsy comorbidities.
Collapse
Affiliation(s)
- Myriam Abdennadher
- Neurology Department, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | - Pratik Rohatgi
- Neurosurgery Department, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | | |
Collapse
|
15
|
Bachmann H, Vandemoortele B, Vermeirssen V, Carrette E, Vonck K, Boon P, Raedt R, Laureys G. Vagus nerve stimulation enhances remyelination and decreases innate neuroinflammation in lysolecithin-induced demyelination. Brain Stimul 2024; 17:575-587. [PMID: 38648972 DOI: 10.1016/j.brs.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Current treatments for Multiple Sclerosis (MS) poorly address chronic innate neuroinflammation nor do they offer effective remyelination. The vagus nerve has a strong regulatory role in inflammation and Vagus Nerve Stimulation (VNS) has potential to affect both neuroinflammation and remyelination in MS. OBJECTIVE This study investigated the effects of VNS on demyelination and innate neuroinflammation in a validated MS rodent model. METHODS Lysolecithin (LPC) was injected in the corpus callosum (CC) of 46 Lewis rats, inducing a demyelinated lesion. 33/46 rats received continuously-cycled VNS (cVNS) or one-minute per day VNS (1minVNS) or sham VNS from 2 days before LPC-injection until perfusion at 3 days post-injection (dpi) (corresponding with a demyelinated lesion with peak inflammation). 13/46 rats received cVNS or sham from 2 days before LPC-injection until perfusion at 11 dpi (corresponding with a partial remyelinated lesion). Immunohistochemistry and proteomics analyses were performed to investigate the extend of demyelination and inflammation. RESULTS Immunohistochemistry showed that cVNS significantly reduced microglial and astrocytic activation in the lesion and lesion border, and significantly reduced the Olig2+ cell count at 3 dpi. Furthermore, cVNS significantly improved remyelination with 57.4 % versus sham at 11 dpi. Proteomic gene set enrichment analyses showed increased activation of (glutamatergic) synapse pathways in cVNS versus sham, most pronounced at 3 dpi. CONCLUSION cVNS improved remyelination of an LPC-induced lesion. Possible mechanisms might include modulation of microglia and astrocyte activity, increased (glutamatergic) synapses and enhanced oligodendrocyte clearance after initial injury.
Collapse
Affiliation(s)
- Helen Bachmann
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium.
| | - Boris Vandemoortele
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Kristl Vonck
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Paul Boon
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Robrecht Raedt
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Guy Laureys
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| |
Collapse
|
16
|
Kakinuma Y. Non-neuronal cholinergic system in the heart influences its homeostasis and an extra-cardiac site, the blood-brain barrier. Front Cardiovasc Med 2024; 11:1384637. [PMID: 38601043 PMCID: PMC11004362 DOI: 10.3389/fcvm.2024.1384637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The non-neuronal cholinergic system of the cardiovascular system has recently gained attention because of its origin. The final product of this system is acetylcholine (ACh) not derived from the parasympathetic nervous system but from cardiomyocytes, endothelial cells, and immune cells. Accordingly, it is defined as an ACh synthesis system by non-neuronal cells. This system plays a dispensable role in the heart and cardiomyocytes, which is confirmed by pharmacological and genetic studies using murine models, such as models with the deletion of vesicular ACh transporter gene and modulation of the choline acetyltransferase (ChAT) gene. In these models, this system sustained the physiological function of the heart, prevented the development of cardiac hypertrophy, and negatively regulated the cardiac metabolism and reactive oxygen species production, resulting in sustained cardiac homeostasis. Further, it regulated extra-cardiac organs, as revealed by heart-specific ChAT transgenic (hChAT tg) mice. They showed enhanced functions of the blood-brain barrier (BBB), indicating that the augmented system influences the BBB through the vagus nerve. Therefore, the non-neuronal cardiac cholinergic system indirectly influences brain function. This mini-review summarizes the critical cardiac phenotypes of hChAT tg mice and focuses on the effect of the system on BBB functions. We discuss the possibility that a cholinergic signal or vagus nerve influences the expression of BBB component proteins to consolidate the barrier, leading to the downregulation of inflammatory responses in the brain, and the modulation of cardiac dysfunction-related effects on the brain. This also discusses the possible interventions using the non-neuronal cardiac cholinergic system.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
17
|
Skora L, Marzecová A, Jocham G. Tonic and phasic transcutaneous auricular vagus nerve stimulation (taVNS) both evoke rapid and transient pupil dilation. Brain Stimul 2024; 17:233-244. [PMID: 38423207 DOI: 10.1016/j.brs.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (tVNS or taVNS) is a non-invasive method of electrical stimulation of the afferent pathway of the vagus nerve, suggested to drive changes in putative physiological markers of noradrenergic activity, including pupil dilation. OBJECTIVE However, it is unknown whether different taVNS modes can map onto the phasic and tonic modes of noradrenergic activity. The effects of taVNS on pupil dilation in humans are inconsistent, largely due to differences in stimulation protocols. Here, we attempted to address these issues. METHODS We investigated pupil dilation under phasic (1 s) and tonic (30 s) taVNS, in a pre-registered, single-blind, sham-controlled, within-subject cross-over design, in the absence of a behavioural task. RESULTS Phasic taVNS induced a rapid increase in pupil size over baseline, significantly greater than under sham stimulation, which rapidly declined after stimulation offset. Tonic taVNS induced a similarly rapid (and larger than sham) increase in pupil size over baseline, returning to baseline within 5 s, despite the ongoing stimulation. Thus, both active and sham tonic modes closely resembled the phasic effect. There were no differences in tonic baseline pupil size, and no sustained effects of stimulation on tonic baseline pupil size. CONCLUSIONS These results suggest that both phasic- and tonic-like taVNS under the standard stimulation parameters may modulate primarily the phasic mode of noradrenergic activity, as indexed by evoked pupil dilation, over and above somatosensory effects. This result sheds light on the temporal profile of phasic and tonic stimulation, with implications for their applicability in further research.
Collapse
Affiliation(s)
- Lina Skora
- Heinrich Heine University Düsseldorf, Germany; University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
18
|
Berger A, Beckers E, Joris V, Duchêne G, Danthine V, Delinte N, Cakiroglu I, Sherif S, Morrison EIG, Sánchez AT, Macq B, Dricot L, Vandewalle G, El Tahry R. Locus coeruleus features are linked to vagus nerve stimulation response in drug-resistant epilepsy. Front Neurosci 2024; 18:1296161. [PMID: 38469571 PMCID: PMC10926962 DOI: 10.3389/fnins.2024.1296161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
The locus coeruleus-norepinephrine system is thought to be involved in the clinical effects of vagus nerve stimulation. This system is known to prevent seizure development and induce long-term plastic changes, particularly with the release of norepinephrine in the hippocampus. However, the requisites to become responder to the therapy and the mechanisms of action are still under investigation. Using MRI, we assessed the structural and functional characteristics of the locus coeruleus and microstructural properties of locus coeruleus-hippocampus white matter tracts in patients with drug-resistant epilepsy responding or not to the therapy. Twenty-three drug-resistant epileptic patients with cervical vagus nerve stimulation were recruited for this pilot study, including 13 responders or partial responders and 10 non-responders. A dedicated structural MRI acquisition allowed in vivo localization of the locus coeruleus and computation of its contrast (an accepted marker of LC integrity). Locus coeruleus activity was estimated using functional MRI during an auditory oddball task. Finally, multi-shell diffusion MRI was used to estimate the structural properties of locus coeruleus-hippocampus tracts. These characteristics were compared between responders/partial responders and non-responders and their association with therapy duration was also explored. In patients with a better response to the therapy, trends toward a lower activity and a higher contrast were found in the left medial and right caudal portions of the locus coeruleus, respectively. An increased locus coeruleus contrast, bilaterally over its medial portions, correlated with duration of the treatment. Finally, a higher integrity of locus coeruleus-hippocampus connections was found in patients with a better response to the treatment. These new insights into the neurobiology of vagus nerve stimulation may provide novel markers of the response to the treatment and may reflect neuroplasticity effects occurring in the brain following the implantation.
Collapse
Affiliation(s)
- Alexandre Berger
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer’s Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Vincent Joris
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Department of Neurosurgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Gaëtan Duchêne
- GE Center MR Applications, General Electric Healthcare, Diegem, Belgium
| | - Venethia Danthine
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Nicolas Delinte
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Inci Cakiroglu
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | | | - Andres Torres Sánchez
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Innoviris, Brussels Institute for Research and Innovation, Brussels, Belgium
| | - Benoit Macq
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Laurence Dricot
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Laboratory, GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Department of Clinical Neuroscience, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Department of Neurology, Center for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
19
|
Fukuda M, Matsuo T, Fujimoto S, Kashii H, Hoshino A, Ishiyama A, Kumada S. Vagus Nerve Stimulation Therapy for Drug-Resistant Epilepsy in Children-A Literature Review. J Clin Med 2024; 13:780. [PMID: 38337474 PMCID: PMC10856244 DOI: 10.3390/jcm13030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Vagus nerve stimulation (VNS) is a palliative treatment for drug-resistant epilepsy (DRE) that has been in use for over two decades. VNS suppresses epileptic seizures, prevents emotional disorders, and improves cognitive function and sleep quality, a parallel effect associated with the control of epileptic seizures. The seizure suppression rate with VNS increases monthly to annually, and the incidence of side effects reduces over time. This method is effective in treating DRE in children as well as adults, such as epilepsy associated with tuberous sclerosis, Dravet syndrome, and Lennox-Gastaut syndrome. In children, it has been reported that seizures decreased by >70% approximately 8 years after initiating VNS, and the 50% responder rate was reported to be approximately 70%. VNS regulates stimulation and has multiple useful systems, including self-seizure suppression using magnets, additional stimulation using an automatic seizure detection system, different stimulation settings for day and night, and an automatic stimulation adjustment system that reduces hospital visits. VNS suppresses seizures and has beneficial behavioral effects in children with DRE. This review describes the VNS system, the mechanism of the therapeutic effect, the specific stimulation adjustment method, antiepileptic effects, and other clinical effects in patients with childhood DRE.
Collapse
Affiliation(s)
- Mitsumasa Fukuda
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| | - Takeshi Matsuo
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (T.M.); (S.F.)
| | - So Fujimoto
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (T.M.); (S.F.)
| | - Hirofumi Kashii
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| | - Ai Hoshino
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| | - Akihiko Ishiyama
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu 183-0042, Japan; (H.K.); (A.H.); (A.I.); (S.K.)
| |
Collapse
|
20
|
Driskill CM, Childs JE, Phensy AJ, Rodriguez SR, O’Brien JT, Lindquist KL, Naderi A, Bordieanu B, McGinty JF, Kroener S. Vagus nerve stimulation (VNS) modulates synaptic plasticity in the rat infralimbic cortex via Trk-B receptor activation to reduce drug-seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577293. [PMID: 38328140 PMCID: PMC10849650 DOI: 10.1101/2024.01.25.577293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in rats trained to self-administer cocaine. Pairing 10 days of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay (ELISA). Systemic blockade of Tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.
Collapse
Affiliation(s)
- Christopher M. Driskill
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Jessica E. Childs
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Aarron J. Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Sierra R. Rodriguez
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - John T. O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Kathy L. Lindquist
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Aurian Naderi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Bogdan Bordieanu
- Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Jacqueline F. McGinty
- Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| |
Collapse
|
21
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. Neurobiol Aging 2023; 132:85-99. [PMID: 37769491 PMCID: PMC10840698 DOI: 10.1016/j.neurobiolaging.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: (1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); (2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition × time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, USA
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, USA
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, USA
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089, USA
| | | | - Paul Lehrer
- Rutgers University, New Brunswick, NJ 08852, USA
| | - Catie Chang
- Vanderbilt University, Nashville, TN 37235, USA
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Wang MX, Wumiti A, Zhang YW, Gao XS, Huang Z, Zhang MF, Peng ZY, Oku Y, Tang ZM. Transcutaneous cervical vagus nerve stimulation improved motor cortex excitability in healthy adults: a randomized, single-blind, self-crossover design study. Front Neurosci 2023; 17:1234033. [PMID: 37854293 PMCID: PMC10579560 DOI: 10.3389/fnins.2023.1234033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Purpose To investigate the effect of transcutaneous cervical vagus nerve stimulation (tcVNS) on motor cortex excitability in healthy adults. Method Twenty eight healthy subjects were assigned to receive real and sham tcVNS for 30 min. The interval between the real and sham conditions was more than 24 h, and the sequence was random. The central and peripheral motor-evoked potential (MEP) of the right first dorsal interosseous (FDI) muscle was measured by transcranial magnetic stimulation (TMS) before and after stimulation. MEP latency, MEP amplitude and rest motor threshold (rMT) were analyzed before and after stimulation. Results MEP amplitude, MEP latency and rMT had significant interaction effect between time points and conditions (p < 0.05). After real stimulation, the MEP amplitude was significantly increased (p < 0.001). MEP latency (p < 0.001) and rMT (p = 0.006) was decreased than that of baseline. The MEP amplitude on real condition was higher than that of sham stimulation after stimulation (p = 0.027). The latency after the real stimulation was significantly shorter than that after sham stimulation (p = 0.005). No significantly difference was found in rMT after stimulation between real and sham conditions (p > 0.05). Conclusion tcVNS could improve motor cortex excitability in healthy adults.
Collapse
Affiliation(s)
- Meng-Xin Wang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aihaiti Wumiti
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yao-Wen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xue-Sheng Gao
- Rehabilitation Medicine Department, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zi Huang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Meng-Fei Zhang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Zhi-Yong Peng
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Yoshitaka Oku
- Department of Physiology, Hyogo Medical University, Hyogo, Japan
| | - Zhi-Ming Tang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Abdullahi A, Wong TWL, Ng SSM. Effects and safety of vagus nerve stimulation on upper limb function in patients with stroke: a systematic review and meta-analysis. Sci Rep 2023; 13:15415. [PMID: 37723225 PMCID: PMC10507009 DOI: 10.1038/s41598-023-42077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Vagus nerve stimulation (VNS) is used to deliver electric current to stimulate the vagus nerve. The aim of this study is to carry out a systematic review and meta-analysis to determine its effects on motor function in patients with stroke. PubMED, Embase, Web of Science (WoS), and Scopus were searched. Data on time since stroke, and mean scores and standard deviation on outcomes such as level of impairment and motor function were extracted. The results showed that invasive (MD 2.66, 95% CI 1.19-4.13, P = 0.0004) and non-invasive (MD 24.16, 95% CI 23.56-24.75, P = 0.00001) VNS are superior at improving level of motor impairment than the control post intervention and at follow-up respectively. Similarly, VNS improved motor function post intervention (MD 0.28, 95% CI 0.15-0.41, P < 0.0001); and there was no significant difference in adverse events between invasive VNS and control (OR 2.15, 95% CI 0.97-4.74, P = 0.06), and between non-invasive VNS and control (OR 4.54, 95% CI 0.48-42.97, P = 0.19). VNS can be used to improve motor function in patients with stroke.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
24
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.02.23286715. [PMID: 37745356 PMCID: PMC10516053 DOI: 10.1101/2023.03.02.23286715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: 1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); 2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition x time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089
| | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
25
|
Hays SA, Rennaker RL, Kilgard MP. How to fail with paired VNS therapy. Brain Stimul 2023; 16:1252-1258. [PMID: 37595833 PMCID: PMC11650123 DOI: 10.1016/j.brs.2023.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023] Open
Abstract
Vagus nerve stimulation (VNS) has gained enormous traction as a promising bioelectronic therapy. In particular, the delivery of VNS paired with training to promote neural changes has demonstrated clinical success for stroke recovery and found far-reaching application in other domains, from autism to psychiatric disorders to normal learning. The success of paired VNS has been extensively documented. Here, we consider a more unusual question: why does VNS have such broad utility, and perhaps more importantly, when does VNS not work? We present a discussion of the concepts that underlie VNS therapy and an anthology of studies that describe conditions in which these concepts are violated and VNS fails. We focus specifically on the mechanisms engaged by implanted VNS, and how the parameters of stimulation, stimulation method, pharmacological manipulations, accompanying comorbidities, and specifics of concurrent training interact with these mechanisms to impact the efficacy of VNS therapy. As paired VNS therapy is increasing translated to clinical implementation, a clear understanding of the conditions in which it does, and critically, does not work is fundamental to the success of this approach.
Collapse
Affiliation(s)
- Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, USA; School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
26
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
27
|
Mercante B, Enrico P, Deriu F. Cognitive Functions following Trigeminal Neuromodulation. Biomedicines 2023; 11:2392. [PMID: 37760833 PMCID: PMC10525298 DOI: 10.3390/biomedicines11092392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Vast scientific effort in recent years have been focused on the search for effective and safe treatments for cognitive decline. In this regard, non-invasive neuromodulation has gained increasing attention for its reported effectiveness in promoting the recovery of multiple cognitive domains after central nervous system damage. In this short review, we discuss the available evidence supporting a possible cognitive effect of trigeminal nerve stimulation (TNS). In particular, we ask that, while TNS has been widely and successfully used in the treatment of various neuropsychiatric conditions, as far as research in the cognitive field is concerned, where does TNS stand? The trigeminal nerve is the largest cranial nerve, conveying the sensory information from the face to the trigeminal sensory nuclei, and from there to the thalamus and up to the somatosensory cortex. On these bases, a bottom-up mechanism has been proposed, positing that TNS-induced modulation of the brainstem noradrenergic system may affect the function of the brain networks involved in cognition. Nevertheless, despite the promising theories, to date, the use of TNS for cognitive empowering and/or cognitive decline treatment has several challenges ahead of it, mainly due to little uniformity of the stimulation protocols. However, as the field continues to grow, standardization of practice will allow for data comparisons across studies, leading to optimized protocols targeting specific brain circuitries, which may, in turn, influence cognition in a designed manner.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (B.M.); (P.E.)
- AOU Sassari, Unit of Endocrinology, Nutritional and Metabolic Disorders, 07100 Sassari, Italy
| |
Collapse
|
28
|
Divani AA, Salazar P, Ikram HA, Taylor E, Wilson CM, Yang Y, Mahmoudi J, Seletska A, SantaCruz KS, Torbey MT, Liebler EJ, Bragina OA, Morton RA, Bragin DE. Non-Invasive Vagus Nerve Stimulation Improves Brain Lesion Volume and Neurobehavioral Outcomes in a Rat Model of Traumatic Brain Injury. J Neurotrauma 2023; 40:1481-1494. [PMID: 36869619 PMCID: PMC10294566 DOI: 10.1089/neu.2022.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract Traumatic brain injury (TBI) continues to be a major cause of death and disability worldwide. This study assessed the effectiveness of non-invasive vagus nerve stimulation (nVNS) in reducing brain lesion volume and improving neurobehavioral performance in a rat model of TBI. Animals were randomized into three experimental groups: (1) TBI with sham stimulation treatment (Control), (2) TBI treated with five lower doses (2-min) nVNS, and (3) TBI treated with five higher doses (2 × 2-min) nVNS. We used the gammaCore nVNS device to deliver stimulations. Magnetic resonance imaging studies were performed 1 and 7 days post-injury to confirm lesion volume. We observed smaller brain lesion volume in the lower dose nVNS group compared with the control group on days 1 and 7. The lesion volume for the higher dose nVNS group was significantly smaller than either the lower dose nVNS or the control groups on days 1 and 7 post-injury. The apparent diffusion coefficient differences between the ipsilateral and contralateral hemispheres on day 1 were significantly smaller for the higher dose (2 × 2 min) nVNS group than for the control group. Voxel-based morphometry analysis revealed an increase in the ipsilateral cortical volume in the control group caused by tissue deformation and swelling. On day 1, these abnormal volume changes were 13% and 55% smaller in the lower dose and higher dose nVNS groups, respectively, compared with the control group. By day 7, nVNS dampened cortical volume loss by 35% and 89% in the lower dose and higher dose nVNS groups, respectively, compared with the control group. Rotarod, beam walking, and anxiety performances were significantly improved in the higher-dose nVNS group on day 1 compared with the control group. The anxiety indices were also improved on day 7 post-injury compared with the control and the lower-dose nVNS groups. In conclusion, the higher dose nVNS (five 2 × 2-min stimulations) reduced brain lesion volume to a level that further refined the role of nVNS therapy for the acute treatment of TBI. Should nVNS prove effective in additional pre-clinical TBI models and later in clinical settings, it would have an enormous impact on the clinical practice of TBI in both civilian and military settings, as it can easily be adopted into routine clinical practice.
Collapse
Affiliation(s)
- Afshin A. Divani
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Pascal Salazar
- Canon Medical Informatics, Inc., Minnetonka, Minnesota, USA
| | - Hafiz A. Ikram
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Erik Taylor
- Department of Radiology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Colin M. Wilson
- Department of Radiology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Yirong Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alina Seletska
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Karen S. SantaCruz
- Department of Pathology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Michel T. Torbey
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Olga A. Bragina
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Russel A. Morton
- Department of Neuroscience, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Denis E. Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
29
|
Olsen LK, Solis E, McIntire LK, Hatcher-Solis CN. Vagus nerve stimulation: mechanisms and factors involved in memory enhancement. Front Hum Neurosci 2023; 17:1152064. [PMID: 37457500 PMCID: PMC10342206 DOI: 10.3389/fnhum.2023.1152064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been recognized as a useful neuromodulation tool to target the central nervous system by electrical stimulation of peripheral nerves. Activation of the nucleus of the solitary tract (NTS) in the brainstem by vagal afferent nerve fibers allows for modulation of various higher order brain regions, including limbic and cerebral cortex structures. Along with neurological and psychiatric indications, clinical and preclinical studies suggest that VNS can improve memory. While the underlying mechanisms to improve memory with VNS involve brain areas, such as the prefrontal cortex and processes including alertness and arousal, here we focus on VNS-induced memory improvements related to the hippocampus, the main area implicated in memory acquisition. In addition, we detail research demonstrating that a targeted approach to VNS can modify memory outcomes and delve into the molecular mechanisms associated with these changes. These findings indicate that a greater understanding of VNS mechanisms while also considering stimulation parameters, administration site, timing in relation to training, and sex-specific factors, may allow for optimal VNS application to enhance memory.
Collapse
Affiliation(s)
- Laura K. Olsen
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Ernesto Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Aerospace Physiology, Wright-Patterson Air Force Base, OH, United States
- Consortium of Universities of the Washington Metropolitan Area, Washington, DC, United States
| | - Lindsey K. McIntire
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
- Infoscitex Corporation, Dayton, OH, United States
| | - Candice N. Hatcher-Solis
- Air Force Research Laboratory, 711th Human Performance Wing, Cognitive Neuroscience, Wright-Patterson Air Force Base, OH, United States
| |
Collapse
|
30
|
Oliveira A, Seixas R, Pereira F, Azevedo M, Martinho R, Serrão P, Moreira-Rodrigues M. Insulin enhances contextual fear memory independently of its effect in increasing plasma adrenaline. Life Sci 2023:121881. [PMID: 37356751 DOI: 10.1016/j.lfs.2023.121881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIMS Adrenaline enhances contextual fear memory consolidation possibly by activating liver β2-adrenoceptors causing transient hyperglycaemia. Contrastingly, insulin-induced hypoglycaemia may culminate in blood adrenaline increment, hidering the separation of each hormone's action in contextual fear memory. Therefore, an Ad-deficient mouse model was used aiming to investigate if contextual fear memory consolidation following insulin administration requires or not subsequent increases in plasma adrenaline, which occurs in response to insulin-induced hypoglycemia. MAIN METHODS Fear conditioning was performed in wild-type (WT) and adrenaline-deficient (Pnmt-KO) male mice (129 × 1/SvJ) treated with insulin (2 U/kg, intraperitoneal (i.p.)) or vehicle (0.9 % NaCl (i.p.)). Blood glucose was quantified. Catecholamines were quantified using HPLC with electrochemical detection. Quantitative real-time polymerase chain reaction was used to assess mRNA expression of hippocampal Nr4a1, Nr4a2, Nr4a3, and Bdnf genes. KEY FINDINGS Insulin-treated WT mice showed increased freezing behaviour when compared to vehicle-treated WT mice. Also, plasma dopamine, noradrenaline, and adrenaline increased in this group. Insulin-treated Pnmt-KO animals showed increased freezing behaviour when compared with respective vehicle. However, no changes in plasma or tissue catecholamines were identified in insulin-treated Pnmt-KO mice when compared with respective vehicle. Furthermore, insulin-treated Pnmt-KO mice presented increased Bdnf mRNA expression when compared to vehicle-treated Pnmt-KO mice. SIGNIFICANCE Concluding, enhanced freezing behaviour after insulin treatment, even in adrenaline absence, may indicate a key role of insulin in contextual fear memory. Insulin may cause central molecular changes promoting contextual fear memory formation and/or retrieval. This work may indicate a further role of insulin in the process of contextual fear memory modulation.
Collapse
Affiliation(s)
- Ana Oliveira
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Rafaela Seixas
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Francisca Pereira
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Márcia Azevedo
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Raquel Martinho
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Paula Serrão
- Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | - Mónica Moreira-Rodrigues
- Department of Immuno-physiology and Pharmacology, Laboratory of General Physiology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal.
| |
Collapse
|
31
|
Nash C, Powell K, Lynch DG, Hartings JA, Li C. Nonpharmacological modulation of cortical spreading depolarization. Life Sci 2023:121833. [PMID: 37302793 DOI: 10.1016/j.lfs.2023.121833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
AIMS Cortical spreading depolarization (CSD) is a wave of pathologic neuronal dysfunction that spreads through cerebral gray matter, causing neurologic disturbance in migraine and promoting lesion development in acute brain injury. Pharmacologic interventions have been found to be effective in migraine with aura, but their efficacy in acutely injured brains may be limited. This necessitates the assessment of possible adjunctive treatments, such as nonpharmacologic methods. This review aims to summarize currently available nonpharmacological techniques for modulating CSDs, present their mechanisms of action, and provide insight and future directions for CSD treatment. MAIN METHODS A systematic literature review was performed, generating 22 articles across 3 decades. Relevant data is broken down according to method of treatment. KEY FINDINGS Both pharmacologic and nonpharmacologic interventions can mitigate the pathological impact of CSDs via shared molecular mechanisms, including modulating K+/Ca2+/Na+/Cl- ion channels and NMDA, GABAA, serotonin, and CGRP ligand-based receptors and decreasing microglial activation. Preclinical evidence suggests that nonpharmacologic interventions, including neuromodulation, physical exercise, therapeutic hypothermia, and lifestyle changes can also target unique mechanisms, such as increasing adrenergic tone and myelination and modulating membrane fluidity, which may lend broader modulatory effects. Collectively, these mechanisms increase the electrical initiation threshold, increase CSD latency, slow CSD velocity, and decrease CSD amplitude and duration. SIGNIFICANCE Given the harmful consequences of CSDs, limitations of current pharmacological interventions to inhibit CSDs in acutely injured brains, and translational potentials of nonpharmacologic interventions to modulate CSDs, further assessment of nonpharmacologic modalities and their mechanisms to mitigate CSD-related neurologic dysfunction is warranted.
Collapse
Affiliation(s)
- Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Barnard College, New York, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
32
|
Landau AM, Jakobsen S, Thomsen MB, Alstrup AKO, Orlowski D, Jacobsen J, Wegener G, Mørk A, Sørensen JCH, Doudet DJ. Combined In Vivo Microdialysis and PET Studies to Validate [ 11C]Yohimbine Binding as a Marker of Noradrenaline Release. Biomolecules 2023; 13:674. [PMID: 37189421 PMCID: PMC10136072 DOI: 10.3390/biom13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The noradrenaline system attracts attention for its role in mood disorders and neurodegenerative diseases but the lack of well-validated methods impairs our understanding when assessing its function and release in vivo. This study combines simultaneous positron emission tomography (PET) and microdialysis to explore if [11C]yohimbine, a selective antagonist radioligand of the α2 adrenoceptors, may be used to assess in vivo changes in synaptic noradrenaline during acute pharmacological challenges. Anesthetised Göttingen minipigs were positioned in a head holder in a PET/CT device. Microdialysis probes were placed in the thalamus, striatum and cortex and dialysis samples were collected every 10 min. Three 90 min [11C]yohimbine scans were acquired: at baseline and at two timepoints after the administration of amphetamine (1-10 mg/kg), a non-specific releaser of dopamine and noradrenaline, or nisoxetine (1 mg/kg), a specific noradrenaline transporter inhibitor. [11C]yohimbine volumes of distribution (VT) were obtained using the Logan kinetic model. Both challenges induced a significant decrease in yohimbine VT, with time courses reflecting their different mechanisms of action. Dialysis samples revealed a significant increase in noradrenaline extracellular concentrations after challenge and an inverse correlation with changes in yohimbine VT. These data suggest that [11C]yohimbine can be used to evaluate acute variations in synaptic noradrenaline concentrations after pharmacological challenges.
Collapse
Affiliation(s)
- Anne Marlene Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, A701, Palle Juul Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Nuclear Medicine & PET-Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine & PET-Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Majken Borup Thomsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, A701, Palle Juul Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Nuclear Medicine & PET-Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | - Dariusz Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine & PET-Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, A701, Palle Juul Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Arne Mørk
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, Valby, 2500 Copenhagen, Denmark
| | | | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada;
| |
Collapse
|
33
|
Downes MH, Kalagara R, Chennareddy S, Vasan V, Reford E, Schuldt BR, Odland I, Tosto-Mancuso J, Putrino D, Panov F, Kellner CP. Vagal Nerve Stimulation: A Bibliometric Analysis of Current Research Trends. Neuromodulation 2023; 26:529-537. [PMID: 35970764 DOI: 10.1016/j.neurom.2022.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vagal nerve stimulation (VNS) has become established as an effective tool for the management of various neurologic disorders. Consequently, a growing number of VNS studies have been published over the past four decades. This study presents a bibliometric analysis investigating the current trends in VNS literature. MATERIALS AND METHODS Using the Web of Science collection data base, a search was performed to identify literature that discussed applications of VNS from 2000 to 2021. Analysis and visualization of the included literature were completed with VOSviewer. RESULTS A total of 2895 publications were identified. The number of articles published in this area has increased over the past two decades, with the most citations (7098) occurring in 2021 and the most publications (270) in 2020. The h-index, i-10, and i-100 were 97, 994, and 91, respectively, with 17.0 citations per publication on average. The highest-producing country and institution of VNS literature were the United States and the University of Texas, respectively. The most productive journal was Epilepsia. Epilepsy was the predominant focus of VNS research, with the keyword "epilepsy" having the greatest total link strength (749) in the keyword analysis. The keyword analysis also revealed two major avenues of VNS research: 1) the mechanisms by which VNS modulates neural circuitry, and 2) therapeutic applications of VNS in a variety of diseases beyond neurology. It also showed a significant prevalence of noninvasive VNS research. Although epilepsy research appears more linked to implanted VNS, headache and depression specialists were more closely associated with noninvasive VNS. CONCLUSION VNS may serve as a promising intervention for rehabilitation beyond neurologic applications, with an expanding base of literature over the past two decades. Although epilepsy researchers have produced most current literature, other fields have begun to explore VNS as a potential treatment, likely owing to the rise of noninvasive forms of VNS.
Collapse
Affiliation(s)
- Margaret H Downes
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Roshini Kalagara
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Chennareddy
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Reford
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Braxton R Schuldt
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ian Odland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenna Tosto-Mancuso
- Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Putrino
- Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Gurtubay IG, Perez-Rodriguez DR, Fernandez E, Librero-Lopez J, Calvo D, Bermejo P, Pinin-Osorio C, Lopez M. Immediate effects and duration of a short and single application of transcutaneous auricular vagus nerve stimulation on P300 event related potential. Front Neurosci 2023; 17:1096865. [PMID: 37051148 PMCID: PMC10083261 DOI: 10.3389/fnins.2023.1096865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionTranscutaneous auricular vagus nerve stimulation (taVNS) is a neuromodulatory technique that stimulates the auricular branch of the vagus nerve. The modulation of the locus coeruleus-norepinephrine (LC-NE) network is one of the potential working mechanisms of this method. Our aims were 1-to investigate if short and single applications of taVNS can modulate the P300 cognitive event-related potential (ERP) as an indirect marker that reflects NE brain activation under control of the LC, and 2-to evaluate the duration of these changes.Methods20 healthy volunteers executed an auditory oddball paradigm to obtain P300 and reaction time (RT) values. Then a 7 min active or sham taVNS period was initiated and simultaneously a new P300 paradigm was performed. We successively repeated the paradigm on 4 occasions with different time intervals up to 56 min after the stimulation onset.ResultsDuring active taVNS an immediate and significant effect of increasing the amplitude and reducing the latency of P300, as well as a shortening in the RT was observed. This effect was prolonged in time up to 28 min. The values then returned to pre-stimulation levels. Sham stimulation did not generate changes.DiscussionOur results, demonstrate differential facilitating effects in a concrete time window after taVNS. Literature about the modulatory effect of taVNS over P300 ERP shows a wide spread of results. There is not a standardized system for taVNS and currently the great heterogeneity of stimulation approaches concerning targets and parameters, make it difficult to obtain conclusions about this relationship. Our study was designed optimizing several stimulation settings, such as a customized earbud stimulator, enlarged stimulating surface, simultaneous stimulation over the cymba and cavum conchae, a Delayed Biphasic Pulse Burst and current controlled stimulation that adjusted the output voltage and guaranteed the administration of a preset electrical dose. Under our stimulation conditions, targeting vagal nerve fibers via taVNS modulates the P300 in healthy participants. The optimal settings of modulatory function of taVNS on P300, and their interdependency is insufficiently studied in the literature, but our data provides several easily optimizable parameters, that will produce more robust results in future.
Collapse
Affiliation(s)
- Iñaki G. Gurtubay
- Department of Neurophysiology, University Hospital of Navarre, Pamplona, Spain
- Navarrabiomed Biomedical Research Centre, Pamplona, Spain
- *Correspondence: Iñaki G. Gurtubay,
| | | | | | | | - David Calvo
- Arrhythmia Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid, Asturias, Spain
| | - Pedro Bermejo
- Neurologist, Translational Medicine UCB Pharma, Brussels, Belgium
| | | | - Miguel Lopez
- Xana Smart Neurostimulation, Epalinges, Switzerland
| |
Collapse
|
35
|
Tian QQ, Cheng C, Liu PH, Yin ZX, Zhang MK, Cui YP, Zhao R, Deng H, Lu LM, Tang CZ, Xu NG, Yang XJ, Sun JB, Qin W. Combined effect of transcutaneous auricular vagus nerve stimulation and 0.1 Hz slow-paced breathing on working memory. Front Neurosci 2023; 17:1133964. [PMID: 36968483 PMCID: PMC10034029 DOI: 10.3389/fnins.2023.1133964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundPrevious research has found that transcutaneous auricular vagus nerve stimulation (taVNS) can improve working memory (WM) performance. It has also been shown that 0.1 Hz slow-paced breathing (SPB, i.e., breathing at a rate of approximately 6 breaths/min) can significantly influence physical state and cognitive function via changes in autonomic afferent activity. In the present study, we investigated the synergistic effects of taVNS and SPB on WM performance.MethodsA total of 96 healthy people participated in this within-subjects experiment involving four conditions, namely taVNS, SPB, combined taVNS with SPB (taVNS + SPB), and sham. Each participant underwent each intervention for 30 min and WM was compared pre- and post-intervention using the spatial and digit n-back tasks in a random order four times. Permutation-based analysis of variance was used to assess the interaction between time and intervention.ResultsFor the spatial 3-back task, a significant interaction between time and intervention was found for the accuracy rate of matching trials (mACC, p = 0.03). Post hoc analysis suggested that both taVNS and taVNS + SPB improved WM performance, however, no significant difference was found in the SPB or sham groups.ConclusionThis study has replicated the effects of taVNS on WM performance reported in previous studies. However, the synergistic effects of combined taVNS and SPB warrant further research.
Collapse
Affiliation(s)
- Qian-Qian Tian
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Peng-Hui Liu
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Zi-Xin Yin
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Meng-Kai Zhang
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Ya-Peng Cui
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Rui Zhao
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an, Shaanxi, China
| | - Hui Deng
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi’an, Shaanxi, China
| | - Li-Ming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Zhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng-Gui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Juan Yang
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi’an, Shaanxi, China
- Xue-Juan Yang,
| | - Jin-Bo Sun
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi’an, Shaanxi, China
- *Correspondence: Jin-Bo Sun,
| | - Wei Qin
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
- Guangzhou Institute of Technology, Xidian University, Xi’an, Shaanxi, China
| |
Collapse
|
36
|
Farrand A, Jacquemet V, Verner R, Owens M, Beaumont E. Vagus nerve stimulation parameters evoke differential neuronal responses in the locus coeruleus. Physiol Rep 2023; 11:e15633. [PMID: 36905173 PMCID: PMC10006695 DOI: 10.14814/phy2.15633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Vagus nerve stimulation (VNS) is used to treat drug-resistant epilepsy and depression, with additional applications under investigation. The noradrenergic center locus coeruleus (LC) is vital for VNS effects; however, the impact of varying stimulation parameters on LC activation is poorly understood. This study characterized LC activation across VNS parameters. Extracellular activity was recorded in rats' left LC while 11 VNS paradigms, utilizing variable frequencies and bursting characteristics, were pseudorandomly delivered to the left cervical vagus for five cycles. Neurons' change from baseline firing rate and timing response profiles were assessed. The proportion of neurons categorized as responders over 5 VNS cycles doubled in comparison to the first VNS cycle (p < 0.001) for all VNS paradigms, demonstrating an amplification effect. The percentage of positively consistent/positive responders increased for standard VNS paradigms with frequencies ≥10 Hz and for bursting paradigms with shorter interburst intervals and more pulses per burst. The synchrony between pairs of LC neurons increased during bursting VNS but not standard paradigms. Also, the probability of evoking a direct response during bursting VNS was higher with longer interburst intervals and a higher number of pulses per burst. Standard paradigms between 10-30 Hz best positively activates LC with consistency to VNS while the best bursting paradigm to increase activity was 300 Hz, seven pulses per burst separated by 1 s. Bursting VNS was effective in increasing synchrony between pairs of neurons, suggesting a common network recruitment originating from vagal afferents. These results indicate differential activation of LC neurons depending on the VNS parameters delivered.
Collapse
Affiliation(s)
- Ariana Farrand
- Department of Biomedical SciencesQuillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Vincent Jacquemet
- Department of Pharmacology and PhysiologyInstitute of Biomedical Engineering, University of MontrealMontrealQuebecCanada
- Research CenterSacred Heart Hospital of MontrealMontrealQuebecCanada
| | - Ryan Verner
- Neuromodulation DivisionLivaNova PLCHoustonTexasUSA
| | - Misty Owens
- Department of Biomedical SciencesQuillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| | - Eric Beaumont
- Department of Biomedical SciencesQuillen College of Medicine, East Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
37
|
Langer K, Jentsch VL, Wolf OT. Rapid effects of acute stress on cognitive emotion regulation. Psychoneuroendocrinology 2023; 151:106054. [PMID: 36801656 DOI: 10.1016/j.psyneuen.2023.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Acute stress has been shown to either enhance or impair emotion regulation (ER) performances. Besides sex, strategy use and stimulus intensity, another moderating factor appears to be timing of the ER task relative to stress exposure. Whereas somewhat delayed increases in the stress hormone cortisol have been shown to improve ER performances, rapid sympathetic nervous system (SNS) actions might oppose such effects via cognitive regulatory impairments. Here, we thus investigated rapid effects of acute stress on two ER strategies: reappraisal and distraction. N = 80 healthy participants (40 men & 40 women) were exposed to the Socially Evaluated Cold-Pressor Test or a control condition immediately prior to an ER paradigm which required them to deliberately downregulate emotional responses towards high intensity negative pictures. Subjective ratings and pupil dilation served as ER outcomes measures. Increases in salivary cortisol and cardiovascular activity (index of SNS activation) verified successful induction of acute stress. Unexpectedly, stress reduced subjective emotional arousal when distracting from negative pictures in men indicating regulatory improvements. However, this beneficial effect was particularly pronounced in the second half of the ER paradigm and fully mediated by already rising cortisol levels. In contrast, cardiovascular responses to stress were linked to decreased subjective regulatory performances of reappraisal and distraction in women. However, no detrimental effects of stress on ER occurred at the group level. Yet, our findings provide initial evidence for rapid, opposing effects of the two stress systems on the cognitive control of negative emotions that are critically moderated by sex.
Collapse
Affiliation(s)
- Katja Langer
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.
| | - Valerie L Jentsch
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| |
Collapse
|
38
|
Acute Hypobaric Hypoxia Exposure Causes Neurobehavioral Impairments in Rats: Role of Brain Catecholamines and Tetrahydrobiopterin Alterations. Neurochem Res 2023; 48:471-486. [PMID: 36205808 DOI: 10.1007/s11064-022-03767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia is a state in which the body or a specific part of the body is deprived of adequate oxygen supply at the tissue level. Sojourners involved in different activities at high altitudes (> 2500 m) face hypobaric hypoxia (HH) due to low oxygen in the atmosphere. HH is an example of generalized hypoxia, where the homeostasis of the entire body of an organism is affected and results in neurochemical changes. It is known that lower O2 levels affect catecholamines (CA), severely impairing cognitive and locomotor behavior. However, there is less evidence on the effect of HH-mediated alteration in brain Tetrahydrobiopterin (BH4) levels and its role in neurobehavioral impairments. Hence, this study aimed to shed light on the effect of acute HH on CA and BH4 levels with its neurobehavioral impact on Wistar rat models. After HH exposure, significant alteration of the CA levels in the discrete brain regions, viz., frontal cortex, hippocampus, midbrain, and cerebellum was observed. HH exposure significantly reduced spontaneous motor activity, motor coordination, and spatial memory. The present study suggests that the HH-induced behavioral changes might be related to the alteration of the expression pattern of CA and BH4-related genes and proteins in different rat brain regions. Overall, this study provides novel insights into the role of BH4 and CA in HH-induced neurobehavioral impairments.
Collapse
|
39
|
Assoratgoon I, Shiraishi N, Tagaino R, Ogawa T, Sasaki K. Sensory neuromuscular electrical stimulation for dysphagia rehabilitation: A literature review. J Oral Rehabil 2023; 50:157-164. [PMID: 36357332 DOI: 10.1111/joor.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Dysphagia is a common disorder following a cerebrovascular accident. It can cause detrimental effects on patient's quality of life and nutrition intake, especially in older adults. Neuromuscular electrical stimulation has been one of the management strategies for acceleration of the recovery. This review summarises the current evidence on sensory threshold stimulation of the procedure. METHOD This review compiled data from the Internet database PubMed, Cochrane Library and Scopus using combination of MeSH thesaurus: 'Sensory threshold', 'electrical stimulation', 'neuromuscular stimulation', 'Deglutition', 'Dysphagia'. Eleven studies were intergraded into the review. RESULTS Most of the studies show significant improvement to the outcomes of sensory neuromuscular electrical stimulation treatment. In many cases, the results of the treatment are comparable or superior to motor threshold stimulation and conventional therapy. However, the study design and parameters of the procedure varied greatly without conclusive standardised guidelines. CONCLUSION The sensory neuromuscular electrical stimulation (SNMES) is a viable treatment option for treating oropharyngeal dysphagia. The most suggested application parameters are an intensity at sensory threshold, a frequency of 80 Hz, an impulse time of 700 μs, a combined total duration of 20 h of stimulation in a 2-week period, and placing the electrodes in the submental area of the neck. However, further research is necessary to construct a definitive guideline for clinicians.
Collapse
Affiliation(s)
- Itt Assoratgoon
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Chulalongkorn University, Bangkok, Thailand
| | - Naru Shiraishi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Center for Dysphagia of Tohoku University Hospital, Sendai, Japan
| | - Ryo Tagaino
- Center for Dysphagia of Tohoku University Hospital, Sendai, Japan.,Maxillofacial Prosthetics Clinic, Tohoku University Hospital, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
40
|
Domenech P. Stimulation du nerf vague pour traiter l’épilepsie et la dépression résistante : vers une physiopathologie commune ? BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
41
|
Espinoza-Palavicino T, Mena-Chamorro P, Albayay J, Doussoulin A, Gálvez-García G. The use of transcutaneous Vagal Nerve Stimulation as an effective countermeasure for Simulator Adaptation Syndrome. APPLIED ERGONOMICS 2023; 107:103921. [PMID: 36341733 DOI: 10.1016/j.apergo.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
This research focused on investigating the effectiveness of Transcutaneous Vagal Nerve Stimulation (tVNS) as compared to Galvanic Cutaneous Stimulation (GCS) at mitigating Simulator Adaptation Syndrome (SAS). Fifty drivers (mean age = 23.04 ± 17.71 years old, twenty-two men) participated in a driving simulation experiment. The total scores of the Simulator Sickness Questionnaire, head movements (body balance index), and driving performance variables were measured under five stimulation conditions: i) baseline (no stimulation delivered), ii) sham GCS, iii) sham tVNS, iv) active GCS, and v) active tNVS. The results showed that tVNS alleviated SAS and improved driving performance variables more effectively than GCS. We conclude that GCS and tVNS have similar neurological mechanisms to reduce SAS, providing possible explanations for the greater effectiveness of tVNS. We encourage the use of tVNS to decrease SAS.
Collapse
Affiliation(s)
- Tomás Espinoza-Palavicino
- -Departamento de Psicología, Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000, Temuco, Chile
| | - Patricio Mena-Chamorro
- -Departamento de Psicología, Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000, Temuco, Chile
| | - Javier Albayay
- -Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068, Rovereto (TN), Italy
| | - Arlette Doussoulin
- -Departmento de Rehabilitación. Facultad de Medicina. Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000, Temuco, Chile
| | - Germán Gálvez-García
- -Departamento de Psicología, Universidad de La Frontera, Avenida Francisco Salazar 01145, 4780000, Temuco, Chile; - Departamento de Psicología Básica, Psicobiología y Metodología de las Ciencias del Comportamiento. Facultad de Psicología. Universidad de Salamanca. Campus Ciudad Jardín, 37005, Salamanca, Spain.
| |
Collapse
|
42
|
Guo M, Wang J, Xiong Z, Deng J, Zhang J, Tang C, Kong X, Wang X, Guan Y, Zhou J, Zhai F, Luan G, Li T. Vagus nerve stimulation for pharmacoresistant epilepsy secondary to encephalomalacia: A single-center retrospective study. Front Neurol 2023; 13:1074997. [PMID: 36686529 PMCID: PMC9853158 DOI: 10.3389/fneur.2022.1074997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Objective Vagus nerve stimulation (VNS) is an adjunctive treatment for pharmacoresistant epilepsy. Encephalomalacia is one of the most common MRI findings in the preoperative evaluation of patients with pharmacoresistant epilepsy. This is the first study that aimed to determine the effectiveness of VNS for pharmacoresistant epilepsy secondary to encephalomalacia and evaluate the potential predictors of VNS effectiveness. Methods We retrospectively analyzed the seizure outcomes of VNS with at least 1 year of follow-up in all patients with pharmacoresistant epilepsy secondary to encephalomalacia. Based on the effectiveness of VNS (≥50% or <50% reduction in seizure frequency), patients were divided into two subgroups: responders and non-responders. Preoperative data were analyzed to screen for potential predictors of VNS effectiveness. Results A total of 93 patients with epilepsy secondary to encephalomalacia who underwent VNS therapy were recruited. Responders were found in 64.5% of patients, and 16.1% of patients achieved seizure freedom at the last follow-up. In addition, the responder rate increased over time, with 36.6, 50.5, 64.5, and 65.4% at the 3-, 6-, 12-, and 24-month follow-ups, respectively. After multivariate analysis, seizure onset in adults (>18 years old) (OR: 0.236, 95%CI: 0.059-0.949) was found to be a positive predictor, and the bilateral interictal epileptic discharges (IEDs) (OR: 3.397, 95%CI: 1.148-10.054) and the bilateral encephalomalacia on MRI (OR: 3.193, 95%CI: 1.217-8.381) were found to be negative predictors of VNS effectiveness. Conclusion The results demonstrated the effectiveness and safety of VNS therapy in patients with pharmacoresistant epilepsy secondary to encephalomalacia. Patients with seizure onset in adults (>18 years old), unilateral IEDs, or unilateral encephalomalacia on MRI were found to have better seizure outcomes after VNS therapy.
Collapse
Affiliation(s)
- Mengyi Guo
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhonghua Xiong
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chongyang Tang
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiangru Kong
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Beijing Key Laboratory of Epilepsy Research, Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,*Correspondence: Guoming Luan ✉
| | - Tianfu Li
- Beijing Key Laboratory of Epilepsy Research, Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China,Tianfu Li ✉
| |
Collapse
|
43
|
Xu H, Jin T, Zhang R, Xie H, Zhuang C, Zhang Y, Kong D, Xiao G, Yu X. Cerebral cortex and hippocampus neural interaction during vagus nerve stimulation under in vivo large-scale imaging. Front Neurosci 2023; 17:1131063. [PMID: 36937685 PMCID: PMC10017477 DOI: 10.3389/fnins.2023.1131063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective The purpose of this study was to study mechanisms of VNS modulation from a single neuron perspective utilizing a practical observation platform with single neuron resolution and widefield, real-time imaging coupled with an animal model simultaneously exposing the cerebral cortex and the hippocampus. Methods We utilized the observation platform characterized of widefield of view, real-time imaging, and high spatiotemporal resolution to obtain the neuronal activities in the cerebral cortex and the hippocampus during VNS in awake states and under anesthesia. Results Some neurons in the hippocampus were tightly related to VNS modulation, and varied types of neurons showed distinct responses to VNS modulation. Conclusion We utilized such an observation platform coupled with a novel animal model to obtain more information on neuron activities in the cerebral cortex and the hippocampus, providing an effective method to further study the mechanisms of therapeutic effects modulated by VNS.
Collapse
Affiliation(s)
- Hanyun Xu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Jin
- Pulmonary and Critical Care Department, Wuhu Hospital of East China Normal University, Wuhu, Anhui, China
| | - Rujin Zhang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongsheng Kong
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
- BNRist, Tsinghua University, Beijing, China
- *Correspondence: Guihua Xiao,
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Xinguang Yu,
| |
Collapse
|
44
|
Idlett-Ali SL, Salazar CA, Bell MS, Short EB, Rowland NC. Neuromodulation for treatment-resistant depression: Functional network targets contributing to antidepressive outcomes. Front Hum Neurosci 2023; 17:1125074. [PMID: 36936612 PMCID: PMC10018031 DOI: 10.3389/fnhum.2023.1125074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Non-invasive brain stimulation is designed to target accessible brain regions that underlie many psychiatric disorders. One such method, transcranial magnetic stimulation (TMS), is commonly used in patients with treatment-resistant depression (TRD). However, for non-responders, the choice of an alternative therapy is unclear and often decided empirically without detailed knowledge of precise circuit dysfunction. This is also true of invasive therapies, such as deep brain stimulation (DBS), in which responses in TRD patients are linked to circuit activity that varies in each individual. If the functional networks affected by these approaches were better understood, a theoretical basis for selection of interventions could be developed to guide psychiatric treatment pathways. The mechanistic understanding of TMS is that it promotes long-term potentiation of cortical targets, such as dorsolateral prefrontal cortex (DLPFC), which are attenuated in depression. DLPFC is highly interconnected with other networks related to mood and cognition, thus TMS likely alters activity remote from DLPFC, such as in the central executive, salience and default mode networks. When deeper structures such as subcallosal cingulate cortex (SCC) are targeted using DBS for TRD, response efficacy has depended on proximity to white matter pathways that similarly engage emotion regulation and reward. Many have begun to question whether these networks, targeted by different modalities, overlap or are, in fact, the same. A major goal of current functional and structural imaging in patients with TRD is to elucidate neuromodulatory effects on the aforementioned networks so that treatment of intractable psychiatric conditions may become more predictable and targeted using the optimal technique with fewer iterations. Here, we describe several therapeutic approaches to TRD and review clinical studies of functional imaging and tractography that identify the diverse loci of modulation. We discuss differentiating factors associated with responders and non-responders to these stimulation modalities, with a focus on mechanisms of action for non-invasive and intracranial stimulation modalities. We advance the hypothesis that non-invasive and invasive neuromodulation approaches for TRD are likely impacting shared networks and critical nodes important for alleviating symptoms associated with this disorder. We close by describing a therapeutic framework that leverages personalized connectome-guided target identification for a stepwise neuromodulation paradigm.
Collapse
Affiliation(s)
- Shaquia L. Idlett-Ali
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Shaquia L. Idlett-Ali,
| | - Claudia A. Salazar
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - Marcus S. Bell
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - E. Baron Short
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Nathan C. Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
45
|
Mercan D, Heneka MT. The Contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the Progression of Alzheimer's Disease. BIOLOGY 2022; 11:1822. [PMID: 36552331 PMCID: PMC9775634 DOI: 10.3390/biology11121822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), which is characterized by extracellular accumulation of amyloid-beta peptide and intracellular aggregation of hyperphosphorylated tau, is the most common form of dementia. Memory loss, cognitive decline and disorientation are the ultimate consequences of neuronal death, synapse loss and neuroinflammation in AD. In general, there are many brain regions affected but neuronal loss in the locus coeruleus (LC) is one of the earliest indicators of neurodegeneration in AD. Since the LC is the main source of noradrenaline (NA) in the brain, degeneration of the LC in AD leads to decreased NA levels, causing increased neuroinflammation, enhanced amyloid and tau burden, decreased phagocytosis and impairment in cognition and long-term synaptic plasticity. In this review, we summarized current findings on the locus coeruleus-noradrenaline system and consequences of its dysfunction which is now recognized as an important contributor to AD progression.
Collapse
Affiliation(s)
- Dilek Mercan
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Michael Thomas Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
46
|
Giraudier M, Ventura-Bort C, Burger AM, Claes N, D'Agostini M, Fischer R, Franssen M, Kaess M, Koenig J, Liepelt R, Nieuwenhuis S, Sommer A, Usichenko T, Van Diest I, von Leupoldt A, Warren CM, Weymar M. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis. Brain Stimul 2022; 15:1378-1388. [PMID: 36183953 DOI: 10.1016/j.brs.2022.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. METHODS The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. RESULTS While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. CONCLUSION(S) Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research.
Collapse
Affiliation(s)
- Manon Giraudier
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany.
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | | | - Nathalie Claes
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Rico Fischer
- Department of Psychology, University of Greifswald, Greifswald, Germany
| | | | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Roman Liepelt
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany
| | - Sander Nieuwenhuis
- Institute of Psychology, Leiden University, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Netherlands
| | - Aldo Sommer
- Department of General Psychology: Judgment, Decision Making, Action, Faculty of Psychology, University of Hagen (FernUniversität in Hagen), Hagen, Germany; Department of Exercise Physiology, German Sport University Cologne, Cologne, Germany
| | - Taras Usichenko
- Department of Anesthesiology, University Medicine of Greifswald, Greifswald, Germany; Department of Anesthesia, McMaster University, Hamilton, Canada
| | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | | | - Christopher M Warren
- Emma Eccles Jones College of Education and Human Services, Utah State University, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
47
|
Mamaril-Davis J, Vessell M, Ball T, Palade A, Shafer C, Aguilar-Salinas P, Fowler B, Mirro E, Neimat J, Sagi V, Bina RW. Combined Responsive Neurostimulation and Focal Resection for Super Refractory Status Epilepticus: A Systematic Review and Illustrative Case Report. World Neurosurg 2022; 167:195-204.e7. [PMID: 35948220 DOI: 10.1016/j.wneu.2022.07.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Super-refractory status epilepticus (SRSE) is a neurologic emergency with high mortality and morbidity. Although medical algorithms typically are effective, when they do fail, options may be limited, and neurosurgical intervention should be considered. METHODS We report a case of SRSE treated acutely with responsive neurostimulation (RNS) and focal surgical resection after intracranial monitoring. We also conducted a systematic review of the literature for neurosurgical treatment of SRSE (e.g., neurostimulation). Only published manuscripts were considered. RESULTS Our patient's seizure semiology consisted of left facial twitching with frequent evolution to bilateral tonic-clonic convulsions. Stereoelectroencephalography and grid monitoring identified multiple seizure foci. The patient underwent right RNS placement with cortical strip leads over the lateral primary motor and premotor cortex as well as simultaneous right superior temporal and frontopolar resection. Status epilepticus resolved 21 days after surgical resection and placement of the RNS. The systematic review revealed 15 case reports describing 17 patients with SRSE who underwent acute neurosurgical intervention. There were 3 patients with SRSE with RNS placement as a single modality, all of whom experienced cessation of SE. Four patients with SRSE received vagus nerve stimulation (3 as a single modality and 1 with combined corpus callosotomy), of whom 1 had SE recurrence at 2weeks. Two patients with SRSE received deep brain stimulation, and the remaining 8 underwent surgical resection; none had recurrence of SE. CONCLUSIONS RNS System placement with or without resection can be a viable treatment option for select patients with SRSE. Early neurosurgical intervention may improve seizure outcomes and reduce complications.
Collapse
Affiliation(s)
- James Mamaril-Davis
- College of Medicine, The University of Arizona College of Medicine-Tucson, Tucson, Arizona, USA
| | - Meena Vessell
- Department of Neurosurgery, University of Louisville Restorative Neuroscience, Louisville, Kentucky, USA
| | - Tyler Ball
- Department of Neurosurgery, University of Louisville Restorative Neuroscience, Louisville, Kentucky, USA
| | - Adriana Palade
- Department of Neurology, University of Louisville, Louisville, Kentucky, USA
| | - Christopher Shafer
- Department of Neurology, University of Louisville, Louisville, Kentucky, USA
| | - Pedro Aguilar-Salinas
- Department of Neurosurgery, Banner University Medical Center/The University of Arizona, Tucson, Arizona, USA
| | | | - Emily Mirro
- Neuropace, Inc., Mountain View, California, USA
| | - Joseph Neimat
- Department of Neurosurgery, University of Louisville Restorative Neuroscience, Louisville, Kentucky, USA
| | - Vishwanath Sagi
- Department of Neurology, University of Louisville, Louisville, Kentucky, USA
| | - Robert W Bina
- Department of Neurosurgery, Banner University Medical Center/The University of Arizona-Phoenix, Phoenix, Arizona, USA.
| |
Collapse
|
48
|
Cheng K, Wang Z, Bai J, Xiong J, Chen J, Ni J. Research advances in the application of vagus nerve electrical stimulation in ischemic stroke. Front Neurosci 2022; 16:1043446. [PMID: 36389255 PMCID: PMC9650138 DOI: 10.3389/fnins.2022.1043446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Stroke seriously endangers human well-being and brings a severe burden to family and society. Different post-stroke dysfunctions result in an impaired ability to perform activities of daily living. Standard rehabilitative therapies may not meet the requirements for functional improvement after a stroke; thus, alternative approaches need to be proposed. Currently, vagus nerve stimulation (VNS) is clinically applied for the treatment of epilepsy, depression, cluster headache and migraine, while its treatment of various dysfunctions after an ischemic stroke is still in the clinical research stage. Recent studies have confirmed that VNS has neuroprotective effects in animal models of transient and permanent focal cerebral ischemia, and that its combination with rehabilitative training significantly improves upper limb motor dysfunction and dysphagia. In addition, vagus-related anatomical structures and neurotransmitters are closely implicated in memory–cognition enhancement processes, suggesting that VNS is promising as a potential treatment for cognitive dysfunction after an ischemic stroke. In this review, we outline the current status of the application of VNS (invasive and non-invasive) in diverse functional impairments after an ischemic stroke, followed by an in-depth discussion of the underlying mechanisms of its mediated neuroprotective effects. Finally, we summarize the current clinical implementation challenges and adverse events of VNS and put forward some suggestions for its future research direction. Research on VNS for ischemic stroke has reached a critical stage. Determining how to achieve the clinical transformation of this technology safely and effectively is important, and more animal and clinical studies are needed to clarify its therapeutic mechanism.
Collapse
|
49
|
Li ZD, Qiu HJ, Wang XQ, Zhang CC, Zhang YJ. Transcutaneous auricular vagus nerve stimulation in poststroke cognitive impairment: protocol for a randomised controlled trial. BMJ Open 2022; 12:e063803. [PMID: 36198457 PMCID: PMC9535199 DOI: 10.1136/bmjopen-2022-063803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND As one of the most common stroke sequelae, poststroke cognitive impairment significantly impacts 17.6%-83% of survivors, affecting their rehabilitation, daily living and quality of life. Improving cognitive abilities among patients in stroke recovery is therefore critical and urgent. Transcutaneous auricular vagus nerve stimulation (TAVNS) is a non-invasive, safe, cost-effective treatment with great potential for improving the cognitive function of poststroke patients. This clinical research will evaluate the effectiveness, and help elucidate the possible underlying mechanisms, of TAVNS for improving poststroke cognitive function. METHODS AND ANALYSIS A single-centre, parallel-group, allocation concealment, assessor-blinded randomised controlled clinical trial. We will allocate 88 recruited participants to the TAVNS or sham group for an intervention that will run for 8 weeks, 5 days per week with twice daily sessions lasting 30 min each. Blood tests will be performed and questionnaires issued at baseline and 8-week and 12 week follow-ups. Primary outcomes will be changes in cognitive function scores. Secondary outcomes will be changes in activities of daily living, quality of life and serum oxidative stress indicators. ETHICS AND DISSEMINATION The Ethics Committee of the First Affiliated Hospital of Hunan University of Chinese Medicine has approved the protocol (No. HN-LL-YJSLW-2022200). Findings will be published in peer-reviewed academic journals and presented at scientific conferences. TRIAL REGISTRATION NUMBER ChiCTR2200057808.
Collapse
Affiliation(s)
- Zhen-Dong Li
- Department of Nursing, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hang-Jian Qiu
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiao-Qian Wang
- School of Nursing, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Cheng-Cheng Zhang
- Department of Nursing, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yue-Juan Zhang
- Department of Nursing, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
50
|
Zhang H, Li CL, Qu Y, Yang YX, Du J, Zhao Y. Effects and neuroprotective mechanisms of vagus nerve stimulation on cognitive impairment with traumatic brain injury in animal studies: A systematic review and meta-analysis. Front Neurol 2022; 13:963334. [PMID: 36237612 PMCID: PMC9551312 DOI: 10.3389/fneur.2022.963334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/29/2022] [Indexed: 12/09/2022] Open
Abstract
Introduction Cognitive impairment is the main clinical feature after traumatic brain injury (TBI) and is usually characterized by attention deficits, memory loss, and decreased executive function. Vagus nerve stimulation (VNS) has been reported to show potential improvement in the cognition level after traumatic brain injury in clinical and preclinical studies. However, this topic has not yet been systematically reviewed in published literature. In this study, we present a systematic review and meta-analysis of the effects of VNS on cognitive function in animal models of TBI and their underlying mechanisms. Methods We performed a literature search on PubMed, PsycINFO, Web of Science, Embase, Scopus, and Cochrane Library from inception to December 2021 to identify studies describing the effects of VNS on animal models of TBI. Results Overall, nine studies were identified in animal models (36 mice, 268 rats, and 27 rabbits). An analysis of these studies showed that VNS can improve the performance of TBI animals in behavioral tests (beam walk test: SMD: 4.95; 95% confidence interval [CI]: 3.66, 6.23; p < 0.00001) and locomotor placing tests (SMD: -2.39; 95% CI: -4.07, -0.71; p = 0.005), whereas it reduced brain edema (SMD: -1.58; 95% CI: -2.85, -0.31; p = 0. 01) and decrease TNF-α (SMD: -3.49; 95% CI: -5.78, -1.2; p = 0.003) and IL-1β (SMD: -2.84; 95% CI: -3.96, -1.71; p < 0.00001) expression level in the brain tissue. However, the checklist for SYRCLE showed a moderate risk of bias (quality score between 30% and 60%), mainly because of the lack of sample size calculation, random assignment, and blinded assessment. Conclusion The present review showed that VNS can effectively promote cognitive impairment and neuropathology in animal models of TBI. We hope that the results of this systematic review can be applied to improve the methodological quality of animal experiments on TBI, which will provide more important and conclusive evidence on the clinical value of VNS. To further confirm these results, there is a need for high-quality TBI animal studies with sufficient sample size and a more comprehensive outcome evaluation. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021290797, identifier: CRD42021290797.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
| | - Chun-liu Li
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
| | - Yu-xuan Yang
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Juan Du
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| |
Collapse
|