1
|
Alam NB, Pelzang S, Jain A, Mustafiz A. Cytoprotective role of pyruvate in mitigating abiotic stress response in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112325. [PMID: 39608574 DOI: 10.1016/j.plantsci.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Pyruvate is a central metabolite in cellular respiration and metabolism. It can neutralize reactive oxygen species (ROS), safeguard mitochondrial membrane potential, and regulate gene expression under oxidative stress. However, its role in abiotic stress tolerance in plants needs to be explored. Therefore, the current study investigated the role of pyruvate and its metabolism in response to different abiotic stresses in the model plant Arabidopsis thaliana. We retrieved transcript profiling data for pyruvate metabolism and transportation genes (D-LDH, AlaAT, PK, MPC, PDC, PDH, NAD-ME) from public databases. The study's findings indicate that these genes' expression is regulated in response to different abiotic stresses. Moreover, the promoter region of these genes contained multiple cis-acting elements like ABRE, ARE, P-box, and MBS, which are associated with plants' abiotic stress response. Furthermore, colorimetric analysis showed higher pyruvate content under different abiotic stresses. Therefore, exogenous pyruvate treatment was given before and after different abiotic stresses, which could combat the toxicity of pro-oxidant molecules by pyruvate intake. The semiquantitative RT-PCR analysis revealed that exogenous pyruvate treatment enhances the expression of important transcription factors WRKY2, GH3.3, DREB2A, and bZIP1, and stress-responsive genes e.g., APX1, ERD5, ADC2, and HSP70 in addition to abiotic stresses. Moreover, Arabidopsis plants pre-treated with pyruvate before oxidative stress showed less RBOHD expression. Additionally, pyruvate's cytoprotective role was compared to other well-known antioxidants such as NAC, Trolox, and GSH. Finally, untargeted GC-MS/MS analysis of abiotic stress-treated Arabidopsis plants showed a higher metabolite level of β-hydroxy-pyruvic acid, indicating the crucial role of pyruvate during abiotic stress.
Collapse
Affiliation(s)
- Nazmir Binta Alam
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Sangay Pelzang
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Arushi Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India.
| |
Collapse
|
2
|
Shan S, Hoffman JM. Serine metabolism in aging and age-related diseases. GeroScience 2025; 47:611-630. [PMID: 39585647 PMCID: PMC11872823 DOI: 10.1007/s11357-024-01444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Non-essential amino acids are often overlooked in biomedical research; however, they are crucial components of organismal metabolism. One such metabolite that is integral to physiological function is serine. Serine acts as a pivotal link connecting glycolysis with one-carbon and lipid metabolism, as well as with pyruvate and glutathione syntheses. Interestingly, increasing evidence suggests that serine metabolism may impact the aging process, and supplementation with serine may confer benefits in safeguarding against aging and age-related disorders. This review synthesizes recent insights into the regulation of serine metabolism during aging and its potential to promote healthy lifespan and mitigate a spectrum of age-related diseases.
Collapse
Affiliation(s)
- Shengshuai Shan
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
3
|
Mitra I, Potes MA, Shafi M, Tilton M, Elder BD, Lu L. Enzyme-delivery Metal-organic Framework Composite Coatings for Restoration of Hyperglycemia-damaged Osteoblast Differentiation. BIOMATERIALS ADVANCES 2025; 166:214055. [PMID: 39342782 DOI: 10.1016/j.bioadv.2024.214055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
There is a significant clinical need to develop effective treatments for bone defects in patients with diabetes mellitus (DM), as they are at higher risk of fractures and impaired healing. Guided bone tissue engineering using biocompatible and biodegradable polymers is a promising approach. However, current diabetic bone regenerative therapies often fail due to the accumulation of advanced glycation products, which can affect the integration of traditional tissue engineering scaffolds with native bone. Therefore, novel approaches are needed to improve the efficacy of diabetic bone regeneration. This study presents a proof-of-concept development of a multifunctional polymer composite coating tailored towards restoring diabetes-related damage in osteoblast differentiation. Our composite system involves 3D-printed poly(caprolactone fumarate) (PCLF) and poly(caprolactone) (PCL) blend scaffolds coated with multifunctional chitosan methacrylate (chiMA). The chiMA coating is embedded with a sustained-release formulation of glucose oxidase (GOx) from MIL-127 metal-organic frameworks making the coating a stimuli-responsive biomolecule delivery system. The multifunctional coating is designed for the sustained release of GOx and sodium pyruvate for in vitro glucose modulation and oxidative stress reduction, respectively. We propose that sustained release of GOx from MIL-127 embedded chiMA coatings can modulate the high glucose (HG) cellular milieu towards normal glucose (NG), enhancing osteoblast (OB) differentiation via downstream effects. Our results show successful synthesis of MIL-127, encapsulation of GOx, and fabrication of composite coating on the PCLF/PCL scaffolds with effective enzyme activity measured as a function of lowering glucose concentration in HG media for 144 h to normal levels. In vitro evaluation of OB viability, attachment, proliferation, and differentiation showed an overall decrease in cellular activity in HG conditions, which was restored through the glucose-modulating functionality of the GOx-releasing MIL-127 coatings. Our results also presented preliminary evidence of a statistical correlation between DM-related gene markers and osteogenic markers in vitro that requires further exploration. Although this proof-of-concept study holds promise for advancing precision biomaterials development for diabetic tissue engineering and meeting the unmet clinical need for effective treatments and warrants future in vivo evaluation of the composite coating and molecular biology understanding of correlations between DM and osteogenic markers.
Collapse
Affiliation(s)
- Indranath Mitra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, USA
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, USA
| | - Mahnoor Shafi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, USA.
| |
Collapse
|
4
|
Mekky RH, Abdel-Sattar E, Abdulla MH, Segura-Carretero A, Al-Khayal K, Eldehna WM, Del Mar Contreras M. Metabolic profiling and antioxidant activity of fenugreek seeds cultivars 'Giza 2' and 'Giza 30' compared to other geographically-related seeds. Food Chem X 2024; 24:101819. [PMID: 39328377 PMCID: PMC11426063 DOI: 10.1016/j.fochx.2024.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
This study addresses a comparative comprehensive metabolic profiling of two Egyptian cultivars of fenugreek (Trigonella foenum-graecum L.) seeds 'Giza 2' and 'Giza 30' via RP-HPLC-DAD-QTOF-MS and MS/MS. Briefly, 126 metabolites were detected in the samples under investigation, being classified into hydroxybenzoic acids (8), hydroxycinnamic acids (7), flavonoids (49 with a predominancy of flavones in particular apigenin derivatives), coumarins (1), furostanol saponins (17), alkaloids (2), amino acids (11), peptides (2), jasmonates (6), nucleosides (30), organic acids (16), terpenoids (1), and sugars (3). In addition, the total phenolic content and antioxidant activity were determined and compared with other geographically related seeds (chickpea Giza-1, sesame Giza-32, and linseed, Giza-10), showing slight differences among them but higher values than the other geographically related seeds that were segregated from them upon chemometric analysis. This is the first comprehensive metabolic profiling of these cultivars, presenting an initial account of some metabolites found in Fabaceae, such as apigenin di C pentoside, with a significant occurrence of biologically active furostanol saponins. It gives a prospect of fenugreeks richness of bioactive metabolites as an essential functional food that could add value to the food and nutraceutical industries' sustainability.
Collapse
Affiliation(s)
- Reham Hassan Mekky
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, 11829 Cairo, Egypt
- Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016 Granada, Spain
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Bioregiόn Building, Health Science Technological Park, Avenida del Conocimiento s/n, 18016 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Khayal Al-Khayal
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria; Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
5
|
Pal C. Targeting mitochondria with small molecules: A promising strategy for combating Parkinson's disease. Mitochondrion 2024; 79:101971. [PMID: 39357561 DOI: 10.1016/j.mito.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is one of the most significant challenges confronting modern societies, affecting millions of patients globally each year. The pathophysiology of PD is significantly influenced by mitochondrial dysfunction, as evident by the contribution of altered mitochondrial dynamics, bioenergetics, and increased oxidative stress to neuronal death. This review examines the potential use of small molecules that target mitochondria as a therapeutic approach for treating PD. Progress in mitochondrial biology has revealed various mitochondrial targets that can be modulated to restore function and mitigate neurodegeneration. Small molecules that promote mitochondrial biogenesis, enhance mitochondrial dynamics, decrease oxidative stress, and prevent the opening of the mitochondrial permeability transition pore (mPTP) have shown promise in preclinical models. Additionally, targeting mitochondrial quality control mechanisms, such as mitophagy, provides another therapeutic approach. This review explores recent research on small molecules targeting mitochondria, examines their mechanisms of action, and assesses their potential efficacy and safety profiles. By highlighting the most promising candidates and addressing the challenges and future directions in this field, this review aims to offer a comprehensive overview of current and future prospects for mitochondrial-targeted therapies in PD. Ultimately, treating mitochondrial dysfunction holds significant promise for developing disease-modifying PD medications, giving patients hope for better outcomes and improved quality of life.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
6
|
Supti ST, Koehn LM, Newman SA, Pan Y, Nicolazzo JA. Iron Reduces the Trafficking of Fatty Acids from Human Immortalised Brain Microvascular Endothelial Cells Through Modulation of Fatty Acid Transport Protein 1 (FATP1/SLC27A1). Pharm Res 2024; 41:1631-1648. [PMID: 39044044 PMCID: PMC11362236 DOI: 10.1007/s11095-024-03743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE Alzheimer's disease (AD) is associated with brain accumulation of amyloid-beta (Aβ) and neurofibrillary tangle formation, in addition to reduced brain docosahexaenoic acid (DHA) and increased brain iron levels. DHA requires access across the blood-brain barrier (BBB) to enter the brain, and iron has been shown to affect the expression and function of a number of BBB transporters. Therefore, this study aimed to assess the effect of iron on the expression and function of fatty acid binding protein 5 (FABP5) and fatty acid transport protein 1 (FATP1), both which mediate brain endothelial cell trafficking of DHA. METHODS The mRNA and protein levels of FABP5 and FATP1 in human cerebral microvascular endothelial (hCMEC/D3) cells was assessed by RT-qPCR and Western blot, respectively following ferric ammonium citrate (FAC) treatment (up to 750 µM, 72 h). The function of FABP5 and FATP1 was assessed via uptake and efflux of radiolabelled 3H-oleic acid and 14C-DHA. RESULTS FAC (500 µM, 72 h) had no impact on the expression of FABP5 at the protein and mRNA level in hCMEC/D3 cells, which was associated with a lack of effect on the uptake of 14C-DHA. FAC led to a 19.7% reduction in FATP1 protein abundance in hCMEC/D3 cells with no impact on mRNA levels, and this was associated with up to a 32.6% reduction in efflux of 14C-DHA. CONCLUSIONS These studies demonstrate a role of iron in down-regulating FATP1 protein abundance and function at the BBB, which may have implications on fatty acid access to the brain.
Collapse
Affiliation(s)
- Showmika T Supti
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Liam M Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Stephanie A Newman
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Dani S, Schütz K, Dikici E, Bernhardt A, Lode A. The effect of continuous long-term illumination with visible light in different spectral ranges on mammalian cells. Sci Rep 2024; 14:9444. [PMID: 38658667 PMCID: PMC11043379 DOI: 10.1038/s41598-024-60014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Ezgi Dikici
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
8
|
Deisl C, Moe OW, Hilgemann DW. Constitutive Plasma Membrane Turnover in T-REx293 cells via Ordered Membrane Domain Endocytosis under Mitochondrial Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576124. [PMID: 38293164 PMCID: PMC10827192 DOI: 10.1101/2024.01.17.576124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Clathrin/dynamin-independent endocytosis of ordered plasma membrane domains (ordered membrane domain endocytosis, OMDE) can become massive in response to cytoplasmic Ca elevations, G protein activation by non-hydrolyzable GTP analogs, and enhanced oxidative metabolism. In patch-clamped murine bone marrow macrophages (BMMs), cytoplasmic succinate and pyruvate, but not β-hydroxybutyrate, induce OMDE of 75% of the plasma membrane within 2 min. The responses require palmitoylation of membrane proteins, being decreased by 70% in BMMs lacking the acyltransferase, DHHC5, by treatment with carnitine to shift long-chain acyl groups from cytoplasmic to mitochondrial acyl-CoAs, by bromopalmitate/albumin complexes to block DHHCs, and by the mitochondria-specific cyclosporin, NIM811, to block permeability transition pores that may release mitochondrial coenzyme A into the cytoplasm. Using T-REx293 cells, OMDE amounts to 40% with succinate, pyruvate, or GTPγS, and it is inhibited by actin cytoskeleton disruption. Pyruvate-induced OMDE is blocked by the hydrophobic antioxidant, edaravone, which prevents permeability transition pore openings. Using fluorescent 3kD dextrans to monitor endocytosis, OMDE appears to be constitutively active in T-REx293 cells but not in BMMs. After 1 h without substrates or bicarbonate, pyruvate and hydroxybutyrate inhibit constitutive OMDE, as expected for a shift of CoA from long-chain acyl-CoAs to other CoA metabolites. In the presence of bicarbonate, pyruvate strongly enhances OMDE, which is then blocked by β-hydroxybutyrate, bromopalmitate/albumin complexes, cyclosporines, or edaravone. After pyruvate responses, T-REx293 cells grow normally with no evidence for apoptosis. Fatty acid-free albumin (15 μM) inhibits basal OMDE in T-REx293 cells, as do cyclosporines, carnitine, and RhoA blockade. Surprisingly, OMDE in the absence of substrates and bicarbonate is not inhibited by siRNA knockdown of the acyltransferases, DHHC5 or DHHC2, which are required for activated OMDE in patch clamp experiments. We verify biochemically that small CoA metabolites decrease long-chain acyl-CoAs. We verify also that palmitoylations of many PM-associated proteins decrease and increase when OMDE is inhibited and stimulated, respectively, by different metabolites. STED microscopy reveals that vesicles formed during constitutive OMDE in T-REX293 cells have 90 to 130 nm diameters. In summary, OMDE is likely a major G-protein-dependent endocytic mechanism that can be constitutively active in some cell types, albeit not BMMs. OMDE depends on different DHHC acyltransferases in different circumstances and can be limited by local supplies of fatty acids, CoA, and long-chain acyl-CoAs.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Qiu Y, Zhang L, Zhang F, Cheng X, Ji L, Jiang J. Efficient production of xylooligosaccharides from Camellia oleifera shells pretreated by pyruvic acid at lower temperature. Int J Biol Macromol 2024; 259:129262. [PMID: 38199559 DOI: 10.1016/j.ijbiomac.2024.129262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
XOS production from lignocellulose using organic carboxylic acids and alkyd acids has been widely reported. However, it still faces harsh challenges such as high energy consumption, high cost, and low purity. Pyruvic acid (PYA), a carbonyl acid with carbonyl and carboxyl groups, was used to produce XOS due to its stronger catalytic activity. In this work, XOS was efficiently prepared from COS in an autoclave under the condition of 0.21 M PYA-121 °C-35 min. The total yield of XOS reached 68.72 % without producing any toxic by-products, including furfural (FF) and 5-hydroxymethylfurfural (5-HMF). The yield of xylobiose (X2), xylotriose (X3), xylotetraose (X4), and xylopentaose (X5) were 20.58 %, 12.47 %, 15.74 %, and 10.05 %, respectively. Meanwhile, 89.05 % of lignin was retained in the solid residue, which provides a crucial functional group for synthesizing layered carbon materials (SRG-a). It achieves excellent electromagnetic shielding (EMS) performance through graphitization, reaching -30 dB at a thickness of 2.0 mm. The use of a PYA catalyst in the production of XOS has proven to be an efficient method due to lower temperature, lower acid consumption, and straightforward operation.
Collapse
Affiliation(s)
- Yuejie Qiu
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Leping Zhang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Rauckhorst AJ, Vasquez Martinez G, Mayoral Andrade G, Wen H, Kim JY, Simoni A, Robles-Planells C, Mapuskar KA, Rastogi P, Steinbach EJ, McCormick ML, Allen BG, Pabla NS, Jackson AR, Coleman MC, Spitz DR, Taylor EB, Zepeda-Orozco D. Tubular mitochondrial pyruvate carrier disruption elicits redox adaptations that protect from acute kidney injury. Mol Metab 2024; 79:101849. [PMID: 38056691 PMCID: PMC10733108 DOI: 10.1016/j.molmet.2023.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Although tubular metabolism changes markedly following acute kidney injury (AKI), it remains unclear which metabolic alterations are beneficial or detrimental. By analyzing large-scale, publicly available datasets, we observed that AKI consistently leads to downregulation of the mitochondrial pyruvate carrier (MPC). This investigation aimed to understand the contribution of the tubular MPC to kidney function, metabolism, and acute injury severity. METHODS We generated tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice and employed renal function tests, in vivo renal 13C-glucose tracing, mechanistic enzyme activity assays, and tests of injury and survival in an established rhabdomyolysis model of AKI. RESULTS MPC TubKO mice retained normal kidney function, displayed unchanged markers of kidney injury, but exhibited coordinately increased enzyme activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, compared to WT control mice, MPC TubKO mice showed increased glycolysis, decreased kidney injury and oxidative stress markers, and strikingly increased survival. CONCLUSIONS Our findings suggest that decreased renal tubular mitochondrial pyruvate uptake hormetically upregulates oxidant defense systems before AKI and is a beneficial adaptive response after rhabdomyolysis-induced AKI. This raises the possibility of therapeutically modulating the MPC to attenuate AKI severity.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Gabriel Mayoral Andrade
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Hsiang Wen
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Simoni
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Claudia Robles-Planells
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Prerna Rastogi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Navjot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ashley R Jackson
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mitchell C Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA.
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus OH, USA; Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Ye X, Wang Z, van Bruggen R, Li XM, Zhang Y, Chen J. Low-intensity pulsed ultrasound enhances neurite growth in serum-starved human neuroblastoma cells. Front Neurosci 2023; 17:1269267. [PMID: 38053610 PMCID: PMC10694225 DOI: 10.3389/fnins.2023.1269267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Low-intensity pulsed ultrasound (LIPUS) is a recognized tool for promoting nerve regeneration and repair; however, the intracellular mechanisms of LIPUS stimulation remain underexplored. Method The present study delves into the effects of varying LIPUS parameters, namely duty cycle, spatial average-temporal average (SATA) intensity, and ultrasound amplitude, on the therapeutic efficacy using SK-N-SH cells cultured in serum-starved conditions. Four distinct LIPUS settings were employed: (A) 50 mW/cm2, 40%, (B) 25 mW/cm2, 10%, (C) 50 mW/cm2, 20%, and (D) 25 mW/cm2, 10%. Results Immunochemistry analysis exhibited neurite outgrowth promotion in all LIPUS-treated groups except for Group D. Further, LIPUS treatment was found to successfully promote brain-derived neurotrophic factor (BDNF) expression and enhance the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, protein kinase B (Akt), and mammalian target of rapamycin (mTOR) signaling pathways, as evidenced by western blot analysis. Discussion The study suggests that the parameter combination of LIPUS determines the therapeutic efficacy of LIPUS. Future investigations should aim to optimize these parameters for different cell types and settings and delve deeper into the cellular response mechanism to LIPUS treatment. Such advancements may aid in tailoring LIPUS treatment strategies to specific therapeutic needs.
Collapse
Affiliation(s)
- Xuanjie Ye
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Zitong Wang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rebekah van Bruggen
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Kapoor S, Padwad YS. Phloretin suppresses intestinal inflammation and maintained epithelial tight junction integrity by modulating cytokines secretion in in vitro model of gut inflammation. Cell Immunol 2023; 391-392:104754. [PMID: 37506521 DOI: 10.1016/j.cellimm.2023.104754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease which in long run can lead to colorectal cancer (CRC). Chronic inflammation can be a key factor for the occurrence of CRC thus mitigating an inflammation can be a preventive strategy for the occurrence of CRC. In this study we have explored the anti-inflammatory potential of phloretin, in in vitro gut inflammation model, developed by co-culture of Caco2 (intestinal epithelial) cells and RAW264.7 macrophages (immune cells). Phloretin is a dihydrochalcone present in apple, pear and strawberries. An anti-inflammatory effect of phloretin in reducing LPS induced inflammation and maintenance of transepithelial electric resistance (TEER) in Caco2 cells was examined. Paracellular permeability assay was performed using Lucifer yellow dye to evaluate the effect of phloretin in inhibiting gut leakiness caused by inflammatory mediators secreted by activated macrophages. Phloretin attenuated LPS induced nitric oxide levels, oxidative stress, depolarization of mitochondrial membrane potential in Caco2 cells as evidenced by reduction in reactive oxygen species (ROS), and enhancement of MMP, and decrease in inflammatory cytokines IL8, TNFα, IL1β and IL6. It exhibited anti-inflammatory activity by inhibiting the expression of NFκB, iNOS and Cox2. Phloretin maintained the epithelial integrity by regulating the expression of tight junction proteins ZO1, occludin, Claudin1 and JAM. Phloretin reduced LPS induced levels of Cox2 along with the reduction in Src expression which further regulated an expression of tight junction protein occludin. Phloretin in combination to sodium pyruvate exhibited potential anti-inflammatory activity via targeting NFkB signaling. Our findings paved a way to position phloretin as nutraceutical in preventing the occurrence of colitis and culmination of disease into colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Findlay S, Nair R, Merrill RA, Kaiser Z, Cajelot A, Aryanpour Z, Heath J, St-Louis C, Papadopoli D, Topisirovic I, St-Pierre J, Sebag M, Kesarwala AH, Hulea L, Taylor EB, Shanmugam M, Orthwein A. The mitochondrial pyruvate carrier complex potentiates the efficacy of proteasome inhibitors in multiple myeloma. Blood Adv 2023; 7:3485-3500. [PMID: 36920785 PMCID: PMC10362273 DOI: 10.1182/bloodadvances.2022008345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that emerges from antibody-producing plasma B cells. Proteasome inhibitors, including the US Food and Drug Administration-approved bortezomib (BTZ) and carfilzomib (CFZ), are frequently used for the treatment of patients with MM. Nevertheless, a significant proportion of patients with MM are refractory or develop resistance to this class of inhibitors, which represents a significant challenge in the clinic. Thus, identifying factors that determine the potency of proteasome inhibitors in MM is of paramount importance to bolster their efficacy in the clinic. Using genome-wide CRISPR-based screening, we identified a subunit of the mitochondrial pyruvate carrier (MPC) complex, MPC1, as a common modulator of BTZ response in 2 distinct human MM cell lines in vitro. We noticed that CRISPR-mediated deletion or pharmacological inhibition of the MPC complex enhanced BTZ/CFZ-induced MM cell death with minimal impact on cell cycle progression. In fact, targeting the MPC complex compromised the bioenergetic capacity of MM cells, which is accompanied by reduced proteasomal activity, thereby exacerbating BTZ-induced cytotoxicity in vitro. Importantly, we observed that the RNA expression levels of several regulators of pyruvate metabolism were altered in advanced stages of MM for which they correlated with poor patient prognosis. Collectively, this study highlights the importance of the MPC complex for the survival of MM cells and their responses to proteasome inhibitors. These findings establish mitochondrial pyruvate metabolism as a potential target for the treatment of MM and an unappreciated strategy to increase the efficacy of proteasome inhibitors in the clinic.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Ronald A. Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Zafir Kaiser
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Alexandre Cajelot
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Polytech Nice-Sophia, Université Côte d’Azur, Sophia Antipolis, Nice, France
| | - Zahra Aryanpour
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Catherine St-Louis
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - David Papadopoli
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Michael Sebag
- The Research Institute of the McGill University Health Center, Montreal, Canada
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
- Département de Biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
- Département de Médecine, Université de Montréal, Montreal, Canada
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
14
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Zhang S, Zhang X, Wang X, Li C, He C, Luo T, Ge P. Maltol inhibits oxygen glucose deprivation‑induced chromatinolysis in SH‑SY5Y cells by maintaining pyruvate level. Mol Med Rep 2023; 27:75. [PMID: 36799163 PMCID: PMC9950851 DOI: 10.3892/mmr.2023.12962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Maltol, a chemical isolated from ginseng root, has shown treatment effects on several pathological processes including osteoarthritis, diabetic peripheral neuropathy and liver fibrosis. Nevertheless, its effect on ischemia‑induced neuron death remains elusive. In the present study, the treatment effect of maltol on ischemia‑induced neuron damage was investigated by using oxygen and glucose deprivation (OGD) model in SH‑SY5Y cells. In vitro studies revealed that maltol protected SH‑SY5Y cells against OGD‑induced chromatinolysis by inhibiting two reactive oxygen species (ROS)‑regulated pathways. One was DNA double‑strand breaks and the other was nuclear translocation of apoptosis inducing factor. Mechanistically, maltol not only inhibited OGD‑induced depletion of glutathione and cysteine by maintaining cystine/glutamate antiporter (xCT) level, but also abrogated OGD‑induced catalase downregulation. Meanwhile, maltol also alleviated OGD‑induced inactivation of mTOR by attenuating OGD‑induced depletion of adenosine triphosphate and pyruvate and downregulation of pyruvate kinase M2, indicating that maltol inhibited the glycolysis dysfunction caused by OGD. Considering that activated mammalian target of the rapamycin (mTOR) could lead to enhanced xCT expression and decreased catalase degradation by autophagy, these findings indicated that maltol attenuated OGD‑induced ROS via inhibition of mTOR inactivation by maintaining pyruvate level. Taken together, it was demonstrated that maltol prevented OGD‑induced chromatinolysis in SH‑SY5Y cells via inhibiting pyruvate depletion.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Neurotrauma, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinyue Zhang
- Department of Public Health, New York University, New York, NY 10016, USA
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chuan He
- Department of Neurotrauma, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tianfei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Department of Neurology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Pengfei Ge, Department of Neurosurgery, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
16
|
Rauckhorst AJ, Martinez GV, Andrade GM, Wen H, Kim JY, Simoni A, Mapuskar KA, Rastogi P, Steinbach EJ, McCormick ML, Allen BG, Pabla NS, Jackson AR, Coleman MC, Spitz DR, Taylor EB, Zepeda-Orozco D. Tubular Mitochondrial Pyruvate Carrier Disruption Elicits Redox Adaptations that Protect from Acute Kidney Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526492. [PMID: 36778297 PMCID: PMC9915694 DOI: 10.1101/2023.01.31.526492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Tubular metabolism changes markedly following acute kidney injury (AKI), but which changes are adaptive versus maladaptive remain poorly understood. In publicly available data sets, we noticed a consistent downregulation of the mitochondrial pyruvate carrier (MPC) after AKI, which we experimentally confirmed. To test the functional consequences of MPC downregulation, we generated novel tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice. 13C-glucose tracing, steady-state metabolomic profiling, and enzymatic activity assays revealed that MPC TubKO coordinately increased activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, MPC TubKO decreased markers of kidney injury and oxidative damage and strikingly increased survival. Our findings suggest that decreased mitochondrial pyruvate uptake is a central adaptive response following AKI and raise the possibility of therapeutically modulating the MPC to attenuate AKI severity.
Collapse
Affiliation(s)
- Adam J. Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Gabriel Mayoral Andrade
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Hsiang Wen
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Aaron Simoni
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
| | - Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Prerna Rastogi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Emily J Steinbach
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Michael L. McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ashley R. Jackson
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Mitchell C. Coleman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA, USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Research Center, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus OH, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Taghizadeh-Hesary F, Akbari H, Bahadori M, Behnam B. Targeted Anti-Mitochondrial Therapy: The Future of Oncology. Genes (Basel) 2022; 13:genes13101728. [PMID: 36292613 PMCID: PMC9602426 DOI: 10.3390/genes13101728] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Like living organisms, cancer cells require energy to survive and interact with their environment. Mitochondria are the main organelles for energy production and cellular metabolism. Recently, investigators demonstrated that cancer cells can hijack mitochondria from immune cells. This behavior sheds light on a pivotal piece in the cancer puzzle, the dependence on the normal cells. This article illustrates the benefits of new functional mitochondria for cancer cells that urge them to hijack mitochondria. It describes how functional mitochondria help cancer cells’ survival in the harsh tumor microenvironment, immune evasion, progression, and treatment resistance. Recent evidence has put forward the pivotal role of mitochondria in the metabolism of cancer stem cells (CSCs), the tumor components responsible for cancer recurrence and metastasis. This theory highlights the mitochondria in cancer biology and explains how targeting mitochondria may improve oncological outcomes.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Correspondence: or (F.T.-H.); or (B.B.); Tel.: +98-912-608-6713 (F.T.-H.); Tel.: +1-407-920-4420 (B.B.)
| | - Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 4739-19395, Iran
- Traditional Medicine School, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Moslem Bahadori
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 14155-6559, Iran
| | - Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, Germantown, MD 20874, USA
- Correspondence: or (F.T.-H.); or (B.B.); Tel.: +98-912-608-6713 (F.T.-H.); Tel.: +1-407-920-4420 (B.B.)
| |
Collapse
|
18
|
Kim YM, Choi SY, Hwang O, Lee JY. Pyruvate Prevents Dopaminergic Neurodegeneration and Motor Deficits in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Mol Neurobiol 2022; 59:6956-6970. [PMID: 36057709 DOI: 10.1007/s12035-022-03017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopamine(DA)rgic neurons in the substantia nigra of the midbrain, and primarily causes motor symptoms. While the pathological cause of PD remains uncertain, oxidative damage, neuroinflammation, and energy metabolic perturbation have been implicated. Pyruvate has been shown neuroprotective in animal models for many neurological disorders, presumably owing to its potent anti-oxidative, anti-inflammatory, and energy metabolic properties. We therefore investigated whether exogenous pyruvate could also protect nigral DA neurons from degeneration and reverse the associated motor deficits in an animal model of PD using the DA neuron-specific toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was injected four times every 2 h into the peritoneum of mice, which resulted in a massive loss of DA neurons as well as an increase in neuronal death and cytosolic labile zinc overload. There were rises in inflammatory and oxidative responses, a drop in the striatal DA level, and the emergence of PD-related motor deficits. In comparison, when sodium pyruvate was administered intraperitoneally at a daily dose of 250 mg/kg for 7 days starting 2 h after the final MPTP treatment, significant relief in the MPTP-induced neuropathology, neurodegeneration, DA depletion, and motor symptoms was observed. Equiosmolar dose of NaCl had no neuroprotective effect, and lower doses of sodium pyruvate did not have any statistically significant effects. These findings suggest that pyruvate has therapeutic potential for the treatment of PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun-Mi Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Su Yeon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
19
|
CAMPYAIR, a New Selective, Differential Medium for Campylobacter spp. Isolation without the Need for Microaerobic Atmosphere. Microorganisms 2022; 10:microorganisms10071403. [PMID: 35889122 PMCID: PMC9318433 DOI: 10.3390/microorganisms10071403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Campylobacter spp. are considered the most frequent bacterial cause of acute gastroenteritis worldwide. Although the diarrhea produced by these bacteria is self-limiting, the pathogen has been associated with severe long-term sequelae following acute signs and symptoms of the illness. However, research on Campylobacter is hampered by costs and technical requirements for isolating and culturing the bacterium, especially in low and middle-income countries. Therefore, attempts have been made to simplify these culture methods and to reduce costs associated with conducting research on Campylobacter. Recently, a liquid medium which allows selective enrichment of Campylobacter using aerobic incubation has been described. However, a solid medium is also needed for the isolation of pure colonies, enumeration of bacterial populations, and other studies on the pathogen. Therefore, a new medium (CAMPYAIR) was developed, based on the formulation of the liquid medium. CAMPYAIR is a solid chromogenic medium that supports the growth of Campylobacter isolates within 48 h of incubation in aerobic atmospheres. Moreover, CAMPYAIR contains antibiotic supplements with an enhanced ability to recover Campylobacter from environmental samples that may also contain non-campylobacter bacteria. The addition of the indicator 2,3,5-triphenyltetrazolium (TTC) to the medium differentiates Campylobacter from other bacteria growing on the media. The findings from studies on CAMPYAIR suggest that the utilization of the new selective, differential medium could help to reduce the costs, equipment, and technical training required for Campylobacter isolation from clinical and environmental samples.
Collapse
|
20
|
Noori-Dokht H, Joukar A, Karnik S, Williams T, Trippel SB, Wagner DR. A Photochemical Crosslinking Approach to Enhance Resistance to Mechanical Wear and Biochemical Degradation of Articular Cartilage. Cartilage 2022; 13:19476035221093064. [PMID: 35819016 PMCID: PMC9280829 DOI: 10.1177/19476035221093064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate photochemical crosslinking using Al(III) phthalocyanine chloride tetrasulfonic acid (CASPc) and light with a wavelength of 670 nm as a potential therapy to strengthen articular cartilage and prevent tissue degradation. DESIGN Changes in viscoelastic properties with indentation were used to identify 2 crosslinking protocols for further testing. Crosslinked cartilage was subjected to an in vitro, accelerated wear test. The ability of the crosslinked tissue to resist biochemical degradation via collagenase was also measured. To better understand how photochemical crosslinking with CASPc varies through the depth of the tissue, the distribution of photo-initiator and penetration of light through the tissue depth was characterized. Finally, the effect of CASPc on chondrocyte viability and of co-treatment with an antioxidant was evaluated. RESULTS The equilibrium modulus was the most sensitive viscoelastic measure of crosslinking. Crosslinking decreased both mechanical wear and collagenase digestion compared with control cartilage. These beneficial effects were realized despite the fact that crosslinking appeared to be localized to a region near the articular surface. In addition, chondrocyte viability was maintained in crosslinked tissue treated with antioxidants. CONCLUSION These results suggest that photochemical crosslinking with CASPc and 670 nm light holds promise as a potential therapy to prevent cartilage degeneration by protecting cartilage from mechanical wear and biochemical degradation. Limitations were also evident, however, as an antioxidant treatment was necessary to maintain chondrocyte viability in crosslinked tissue.
Collapse
Affiliation(s)
- Hessam Noori-Dokht
- Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Amin Joukar
- Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sonali Karnik
- Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| | - Taylor Williams
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen B. Trippel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Diane R. Wagner
- Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA,Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indianapolis, IN, USA,Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA,Diane R. Wagner, Department of Mechanical & Energy Engineering, Indiana University–Purdue University Indianapolis, 723 W. Michigan Street, SL 260, Indianapolis, IN 46220, USA.
| |
Collapse
|
21
|
Nazim UM, Bishayee K, Kang J, Yoo D, Huh SO, Sadra A. mTORC1-Inhibition Potentiating Metabolic Block by Tyrosine Kinase Inhibitor Ponatinib in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112766. [PMID: 35681744 PMCID: PMC9179535 DOI: 10.3390/cancers14112766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary From a screen for metabolic inhibition by a panel of approved anticancer drugs and combining the lead compound with a mammalian target of rapamycin complex 1 (mTORC1) inhibitor, we demonstrated that the combination of ponatinib and sirolimus leads to synergistic tumor growth inhibition in a mouse xenograft tumor model of multiple myeloma. The rationale of combining the two drugs was to prevent metabolic escape due to glycolysis reprogramming and residual oxidative phosphorylation (OXPHOS). The robust increases in reactive oxygen species (ROS) due to a block in glycolysis were shown to be the lead contributor of cell viability loss. The drug combination in the doses used displayed no overt toxicity in the treated animals. Abstract Studies in targeting metabolism in cancer cells have shown the flexibility of cells in reprogramming their pathways away from a given metabolic block. Such behavior prompts a combination drug approach in targeting cancer metabolism, as a single compound may not address the tumor intractability. Overall, mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated as enabling metabolic escape in the case of a glycolysis block. From a library of compounds, the tyrosine kinase inhibitor ponatinib was screened to provide optimal reduction in metabolic activity in the production of adenosine triphosphate (ATP), pyruvate, and lactate for multiple myeloma cells; however, these cells displayed increasing levels of oxidative phosphorylation (OXPHOS), enabling them to continue generating ATP, although at a slower pace. The combination of ponatinib with the mTORC1 inhibitor, sirolimus, blocked OXPHOS; an effect also manifested in activity reductions for hexokinase 2 (HK2) and glucose-6-phosphate isomerase (GPI) glycolysis enzymes. There were also remarkably higher levels of reactive oxygen species (ROS) produced in mouse xenografts, on par with increased glycolytic block. The combination of ponatinib and sirolimus resulted in synergistic inhibition of tumor xenografts with no overt toxicity in treated mice for kidney and liver function or maintaining weight.
Collapse
|
22
|
Bishayee K, Nazim UM, Kumar V, Kang J, Kim J, Huh SO, Sadra A. Reversing the HDAC-inhibitor mediated metabolic escape in MYCN-amplified neuroblastoma. Biomed Pharmacother 2022; 150:113032. [PMID: 35486977 DOI: 10.1016/j.biopha.2022.113032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
In MYCN-amplified neuroblastoma (NB), we noticed that the single compound treatment with the HDAC inhibitor vorinostat led to a reprogramming of the glycolytic pathway in these cells. This reprogramming was upregulation of fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS), allowing the cells to generate ATP, albeit at a reduced rate. This behavior was dependent on reduced levels of MYCN and a corresponding increase in the levels of PPARD transcription factors. By integrating metabolic and functional studies in NB cells and mouse xenografts, we demonstrate a compensatory upregulation of FAO/OXPHOS metabolism that promotes resistance to HDAC inhibitors. From the additional compounds that could reverse this metabolic reprogramming, the mTORC1 inhibitor sirolimus was selected. Besides both a block of glycolysis and OXPHOS, the HDAC/mTORC1 inhibitor combination produced significantly higher levels of reactive oxygen species (ROS) in the treated cells and in xenograft tumor samples, also a consequence of increased glycolytic block. The lead compounds were also tested for changes in the message levels of the glycolytic enzymes and their pathway activity, and HK2 and GPI glycolytic enzymes were most affected at their RNA message level. This combination was seen with no overall toxicity in treated mice in terms of weight loss or liver/kidney function.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Uddin Md Nazim
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, South Korea.
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
23
|
Effects of Sodium Pyruvate on Vanadyl Sulphate-Induced Reactive Species Generation and Mitochondrial Destabilisation in CHO-K1 Cells. Antioxidants (Basel) 2022; 11:antiox11050909. [PMID: 35624773 PMCID: PMC9137755 DOI: 10.3390/antiox11050909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Vanadium is ranked as one of the world’s critical metals considered important for economic growth with wide use in the steel industry. However, its production, applications, and emissions related to the combustion of vanadium-containing fuels are known to cause harm to the environment and human health. Pyruvate, i.e., a glucose metabolite, has been postulated as a compound with multiple cytoprotective properties, including antioxidant and anti-inflammatory effects. The aim of the present study was to examine the antioxidant potential of sodium pyruvate (4.5 mM) in vanadyl sulphate (VOSO4)-exposed CHO-K1 cells. Dichloro-dihydro-fluorescein diacetate and dihydrorhodamine 123 staining were performed to measure total and mitochondrial generation of reactive oxygen species (ROS), respectively. Furthermore, mitochondrial damage was investigated using MitoTell orange and JC-10 staining assays. We demonstrated that VOSO4 alone induced a significant rise in ROS starting from 1 h to 3 h after the treatment. Additionally, after 24 and 48 h of exposure, VOSO4 elicited both extensive hyperpolarisation and depolarisation of the mitochondrial membrane potential (MMP). The two-way ANOVA analysis of the results showed that, through antagonistic interaction, pyruvate prevented VOSO4-induced total ROS generation, which could be observed at the 3 h time point. In addition, through the independent action and antagonistic interaction with VOSO4, pyruvate provided a pronounced protective effect against VOSO4-mediated mitochondrial toxicity at 24-h exposure, i.e., prevention of VOSO4-induced hyperpolarisation and depolarisation of MMP. In conclusion, we found that pyruvate exerted cytoprotective effects against vanadium-induced toxicity at least in part by decreasing ROS generation and preserving mitochondrial functions
Collapse
|
24
|
Kalo MB, Rezaei M. In vitro toxic interaction of arsenic and hyperglycemia in mitochondria: an important implication of increased vulnerability in pre-diabetics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28375-28385. [PMID: 34993818 DOI: 10.1007/s11356-022-18513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollutants and lifestyle both contribute to the rapidly increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide. Evidence suggests that exposure to environmental contaminants such as arsenic is associated with impaired glucose metabolism and insulin signaling. In the present study, isolated rat liver mitochondria (1 mg/ml) were co-exposed to low concentration of arsenic trioxide (ATO) ( IC25 = 40 µM) and hyperglycemic condition (20, 40, 80, 160 mM glucose or 20, 40, 80, 160 mM pyruvate (PYR)). Mitochondrial dehydrogenase activity (complex II), glutathione content (GSH), reactive oxygen species (ROS), lipid peroxidation, mitochondrial membrane potential (ΔΨ), and mitochondrial swelling were then evaluated in the presence of ATO 40 µM and PYR 40 mM. Unexpectedly, glucose alone (20, 40, 80, 160 mM) had no toxic effect on mitochondria, even at very high concentrations and even when combined with ATO. Interestingly, PYR at low concentrations (≤ 10 mM) has a protective effect on mitochondria, but at higher concentrations (≥ 40 mM) with ATO, it decreased the complex II activity and increased mitochondrial ROS production, lipid peroxidation, GSH depletion, mitochondrial membrane damage, and swelling (p < 0.05). In conclusion, PYR but not glucose increased ATO mitochondrial toxicity even at low concentrations. These results suggest that pre-diabetics with non-clinical hyperglycemia, who are inevitably exposed to low concentrations of arsenic through food and water, may develop mitochondrial dysfunction that accelerates their progression to diabetes over time.
Collapse
Affiliation(s)
- Mersad Bagherpour Kalo
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Corremans R, Neven E, Maudsley S, Leysen H, De Broe ME, D’Haese PC, Vervaet BA, Verhulst A. Progression of established non-diabetic chronic kidney disease is halted by metformin treatment in rats. Kidney Int 2022; 101:929-944. [DOI: 10.1016/j.kint.2022.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
|
26
|
Relationship between oxidative stress and lifespan in Daphnia pulex. Sci Rep 2022; 12:2354. [PMID: 35149730 PMCID: PMC8837783 DOI: 10.1038/s41598-022-06279-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Macromolecular damage leading to cell, tissue and ultimately organ dysfunction is a major contributor to aging. Intracellular reactive oxygen species (ROS) resulting from normal metabolism cause most damage to macromolecules and the mitochondria play a central role in this process as they are the principle source of ROS. The relationship between naturally occurring variations in the mitochondrial (MT) genomes leading to correspondingly less or more ROS and macromolecular damage that changes the rate of aging associated organismal decline remains relatively unexplored. MT complex I, a component of the electron transport chain (ETC), is a key source of ROS and the NADH dehydrogenase subunit 5 (ND5) is a highly conserved core protein of the subunits that constitute the backbone of complex I. Using Daphnia as a model organism, we explored if the naturally occurring sequence variations in ND5 correlate with a short or long lifespan. Our results indicate that the short-lived clones have ND5 variants that correlate with reduced complex I activity, increased oxidative damage, and heightened expression of ROS scavenger enzymes. Daphnia offers a unique opportunity to investigate the association between inherited variations in components of complex I and ROS generation which affects the rate of aging and lifespan.
Collapse
|
27
|
Manoj KM, Nirusimhan V, Parashar A, Edward J, Gideon DA. Murburn precepts for lactic-acidosis, Cori cycle, and Warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen. J Cell Physiol 2021; 237:1902-1922. [PMID: 34927737 DOI: 10.1002/jcp.30661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
It is unresolved why lactate is transported to the liver for further utilization within the physiological purview of Cori cycle, when muscles have more lactate dehydrogenase (LDH) than liver. We point out that the answer lies in thermodynamics/equilibriums. While the utilization of NADH for the reduction of pyruvate to lactate can be mediated via the classical mechanism, the oxidation of lactate (with/without the uphill reduction of NAD+ ) necessitates alternative physiological approaches. The latter pathway occurs via interactive equilibriums involving the enzyme, protons and oxygen or diffusible reactive oxygen species (DROS). Since liver has high DROS, the murburn activity at LDH would enable the cellular system to tide over the unfavorable energy barriers of the forward reaction (~476 kJ/mol; earlier miscalculated as ~26 kJ/mole). Further, the new mechanism does not necessitate any "smart decision-making" or sophisticated control by/of proteins. The DROS-based murburn theory explains the invariant active-site structure of LDH isozymes and their multimeric nature. The theoretical insights, in silico evidence and analyses of literature herein also enrich our understanding of the underpinnings of "lactic acidosis" (lowering of physiological pH accompanied by lactate production), Warburg effect (increased lactate production at high pO2 by cancer cells) and approach for cancer therapy.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Vijay Nirusimhan
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Abhinav Parashar
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Jesucastin Edward
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| | - Daniel Andrew Gideon
- Department of Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, Kerala, India
| |
Collapse
|
28
|
Guo S, Burcus NI, Scott M, Jing Y, Semenov I. The role of reactive oxygen species in the immunity induced by nano-pulse stimulation. Sci Rep 2021; 11:23745. [PMID: 34887493 PMCID: PMC8660900 DOI: 10.1038/s41598-021-03342-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of tumor cells treated with Nano-Pulse Stimulation (NPS). Recently, ROS have been suggested as a contributing factor in immunogenic cell death and T cell-mediated immunity. This research further investigated the role of NPS induced ROS in antitumor immunity. ROS production in 4T1-luc breast cancer cells was characterized using three detection reagents, namely, Amplex Red, MitoSox Red, and Dihydroethidium. The efficiency of ROS quenching was evaluated in the presence or absence of ROS scavengers and/or antioxidants. The immunogenicity of NPS treated tumor cells was assessed by ex vivo dendritic cell activation, in vivo vaccination assay and in situ vaccination with NPS tumor ablation. We found that NPS treatment enhanced the immunogenicity of 4T1-luc mouse mammary tumor, resulted in a potent in situ vaccination protection and induced long-term T cell immunity. ROS production derived from NPS treated breast cancer cells was an electric pulse dose-dependent phenomenon. Noticeably, the dynamic pattern of hydrogen peroxide production was different from that of superoxide production. Interestingly, regardless of NPS treatment, different ROS scavengers could either block or promote ROS production and stimulate or inhibit tumor cell growth. The activation of dendritic cells was not influenced by blocking ROS generation. The results from in vivo vaccination with NPS treated cancer cells suggests that ROS generation was not a prerequisite for immune protection.
Collapse
Affiliation(s)
- Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.
| | - Niculina I. Burcus
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - Megan Scott
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - Yu Jing
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| | - Iurii Semenov
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA
| |
Collapse
|
29
|
Huynh TPN, Bowater RP, Bernuzzi F, Saha S, Wormstone IM. GSH Levels Serve As a Biological Redox Switch Regulating Sulforaphane-Induced Cell Fate in Human Lens Cells. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34854886 PMCID: PMC8648057 DOI: 10.1167/iovs.62.15.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Sulforaphane (SFN) is a therapeutic phytochemical agent for many health conditions. SFN-induced cytotoxicity is shown to have promise in preventing posterior capsule opacification (PCO). In the current study, we aimed to elucidate key processes and mechanisms linking SFN treatment to lens cell death. Methods The human lens epithelial cell line FHL124 and central anterior epithelium were used as experimental models. Cell death was assessed by microscopic observation and cell damage/viability assays. Gene or protein levels were assessed by TaqMan RT-PCR or immunoblotting. Mitochondrial networks and DNA damage were assessed by immunofluorescence. Mitochondrial membrane potential, activating transcription factor 6 (ATF6) activity, ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), and glutathione reductase (GR) activity were measured using different light reporter assays. SFN metabolites were analyzed by LC-MS/MS. Results Treatment with N-acetylcysteine (NAC), a reactive oxygen species scavenger, prevented SFN-induced cell death in both models. NAC also significantly protected FHL124 cells from SFN-induced mitochondrial dysfunctions, endoplasmic reticulum stress (ERS), DNA damage and autophagy. SFN significantly depleted GSH, the major antioxidant in the eye, and reduced GR activity, despite doubling its protein levels. The most abundant SFN conjugate detected in lens cells following SFN application was SFN-GSH. The addition of GSH protected lens cells from all SFN-induced cellular events. Conclusions SFN depletes GSH levels in lens cells through conjugation and inhibition of GR activity. This leads to increased reactive oxygen species and oxidative stress that trigger mitochondrial dysfunction, ERS, autophagy, and DNA damage, leading to cell death. In summary, the work presented provides a mechanistic understanding to support the therapeutic application of SFN for PCO and other disorders.
Collapse
Affiliation(s)
| | - Richard P. Bowater
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Federico Bernuzzi
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Shikha Saha
- Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - I. Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
30
|
Hepatic Glucose Metabolism and Its Disorders in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:207-236. [PMID: 34807444 DOI: 10.1007/978-3-030-85686-1_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbohydrate, which is the most abundant nutrient in plant-sourced feedstuffs, is an economically indispensable component in commercial compound feeds for fish. This nutrient can enhance the physical quality of diets and allow for pellet expansion during extrusion. There is compelling evidence that an excess dietary intake of starch causes hepatic disorders, thereby further reducing the overall food consumption and growth performance of fish species. Among the severe metabolic disturbances are glycogenic hepatopathy (hepatomegaly caused by the excessive accumulation of glycogen in hepatocytes) and hepatic steatosis (the accumulation of large vacuoles of triacylglycerols in hepatocytes). The development of those disorders is mainly due to the limited ability of fish to oxidize glucose and control blood glucose concentration. The prolonged elevations of blood glucose increase glucose intake by the liver, and excess glucose is stored either as glycogen through glycogenesis in hepatocytes or as triglycerides via lipogenesis in tissues, depending on the species. In some fish species (e.g., largemouth bass), the liver has a low ability to regulate glycolysis, gluconeogenesis, and glycogen breakdown in response to high starch intake. For most species of fish, the liver size increases with lipid or glycogen accumulation when they have a high starch intake. It is a challenge to develop the same set of diagnostic criteria for all fish species as their physiology or metabolic patterns differ. Although glycogenic hepatopathy appears to be a common disease in carnivorous fish, it has been under-recognized in many studies. As a result, understanding these diseases and their pathogeneses in different fish species is crucial for manufacturing cost-effective pellet diets to promote the health, growth, survival, and feed efficiency of fish in future.
Collapse
|
31
|
Courtney TM, Hankinson CP, Horst TJ, Deiters A. Targeted protein oxidation using a chromophore-modified rapamycin analog. Chem Sci 2021; 12:13425-13433. [PMID: 34777761 PMCID: PMC8528027 DOI: 10.1039/d1sc04464h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
Chemically induced dimerization of FKBP and FRB using rapamycin and rapamycin analogs has been utilized in a variety of biological applications. Formation of the FKBP-rapamycin-FRB ternary complex is typically used to activate a biological process and this interaction has proven to be essentially irreversible. In many cases, it would be beneficial to also have temporal control over deactivating a biological process once it has been initiated. Thus, we developed the first reactive oxygen species-generating rapamycin analog toward this goal. The BODIPY-rapamycin analog BORap is capable of dimerizing FKBP and FRB to form a ternary complex, and upon irradiation with 530 nm light, generates singlet oxygen to oxidize and inactivate proteins of interest fused to FKBP/FRB.
Collapse
Affiliation(s)
- Taylor M Courtney
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | | | - Trevor J Horst
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
32
|
Alipour H, Duus RK, Wimmer R, Dardmeh F, Du Plessis SS, Jørgensen N, Christiansen OB, Hnida C, Nielsen HI, Van Der Horst G. Seminal plasma metabolomics profiles following long (4-7 days) and short (2 h) sexual abstinence periods. Eur J Obstet Gynecol Reprod Biol 2021; 264:178-183. [PMID: 34325212 DOI: 10.1016/j.ejogrb.2021.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Metabolomic profiling of seminal plasma has been suggested as a possible approach for a fast and non-invasive male infertility evaluation diagnosis. However, metabolomics profiles in normozoospermic men have not been thoroughly investigated, and the influence of ejaculation-abstinence has not been described. To provide interim reference values and find associations between the metabolomics profiles of human seminal plasma and length of ejaculation-abstinence period in normozoospermic men. STUDY DESIGN Semen samples collected after long (4-7 days) and short abstinence (2 h) from 31 normozoospermic males were assessed for routine quality parameters before the seminal plasma was separated by centrifugation. Metabolomics profiles of the seminal plasma were then determined using untargeted Nuclear Magnetic Resonance Spectroscopy. RESULTS In total, 30 metabolites were identified. Pyruvate showed a higher concentration, while fructose, acetate, choline, methanol, N-acetylglucosamine, O-acetylcarnitine, uridine, and sn-glycero-3-phosphocoline showed lower concentrations in samples collected after short abstinence (vs. long). All metabolites showed lower absolute amounts (volume × concentration) following shorter abstinence. However, the lower sperm concentration in samples collected after short abstinence resulted in higher absolute amounts of pyruvate and taurine per spermatozoa: pyruvate 1.92 (1.12-3.87) vs. 1.29 (0.83-2.62) (P < 0.001) and taurine 0.58 (0.36-0.92) vs. 0.43 (0.28-0.95) (P < 0.05) ng/106 spermatozoa. Simultaneously, there was a higher percentage of progressively motile spermatozoa in samples collected after the short abstinence. CONCLUSION The generally lower concentrations of seminal metabolites after short abstinence periods may be related to the shorter time available for secretion and collection of these metabolites by the accessory glands and the epididymides. The concomitant lower number of spermatozoa in the second ejaculate resulted in increased absolute amounts of pyruvate and taurine per spermatozoa, accompanied by increased spermatozoa motility in these samples. The simultaneous increase in percentages of motile spermatozoa and absolute amounts of pyruvate and taurine per spermatozoa after shorter abstinence might indicate that these two metabolites play a more critical role in sperm motility, which should be further investigated in future studies.
Collapse
Affiliation(s)
- H Alipour
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Aalborg, Denmark.
| | - R K Duus
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Aalborg, Denmark
| | - R Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - F Dardmeh
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Aalborg, Denmark
| | - S S Du Plessis
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - N Jørgensen
- University Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Copenhagen, Denmark
| | - O B Christiansen
- Department of Obstetrics and Gynecology, Fertility Unit, Aalborg University Hospital, Aalborg, Denmark; Institute of Clinical Medicine, Aalborg University, Denmark
| | - C Hnida
- Department of Obstetrics and Gynecology, Fertility Unit, Aalborg University Hospital, Aalborg, Denmark
| | - H I Nielsen
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Aalborg, Denmark
| | - G Van Der Horst
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
33
|
Van Acker HH, Ma S, Scolaro T, Kaech SM, Mazzone M. How metabolism bridles cytotoxic CD8 + T cells through epigenetic modifications. Trends Immunol 2021; 42:401-417. [PMID: 33867272 PMCID: PMC9681987 DOI: 10.1016/j.it.2021.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
In the direct competition for metabolic resources between cancer cells and tumor-infiltrating CD8+ T cells, the latter are bound to lose out. These effector lymphocytes are therefore rendered exhausted or dysfunctional. Emerging insights into the mechanisms of T cell unresponsiveness in the tumor microenvironment (TME) point towards epigenetic mechanisms as crucial regulatory factors. In this review, we discuss the effects of characteristic components of the TME, i.e. glucose/amino acid dearth with elevated levels of reactive oxygen species (ROS), on DNA methylation and histone modifications in CD8+ T cells. We then take a closer look at the translational potential of epigenetic interventions that aim to improve current immunotherapeutic strategies, including the adoptive transfer of T cell receptor (TCR) or chimeric antigen receptor (CAR) engineered T cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Tumor Inflammation and Angiogenesis, VIB - KU Leuven, Leuven, Belgium.
| | - Shixin Ma
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tommaso Scolaro
- Laboratory of Tumor Inflammation and Angiogenesis, VIB - KU Leuven, Leuven, Belgium
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB - KU Leuven, Leuven, Belgium.
| |
Collapse
|
34
|
Montenegro I, Moreira J, Ramírez I, Dorta F, Sánchez E, Alfaro JF, Valenzuela M, Jara-Gutiérrez C, Muñoz O, Alvear M, Werner E, Madrid A, Villena J, Seeger M. Chemical Composition, Antioxidant and Anticancer Activities of Leptocarpha rivularis DC Flower Extracts. Molecules 2020; 26:molecules26010067. [PMID: 33375633 PMCID: PMC7795695 DOI: 10.3390/molecules26010067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
An evaluation of antioxidant and anticancer activity was screened in Leptocarpha rivularis DC flower extracts using four solvents (n-hexane (Hex), dichloromethane (DCM), ethyl acetate (AcOEt), and ethanol (EtOH)). Extracts were compared for total extract flavonoids and phenol contents, antioxidant activity (2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), ferric reducing antioxidant potential (FRAP), total reactive antioxidant properties (TRAP) and oxygen radical absorbance capacity (ORAC)) across a determined value of reduced/oxidized glutathione (GSH/GSSG), and cell viability (the sulforhodamine B (SRB) assay). The most active extracts were analyzed by chromatographic analysis (GC/MS) and tested for apoptotic pathways. Extracts from Hex, DCM and AcOEt reduced cell viability, caused changes in cell morphology, affected mitochondrial membrane permeability, and induced caspase activation in tumor cell lines HT-29, PC-3, and MCF-7. These effects were generally less pronounced in the HEK-293 cell line (nontumor cells), indicating clear selectivity towards tumor cell lines. We attribute likely extract activity to the presence of sesquiterpene lactones, in combination with other components like steroids and flavonoids.
Collapse
Affiliation(s)
- Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Jorge Moreira
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Ingrid Ramírez
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Fernando Dorta
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Elizabeth Sánchez
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Juan Felipe Alfaro
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
| | - Manuel Valenzuela
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro de Investigaciones Biomédicas (CIB), Laboratorio de Estrés Oxidativo, Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2520000, Chile;
| | - Ociel Muñoz
- Institute of Food Science and Technology, University Austral of Chile, Valdivia 5090000, Chile;
| | - Matias Alvear
- Laboratory of Industrial Chemistry, Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500 Turku/Åbo, Finland;
| | - Enrique Werner
- Departamento de Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío, Avda. Andrés Bello 720, Casilla 447, Chillán 3780000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| | - Michael Seeger
- Centro de Biotecnología “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile; (I.R.); (F.D.); (E.S.); (J.F.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Valparaíso 2390123, Chile
- Correspondence: (I.M.); (A.M.); (J.V.); (M.S.); Tel.: +56-322603046 (I.M.)
| |
Collapse
|
35
|
Azzi A. Scaffold dependent role of the inositol 5'-phosphatase SHIP2, in regulation of oxidative stress induced apoptosis. Arch Biochem Biophys 2020; 697:108667. [PMID: 33181128 DOI: 10.1016/j.abb.2020.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022]
Abstract
Cell apoptosis is an important process that occurs during development or in response to stress stimuli such as oxidative stress. The serine-threonine kinase Akt enhances survival and suppress apoptosis. SHIP2 is known as a negative regulator of Akt. In addition to its lipid 5'-phosphatase activity, SHIP2 interacts and signals as a scaffolding complex with several proteins. Several findings have pointed out a possible role of SHIP2 in apoptosis regulation. However, the molecular mechanisms behind remain unknown. Using embryonic fibroblast lacking the lipid 5'-phosphatase domain as a genetic model system and human liver cancer cells treated with SHIP2 inhibitor (AS1949490), as a pharmacological model system. We provide the first evidence that SHIP2 regulates apoptosis independently of its 5'-phosphates activity. Indeed, absence of the 5'-phosphatase domain of SHIP2 did not prevent H2O2-induced apoptosis in fibroblasts. Whereas chemical inactivation or RNAi knockdown of SHIP2 blocked H2O2-induced apoptosis in HepG2 cells. We found that suppression of apoptosis upon SHIP2 inhibition is PI3K/Akt independent but rather MAP kinase dependent. In addition, we found that AS1949490 altered both 5'-phosphatase and scaffolding function of SHIP2. Indeed, AS1949490 mediated SHIP2 inhibition promotes protein complex formation of SHIP2 together with non-receptor tyrosine kinase SRC and ABL which in turn enhances PI3K/Akt and MAP kinase pathways activation. Dual inhibition of SRC/ABL blocked activation of both pathways upon SHIP2 inhibition and H2O2 treatment. Altogether, these findings indicate that SHIP2 protein play a determinant role in H2O2-induced apoptosis.
Collapse
Affiliation(s)
- Abdelhalim Azzi
- GIGA-Molecular Biology of Disease, GIGA-B34, Centre Hospitalier Universitaire Sart-Tilman, University of Liège, avenue de l'Hôpital 11, 4000, Liège, Belgium.
| |
Collapse
|
36
|
Li N, Flanagan BA, Partridge M, Huang EJ, Edmands S. Sex differences in early transcriptomic responses to oxidative stress in the copepod Tigriopus californicus. BMC Genomics 2020; 21:759. [PMID: 33143643 PMCID: PMC7607713 DOI: 10.1186/s12864-020-07179-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
Background Patterns of gene expression can be dramatically different between males and females of the same species, in part due to genes on sex chromosomes. Here we test for sex differences in early transcriptomic response to oxidative stress in a species which lacks heteromorphic sex chromosomes, the copepod Tigriopus californicus. Results Male and female individuals were separately exposed to control conditions and pro-oxidant conditions (hydrogen peroxide and paraquat) for periods of 3 hours and 6 hours. Variance partitioning showed the greatest expression variance among individuals, highlighting the important information that can be obscured by the common practice of pooling individuals. Gene expression variance between sexes was greater than that among treatments, showing the profound effect of sex even when males and females share the same genome. Males exhibited a larger response to both pro-oxidants, differentially expressing more than four times as many genes, including up-regulation of more antioxidant genes, heat shock proteins and protease genes. While females differentially expressed fewer genes, the magnitudes of fold change were generally greater, indicating a more targeted response. Although females shared a smaller fraction of differentially expressed genes between stressors and time points, expression patterns of antioxidant and protease genes were more similar between stressors and more GO terms were shared between time points. Conclusions Early transcriptomic responses to the pro-oxidants H2O2 and paraquat in copepods revealed substantial variation among individuals and between sexes. The finding of such profound sex differences in oxidative stress response, even in the absence of sex chromosomes, highlights the importance of studying both sexes and the potential for developing sex-specific strategies to promote optimal health and aging in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07179-5.
Collapse
Affiliation(s)
- Ning Li
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA.
| | - Ben A Flanagan
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - MacKenzie Partridge
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Elaine J Huang
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA, 90089, USA
| |
Collapse
|
37
|
Loganathan N, McIlwraith EK, Belsham DD. BPA Differentially Regulates NPY Expression in Hypothalamic Neurons Through a Mechanism Involving Oxidative Stress. Endocrinology 2020; 161:5910085. [PMID: 32960947 DOI: 10.1210/endocr/bqaa170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, interferes with reproduction and is also considered an obesogen. The neuropeptide Y (NPY) neurons of the hypothalamus control both food intake and reproduction and have emerged as potential targets of BPA. These functionally diverse subpopulations of NPY neurons are differentially regulated by peripheral signals, such as estrogen and leptin. Whether BPA also differentially alters Npy expression in subpopulations of NPY neurons, contributing to BPA-induced endocrine dysfunction is unclear. We investigated the response of 6 immortalized hypothalamic NPY-expressing cell lines to BPA treatment. BPA upregulated Npy mRNA expression in 4 cell lines (mHypoA-59, mHypoE-41, mHypoA-2/12, mHypoE-42), and downregulated Npy in 2 lines (mHypoE-46, mHypoE-44). This differential expression of Npy occurred concurrently with differential expression of estrogen receptor mRNA levels. Inhibition of G-protein coupled estrogen receptor GPR30 or estrogen receptor β prevented the BPA-mediated decrease in Npy, whereas inhibition of energy sensor 5' adenosine monophosphate-activated protein kinase (AMPK) with compound C prevented BPA-induced increase in Npy. BPA also altered neuroinflammatory and oxidative stress markers in both mHypoA-59 and mHypoE-46 cell lines despite the differential regulation of Npy. Remarkably, treatment with BPA in an antioxidant-rich media, Neurobasal A (NBA), or with reactive oxygen species scavenger tauroursodeoxycholic acid mitigated the BPA-induced increase and decrease in Npy. Furthermore, 2 antioxidant species from NBA-N-acetylcysteine and vitamin B6-diminished the induction of Npy in the mHypoA-59 cells, demonstrating these supplements can counteract BPA-induced dysregulation in certain subpopulations. Overall, these results illustrate the differential regulation of Npy by BPA in neuronal subpopulations, and point to oxidative stress as a pathway that can be targeted to block BPA-induced Npy dysregulation in hypothalamic neurons.
Collapse
Affiliation(s)
- Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics, University of Toronto, Toronto, Ontario, Canada
- Department of Gynaecology and Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Azzi A. SHIP2 inhibition alters redox-induced PI3K/AKT and MAP kinase pathways via PTEN over-activation in cervical cancer cells. FEBS Open Bio 2020; 10:2191-2205. [PMID: 32881386 PMCID: PMC7530381 DOI: 10.1002/2211-5463.12967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/09/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Phosphatidylinositol (3,4,5)‐trisphosphate (PI(3,4,5)P3) is required for protein kinase B (AKT) activation. The level of PI(3,4,5)P3 is constantly regulated through balanced synthesis by phosphoinositide 3‐kinase (PI3K) and degradation by phosphoinositide phosphatases phosphatase and tensin homologue (PTEN) and SH2‐domain containing phosphatidylinositol‐3,4,5‐trisphosphate 5‐phosphatase 2 (SHIP2), known as negative regulators of AKT. Here, I show that SHIP2 inhibition in cervical cancer cell lines alters H2O2‐mediated AKT and mitogen‐activated protein kinase/extracellular signal‐regulated kinase pathway activation. In addition, SHIP2 inhibition enhances reactive oxygen species generation. Interestingly, I found that SHIP2 inhibition and H2O2 treatment enhance lipid and protein phosphatase activity of PTEN. Pharmacological targeting or RNA interference(RNAi) mediated knockdown of PTEN rescues extracellular signal‐regulated kinase and AKT activation. Using a series of pharmacological and biochemical approaches, I provide evidence that crosstalk between SHIP2 and PTEN occurs upon an increase in oxidative stress to modulate the activity of mitogen‐activated protein kinase and phosphoinositide 3/ATK pathways.
Collapse
Affiliation(s)
- Abdelhalim Azzi
- GIGA-Molecular Biology of Disease, GIGA-B34, University of Liège, Belgium
| |
Collapse
|
39
|
Floare ML, Allen SP. Why TDP-43? Why Not? Mechanisms of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis. Neurosci Insights 2020; 15:2633105520957302. [PMID: 32995749 PMCID: PMC7503004 DOI: 10.1177/2633105520957302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder for which there is no effective curative treatment available and minimal palliative care. Mutations in the gene encoding the TAR DNA-binding protein 43 (TDP-43) are a well-recognized genetic cause of ALS, and an imbalance in energy homeostasis correlates closely to disease susceptibility and progression. Considering previous research supporting a plethora of downstream cellular impairments originating in the histopathological signature of TDP-43, and the solid evidence around metabolic dysfunction in ALS, a causal association between TDP-43 pathology and metabolic dysfunction cannot be ruled out. Here we discuss how TDP-43 contributes on a molecular level to these impairments in energy homeostasis, and whether the protein's pathological effects on cellular metabolism differ from those of other genetic risk factors associated with ALS such as superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9orf72) and fused in sarcoma (FUS).
Collapse
Affiliation(s)
- Mara-Luciana Floare
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P. Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
40
|
Kumar VHS, Gugino S, Nielsen L, Chandrasekharan P, Koenigsknecht C, Helman J, Lakshminrusimha S. Protection from systemic pyruvate at resuscitation in newborn lambs with asphyxial cardiac arrest. Physiol Rep 2020; 8:e14472. [PMID: 32596995 PMCID: PMC7322497 DOI: 10.14814/phy2.14472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Infants with hypoxic-ischemic injury often require cardiopulmonary resuscitation. Mitochondrial failure to generate adenosine triphosphate (ATP) during hypoxic-ischemic reperfusion injury contributes to cellular damage. Current postnatal strategies to improve outcome in hypoxic-ischemic injury need sophisticated equipment to perform servo-controlled cooling. Administration of intravenous pyruvate, an antioxidant with favorable effects on mitochondrial bioenergetics, is a simple intervention that can have a global impact. We hypothesize that the administration of pyruvate following the return of spontaneous circulation (ROSC) would improve cardiac function, systemic hemodynamics, and oxygen utilization in the brain in newborn lambs with cardiac arrest (CA). METHODS Term lambs were instrumented, delivered by C-section and asphyxia induced by umbilical cord occlusion along with clamping of the endotracheal tube until asystole; Lambs resuscitated following 5 min of CA; upon ROSC, lambs were randomized to receive pyruvate or saline infusion over 90 min and ventilated for 150 min postinfusion. Pulmonary and systemic hemodynamics and arterial gases monitored. We measured plasma pyruvate, tissue lactate, and ATP levels (heart and brain) in both groups. RESULTS Time to ROSC was not different between the two groups. Systolic and diastolic blood pressures, stroke volume, arterial oxygen content, and cerebral oxygen delivery were similar between the two groups. The cerebral metabolic rate of oxygen was higher following pyruvate infusion; higher oxygen consumption in the brain was associated with lower plasma levels but higher brain ATP levels compared to the saline group. CONCLUSIONS Pyruvate promotes energy generation accompanied by efficient oxygen utilization in the brain and may facilitate additional neuroprotection in the presence of hypoxic-ischemic injury.
Collapse
Affiliation(s)
| | - Sylvia Gugino
- Department of PediatricsUniversity at BuffaloBuffaloNYUSA
| | - Lori Nielsen
- Department of PediatricsUniversity at BuffaloBuffaloNYUSA
| | | | | | - Justin Helman
- Department of PediatricsUniversity at BuffaloBuffaloNYUSA
| | | |
Collapse
|
41
|
Pyruvate secretion by oral streptococci modulates hydrogen peroxide dependent antagonism. THE ISME JOURNAL 2020; 14:1074-1088. [PMID: 31988475 PMCID: PMC7174352 DOI: 10.1038/s41396-020-0592-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023]
Abstract
Many commensal oral streptococci generate H2O2 via pyruvate oxidase (SpxB) to inhibit the growth of competing bacteria like Streptococcus mutans, a major cariogenic species. In Streptococcus sanguinis SK36 (SK36) and Streptococcus gordonii DL1 (DL1), spxB expression and H2O2 release are subject to carbon catabolite repression by the catabolite control protein A (CcpA). Surprisingly, ccpA deletion mutants of SK36 and DL1 fail to inhibit S. mutans despite their production of otherwise inhibitory levels of H2O2. Using H2O2-deficient spxB deletion mutants of SK36 and DL1, it was subsequently discovered that both strains confer protection in trans to other bacteria when H2O2 is added exogenously. This protective effect depends on the direct detoxification of H2O2 by the release of pyruvate. The pyruvate dependent protective effect is also present in other spxB-encoding streptococci, such as the pneumococcus, but is missing from spxB-negative species like S. mutans. Targeted and transposon-based mutagenesis revealed Nox (putative H2O-forming NADH dehydrogenase) as an essential component required for pyruvate release and oxidative protection, while other genes such as sodA and dps play minor roles. Furthermore, pyruvate secretion is only detectable in aerobic growth conditions at biofilm-like cell densities and is responsive to CcpA-dependent catabolite control. This ability of spxB-encoding streptococci reveals a new facet of the competitive interactions between oral commensals and pathobionts and provides a mechanistic basis for the variable levels of inhibitory potential observed among H2O2-producing strains of commensal oral streptococci.
Collapse
|
42
|
Bakhtiary Z, Shahrooz R, Ahmadi A, Soltanalinejad F. Protective effect of ethyl pyruvate on testicular histology and fertilization potential in cyclophosphamide treated mice. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:7-13. [PMID: 32537101 PMCID: PMC7282215 DOI: 10.30466/vrf.2018.91253.2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/22/2018] [Indexed: 11/04/2022]
Abstract
In the present study, we aimed to address the use of ethyl pyruvate (EP) against the harmful effects of cyclophosphamide (CP) treatment. Thirty-nine adult male mice were divided into three groups including control group received normal saline [0.20 mL per day; intraperitoneally (IP)], CP group received CP (15.00 mg kg-1 per week, IP) and CP+EP group received EP (40.00 mg kg-1 per day, IP) along with CP and treated for 35 days. After preparation of paraffin sections and Hematoxylin and Eosin staining, the histomorphometric studies were performed on the testicular tissue. Additionally, the serum superoxide dismutase (SOD) and testosterone level, testis malondialdehyde (MDA) and in vitro fertilization rate were assessed. The results showed an increase in the tubal differentiation index, repopulation index, spermiogenesis index, thickness of testicular capsule, mean distribution of active Sertoli cells, SOD and testosterone levels of the CP+EP group in comparison with the CP group. Moreover, the MDA levels in the CP+EP group were lower than the CP group. An increase occurred in the percentage of fertilization in the CP+EP group compared to the CP group. Results of this study revealed that the EP ameliorates deleterious side effects of CP on testicular histology and in vitro fertility.
Collapse
Affiliation(s)
- Zahra Bakhtiary
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rasoul Shahrooz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Abbas Ahmadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Farhad Soltanalinejad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
43
|
Sousa SA, Leitão JH, Silva RA, Belo D, Santos IC, Guerreiro JF, Martins M, Fontinha D, Prudêncio M, Almeida M, Lorcy D, Marques F. On the path to gold: Monoanionic Au bisdithiolate complexes with antimicrobial and antitumor activities. J Inorg Biochem 2020; 202:110904. [DOI: 10.1016/j.jinorgbio.2019.110904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 12/17/2022]
|
44
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
45
|
Hagoel L, Vexler A, Kalich-Philosoph L, Earon G, Ron I, Shtabsky A, Marmor S, Lev-Ari S. Combined Effect of Moringa oleifera and Ionizing Radiation on Survival and Metastatic Activity of Pancreatic Cancer Cells. Integr Cancer Ther 2019; 18:1534735419828829. [PMID: 30862207 PMCID: PMC6416749 DOI: 10.1177/1534735419828829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Radiotherapy is one of the main treatments for
malignancies. Radioresistance is a major obstacle in this treatment, calling for
new treatments to improve radiotherapy outcome. Herbal medicine has low toxicity
and could be a source for new radio-enhancing agents. Moringa
oleifera (moringa) is a well-known medicinal plant with
antiproliferative and antimetastatic properties. Possible mechanisms of moringa
anticancer activity may be related to the expression of PARP-1, Bcl-2, COX-2,
p65, p-IκB-a, and others. Purpose: The aims of the present study
were to investigate effect of moringa alone and combined with radiation on
survival and metastatic activity of pancreatic cancer cells and on tumor growth.
Methods and Results: The combination of moringa and radiation
significantly inhibited PANC-1 cell survival in a dose-dependent manner, as
tested by clonogenic and XTT assays. Moreover, standard transwell cell
migration/invasion assays demonstrated reduced metastatic activity of these
cells. Pyruvate mitigated the inhibitory effect of combined treatment on cell
survival. Flow cytometry of moringa-treated cells revealed induction of
apoptosis. Western blot analysis found that the combined treatment decreased
expression of the pro-apoptotic protein Bcl-2, and downregulated the key
component of DNA repair pathways PARP-1 and the NF-κB-related proteins IκB-α,
p65-subunit, and COX-2. Moringa significantly inhibited growth of subcutaneous
tumors generated by PANC-1 cells in nude mice. Immunohistochemical analysis
demonstrated moringa’s antiproliferative and antiangiogenic effects.
Conclusions: Moringa decreased pancreatic cancer cell survival
and metastatic activity and significantly inhibited tumor growth. The
combination of moringa plus radiation resulted in an additional inhibitory
effect that provided the rationale for further investigation of this combination
as a novel strategy to overcome pancreatic cancer cell radioresistance.
Collapse
Affiliation(s)
- Lior Hagoel
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Akiva Vexler
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Gideon Earon
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ilan Ron
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alex Shtabsky
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Silvia Marmor
- 1 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | |
Collapse
|
46
|
Biscop E, Lin A, Boxem WV, Loenhout JV, Backer JD, Deben C, Dewilde S, Smits E, Bogaerts AA. Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment. Cancers (Basel) 2019; 11:E1287. [PMID: 31480642 PMCID: PMC6770138 DOI: 10.3390/cancers11091287] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing the selectivity of cancer treatments is attractive, as it has the potential to reduce side-effects of therapy. Cold atmospheric plasma (CAP) is a novel cancer treatment that disrupts the intracellular oxidative balance. Several reports claim CAP treatment to be selective, but retrospective analysis of these studies revealed discrepancies in several biological factors and culturing methods. Before CAP can be conclusively stated as a selective cancer treatment, the importance of these factors must be investigated. In this study, we evaluated the influence of the cell type, cancer type, and cell culture medium on direct and indirect CAP treatment. Comparison of cancerous cells with their non-cancerous counterparts was performed under standardized conditions to determine selectivity of treatment. Analysis of seven human cell lines (cancerous: A549, U87, A375, and Malme-3M; non-cancerous: BEAS-2B, HA, and HEMa) and five different cell culture media (DMEM, RPMI1640, AM, BEGM, and DCBM) revealed that the tested parameters strongly influence indirect CAP treatment, while direct treatment was less affected. Taken together, the results of our study demonstrate that cell type, cancer type, and culturing medium must be taken into account before selectivity of CAP treatment can be claimed and overlooking these parameters can easily result in inaccurate conclusions of selectivity.
Collapse
Affiliation(s)
- Eline Biscop
- PLASMANT Research Group, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium
| | - Abraham Lin
- PLASMANT Research Group, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp 2610, Belgium
| | - Wilma Van Boxem
- PLASMANT Research Group, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium
| | - Jinthe Van Loenhout
- Center for Oncological Research, University of Antwerp, Antwerp 2610, Belgium
| | - Joey De Backer
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Christophe Deben
- Center for Oncological Research, University of Antwerp, Antwerp 2610, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, Antwerp 2610, Belgium
| | - And Annemie Bogaerts
- PLASMANT Research Group, Department of Chemistry, University of Antwerp, Antwerp 2610, Belgium.
| |
Collapse
|
47
|
Gross TJ, Doran E, Cheema AK, Head E, Lott IT, Mapstone M. Plasma metabolites related to cellular energy metabolism are altered in adults with Down syndrome and Alzheimer's disease. Dev Neurobiol 2019; 79:622-638. [PMID: 31419370 DOI: 10.1002/dneu.22716] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS) is a well-known neurodevelopmental disorder most commonly caused by trisomy of chromosome 21. Because individuals with DS almost universally develop heavy amyloid burden and Alzheimer's disease (AD), biomarker discovery in this population may be extremely fruitful. Moreover, any AD biomarker in DS that does not directly involve amyloid pathology may be of high value for understanding broader mechanisms of AD generalizable to the neurotypical population. In this retrospective biomarker discovery study, we examined banked peripheral plasma samples from 78 individuals with DS who met clinical criteria for AD at the time of the blood draw (DS-AD) and 68 individuals with DS who did not (DS-NAD). We measured the relative abundance of approximately 5,000 putative features in the plasma using untargeted mass spectrometry (MS). We found significantly higher levels of a peak putatively annotated as lactic acid in the DS-AD group (q = .014), a finding confirmed using targeted MS (q = .011). Because lactate is the terminal product of glycolysis and subsequent lactic acid fermentation, we performed additional targeted MS focusing on central carbon metabolism which revealed significantly increased levels of pyruvic (q = .03) and methyladipic (q = .03) acids in addition to significantly lower levels of uridine (q = .007) in the DS-AD group. These data suggest that AD in DS is accompanied by a shift from aerobic respiration toward the less efficient fermentative metabolism and that bioenergetically derived metabolites observable in peripheral blood may be useful for detecting this shift.
Collapse
Affiliation(s)
- Thomas J Gross
- Department of Neurology, The University of California, Irvine, Irvine, California
| | - Eric Doran
- Department of Pediatrics, The University of California, Irvine, Irvine, California
| | - Amrita K Cheema
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, The University of California, Irvine, Irvine, California
| | - Ira T Lott
- Department of Pediatrics, The University of California, Irvine, Irvine, California
| | - Mark Mapstone
- Department of Neurology, The University of California, Irvine, Irvine, California
| |
Collapse
|
48
|
Chung HJ, Kim M, Jung J, Jeong NY. Inhibition of Neuronal Nitric Oxide Synthase by Ethyl Pyruvate in Schwann Cells Protects Against Peripheral Nerve Degeneration. Neurochem Res 2019; 44:1964-1976. [DOI: 10.1007/s11064-019-02830-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/07/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022]
|
49
|
Fernandez A, Meechan DW, Karpinski BA, Paronett EM, Bryan CA, Rutz HL, Radin EA, Lubin N, Bonner ER, Popratiloff A, Rothblat LA, Maynard TM, LaMantia AS. Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron 2019; 102:1127-1142.e3. [PMID: 31079872 PMCID: PMC6668992 DOI: 10.1016/j.neuron.2019.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/21/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Under-connectivity between cerebral cortical association areas may underlie cognitive deficits in neurodevelopmental disorders, including the 22q11.2 deletion syndrome (22q11DS). Using the LgDel 22q11DS mouse model, we assessed cellular, molecular, and developmental origins of under-connectivity and its consequences for cognitive function. Diminished 22q11 gene dosage reduces long-distance projections, limits axon and dendrite growth, and disrupts mitochondrial and synaptic integrity in layer 2/3 but not 5/6 projection neurons (PNs). Diminished dosage of Txnrd2, a 22q11 gene essential for reactive oxygen species catabolism in brain mitochondria, recapitulates these deficits in WT layer 2/3 PNs; Txnrd2 re-expression in LgDel layer 2/3 PNs rescues them. Anti-oxidants reverse LgDel- or Txnrd2-related layer 2/3 mitochondrial, circuit, and cognitive deficits. Accordingly, Txnrd2-mediated oxidative stress reduces layer 2/3 connectivity and impairs cognition in the context of 22q11 deletion. Anti-oxidant restoration of mitochondrial integrity, cortical connectivity, and cognitive behavior defines oxidative stress as a therapeutic target in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alejandra Fernandez
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA; GW Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Daniel W Meechan
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Beverly A Karpinski
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth M Paronett
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Corey A Bryan
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Hanna L Rutz
- Department of Psychology, The George Washington University, Washington, DC 20037, USA
| | - Eric A Radin
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Noah Lubin
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Erin R Bonner
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Anastas Popratiloff
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - Lawrence A Rothblat
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Psychology, The George Washington University, Washington, DC 20037, USA
| | - Thomas M Maynard
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Anthony-Samuel LaMantia
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
50
|
Manzo E, Lorenzini I, Barrameda D, O'Conner AG, Barrows JM, Starr A, Kovalik T, Rabichow BE, Lehmkuhl EM, Shreiner DD, Joardar A, Liévens JC, Bowser R, Sattler R, Zarnescu DC. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. eLife 2019; 8:45114. [PMID: 31180318 PMCID: PMC6557627 DOI: 10.7554/elife.45114] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), is a fatal neurodegenerative disorder, with TDP-43 inclusions as a major pathological hallmark. Using a Drosophila model of TDP-43 proteinopathy we found significant alterations in glucose metabolism including increased pyruvate, suggesting that modulating glycolysis may be neuroprotective. Indeed, a high sugar diet improves locomotor and lifespan defects caused by TDP-43 proteinopathy in motor neurons or glia, but not muscle, suggesting that metabolic dysregulation occurs in the nervous system. Overexpressing human glucose transporter GLUT-3 in motor neurons mitigates TDP-43 dependent defects in synaptic vesicle recycling and improves locomotion. Furthermore, PFK mRNA, a key indicator of glycolysis, is upregulated in flies and patient derived iPSC motor neurons with TDP-43 pathology. Surprisingly, PFK overexpression rescues TDP-43 induced locomotor deficits. These findings from multiple ALS models show that mechanistically, glycolysis is upregulated in degenerating motor neurons as a compensatory mechanism and suggest that increased glucose availability is protective.
Collapse
Affiliation(s)
- Ernesto Manzo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Ileana Lorenzini
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Dianne Barrameda
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Abigail G O'Conner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Jordan M Barrows
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Alexander Starr
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Tina Kovalik
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Benjamin E Rabichow
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Erik M Lehmkuhl
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Dakotah D Shreiner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Archi Joardar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | | | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Rita Sattler
- Department of Neurology, Barrow Neurological Institute, Phoenix, United States
| | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States.,Department of Neuroscience, University of Arizona, Tucson, United States.,Department of Neurobiology, University of Arizona, Tucson, United States
| |
Collapse
|