1
|
Luglio A, Maggi E, Riviello FN, Conforti A, Sorrentino U, Zuccarello D. Hereditary Neuromuscular Disorders in Reproductive Medicine. Genes (Basel) 2024; 15:1409. [PMID: 39596609 PMCID: PMC11593801 DOI: 10.3390/genes15111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Neuromuscular disorders (NMDs) encompass a broad range of hereditary and acquired conditions that affect motor units, significantly impacting patients' quality of life and reproductive health. This narrative review aims to explore in detail the reproductive challenges associated with major hereditary NMDs, including Charcot-Marie-Tooth disease (CMT), dystrophinopathies, Myotonic Dystrophy (DM), Facioscapulohumeral Muscular Dystrophy (FSHD), Spinal Muscular Atrophy (SMA), Limb-Girdle Muscular Dystrophy (LGMD), and Amyotrophic Lateral Sclerosis (ALS). Specifically, it discusses the stages of diagnosis and genetic testing, recurrence risk estimation, options for preimplantation genetic testing (PGT) and prenatal diagnosis (PND), the reciprocal influence between pregnancy and disease, potential obstetric complications, and risks to the newborn.
Collapse
Affiliation(s)
- Agnese Luglio
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | | | | | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Ugo Sorrentino
- Department of Women’s and Children’s Health, University Hospital of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Daniela Zuccarello
- Unit of Medical Genetics and Genomics, San Bortolo Hospital, ULSS n.8 “Berica”, 36100 Vicenza, Italy;
| |
Collapse
|
2
|
de Sousa JC, Santos SACS, Kurtenbach E. Multiple approaches for the evaluation of connexin-43 expression and function in macrophages. J Immunol Methods 2024; 533:113741. [PMID: 39111361 DOI: 10.1016/j.jim.2024.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Connexins are essential gap junction proteins that play pivotal roles in intercellular communication in various organs of mammals. Connexin-43 (Cx43) is expressed in various components of the immune system, and there is extensive evidence of its participation in inflammation responses. The involvement of Cx43 in macrophage functionality involves the purinergic signaling pathway. Macrophages contribute to defenses against inflammatory reactions such as bacterial sepsis and peritonitis. Several assays can identify the presence and activity of Cx43 in macrophages. Real-time polymerase chain reaction (PCR) can measure the relative mRNA expression of Cx43, whereas western blotting can detect protein expression levels. Using immunofluorescence assays, it is possible to analyze the expression and observe the localization of Cx43 in cells or tissues. Moreover, connexin-mediated gap junction intercellular communication can be evaluated using functional assays such as microinjection of fluorescent dyes or scrape loading-dye transfer. The use of selective inhibitors contributes to this understanding and reinforces the role of connexins in various processes. Here, we discuss these methods to evaluate Cx43 and macrophage gap junctions.
Collapse
Affiliation(s)
- Júlia Costa de Sousa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | | | - Eleonora Kurtenbach
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
3
|
Nakamura H, Doi H, Miyaji Y, Wada T, Takahashi E, Tada M, Fukuda H, Fujita A, Higashiyama Y, Nagao Y, Kimura K, Hayashi M, Hoshino K, Matsumoto N, Tanaka F. Hereditary spastic paraplegia and extensive leukoencephalopathy: a case report of a unique phenotype associated with a GJB1/Cx32 p.Pro174Ser variant. BMC Neurol 2024; 24:310. [PMID: 39232641 PMCID: PMC11373513 DOI: 10.1186/s12883-024-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Pathogenic variants in Gap junction protein beta 1 (GJB1), which encodes Connexin 32, are known to cause X-linked Charcot-Marie-Tooth disease (CMTX), the second most common form of CMT. CMTX presents with the following five central nervous systems (CNS) phenotypes: subclinical electrophysiological abnormalities, mild fixed abnormalities on neurological examination and/or imaging, transient CNS dysfunction, cognitive impairment, and persistent CNS manifestations. CASE PRESENTATION A 40-year-old Japanese male showed CNS symptoms, including nystagmus, prominent spastic paraplegia, and mild cerebellar ataxia, accompanied by subclinical peripheral neuropathy. Brain magnetic resonance imaging revealed hyperintensities in diffusion-weighted images of the white matter, particularly along the pyramidal tract, which had persisted since childhood. Nerve conduction assessment showed a mild decrease in motor conduction velocity, and auditory brainstem responses beyond wave II were absent. Peripheral and central conduction times in somatosensory evoked potentials elicited by stimulation of the median nerve were prolonged. Genetic analysis identified a hemizygous GJB1 variant, NM_000166.6:c.520C > T p.Pro174Ser. CONCLUSIONS The patient in the case described here, with a GJB1 p.Pro174Ser variant, presented with a unique CNS-dominant phenotype, characterized by spastic paraplegia and persistent extensive leukoencephalopathy, rather than CMTX. Similar phenotypes have also been observed in patients with GJC2 and CLCN2 variants, likely because of the common function of these genes in regulating ion and water balance, which is essential for maintaining white matter function. CMTX should be considered within the spectrum of GJB1-related disorders, which can include patients with predominant CNS symptoms, some of which can potentially be classified as a new type of spastic paraplegia.
Collapse
Affiliation(s)
- Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| | - Yosuke Miyaji
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Taishi Wada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Erisa Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Hiromi Fukuda
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yuichi Higashiyama
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yuri Nagao
- Segawa Memorial Neurological Clinic for Children, 2-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Kazue Kimura
- Segawa Memorial Neurological Clinic for Children, 2-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Masaharu Hayashi
- Segawa Memorial Neurological Clinic for Children, 2-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children, 2-8 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
4
|
Epel B, Viswakarma N, Hameed S, Freidin MM, Abrams CK, Kotecha M. Assessment of blood-brain barrier leakage and brain oxygenation in Connexin-32 knockout mice with systemic neuroinflammation using pulse electron paramagnetic resonance imaging techniques. Magn Reson Med 2024; 91:2519-2531. [PMID: 38193348 PMCID: PMC10997480 DOI: 10.1002/mrm.29994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE The determination of blood-brain barrier (BBB) integrity and partial pressure of oxygen (pO2) in the brain is of substantial interest in several neurological applications. This study aimed to assess the feasibility of using trityl OX071-based pulse electron paramagnetic resonance imaging (pEPRI) to provide a quantitative estimate of BBB integrity and pO2 maps in mouse brains as a function of neuroinflammatory disease progression. METHODS Five Connexin-32 (Cx32)-knockout (KO) mice were injected with lipopolysaccharide to induce neuroinflammation for imaging. Three wild-type mice were also used to optimize the imaging procedure and as control animals. An additional seven Cx32-KO mice were used to establish the BBB leakage of trityl using the colorimetric assay. All pEPRI experiments were performed using a preclinical instrument, JIVA-25 (25 mT/720 MHz), at times t = 0, 4, and 6 h following lipopolysaccharide injection. Two pEPRI imaging techniques were used: (a) single-point imaging for obtaining spatial maps to outline the brain and calculate BBB leakage using the signal amplitude, and (b) inversion-recovery electron spin echo for obtaining pO2 maps. RESULTS A statistically significant change in BBB leakage was found using pEPRI with the progression of inflammation in Cx32 KO animals. However, the change in pO2 values with the progression of inflammation for these animals was not statistically significant. CONCLUSIONS For the first time, we show the ability of pEPRI to provide pO2 maps in mouse brains noninvasively, along with a quantitative assessment of BBB leakage. We expect this study to open new queries from the field to explore the pathology of many neurological diseases and provide a path to new treatments.
Collapse
Affiliation(s)
- Boris Epel
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Navin Viswakarma
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
| | - Safa Hameed
- Oxygen Measurement Core, O2M Technologies, LLC, Chicago, Illinois, USA
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
5
|
Uncini A, Cavallaro T, Fabrizi GM, Manganelli F, Vallat JM. Conduction slowing, conduction block and temporal dispersion in demyelinating, dysmyelinating and axonal neuropathies: Electrophysiology meets pathology. J Peripher Nerv Syst 2024; 29:135-160. [PMID: 38600691 DOI: 10.1111/jns.12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Nerve conduction studies are usually the first diagnostic step in peripheral nerve disorders and their results are the basis for planning further investigations. However, there are some commonplaces in the interpretation of electrodiagnostic findings in peripheral neuropathies that, although useful in the everyday practice, may be misleading: (1) conduction block and abnormal temporal dispersion are distinctive features of acquired demyelinating disorders; (2) hereditary neuropathies are characterized by uniform slowing of conduction velocity; (3) axonal neuropathies are simply diagnosed by reduced amplitude of motor and sensory nerve action potentials with normal or slightly slow conduction velocity. In this review, we reappraise the occurrence of uniform and non-uniform conduction velocity slowing, conduction block and temporal dispersion in demyelinating, dysmyelinating and axonal neuropathies attempting, with a translational approach, a correlation between electrophysiological and pathological features as derived from sensory nerve biopsy in patients and animal models. Additionally, we provide some hints to navigate in this complex field.
Collapse
Affiliation(s)
- Antonino Uncini
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Tiziana Cavallaro
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Jean-Michel Vallat
- Department of Neurology, National Reference Center for "Rare Peripheral Neuropathies", CHU Dupuytren, Limoges, France
| |
Collapse
|
6
|
Yoshimoto Y, Yoshimoto S, Kakiuchi K, Miyagawa R, Ota S, Hosokawa T, Ishida S, Higuchi Y, Hashiguchi A, Takashima H, Arawaka S. Spatial Fluctuation of Central Nervous System Lesions in X-linked Charcot-Marie-Tooth Disease with a Novel GJB1 Mutation. Intern Med 2024; 63:571-576. [PMID: 37407465 PMCID: PMC10937141 DOI: 10.2169/internalmedicine.1713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023] Open
Abstract
X-linked Charcot-Marie-Tooth disease type 1 (CMTX1), the most common form of CMTX, is caused by gap-junction beta 1 (GJB1) mutations. We herein report a 25-year-old Japanese man with disorientation, right hemiparesis, and dysarthria. Brain magnetic resonance imaging (MRI) showed high signal intensities in the bilateral cerebral white matter on diffusion-weighted imaging. He had experienced 2 episodes of transient central nervous system symptoms (at 7 and 13 years old). A genetic analysis identified a novel GJB1 mutation, c.169C>T, p.Gln57*. MRI abnormalities shifted from the cerebral white matter to the corpus callosum and had disappeared at the five-month follow-up. Transient changes between these lesions may indicate CMTX1.
Collapse
Affiliation(s)
- Yukiyo Yoshimoto
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Shoko Yoshimoto
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Kensuke Kakiuchi
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Rumina Miyagawa
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Shin Ota
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Takafumi Hosokawa
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Shimon Ishida
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences, Japan
| | - Shigeki Arawaka
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University, Japan
| |
Collapse
|
7
|
Bayraktar E, Bortolozzi M. Measuring Connexin Hemichannel Opening in Response to an InsP3-Mediated Cytosolic Ca 2+ Increase. Methods Mol Biol 2024; 2801:189-197. [PMID: 38578422 DOI: 10.1007/978-1-0716-3842-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The opening of connexin hemichannels (HCs) expressed at the plasma membrane of mammalian cells is regulated by a number of physiological parameters, including extracellular and intracellular Ca2+ ions. Submicromolar variations of the cytosolic Ca2+ concentration ([Ca2+]c) are per se sufficient to trigger extracellular bursts of messenger molecules through connexin HCs, thus mediating paracrine signaling. In this chapter, we present a quantitative method to measure the opening dynamics of connexin HCs expressed in a single HeLa cell upon stimulation by a canonical InsP3-mediated [Ca2+]c transient. The protocol relies on a combination of Ca2+ imaging and patch-clamp techniques. The insights gained from our method are expected to make a significant contribution to understanding the structure-function relationship of connexin HCs. The protocol is also suitable to screen candidate therapeutic compounds to treat connexin-related diseases linked to HC dysfunction.
Collapse
Affiliation(s)
- Erva Bayraktar
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mario Bortolozzi
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padova, Italy.
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
| |
Collapse
|
8
|
Record CJ, Skorupinska M, Laura M, Rossor AM, Pareyson D, Pisciotta C, Feely SME, Lloyd TE, Horvath R, Sadjadi R, Herrmann DN, Li J, Walk D, Yum SW, Lewis RA, Day J, Burns J, Finkel RS, Saporta MA, Ramchandren S, Weiss MD, Acsadi G, Fridman V, Muntoni F, Poh R, Polke JM, Zuchner S, Shy ME, Scherer SS, Reilly MM. Genetic analysis and natural history of Charcot-Marie-Tooth disease CMTX1 due to GJB1 variants. Brain 2023; 146:4336-4349. [PMID: 37284795 PMCID: PMC10545504 DOI: 10.1093/brain/awad187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) due to GJB1 variants (CMTX1) is the second most common form of CMT. It is an X-linked disorder characterized by progressive sensory and motor neuropathy with males affected more severely than females. Many reported GJB1 variants remain classified as variants of uncertain significance (VUS). In this large, international, multicentre study we prospectively collected demographic, clinical and genetic data on patients with CMT associated with GJB1 variants. Pathogenicity for each variant was defined using adapted American College of Medical Genetics criteria. Baseline and longitudinal analyses were conducted to study genotype-phenotype correlations, to calculate longitudinal change using the CMT Examination Score (CMTES), to compare males versus females, and pathogenic/likely pathogenic (P/LP) variants versus VUS. We present 387 patients from 295 families harbouring 154 variants in GJB1. Of these, 319 patients (82.4%) were deemed to have P/LP variants, 65 had VUS (16.8%) and three benign variants (0.8%; excluded from analysis); an increased proportion of patients with P/LP variants compared with using ClinVar's classification (74.6%). Male patients (166/319, 52.0%, P/LP only) were more severely affected at baseline. Baseline measures in patients with P/LP variants and VUS showed no significant differences, and regression analysis suggested the disease groups were near identical at baseline. Genotype-phenotype analysis suggested c.-17G>A produces the most severe phenotype of the five most common variants, and missense variants in the intracellular domain are less severe than other domains. Progression of disease was seen with increasing CMTES over time up to 8 years follow-up. Standard response mean (SRM), a measure of outcome responsiveness, peaked at 3 years with moderate responsiveness [change in CMTES (ΔCMTES) = 1.3 ± 2.6, P = 0.00016, SRM = 0.50]. Males and females progressed similarly up to 8 years, but baseline regression analysis suggested that over a longer period, females progress more slowly. Progression was most pronounced for mild phenotypes (CMTES = 0-7; 3-year ΔCMTES = 2.3 ± 2.5, P = 0.001, SRM = 0.90). Enhanced variant interpretation has yielded an increased proportion of GJB1 variants classified as P/LP and will aid future variant interpretation in this gene. Baseline and longitudinal analysis of this large cohort of CMTX1 patients describes the natural history of the disease including the rate of progression; CMTES showed moderate responsiveness for the whole group at 3 years and higher responsiveness for the mild group at 3, 4 and 5 years. These results have implications for patient selection for upcoming clinical trials.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Shawna M E Feely
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas E Lloyd
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina W Yum
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John Day
- Department of Neurology, Stanford University, Stanford, CA 94304, USA
| | - Joshua Burns
- University of Sydney School of Health Sciences, Faculty of Medicine and Health; Paediatric Gait Analysis Service of New South Wales, Sydney Children’s Hospitals Network, Sydney, 2145Australia
| | - Richard S Finkel
- Department of Neurology, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sindhu Ramchandren
- Department of Neurology, Wayne State University, Detroit, MI 48201, USA
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Titusville, NJ 08560, USA
| | - Michael D Weiss
- Department of Neurology, University of Washington, Seattle, WA, 98195USA
| | - Gyula Acsadi
- Connecticut Children’s Medical Center, Hartford, CT 06106, USA
| | - Vera Fridman
- Department of Neurology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health University College London, and Great Ormond Street Hospital Trust, London, WC1N 1EH, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
9
|
Barbat du Closel L, Bonello-Palot N, Péréon Y, Echaniz-Laguna A, Camdessanche JP, Nadaj-Pakleza A, Chanson JB, Frachet S, Magy L, Cassereau J, Cintas P, Choumert A, Devic P, Leonard Louis S, Gravier Dumonceau R, Delmont E, Salort-Campana E, Bouhour F, Latour P, Stojkovic T, Attarian S. Clinical and electrophysiological characteristics of women with X-linked Charcot-Marie-Tooth disease. Eur J Neurol 2023; 30:3265-3276. [PMID: 37335503 DOI: 10.1111/ene.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND X-Linked Charcot-Marie-Tooth disease type 1 (CMTX1) is characterized by gender differences in clinical severity. Women are usually clinically affected later and less severely than men. However, their clinical presentation appears to be heterogenous. Our aim was to extend the phenotypic description in a large series of women with CMTX1. METHODS We retrospectively evaluated 263 patients with CMTX1 from 11 French reference centers. Demographic, clinical, and nerve conduction data were collected. The severity was assessed by CMT Examination Score (CMTES) and Overall Neuropathy Limitations Scale (ONLS) scores. We looked for asymmetrical strength, heterogeneous motor nerve conduction velocity (MNCV), and motor conduction blocks (CB). RESULTS The study included 137 women and 126 men from 151 families. Women had significantly more asymmetric motor deficits and MNCV than men. Women with an age of onset after 19 years were milder. Two groups of women were identified after 48 years of age. The first group represented 55%, with women progressing as severely as men, however, with a later onset age. The second group had mild or no symptoms. Some 39% of women had motor CB. Four women received intravenous immunoglobulin before being diagnosed with CMTX1. CONCLUSIONS We identified two subgroups of women with CMTX1 who were over 48 years of age. Additionally, we have demonstrated that women with CMTX can exhibit an atypical clinical presentation, which may result in misdiagnosis. Therefore, in women presenting with chronic neuropathy, the presence of clinical asymmetry, heterogeneous MNCV, and/or motor CB should raise suspicion for X-linked CMT, particularly CMTX1, and be included in the differential diagnosis.
Collapse
Affiliation(s)
- Luce Barbat du Closel
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | | | - Yann Péréon
- CHU Nantes, Laboratoire d'Explorations Fonctionnelles, Reference Center for NMD AOC, Filnemus, Euro-NMD, Nantes, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin-Bicêtre, France
- French National Reference Center for Rare Neuropathies, Le Kremlin-Bicêtre, France
- Inserm U1195 and Paris-Saclay University, Le Kremlin-Bicêtre, France
| | | | - Aleksandra Nadaj-Pakleza
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-Baptiste Chanson
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Simon Frachet
- Service et Laboratoire de Neurologie, Centre de Référence Neuropathies Périphériques rares (NNERF), UR, Limoges, France
| | - Laurent Magy
- Service et Laboratoire de Neurologie, Centre de Référence Neuropathies Périphériques rares (NNERF), UR, Limoges, France
| | - Julien Cassereau
- Reference Center for Neuromuscular Disorders AOC and National Reference Center for Neurogenetic Diseases, Angers University Hospital, Angers, France
| | - Pascal Cintas
- Centre de référence de pathologie neuromusculaire de ToulouseHôpital Purpan, Toulouse, France
| | - Ariane Choumert
- Service des Maladies Neurologiques Rares, CHU de la Réunion, Saint-Pierre, France
| | - Perrine Devic
- Department of Neurology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | | | - Robinson Gravier Dumonceau
- APHM, Hop Timone, BioSTIC, Biostatistique et Technologies de l'Information et de la Communication, Marseille, France
| | - Emilien Delmont
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
| | - Emmanuelle Salort-Campana
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
- Marseille Medical Genetics, Aix-Marseille University-Inserm UMR 1251, Marseille, France
| | - Françoise Bouhour
- Service d'Electroneuromyographie et Pathologies Neuromusculaires, Hospices Civils de Lyon, Lyon, France
| | - Philippe Latour
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France
- Unité fonctionnelle de Neurogénétique Moléculaire, CHU de Lyon-HCL groupement Est, Bron, France
| | - Tanya Stojkovic
- Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, APHM, CHU La Timone, Marseille, France
- Marseille Medical Genetics, Aix-Marseille University-Inserm UMR 1251, Marseille, France
| |
Collapse
|
10
|
Kagiava A, Karaiskos C, Lapathitis G, Heslegrave A, Sargiannidou I, Zetterberg H, Bosch A, Kleopa KA. Gene replacement therapy in two Golgi-retained CMT1X mutants before and after the onset of demyelinating neuropathy. Mol Ther Methods Clin Dev 2023; 30:377-393. [PMID: 37645436 PMCID: PMC10460951 DOI: 10.1016/j.omtm.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
X-linked Charcot-Marie-Tooth disease type 1 (CMT1X) is a demyelinating neuropathy resulting from loss-of-function mutations affecting the GJB1/connexin 32 (Cx32) gene. We previously showed functional and morphological improvement in Gjb1-null mice following AAV9-mediated delivery of human Cx32 driven by the myelin protein zero (Mpz) promoter in Schwann cells. However, CMT1X mutants may interfere with virally delivered wild-type (WT) Cx32. To confirm the efficacy of this vector also in the presence of CMT1X mutants, we delivered AAV9-Mpz-GJB1 by lumbar intrathecal injection in R75W/Gjb1-null and N175D/Gjb1-null transgenic lines expressing Golgi-retained mutations, before and after the onset of the neuropathy. Widespread expression of virally delivered Cx32 was demonstrated in both genotypes. Re-establishment of WT Cx32 function resulted in improved muscle strength and increased sciatic nerve motor conduction velocities in all treated groups from both mutant lines when treated before as well as after the onset of the neuropathy. Furthermore, morphological analysis showed improvement of myelination and reduction of inflammation in lumbar motor roots and peripheral nerves. In conclusion, this study provides proof of principle for a clinically translatable gene therapy approach to treat CMT1X before and after the onset of the neuropathy, even in the presence of endogenously expressed Golgi-retained Cx32 mutants.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - George Lapathitis
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 40530 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 40530 Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Assumpció Bosch
- Department of Biochemistry & Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193 Bellatera, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 028029 Madrid, Spain
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
- Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| |
Collapse
|
11
|
Qi C, Lavriha P, Bayraktar E, Vaithia A, Schuster D, Pannella M, Sala V, Picotti P, Bortolozzi M, Korkhov VM. Structures of wild-type and selected CMT1X mutant connexin 32 gap junction channels and hemichannels. SCIENCE ADVANCES 2023; 9:eadh4890. [PMID: 37647412 PMCID: PMC10468125 DOI: 10.1126/sciadv.adh4890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
In myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a degenerative neuropathy without a cure. A molecular link between Cx32 dysfunction and CMT1X pathogenesis is still missing. Here, we describe the high-resolution cryo-electron cryo-myography (cryo-EM) structures of the Cx32 GJC and HC, along with two CMT1X-linked mutants, W3S and R22G. While the structures of wild-type and mutant GJCs are virtually identical, the HCs show a major difference: In the W3S and R22G mutant HCs, the amino-terminal gating helix partially occludes the pore, consistent with a diminished HC activity. Our results suggest that HC dysfunction may be involved in the pathogenesis of CMT1X.
Collapse
Affiliation(s)
- Chao Qi
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Pia Lavriha
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Erva Bayraktar
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
| | - Anand Vaithia
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Dina Schuster
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Micaela Pannella
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
| | - Valentina Sala
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Paola Picotti
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Mario Bortolozzi
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padua, Padua, Italy
| | - Volodymyr M. Korkhov
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
12
|
Dale N, Butler J, Dospinescu VM, Nijjar S. Channel-mediated ATP release in the nervous system. Neuropharmacology 2023; 227:109435. [PMID: 36690324 DOI: 10.1016/j.neuropharm.2023.109435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
ATP is well established as a transmitter and modulator in the peripheral and central nervous system. While conventional exocytotic release of ATP at synapses occurs, this transmitter is unusual in also being released into the extracellular space via large-pored plasma membrane channels. This review considers the channels that are known to be permeable to ATP and some of the functions of channel-mediated ATP release. While the possibility of ATP release via channels mediating volume transmission has been known for some time, localised ATP release via channels at specialised synapses made by taste cells to the afferent nerve has recently been documented in taste buds. This raises the prospect that "channel synapses" may occur in other contexts. However, volume transmission and channel synapses are not necessarily mutually exclusive. We suggest that certain glial cells in the brain stem and hypothalamus, which possess long processes and are known to release ATP, may be candidates for both modes of ATP release -channel-mediated volume transmission in the region of their somata and more localised transmission possibly via either conventional or channel synapses from their processes at distal targets. Finally, we consider the different characteristics of vesicular and channel synapses and suggest that channel synapses may be advantageous in requiring less energy than their conventional vesicular counterparts. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK.
| | - Jack Butler
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| | | | - Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| |
Collapse
|
13
|
Bonefas KM, Vallianatos CN, Raines B, Tronson NC, Iwase S. Sexually Dimorphic Alterations in the Transcriptome and Behavior with Loss of Histone Demethylase KDM5C. Cells 2023; 12:637. [PMID: 36831303 PMCID: PMC9954040 DOI: 10.3390/cells12040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Chromatin dysregulation has emerged as a major hallmark of neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorders (ASD). The prevalence of ID and ASD is higher in males compared to females, with unknown mechanisms. Intellectual developmental disorder, X-linked syndromic, Claes-Jensen type (MRXSCJ), is caused by loss-of-function mutations of lysine demethylase 5C (KDM5C), a histone H3K4 demethylase gene. KDM5C escapes X-inactivation, thereby presenting at a higher level in females. Initially, MRXSCJ was exclusively reported in males, while it is increasingly evident that females with heterozygous KDM5C mutations can show cognitive deficits. The mouse model of MRXSCJ, male Kdm5c-hemizygous knockout animals, recapitulates key features of human male patients. However, the behavioral and molecular traits of Kdm5c-heterozygous female mice remain incompletely characterized. Here, we report that gene expression and behavioral abnormalities are readily detectable in Kdm5c-heterozygous female mice, demonstrating the requirement for a higher KDM5C dose in females. Furthermore, we found both shared and sex-specific consequences of a reduced KDM5C dose in social behavior, gene expression, and genetic interaction with the counteracting enzyme KMT2A. These observations provide an essential insight into the sex-biased manifestation of neurodevelopmental disorders and sex chromosome evolution.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christina N. Vallianatos
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brynne Raines
- Department of Psychology, College of LS&A, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie C. Tronson
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Psychology, College of LS&A, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Kaur S, Zhang X, Patel S, Rodriguez YA, Luther KJ, Alghafli G, Lang RM, Abrams CK, Dobrowsky RT. Pharmacologic Targeting of the C-Terminus of Heat Shock Protein 90 Improves Neuromuscular Function in Animal Models of Charcot Marie Tooth X1 Disease. ACS Pharmacol Transl Sci 2023; 6:306-319. [PMID: 36798471 PMCID: PMC9926526 DOI: 10.1021/acsptsci.2c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 01/22/2023]
Abstract
Charcot-Marie-Tooth X1 (CMTX1) disease is an inherited peripheral neuropathy that arises from loss-of-function mutations in the protein connexin 32 (Cx32). CMTX1 currently lacks a pharmacologic approach toward disease management, and we have previously shown that modulating the expression of molecular chaperones using novologue therapy may provide a viable disease-modifying approach to treat metabolic and demyelinating neuropathies. Cemdomespib is an orally bioavailable novologue that manifests neuroprotective activity by modulating the expression of heat shock protein 70 (Hsp70). We examined if 1 to 5 months of daily cemdomespib therapy may improve neuropathic symptoms in three mouse models of CMTX1 (Cx32 deficient (Cx32def), T55I-Cx32def, and R75W-Cx32 mice). Daily drug therapy significantly improved motor nerve conduction velocity (MNCV) and grip strength in all three models, but the compound muscle action potential was only improved in Cx32def mice. Drug efficacy required Hsp70 as improvements in MNCV, and the grip strength was abrogated in Cx32def × Hsp70 knockout mice. Five months of novologue therapy was associated with improved neuromuscular junction morphology, femoral motor nerve myelination, reduction in foamy macrophages, and a decrease in Schwann cell c-jun levels. To determine if c-jun may be downstream of Hsp70 and necessary for drug efficacy, c-jun expression was specifically deleted in Schwann cells of Cx32def mice. While the deletion of c-jun worsened the neuropathy, cemdomespib therapy remained effective in improving MNCV and grip strength. Our data show that cemdomespib therapy improves CMTX1-linked neuropathy in an Hsp70-dependent but a c-jun-independent manner and without regard to the nature of the underlying Cx32 mutation.
Collapse
Affiliation(s)
- Sukhmanjit Kaur
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Xinyue Zhang
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Sugandha Patel
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Yssa A. Rodriguez
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Kylie J. Luther
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Ghufran Alghafli
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan M. Lang
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| | - Charles K. Abrams
- Department
of Neurology and Rehabilitation and Biomedical Engineering, College
of Medicine, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Rick T. Dobrowsky
- Department
of Pharmacology and Toxicology, University
of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
15
|
Huang X, Wu X, Wu B, Mou J, Ma X. Identification of a rare missense mutation in GJB1 and prenatal diagnosis in a Chinese family with CMT: A case report. Medicine (Baltimore) 2022; 101:e31733. [PMID: 36397455 PMCID: PMC9666213 DOI: 10.1097/md.0000000000031733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RATIONALE Charcot-Marie-Tooth disease (CMT) is a highly heterogeneous genetic disorder. To date, more than 90 genes have been implicated in the pathogenesis of CMT. Here, we report the identification of a rare causative mutation in a Chinese family with CMT and a pregnant patient underwent prenatal diagnosis. PATIENT CONCERNS A 33-year-old woman with 21 + 6 weeks of pregnancy presented with progressive weakness of distal extremities after 23 years of age. A total of 8 individuals in 4 generations of her family had similar muscle weakness. On proband whole-exome sequencing (WES), a rare c.121G > A variant in the GJB1 gene was identified. DIAGNOSIS Based on the clinical and genetic findings, this patient was finally diagnosed with CMT. INTERVENTIONS The prenatal diagnosis was performed on the proband fetus. OUTCOMES The fetus did not carry this rare variant, and the pregnancy continued. LESSONS Our findings provide the first clinical evidence for the causative role of GJB1 c.121G > A variant in CMT. WES is a valuable method for diagnosing patients with CMT.
Collapse
Affiliation(s)
- Xinyi Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoli Wu
- Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Bei Wu
- Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jing Mou
- Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xingwei Ma
- Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Xingwei Ma, Prenatal Diagnosis Center, Guizhou Provincial People’s Hospital, Guiyang 550002, China (e-mail: )
| |
Collapse
|
16
|
Chu F, Xu J, Wang Y, Li Y, Wang Y, Liu Z, Li C. Novel mutations in GJB1 trigger intracellular aggregation and stress granule formation in X-linked Charcot-Marie-Tooth Disease. Front Neurosci 2022; 16:972288. [PMID: 36225735 PMCID: PMC9548587 DOI: 10.3389/fnins.2022.972288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
X-linked Charcot-Marie-Tooth Disease type 1(CMT1X) is the second most common form of inherited peripheral neuropathy that is caused by mutations in the gap junction beta-1 (GJB1) gene. Using targeted exome-sequencing, we investigated four CMT families from central-southern China and identified two novel missense variants (p.F31S and p.W44G) and two previously reported variants (p.R220Pfs*23 and p.R164Q) of GJB1. All four probands presented typical early-onset peripheral neuropathy, of which the R220Pfs*23 carrier also had neurologic manifestations in the central nervous system. We then constructed GJB1 expression vectors and performed cell biological analysis in vitro. Expression of FLAG-tagged GJB1 at various time points after transfection revealed evident protein aggregation with both wild-type and mutant forms, indicated with immunostaining and immunoblotting. Detergent-based sequential fractionation confirmed that all mutants were higher expressed and more prone to aggregate than the wild-type, whereas the R220Pfs*23 mutant showed the greatest amount of SDS-soluble multimers and monomers among groups. Moreover, intracellular aggregation probably occurs in the endoplasmic reticulum compartment rather than the Golgi apparatus. Gap junction plaques were present in all groups and were only compromised in frameshift mutant. Further evidence reveals significant intracellular stress granule formation induced by mutated GJB1 and impaired cell viability indicative of cytotoxicity of self-aggregates. Together, our findings demonstrate novel GJB1 variants-induced cell stress and dysfunction and provide insights into understanding the pathomechanisms of GJB1-CMTX1 and other related disorders.
Collapse
Affiliation(s)
- Fan Chu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjie Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Karakaya T, Turkyilmaz A, Sager G, Inan R, Yarali O, Cebi AH, Akin Y. Molecular characterization of Turkish patients with demyelinating Charcot-Marie-Tooth disease. Neurogenetics 2022; 23:213-221. [DOI: 10.1007/s10048-022-00693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
18
|
Yalcouyé A, Diallo SH, Cissé L, Karembé M, Diallo S, Coulibaly T, Diarra S, Coulibaly D, Keita M, Guinto CO, Fischbeck KH, Wonkam A, Landouré G. GJB1 variants in Charcot-Marie-Tooth disease X-linked type 1 in Mali. J Peripher Nerv Syst 2022; 27:113-119. [PMID: 35383424 PMCID: PMC11000073 DOI: 10.1111/jns.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
X-linked Charcot-Marie-Tooth type 1 (CMTX1) disease is one of the most common subtypes of inherited neuropathies and is caused by mutations in the GJB1 gene. To date, more than 400 mutations have been reported in GJB1 worldwide but none in sub-Saharan Africa (SSA). We aimed to clinically characterize patients with CMTX1 and identify the genetic defects. All patients were examined thoroughly, and Nerve Conduction Studies (NCS) were done. EEG and pure tone audiometry (PTA) were also done in select individuals having additional symptoms. DNA was extracted for CMT gene panel testing (50 genes + mtDNA and PMP22 duplication), and putative variants were screened in available relatives. The predominant starting symptom was tingling, and the chief complaint was gait difficulty. Neurological examination found a distal muscle weakness and atrophy, and sensory loss, skeletal deformities, decreased or absent reflexes and steppage gait. The inheritance pattern was consistent with dominant X-linked. NCS showed no response in most of the tested nerves in lower limbs, and normal or reduced amplitudes in upper limbs. A severe sensorineural hearing impairment and a focal epileptic seizure were observed in one patient each. A high intra and inter-familial clinical variability was observed. Genetic testing found three pathogenic missense variants in GJB1, one in each of the families (Val91Met, Arg15Trp, and Phe235Cys). This is the first report of genetically confirmed cases of CMTX1 in SSA, and confirms its clinical and genetic heterogeneity.
Collapse
Affiliation(s)
- Abdoulaye Yalcouyé
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
| | - Seybou H. Diallo
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Lassana Cissé
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Mamadou Karembé
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Salimata Diallo
- Service de Neurologie, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Thomas Coulibaly
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Salimata Diarra
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Dramane Coulibaly
- Service de Médecine, Centre Hospitalier Universitaire Mère-Enfant le “Luxembourg”, Bamako, Mali
| | - Mohamed Keita
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service d’ORL, Centre Hospitalier Universitaire Gabriel Touré, Bamako, Mali
| | - Cheick O. Guinto
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
| | - Kenneth H. Fischbeck
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Guida Landouré
- Faculté de Médecine et d’Odontostomatologie, USTTB, Bamako, Mali
- Service de Neurologie, Centre Hospitalier Universitaire du Point “G”, Bamako, Mali
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|
19
|
Wong WPS, Wang JC, Schipma MJ, Zhang X, Edwards JR, El Muayed M. Cadmium-mediated pancreatic islet transcriptome changes in mice and cultured mouse islets. Toxicol Appl Pharmacol 2021; 433:115756. [PMID: 34666113 PMCID: PMC9873403 DOI: 10.1016/j.taap.2021.115756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 01/26/2023]
Abstract
Type II diabetes mellitus (T2DM) is a multifactorial disease process that is characterized by insulin resistance and impairment of insulin-producing pancreatic islets. There is evidence that environmental exposure to cadmium contributes to the development of T2DM. The presence of cadmium in human islets from the general population and the uptake of cadmium in β-cells have been reported. To identify cadmium-mediated changes in gene expression and molecular regulatory networks in pancreatic islets, we performed next-generation RNA-Sequencing (RNA-Seq) in islets following either in vivo (1 mM CdCl2 in drinking water) or ex-vivo (0.5 μM CdCl2) exposure. Both exposure regiments resulted in islet cadmium concentrations that are comparable to those found in human islets from the general population. 6-week in vivo cadmium exposure upregulates the expression of five genes: Synj2, Gjb1, Rbpjl, Try5 and 5430419D17Rik. Rbpjl is a known regulator of ctrb, a gene associated with diabetes susceptibility. With 18-week in vivo cadmium exposure, we found more comprehensive changes in gene expression profile. Pathway enrichment analysis showed that these secondary changes were clustered to molecular mechanisms related to intracellular protein trafficking to the plasma membrane. In islet culture, cadmium ex vivo significantly induces the expression of Mt1, Sphk1, Nrcam, L3mbtl2, Rnf216 and Itpr1. Mt1 and Itpr1 are known to be involved in glucose homeostasis. Collectively, findings reported here revealed a complex cadmium-mediated effect on pancreatic islet gene expression at environmentally relevant cadmium exposure conditions, providing the basis for further studies into the pathophysiological processes arising from cadmium accumulation in pancreatic islets.
Collapse
Affiliation(s)
- Winifred P S Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Janice C Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew J Schipma
- NU Seq Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiaomin Zhang
- Division of Transplant Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua R Edwards
- College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Rawat A, Morrison BM. Metabolic Transporters in the Peripheral Nerve-What, Where, and Why? Neurotherapeutics 2021; 18:2185-2199. [PMID: 34773210 PMCID: PMC8804006 DOI: 10.1007/s13311-021-01150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Cellular metabolism is critical not only for cell survival, but also for cell fate, function, and intercellular communication. There are several different metabolic transporters expressed in the peripheral nervous system, and they each play important roles in maintaining cellular energy. The major source of energy in the peripheral nervous system is glucose, and glucose transporters 1 and 3 are expressed and allow blood glucose to be imported and utilized by peripheral nerves. There is also increasing evidence that other sources of energy, particularly monocarboxylates such as lactate that are transported primarily by monocarboxylate transporters 1 and 2 in peripheral nerves, can be efficiently utilized by peripheral nerves. Finally, emerging evidence supports an important role for connexins and possibly pannexins in the supply and regulation of metabolic energy. In this review, we will first define these critical metabolic transporter subtypes and then examine their localization in the peripheral nervous system. We will subsequently discuss the evidence, which comes both from experiments in animal models and observations from human diseases, supporting critical roles played by these metabolic transporters in the peripheral nervous system. Despite progress made in understanding the function of these transporters, many questions and some discrepancies remain, and these will also be addressed throughout this review. Peripheral nerve metabolism is fundamentally important and renewed interest in these pathways should help to answer many of these questions and potentially provide new treatments for neurologic diseases that are partly, or completely, caused by disruption of metabolism.
Collapse
Affiliation(s)
- Atul Rawat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brett M Morrison
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Kirichenko EY, Skatchkov SN, Ermakov AM. Structure and Functions of Gap Junctions and Their Constituent Connexins in the Mammalian CNS. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2021; 15:107-119. [PMID: 34512926 PMCID: PMC8432592 DOI: 10.1134/s1990747821020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Numerous data obtained in the last 20 years indicate that all parts of the mature central nervous system, from the retina and olfactory bulb to the spinal cord and brain, contain cells connected by gap junctions (GJs). The morphological basis of the GJs is a group of joined membrane hemichannels called connexons, the subunit of each connexon is the protein connexin. In the central nervous system, connexins show specificity and certain types of them are expressed either in neurons or in glial cells. Connexins and GJs of neurons, combining certain types of inhibitory hippocampal and neocortical neuronal ensembles, provide synchronization of local impulse and rhythmic activity, thalamocortical conduction, control of excitatory connections, which reflects their important role in the processes of perception, concentration of attention and consolidation of memory, both on the cellular and at the system level. Connexins of glial cells are ubiquitously expressed in the brain, and the GJs formed by them provide molecular signaling and metabolic cooperation and play a certain role in the processes of neuronal migration during brain development, myelination, tissue homeostasis, and apoptosis. At the same time, mutations in the genes of glial connexins, as well as a deficiency of these proteins, are associated with such diseases as congenital neuropathies, hearing loss, skin diseases, and brain tumors. This review summarizes the existing data of numerous molecular, electrophysiological, pharmacological, and morphological studies aimed at progress in the study of the physiological and pathophysiological significance of glial and neuronal connexins and GJs for the central nervous system.
Collapse
Affiliation(s)
- E Yu Kirichenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090 Russia
| | - S N Skatchkov
- Department of Biochemistry, School of Medicine, P.O. Box 60327, Universidad Central del Caribe, Bayamón, PR, 00960-6032 USA.,Department of Physiology, School of Medicine, P.O. Box 60327, Universidad Central del Caribe, Bayamón, PR, 00960-6032 USA
| | - A M Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, 344003 Russia
| |
Collapse
|
22
|
Markworth R, Bähr M, Burk K. Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease. Front Mol Neurosci 2021; 14:695294. [PMID: 34483837 PMCID: PMC8415527 DOI: 10.3389/fnmol.2021.695294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), also known as motor and sensory neuropathy, describes a clinically and genetically heterogenous group of disorders affecting the peripheral nervous system. CMT typically arises in early adulthood and is manifested by progressive loss of motor and sensory functions; however, the mechanisms leading to the pathogenesis are not fully understood. In this review, we discuss disrupted intracellular transport as a common denominator in the pathogenesis of different CMT subtypes. Intracellular transport via the endosomal system is essential for the delivery of lipids, proteins, and organelles bidirectionally to synapses and the soma. As neurons of the peripheral nervous system are amongst the longest neurons in the human body, they are particularly susceptible to damage of the intracellular transport system, leading to a loss in axonal integrity and neuronal death. Interestingly, defects in intracellular transport, both in neurons and Schwann cells, have been found to provoke disease. This review explains the mechanisms of trafficking and subsequently summarizes and discusses the latest findings on how defects in trafficking lead to CMT. A deeper understanding of intracellular trafficking defects in CMT will expand our understanding of CMT pathogenesis and will provide novel approaches for therapeutic treatments.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
23
|
Ray A, Mehta PP. Cysteine residues in the C-terminal tail of connexin32 regulate its trafficking. Cell Signal 2021; 85:110063. [PMID: 34146657 DOI: 10.1016/j.cellsig.2021.110063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Gap junctions (GJs) are formed by the assembly of constituent transmembrane proteins called connexins (Cxs). Aberrations in this assembly of Cxs are observed in several genetic diseases as well as in cancers. Hence it becomes imperative to understand the molecular mechanisms underlying such assembly defect. The polarized cells in the epithelia express Connexin32 (Cx32). The C-terminal tail (CT) of Cx32 orchestrates several aspects of GJ dynamics, function and growth. The study here was aimed at determining if post-translational modifications, specifically, palmitoylation of cysteine residues, present in the CT of Cx32, has any effect on GJ assembly. The CT of Cx32 was found to harbor three cysteine residues, which are likely to be modified by palmitoylation. The study here has revealed for the first time that Cx32 is palmitoylated at cysteine 217 (C217) in cell line derived from prostate tumors. However, it was found that mutating C217 to alanine affected neither the trafficking nor the ability of Cx32 to assemble into GJs. Intriguingly, it was discovered that mutating cysteine 280 and 283, only in combination, blocked the trafficking of Cx32 from the trans-Golgi network to the cell surface. The mutants showed reduced stability due to enhanced lysosomal degradation. Overall, the findings reveal the importance of the two C-terminal cysteine residues of Cx32 in regulating its trafficking and stability and hence its ability to assemble into GJs.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Kovale S, Terauda R, Millere E, Taurina G, Murmane D, Isakova J, Kenina V, Gailite L. GJB1 Gene Analysis in Two Extended Families with X-Linked Charcot-Marie-Tooth Disease. Case Rep Neurol 2021; 13:422-428. [PMID: 34326750 PMCID: PMC8299378 DOI: 10.1159/000515170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
X-linked Charcot-Marie-Tooth (CMT) disease type I (CMTX1) is the second most frequent type of CMT disease caused by pathogenic variants in the GJB1 gene. We described 2 extended cases (families) with CMTX1 with identified pathogenic variants – p.Val139Met and p.Arg215Trp. In both the families, neurological symptoms started earlier in male than in female patients. In some family members, molecular diagnostics was performed prior to neurological investigation due to family cascade screening. There was variable neurological phenotype representing CMT. Conclusions: There is a large clinical heterogeneity in CMTX, even amongst the family members.
Collapse
Affiliation(s)
- Sabine Kovale
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Ruta Terauda
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Elina Millere
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia.,Children's Clinical University Hospital, Riga, Latvia
| | - Gita Taurina
- Children's Clinical University Hospital, Riga, Latvia
| | - Daiga Murmane
- Children's Clinical University Hospital, Riga, Latvia
| | - Jekaterina Isakova
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Viktorija Kenina
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia.,Children's Clinical University Hospital, Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| |
Collapse
|
25
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
26
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
27
|
Tian D, Zhao Y, Zhu R, Li Q, Liu X. Systematic review of CMTX1 patients with episodic neurological dysfunction. Ann Clin Transl Neurol 2020; 8:213-223. [PMID: 33314704 PMCID: PMC7818278 DOI: 10.1002/acn3.51271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE X-linked Charcot-Marie-Tooth type 1 (CMTX1) is an inherited peripheral neuropathy caused by mutations in the gap junction beta 1 (GJB1) gene, which encodes the connexin32 protein. A small number of patients with GJB1 mutations present with episodic neurological dysfunction and reversible white matter lesions, which has not been adequately reported. Here, we aim to enable clinicians to further understand this particular situation through systematically reviewing all published relevant cases. METHODS We conducted a comprehensive search of the PubMed electronic database for medical literature relevant to CMTX1 patients with episodic neurological dysfunction and then fully analyzed the general information, clinical manifestations, and characteristics of magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis, and nerve conduction study (NCS). RESULTS We identified 47 cases of CMTX1 associated with episodic central nervous system (CNS) dysfunction from 38 publications. CMTX1 patients experienced episodic CNS deficits at a young age, ranging from infancy to 26 years, and 45 (95.7%) of them were male. The CNS symptoms manifested as facial, lingual, or limb weakness in 44 (93.6%), dysarthria or dysphagia in 39 (83.0%), facial or limb numbness in 15 (31.9%), and ataxia in 10 (21.3%) patients. The duration of episodic symptoms ranged from 3 minutes to 6 months. Thirty (63.8%) CMTX1 cases have reported obvious predisposing factors, among which the most common factors were infection or fever (27.7%), travel to high altitude (12.8%), and intensive exercise (8.5%). As for brain MRI, most abnormal signals were found in bilateral deep white matter (88.9%) and corpus callosum (80.0%). In addition, most of the NCS results were abnormal, including prolonged latency, reduced amplitude, and slowed conduction velocity. The motor nerve conduction velocity (MNCV) of median nerve was the most detectable and valuable, ranging from 25 to 45 m/s. INTERPRETATION We have reported the most comprehensive summary of the demographic and clinical profile from 47 CMTX1 patients with episodic CNS deficits and provided new insight into the phenotype spectrum of CMTX1. We hope that our study can help clinicians make early diagnosis and implement the best prevention and treatment strategies for CMTX1 patients with episodic CNS deficits.
Collapse
Affiliation(s)
- Dandan Tian
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ruixia Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qu Li
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
28
|
Liu X, Duan X, Zhang Y, Sun A, Fan D. Cross-Sectional Study in a Large Cohort of Chinese Patients With GJB1 Gene Mutations. Front Neurol 2020; 11:690. [PMID: 32903794 PMCID: PMC7438869 DOI: 10.3389/fneur.2020.00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited neuropathies. The GJB1 gene is the pathogenic gene of CMTX1. In this study, we screened a cohort of 465 unrelated Chinese CMT patients from years 2007 to 2019 and 650 controls by direct Sanger sequencing in GJB1 gene or targeted next-generation sequencing (NGS) or whole-exome sequencing (WES). A bidirectional Sanger sequencing would be performed on the 600 bases in the upstream promoter region and 30 bases in the 3′ untranslated region (UTR), if no mutation was found in the coding region of GJB1 of the patient. According to the results, 24 missense mutations, 4 nonsense mutation, 1 entire deletion, 1 intronic mutation, and 4 frameshift mutations in GJB1 were identified. Three of them were novel mutations (c.104 T>C, c.658-659 ins C, and c.811 del G). Moreover, central nervous system involvement was observed in five patients carrying mutations of R15W, V95M, R142W, R164W, and E186K. Our findings expand the mutational spectrum of the GJB1 gene in CMT patients. We also explored the genotype–phenotype correlation according to the collected information in this study. NGS panels for detecting inherited neuropathy should cover the non-coding region of GJB1.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Aping Sun
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
29
|
Volkmar N, Christianson JC. Squaring the EMC - how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis. J Cell Sci 2020; 133:133/8/jcs243519. [PMID: 32332093 PMCID: PMC7188443 DOI: 10.1242/jcs.243519] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Integral membrane proteins play key functional roles at organelles and the plasma membrane, necessitating their efficient and accurate biogenesis to ensure appropriate targeting and activity. The endoplasmic reticulum membrane protein complex (EMC) has recently emerged as an important eukaryotic complex for biogenesis of integral membrane proteins by promoting insertion and stability of atypical and sub-optimal transmembrane domains (TMDs). Although confirmed as a bona fide complex almost a decade ago, light is just now being shed on the mechanism and selectivity underlying the cellular responsibilities of the EMC. In this Review, we revisit the myriad of functions attributed the EMC through the lens of these new mechanistic insights, to address questions of the cellular and organismal roles the EMC has evolved to undertake. Summary: The EMC is an important factor facilitating membrane protein biogenesis. Here we discuss the broad cellular and organismal responsibilities overseen by client proteins requiring the EMC for maturation.
Collapse
Affiliation(s)
- Norbert Volkmar
- Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - John C Christianson
- Oxford Centre for Translational Myeloma Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| |
Collapse
|
30
|
Sargiannidou I, Kagiava A, Kleopa KA. Gene therapy approaches targeting Schwann cells for demyelinating neuropathies. Brain Res 2020; 1728:146572. [PMID: 31790684 DOI: 10.1016/j.brainres.2019.146572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.
Collapse
Affiliation(s)
- Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
31
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|
32
|
Gumus E. A Hemizygous 370 Kilobase Microduplication at Xq13.1 in a Three-Year-Old Boy With Autism and Speech Delay. Fetal Pediatr Pathol 2019; 38:239-244. [PMID: 30757938 DOI: 10.1080/15513815.2019.1571132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Alterations of Neuroligin 3 (NLGN3), located on Xq13, have been reported in autism spectrum disorder (ASD), and include the less frequent Xq13 duplication. CASE REPORT A boy with an aggressive behavior, no speech and weak social relationships had a de novo Xq13.1 microduplication detected by microarray analysis. CONCLUSION NLGN3, TAF1, and MED12 alterations, located on Xq13.1, have been associated with ASD. TAF and MED12 have other clinical features not present in our case. This supports that duplication of NLGN3 may be associated with ASD.
Collapse
Affiliation(s)
- Evren Gumus
- a Department of Medical Genetics, Faculty of Medicine , University of Harran , Sanliurfa , Turkey
| |
Collapse
|
33
|
Affiliation(s)
- Jonathan D Santoro
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tanuja Chitnis
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
34
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
35
|
Cisterna BA, Arroyo P, Puebla C. Role of Connexin-Based Gap Junction Channels in Communication of Myelin Sheath in Schwann Cells. Front Cell Neurosci 2019; 13:69. [PMID: 30881289 PMCID: PMC6405416 DOI: 10.3389/fncel.2019.00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerves have the capacity to conduct action potentials along great distances and quickly recover following damage which is mainly due to Schwann cells (SCs), the most abundant glial cells of the peripheral nervous system (PNS). SCs wrap around an axonal segment multiple times, forming a myelin sheath, allowing for a significant increase in action potential conduction by insulating the axons. Mature myelin consists of compact and non-compact (or cytoplasmic) myelin zones. Non-compact myelin is found in paranodal loops bordering the nodes of Ranvier, and in the inner and outermost cytoplasmic tongues and is the region in which Schmidt-Lanterman incisures (SLI; continuous spirals of overlapping cytoplasmic expansions within areas of compact myelin) are located. Using different technologies, it was shown that the layers of non-compact myelin could be connected to each other by gap junction channels (GJCs), formed by connexin 32 (Cx32), and their relative abundance allows for the transfer of ions and different small molecules. Likewise, Cx29 is expressed in the innermost layer of the myelin sheath. Here it does not form GJCs but colocalizes with Kv1, which implies that the SCs play an active role in the electrical condition in mammals. The critical role of GJCs in the functioning of myelinating SCs is evident in Charcot-Marie-Tooth disease (CMT), X-linked form 1 (CMTX1), which is caused by mutations in the gap junction protein beta 1 (GJB1) gene that codes for Cx32. Although the management of CMT symptoms is currently supportive, there is a recent method for targeted gene delivery to myelinating cells, which rescues the phenotype in KO-Cx32 mice, a model of CMTX1. In this mini-review article, we discuss the current knowledge on the role of Cxs in myelin-forming SCs and summarize recent discoveries that may become a real treatment possibility for patients with disorders such as CMT.
Collapse
Affiliation(s)
- Bruno A Cisterna
- Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo Arroyo
- Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Puebla
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
36
|
Coelho JPL, Stahl M, Bloemeke N, Meighen-Berger K, Alvira CP, Zhang ZR, Sieber SA, Feige MJ. A network of chaperones prevents and detects failures in membrane protein lipid bilayer integration. Nat Commun 2019; 10:672. [PMID: 30737405 PMCID: PMC6368539 DOI: 10.1038/s41467-019-08632-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
A fundamental step in membrane protein biogenesis is their integration into the lipid bilayer with a defined orientation of each transmembrane segment. Despite this, it remains unclear how cells detect and handle failures in this process. Here we show that single point mutations in the membrane protein connexin 32 (Cx32), which cause Charcot-Marie-Tooth disease, can cause failures in membrane integration. This leads to Cx32 transport defects and rapid degradation. Our data show that multiple chaperones detect and remedy this aberrant behavior: the ER-membrane complex (EMC) aids in membrane integration of low-hydrophobicity transmembrane segments. If they fail to integrate, these are recognized by the ER-lumenal chaperone BiP. Ultimately, the E3 ligase gp78 ubiquitinates Cx32 proteins, targeting them for degradation. Thus, cells use a coordinated system of chaperones for the complex task of membrane protein biogenesis, which can be compromised by single point mutations, causing human disease.
Collapse
Affiliation(s)
- João P L Coelho
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias Stahl
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Nicolas Bloemeke
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Kevin Meighen-Berger
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Carlos Piedrafita Alvira
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Stephan A Sieber
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias J Feige
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748, Garching, Germany.
| |
Collapse
|
37
|
Trease AJ, Li H, Spagnol G, Zheng L, Stauch KL, Sorgen PL. Regulation of Connexin32 by ephrin receptors and T-cell protein-tyrosine phosphatase. J Biol Chem 2019; 294:341-350. [PMID: 30401746 PMCID: PMC6322898 DOI: 10.1074/jbc.ra118.003883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/25/2018] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are intercellular conduits that permit the passage of ions, small metabolites, and signaling molecules between cells. Connexin32 (Cx32) is a major gap junction protein in the liver and brain. Phosphorylation is integral to regulating connexin assembly, degradation, and electrical and metabolic coupling, as well as to interactions with molecular partners. Cx32 contains two intracellular tyrosine residues, and tyrosine phosphorylation of Cx32 has been detected after activation of the epidermal growth factor receptor; however, the specific tyrosine residue and the functional implication of this phosphorylation remain unknown. To address the limited available information on Cx32 regulation by tyrosine kinases, here we used the Cx32 C-terminal (CT) domain in an in vitro kinase-screening assay, which identified ephrin (Eph) receptor family members as tyrosine kinases that phosphorylate Cx32. We found that EphB1 and EphA1 phosphorylate the Cx32CT domain residue Tyr243 Unlike for Cx43, the tyrosine phosphorylation of the Cx32CT increased gap junction intercellular communication. We also demonstrated that T-cell protein-tyrosine phosphatase dephosphorylates pTyr243 The data presented above along with additional examples throughout the literature of gap junction regulation by kinases, indicate that one cannot extrapolate the effect of a kinase on one connexin to another.
Collapse
Affiliation(s)
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Li Zheng
- Department of Biochemistry and Molecular Biology
| | | | | |
Collapse
|
38
|
Murakami T, Sunada Y. Schwann Cell and the Pathogenesis of Charcot–Marie–Tooth Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:301-321. [DOI: 10.1007/978-981-32-9636-7_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018; 8:646. [PMID: 30622930 PMCID: PMC6308394 DOI: 10.3389/fonc.2018.00646] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Despite concerted clinical and research efforts, cancer is a leading cause of death worldwide. Surgery, radiation, and chemotherapy have remained the most common standard-of-care strategies against cancer for decades. However, the side effects of these therapies demonstrate the need to investigate adjuvant novel treatment modalities that minimize the harm caused to healthy cells and tissues. Normal and cancerous cells require communication amongst themselves and with their surroundings to proliferate and drive tumor growth. It is vital to understand how intercellular and external communication impacts tumor cell malignancy. To survive and grow, tumor cells, and their normal counterparts utilize cell junction molecules including gap junctions (GJs), tight junctions, and adherens junctions to provide contact points between neighboring cells and the extracellular matrix. GJs are specialized structures composed of a family of connexin proteins that allow the free diffusion of small molecules and ions directly from the cytoplasm of adjacent cells, without encountering the extracellular milieu, which enables rapid, and coordinated cellular responses to internal and external stimuli. Importantly, connexins perform three main cellular functions. They enable direct gap junction intercellular communication (GJIC) between cells, form hemichannels to allow cell communication with the extracellular environment, and serve as a site for protein-protein interactions to regulate signaling pathways. Connexins themselves have been found to promote tumor cell growth and invasiveness, contributing to the overall tumorigenicity and have emerged as attractive anti-tumor targets due to their functional diversity. However, connexins can also serve as tumor suppressors, and therefore, a complete understanding of the roles of the connexins and GJs in physiological and pathophysiological conditions is needed before connexin targeting strategies are applied. Here, we discuss how the three aspects of connexin function, namely GJIC, hemichannel formation, and connexin-protein interactions, function in normal cells, and contribute to tumor cell growth, proliferation, and death. Finally, we discuss the current state of anti-connexin therapies and speculate which role may be most amenable for the development of targeting strategies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin E. Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ofer Reizes
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
| | - Justin Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
40
|
Abudara V, Retamal MA, Del Rio R, Orellana JA. Synaptic Functions of Hemichannels and Pannexons: A Double-Edged Sword. Front Mol Neurosci 2018; 11:435. [PMID: 30564096 PMCID: PMC6288452 DOI: 10.3389/fnmol.2018.00435] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
The classical view of synapses as the functional contact between presynaptic and postsynaptic neurons has been challenged in recent years by the emerging regulatory role of glial cells. Astrocytes, traditionally considered merely supportive elements are now recognized as active modulators of synaptic transmission and plasticity at the now so-called "tripartite synapse." In addition, an increasing body of evidence indicates that beyond immune functions microglia also participate in various processes aimed to shape synaptic plasticity. Release of neuroactive compounds of glial origin, -process known as gliotransmission-, constitute a widespread mechanism through which glial cells can either potentiate or reduce the synaptic strength. The prevailing vision states that gliotransmission depends on an intracellular Ca2+/exocytotic-mediated release; notwithstanding, growing evidence is pointing at hemichannels (connexons) and pannexin channels (pannexons) as alternative non-vesicular routes for gliotransmitters efflux. In concurrence with this novel concept, both hemichannels and pannexons are known to mediate the transfer of ions and signaling molecules -such as ATP and glutamate- between the cytoplasm and the extracellular milieu. Importantly, recent reports show that glial hemichannels and pannexons are capable to perceive synaptic activity and to respond to it through changes in their functional state. In this article, we will review the current information supporting the "double edge sword" role of hemichannels and pannexons in the function of central and peripheral synapses. At one end, available data support the idea that these channels are chief components of a feedback control mechanism through which gliotransmitters adjust the synaptic gain in either resting or stimulated conditions. At the other end, we will discuss how the excitotoxic release of gliotransmitters and [Ca2+]i overload linked to the opening of hemichannels/pannexons might impact cell function and survival in the nervous system.
Collapse
Affiliation(s)
- Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| |
Collapse
|
41
|
Alaei SR, Abrams CK, Bulinski JC, Hertzberg EL, Freidin MM. Acetylation of C-terminal lysines modulates protein turnover and stability of Connexin-32. BMC Cell Biol 2018; 19:22. [PMID: 30268116 PMCID: PMC6162937 DOI: 10.1186/s12860-018-0173-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The gap junction protein, Connexin32 (Cx32), is expressed in various tissues including liver, exocrine pancreas, gastrointestinal epithelium, and the glia of the central and peripheral nervous system. Gap junction-mediated cell-cell communication and channel-independent processes of Cx32 contribute to the regulation of physiological and cellular activities such as glial differentiation, survival, and proliferation; maintenance of the hepatic epithelium; and axonal myelination. Mutations in Cx32 cause X-linked Charcot-Marie-Tooth disease (CMT1X), an inherited peripheral neuropathy. Several CMT1X causing mutations are found in the cytoplasmic domains of Cx32, a region implicated in the regulation of gap junction assembly, turnover and function. Here we investigate the roles of acetylation and ubiquitination in the C-terminus on Cx32 protein function. Cx32 protein turnover, ubiquitination, and response to deacetylase inhibitors were determined for wild-type and C-terminus lysine mutants using transiently transfected Neuro2A (N2a) cells. RESULTS We report here that Cx32 is acetylated in transfected N2a cells and that inhibition of the histone deacetylase, HDAC6, results in an accumulation of Cx32. We identified five lysine acetylation targets in the C-terminus. Mutational analysis demonstrates that these lysines are involved in the regulation of Cx32 ubiquitination and turnover. While these lysines are not required for functional Cx32 mediated cell-cell communication, BrdU incorporation studies demonstrate that their relative acetylation state plays a channel-independent role in Cx32-mediated control of cell proliferation. CONCLUSION Taken together these results highlight the role of post translational modifications and lysines in the C-terminal tail of Cx32 in the fine-tuning of Cx32 protein stability and channel-independent functions.
Collapse
Affiliation(s)
- Sarah R. Alaei
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Charles K. Abrams
- Department of Neurology & Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J. Chloë Bulinski
- Department of Cell & Molecular Biology, Columbia University, New York, NY 10032 USA
| | - Elliot L. Hertzberg
- Department of Cell & Molecular Biology, Columbia University, New York, NY 10032 USA
| | - Mona M. Freidin
- Department of Neurology & Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
42
|
Delmar M, Laird DW, Naus CC, Nielsen MS, Verselis VK, White TW. Connexins and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029348. [PMID: 28778872 DOI: 10.1101/cshperspect.a029348] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inherited or acquired alterations in the structure and function of connexin proteins have long been associated with disease. In the present work, we review current knowledge on the role of connexins in diseases associated with the heart, nervous system, cochlea, and skin, as well as cancer and pleiotropic syndromes such as oculodentodigital dysplasia (ODDD). Although incomplete by virtue of space and the extent of the topic, this review emphasizes the fact that connexin function is not only associated with gap junction channel formation. As such, both canonical and noncanonical functions of connexins are fundamental components in the pathophysiology of multiple connexin related disorders, many of them highly debilitating and life threatening. Improved understanding of connexin biology has the potential to advance our understanding of mechanisms, diagnosis, and treatment of disease.
Collapse
Affiliation(s)
- Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York 10016
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Morten S Nielsen
- Department of Biological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vytautas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11790
| |
Collapse
|
43
|
Bortolozzi M. What's the Function of Connexin 32 in the Peripheral Nervous System? Front Mol Neurosci 2018; 11:227. [PMID: 30042657 PMCID: PMC6048289 DOI: 10.3389/fnmol.2018.00227] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Connexin 32 (Cx32) is a fundamental protein in the peripheral nervous system (PNS) as its mutations cause the X-linked form of Charcot–Marie–Tooth disease (CMT1X), the second most common form of hereditary motor and sensory neuropathy and a demyelinating disease for which there is no effective therapy. Since mutations of the GJB1 gene encoding Cx32 were first reported in 1993, over 450 different mutations associated with CMT1X including missense, frameshift, deletion and non-sense ones have been identified. Despite the availability of a sizable number of studies focusing on normal and mutated Cx32 channel properties, the crucial role played by Cx32 in the PNS has not yet been elucidated, as well as the molecular pathogenesis of CMT1X. Is Cx32 fundamental during a particular phase of Schwann cell (SC) life? Are Cx32 paired (gap junction, GJ) channels in myelinated SCs important for peripheral nerve homeostasis? The attractive hypothesis that short coupling of adjacent myelin layers by Cx32 GJs is required for efficient diffusion of K+ and signaling molecules is still debated, while a growing body of evidence is supporting other possible functions of Cx32 in the PNS, mainly related to Cx32 unpaired channels (hemichannels), which could be involved in a purinergic-dependent pathway controlling myelination. Here we review the intriguing puzzle of findings about Cx32 function and dysfunction, discussing possible directions for future investigation.
Collapse
Affiliation(s)
- Mario Bortolozzi
- Department of Physics and Astronomy G. Galilei, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy.,Padova Neuroscience Center (PNC), Padua, Italy
| |
Collapse
|
44
|
Takemaru M, Shimoe Y, Sato K, Hashiguchi A, Takashima H, Kuriyama M. [Transient, recurrent, white matter lesions in X-linked Charcot-Marie-Tooth disease with heterozygote mutation of GJB1 gene: case report of a female patient]. Rinsho Shinkeigaku 2018; 58:302-307. [PMID: 29710024 DOI: 10.5692/clinicalneurol.cn-001138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 32-year-old woman showed transient central type facial nerve palsy and bulbar symptoms. Brain MRI revealed high intensity signals in the cerebral white matter, splenium of corpus callosum, and posterior limb of internal capsule. Two elder brothers of the patient had distal dominant peripheral neuropathies in four limbs. In this family, the point mutation of GJB1 gene, encoding connexin 32, was revealed and X-linked Charcot-Marie-Tooth disease (CMTX1) was diagnosed. The presented case was a heterozygote of this mutation. She showed severe transient central nervous system (CNS) symptoms and subclinical demyelinating peripheral neuropathy. The CNS symptoms and alterations of brain images were very similar among three siblings. There are many reports on male patients with CMTX1 who show associated CN symptoms, but female patients are very rare. There has been no previous report of a CMTX1 patient similar to the patient presented here. The trigger factors have been recognized at the onset of transient CN symptoms in these cases. The prevention of these factors is important for the management of such patients.
Collapse
Affiliation(s)
- Makoto Takemaru
- Department of Neurology, Brain Attack Center, Ota Memorial Hospital
| | - Yutaka Shimoe
- Department of Neurology, Brain Attack Center, Ota Memorial Hospital
| | - Kota Sato
- Department of Neurology, Brain Attack Center, Ota Memorial Hospital
- Present address: Department of Neurology, Okayama University Hospital
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medicine and Dental Sciences
| | - Masaru Kuriyama
- Department of Neurology, Brain Attack Center, Ota Memorial Hospital
| |
Collapse
|
45
|
Chen DH, Ma M, Scavina M, Blue E, Wolff J, Karna P, Dorschner MO, Raskind WH, Bird TD. An 8-generation family with X-linked Charcot-Marie-Tooth: Confirmation Of the pathogenicity Of a 3' untranslated region mutation in GJB1 and its clinical features. Muscle Nerve 2018; 57:859-862. [PMID: 29236290 PMCID: PMC5910283 DOI: 10.1002/mus.26037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Mutations in gap junction protein beta 1 (GJB1) on the X chromosome represent one of the most common causes of hereditary neuropathy. We assessed manifestations associated with a rare 3' untranslated region mutation (UTR) of GJB1 in a large family with X-linked Charcot-Marie-Tooth disease (CMTX). METHODS Clinical, electrophysiological, and molecular genetic analyses were performed on an 8-generation family with CMTX. RESULTS There were 22 affected males and 19 symptomatic females, including an 83-year-old woman followed for 40 years. Electrophysiological studies showed a primarily axonal neuropathy. The c.*15C>T mutation in the GJB1 3' UTR was identified in 4 branches of the family with a log of odds (LOD) of 4.91. This created a BstE II enzyme recognition site that enabled detection by restriction digestion. DISCUSSION The c.*15C>T mutation in the GJB1 3' UTR segregates with CMTX1 in 8 generations. Penetrance in males and females is essentially complete. A straightforward genetic method to detect this mutation is described. Muscle Nerve 57: 859-862, 2018.
Collapse
Affiliation(s)
- Dong-Hui Chen
- Department of Neurology, University of Washington, Seattle, WA
| | - Maxwell Ma
- Department of Neurology, University of Washington, Seattle, WA
- Neurology Section, VA Puget Sound Health Care System, Seattle, WA
| | - Mena Scavina
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Elizabeth Blue
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
| | - John Wolff
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| | - Prasanthi Karna
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
| | - Michael O. Dorschner
- Center for Precision Diagnostics, University of Washington, Seattle, WA
- Department of Pathology, University of Washington, Seattle, WA
| | - Wendy H. Raskind
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| | - Thomas D. Bird
- Department of Neurology, University of Washington, Seattle, WA
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA
| |
Collapse
|
46
|
Carrer A, Leparulo A, Crispino G, Ciubotaru CD, Marin O, Zonta F, Bortolozzi M. Cx32 hemichannel opening by cytosolic Ca2+ is inhibited by the R220X mutation that causes Charcot-Marie-Tooth disease. Hum Mol Genet 2018; 27:80-94. [PMID: 29077882 DOI: 10.1093/hmg/ddx386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/17/2017] [Indexed: 11/15/2022] Open
Abstract
Mutations of the GJB1 gene encoding connexin 32 (Cx32) cause the X-linked form of Charcot-Marie-Tooth disease (CMTX1), a demyelinating peripheral neuropathy for which there is no cure. A growing body of evidence indicates that ATP release through Cx32 hemichannels in Schwann cells could be critical for nerve myelination, but it is unknown if CMTX1 mutations alter the cytosolic Ca2+-dependent gating mechanism that controls Cx32 hemichannel opening and ATP release. The current study uncovered that loss of the C-terminus in Cx32 (R220X mutation), which causes a severe CMTX1 phenotype, inhibits hemichannel opening during a canonical IP3-mediated increase in cytosolic Ca2+ in HeLa cells. Interestingly, the gating function of R220X hemichannels was completely restored by both the intracellular and extracellular application of a peptide that mimics the Cx32 cytoplasmic loop. All-atom molecular dynamics simulations suggest that loss of the C-terminus in the mutant hemichannel triggers abnormal fluctuations of the cytoplasmic loop which are prevented by binding to the mimetic peptide. Experiments that stimulated R220X hemichannel opening by cell depolarization displayed reduced voltage sensitivity with respect to wild-type hemichannels which was explained by loss of subconductance states at the single channel level. Finally, experiments of intercellular diffusion mediated by wild-type or R220X gap junction channels revealed similar unitary permeabilities to ions, signalling molecules (cAMP) or larger solutes (Lucifer yellow). Taken together, our findings support the hypothesis that paracrine signalling alteration due to Cx32 hemichannel dysfunction underlies CMTX1 pathogenesis and suggest a candidate molecule for novel studies investigating a therapeutic approach.
Collapse
Affiliation(s)
- Andrea Carrer
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | - Alessandro Leparulo
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | - Giulia Crispino
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
| | | | - Oriano Marin
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | - Mario Bortolozzi
- Venetian Institute of Molecular Medicine (VIMM), Padua 35129, Italy
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua 35131, Italy
- Italian National Research Council (CNR), Institute of Protein Biochemistry, Naples 80131, Italy
| |
Collapse
|
47
|
Hong YB, Park JM, Yu JS, Yoo DH, Nam DE, Park HJ, Lee JS, Hwang SH, Chung KW, Choi BO. Clinical characterization and genetic analysis of Korean patients with X-linked Charcot-Marie-Tooth disease type 1. J Peripher Nerv Syst 2017; 22:172-181. [PMID: 28448691 DOI: 10.1111/jns.12217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Mutations in the gap junction protein beta 1 gene (GJB1) cause X-linked Charcot-Marie-Tooth disease type 1 (CMTX1). CMTX1 is representative of the intermediate type of CMT, having both demyelinating and axonal neuropathic features. We analyzed the clinical and genetic characterization of 128 patients with CMTX1 from 63 unrelated families. Genetic analysis revealed a total of 43 mutations including 6 novel mutations. Ten mutations were found from two or more unrelated families. p.V95M was most frequently observed. The frequency of CMTX1 was 9.6% of total Korean CMT family and was 14.8% when calculated within genetically identified cases. Among 67 male and 61 female patients, 22 females were asymptomatic. A high-arched foot, ataxia, and tremor were observed in 87%, 41%, and 35% of the patients, respectively. In the male patients, functional disability scale, CMT neuropathy score, and compound muscle action potential of the median/ulnar nerves were more severely affected than in the female patients. This study provides a comprehensive summary of the clinical features and spectrum of GJB1 gene mutations in Korean CMTX1 patients.
Collapse
Affiliation(s)
- Young B Hong
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Jin-Mo Park
- Department of Neurology, College of Medicine, Dongguk University, Gyeongju, Korea
| | - Jin S Yu
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da H Yoo
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Da E Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Hyung J Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Ji-Su Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun H Hwang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki W Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
48
|
Prior R, Van Helleputte L, Benoy V, Van Den Bosch L. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis 2017; 105:300-320. [DOI: 10.1016/j.nbd.2017.02.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/29/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
|
49
|
Panosyan FB, Laura M, Rossor AM, Pisciotta C, Piscosquito G, Burns J, Li J, Yum SW, Lewis RA, Day J, Horvath R, Herrmann DN, Shy ME, Pareyson D, Reilly MM, Scherer SS. Cross-sectional analysis of a large cohort with X-linked Charcot-Marie-Tooth disease (CMTX1). Neurology 2017; 89:927-935. [PMID: 28768847 PMCID: PMC5577965 DOI: 10.1212/wnl.0000000000004296] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To extend the phenotypic description of Charcot-Marie-Tooth disease (CMTX1) and to draw new genotype-phenotype relationships. METHODS Mutations in GJB1 cause the main X-linked form of CMTX (CMTX1). We report cross-sectional data from 160 patients (from 120 different families, with 89 different mutations) seen at the Inherited Neuropathies Consortium centers. RESULTS We evaluated 87 males who had a mean age of 41 years (range 10-78 years) and 73 females who had a mean age of 46 years (range 15-84 years). Sensory-motor polyneuropathy affects both sexes, more severely in males than in females, and there was a strong correlation between age and disease burden in males but not in females. Compared with females, males had more severe reduction in motor and sensory neurophysiology parameters. In contrast to females, the radial nerve sensory response in older males tended to be more severely affected compared with younger males. Median and ulnar nerve motor amplitudes were also more severely affected in older males, whereas ulnar nerve motor potentials tended to be more affected in older females. Conversely, there were no statistical differences between the sexes in other features of the disease, such as problems with balance and hand dexterity. CONCLUSIONS In the absence of a phenotypic correlation with specific GJB1 mutations, sex-specific distinctions and clinically relevant attributes need to be incorporated into the measurements for clinical trials in people with CMTX1. CLINICALTRIALSGOV IDENTIFIER NCT01193075.
Collapse
Affiliation(s)
- Francis B Panosyan
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia.
| | - Matilde Laura
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Alexander M Rossor
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Chiara Pisciotta
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Giuseppe Piscosquito
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Joshua Burns
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Jun Li
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Sabrina W Yum
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Richard A Lewis
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - John Day
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Rita Horvath
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - David N Herrmann
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Michael E Shy
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Davide Pareyson
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Mary M Reilly
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| | - Steven S Scherer
- From the Department of Neurology (F.B.P., D.N.H.), University of Rochester Medical Center, NY; MRC Centre for Neuromuscular Diseases (M.L., A.M.R., M.M.R.), UCL Institute of Neurology, UK; Department of Neurology (C.P., D.P.), Carlo Besta Neurological Institute, Milan, Italy; Department of Neurosciences (G.P.), Institute of Telese Terme (BN), Italy; Children's Hospital at Westmead (J.B.), University of Sydney, Australia; Department of Neurology (J.L.), Vanderbilt University, Nashville, TN; Neuromuscular Program (S.W.Y.), Children's Hospital of Philadelphia, PA; Department of Neurology (R.A.L.), Cedars-Sinai Medical Center, Los Angeles, CA; Department of Neurology (J.D.), Stanford University, CA; Institute of Genetic Medicine (R.H.), Newcastle University, UK; Department of Neurology (M.E.S.), University of Iowa Hospitals and Clinics; and Department of Neurology (S.S.S.), University of Pennsylvania, Philadelphia
| |
Collapse
|
50
|
Bai D, Yue B, Aoyama H. Crucial motifs and residues in the extracellular loops influence the formation and specificity of connexin docking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:9-21. [PMID: 28693896 DOI: 10.1016/j.bbamem.2017.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Most of the early studies on gap junction (GJ) channel function and docking compatibility were on rodent connexins, while recent research on GJ channels gradually shifted from rodent to human connexins largely due to the fact that mutations in many human connexin genes are found to associate with inherited human diseases. The studies on human connexins have revealed some key differences from those found in rodents, calling for a comprehensive characterization of human GJ channels. Functional studies revealed that docking and formation of functional GJ channels between two hemichannels are possible only between docking-compatible connexins. Two groups of docking-compatible rodent connexins have been identified. Compatibility is believed to be due to their amino acid residue differences at the extracellular loop domains (E1 and E2). Sequence alignment of the E1 and E2 domains of all connexins known to make GJs revealed that they are highly conserved and show high sequence identity with human Cx26, which is the only connexin with near atomic resolution GJ structure. We hypothesize that different connexins have a similar structure as that of Cx26 at the E1 and E2 domains and use the corresponding residues in their E1 and E2 domains for docking. Based on the Cx26 GJ structure and sequence analysis of well-studied connexins, we propose that the E1-E1 docking interactions are staggered with each E1 interacting with two E1s on the docked connexon. The putative E1 docking residues are conserved in both docking-compatible and -incompatible connexins, indicating that E1 does not likely serve a role in docking compatibility. However, in the case of E2-E2 docking interactions, the putative docking residues are only conserved within the docking-compatible connexins, suggesting the E2 is likely to serve the function of docking compatibility. Docking compatibility studies on human connexins have attracted a lot of attention due to the fact that putative docking residues are mutational hotspots for several connexin-linked human diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| | - Benny Yue
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|