1
|
Shiose L, Moreira JDR, Lira BS, Ponciano G, Gómez-Ocampo G, Wu RTA, Dos Santos Júnior JL, Ntelkis N, Clicque E, Oliveira MJ, Lubini G, Floh EIS, Botto JF, Ferreira MJP, Goossens A, Freschi L, Rossi M. A tomato B-box protein regulates plant development and fruit quality through the interaction with PIF4, HY5, and RIN transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3368-3387. [PMID: 38492237 DOI: 10.1093/jxb/erae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
During the last decade, knowledge about BBX proteins has greatly increased. Genome-wide studies identified the BBX gene family in several ornamental, industry, and food crops; however, reports regarding the role of these genes as regulators of agronomically important traits are scarce. Here, by phenotyping a knockout mutant, we performed a comprehensive functional characterization of the tomato locus Solyc12g089240, hereafter called SlBBX20. The data revealed the encoded protein as a positive regulator of light signaling affecting several physiological processes during the life span of plants. Through inhibition of PHYTOCHROME INTERACTING FACTOR 4 (SlPIF4)-auxin crosstalk, SlBBX20 regulates photomorphogenesis. Later in development, it controls the balance between cell division and expansion to guarantee correct vegetative and reproductive development. In fruits, SlBBX20 is transcriptionally induced by the master transcription factor RIPENING INHIBITOR (SlRIN) and, together with ELONGATED HYPOCOTYL 5 (SlHY5), up-regulates flavonoid biosynthetic genes. Finally, SlBBX20 promotes the accumulation of steroidal glycoalkaloids and attenuates Botrytis cinerea infection. This work clearly demonstrates that BBX proteins are multilayer regulators of plant physiology because they affect not only multiple processes during plant development but they also regulate other genes at the transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Lumi Shiose
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Juliene Dos Reis Moreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Gabriel Ponciano
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Gabriel Gómez-Ocampo
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Raquel Tsu Ay Wu
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - José Laurindo Dos Santos Júnior
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark-Zwijnaarde 71, Ghent, Belgium
| | - Elke Clicque
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark-Zwijnaarde 71, Ghent, Belgium
| | - Maria José Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14040-901, Ribeirão Preto, Brasil
| | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Javier Francisco Botto
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina
| | - Marcelo José Pena Ferreira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark-Zwijnaarde 71, Ghent, Belgium
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brasil
| |
Collapse
|
2
|
Kato-Noguchi H, Kurniadie D. The Invasive Mechanisms of the Noxious Alien Plant Species Bidens pilosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:356. [PMID: 38337889 PMCID: PMC10857670 DOI: 10.3390/plants13030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Bidens pilosa L. is native to tropical America and has widely naturized from tropical to warm temperate regions in Europe, Africa, Asia, Australia, and North and South America. The species has infested a wide range of habitats such as grasslands, forests, wetlands, streamlines, coastal areas, pasture, plantations, agricultural fields, roadsides, and railway sides and has become a noxious invasive weed species. B. pilosa forms thick monospecific stands, quickly expands, and threatens the indigenous plant species and crop production. It is also involved in pathogen transmission as a vector. The species was reported to have (1) a high growth ability, producing several generations in a year; (2) a high achene production rate; (3) different biotypes of cypselae, differently germinating given the time and condition; (4) a high adaptative ability to various environmental conditions; (5) an ability to alter the microbial community, including mutualism with arbuscular mycorrhizal fungi; and (6) defense functions against natural enemies and allelopathy. The species produces several potential allelochemicals such as palmitic acid, p-coumaric acid, caffeic acid, ferulic acid, p-hydroxybenzoic acid, vanillic acid, salycilic acid, quercetin, α-pinene, and limonene and compounds involved in the defense functions such as 1-phenylhepta-1,3,5-trine, 5-phenyl-2-(1-propynyl)-thiophene, 5-actoxy-2-phenylethinyl-thiophene, and icthyothereol acetate. These characteristics of B. pilosa may contribute to the naturalization and invasiveness of the species in the introduced ranges. This is the first review article focusing on the invasive mechanisms of the species.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Denny Kurniadie
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Jawa Barat, Indonesia
| |
Collapse
|
3
|
Kato-Noguchi H. Invasive Mechanisms of One of the World's Worst Alien Plant Species Mimosa pigra and Its Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:1960. [PMID: 37653876 PMCID: PMC10221770 DOI: 10.3390/plants12101960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Mimosa pigra is native to Tropical America, and it has naturalized in many other countries especially in Australia, Eastern and Southern Africa and South Asia. The species is listed in the top 100 of the world's worst invasive alien species and is listed as Least Concern in the IUCN Red List of Threatened Species. M. pigra forms very large monospecific stands in a wet-dry tropical climate with conditions such as floodplains, riverbanks, grasslands, forests and agricultural fields. The stands expand quickly and threaten the native flora and fauna in the invasive ranges. Possible mechanisms of the invasion of the species have been investigated and accumulated in the literature. The characteristics of the life history such as the high reproduction and high growth rate, vigorous mutualism with rhizobia and arbuscular mycorrhizal fungi, very few natural enemies, and allelopathy, and certain secondary metabolites may contribute to the invasiveness and naturalization of M. pigra. Herbicide application, such as aerial spraying, foliar, cut-stump and soil treatments, is the primary control methods of M. pigra. The investigation of the natural enemies of M. pigra has been conducted in its native ranges since 1979, and biological control agents have been selected based on host specificity, rearing and availability. Mechanical control practices, such as hand weeding, bulldozing, chaining and fire, were also effective. However, the species often regrow from the remaining plant parts. Integration of multiple weed control practices may be more effective than any single practice. This is the first review article focusing on the invasive mechanism of M. pigra.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan
| |
Collapse
|
4
|
Antibacterial and Antibiofilm Effects of Allelopathic Compounds Identified in Medicago sativa L. Seedling Exudate against Escherichia coli. Molecules 2023; 28:molecules28062645. [PMID: 36985619 PMCID: PMC10056293 DOI: 10.3390/molecules28062645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
In this study, the allelopathic properties of Medicago sativa L. (alfalfa) seedling exudates on the germination of seeds of various species were investigated. The compounds responsible for the allelopathic effects of alfalfa were identified and characterized by employing liquid chromatography ion mobility high-resolution mass spectrometry. Crude exudates inhibited the germination of seeds of all various plant species tested. Overall, nine compounds in alfalfa were identified and quantified. The most predominant compounds were a hyperoside representing a flavonoid glucoside, the non-proteinogenic amino acid canavanine, and two dipeptides, identified as H-Glu-Tyr-OH and H-Phe-Glu-OH. The latter corresponds to the first finding that dipeptides are exuded from alfalfa seedlings. In addition, the antibacterial and antibiofilm activities of alfalfa exudate and its identified compounds were elucidated. Both hyperoside and canavanine revealed the best antibacterial activity with minimum inhibitory concentration (MIC) values that ranged from 8 to 32 and 32 to 256 µg/mL, respectively. Regarding the antibiofilm action, hyperoside and canavanine caused a decline in the percentage of E. coli isolates that possessed a strong and moderate biofilm-forming potential from 68.42% to 21.05% and 31.58%, respectively. Studies on their inhibiting effects exhibit that these major substances are predominantly responsible for the allelopathic and antimicrobial effects of the crude exudates.
Collapse
|
5
|
Plant Metabolites Affect Fusarium proliferatum Metabolism and In Vitro Fumonisin Biosynthesis. Int J Mol Sci 2023; 24:ijms24033002. [PMID: 36769333 PMCID: PMC9917803 DOI: 10.3390/ijms24033002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Fusarium proliferatum is a common hemi-biotrophic pathogen that infect a wide range of host plants, often leading to substantial crop loss and yield reduction. F. proliferatum synthesizes various mycotoxins, and fumonisins B are the most prevalent. They act as virulence factors and specific effectors that elicit host resistance. The effects of selected plant metabolites on the metabolism of the F. proliferatum strain were analyzed in this study. Quercetin-3-glucoside (Q-3-Glc) and kaempferol-3-rutinoside (K-3-Rut) induced the pathogen's growth, while DIMBOA, isorhamnetin-3-O-rutinoside (Iso-3-Rut), ferulic acid (FA), protodioscin, and neochlorogenic acid (NClA) inhibited fungal growth. The expression of seven F. proliferatum genes related to primary metabolism and four FUM genes was measured using RT-qPCR upon plant metabolite addition to liquid cultures. The expression of CPR6 and SSC1 genes was induced 24 h after the addition of chlorogenic acid (ClA), while DIMBOA and protodioscin reduced their expression. The transcription of FUM1 on the third day of the experiment was increased by all metabolites except for Q-3-Glc when compared to the control culture. The expression of FUM6 was induced by protodioscin, K-3-Rut, and ClA, while FA and DIMBOA inhibited its expression. FUM19 was induced by all metabolites except FA. The highest concentration of fumonisin B1 (FB1) in control culture was 6.21 µg/mL. Protodioscin did not affect the FB content, while DIMBOA delayed their synthesis/secretion. Flavonoids and phenolic acids displayed similar effects. The results suggest that sole metabolites can have lower impacts on pathogen metabolism and mycotoxin synthesis than when combined with other compounds present in plant extracts. These synergistic effects require additional studies to reveal the mechanisms behind them.
Collapse
|
6
|
Isolation of herbicidal compounds, quercetin and β-caryophyllene, from Digera muricata. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
7
|
Kato-Noguchi H, Kato M. Evolution of the Secondary Metabolites in Invasive Plant Species Chromolaena odorata for the Defense and Allelopathic Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030521. [PMID: 36771607 PMCID: PMC9919186 DOI: 10.3390/plants12030521] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/09/2023]
Abstract
Chromolaena odorata (L.) R.M. King & H. Robinson is native to tropical America, and has naturalized in many other countries in tropical Asia, Austria, and West Africa. The species often forms dense thickets and reduces the native species diversity and population in the invasive ranges. The species is also considered as a noxious weed in agriculture fields, and listed in the 100 of the world's worst invasive alien species. The characteristics of its life-history such as the seed production rate, growth pattern, and adaptative ability to the environmental conditions may contribute to the invasiveness of the species. Possible evidence of the defense capacity against the natural enemy, and the allelopathic potential against the competitive plant species for C. odorata has been accumulated in the literature over three decades. The extracts, residues, and/or rhizosphere soil of C. odorata increased the mortality of various insects and parasitic nematodes, and decreased their population. The extracts, residues, and/or rhizosphere soil of C. odorata also inhibited the germination and growth of several plant species including the indigenous plant species in the invasive ranges of C. odorata. Toxic substances, pyrrolizidine alkaloids were found in the leaves and flowers of C. odorata. These pyrrolizidine alkaloids may work as the defense agents against the natural enemies. Several potential allelochemicals such as flavonoids, phenolic acids, and terpenoids were also found in the plant extracts of C. odorata. Some of these compounds may work as allelopathic agents of C. odorata and inhibit the germination and growth of the competitive plant species. These characteristics of C. odorata for the defense function against their natural enemies such as insects and parasitic nematodes, and allelopathic potential against the competitive native plant species may contribute to the invasiveness and naturalization of C. odorata in the new habitats as invasive plant species. However, it is necessary to determine the concentration of these allelochemicals in the neighboring environment of C. odorata such as the rhizosphere soil since allelochemicals are able to work only when they are released into the neighboring environment. It is the first review article focusing on the defense function and allelopathy of C. odorata.
Collapse
|
8
|
Khalil AMA, Saleh AM, Abo El-Souad SMS, Mohamed MSM. Plants from a semi-arid environment as a source of phytochemicals against Fusarium crown and foot rot in zucchini. AMB Express 2023; 13:6. [PMID: 36648547 PMCID: PMC9845481 DOI: 10.1186/s13568-023-01515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Fusarium crown and foot rot, caused by F. solani f. sp. cucurbitae, are major fungal diseases affecting zucchini and other cucurbits. Despite the efficacy of synthetic fungicides, their health and environmental hazards have highlighted the urgent need for safer alternatives, such as phytochemical-based biocides. Owing to the upregulation of the plant secondary metabolism under stressful conditions, bioprospecting in harsh environments could reveal ore plants for bioactive metabolites. In this study, thirteen wild plants were collected from their natural habitat in a semiarid environment (Yanbu, Saudi Arabia) and extracted to obtain phenolics rich extracts. Total polyphenols, flavonoids, antioxidant capacities and the antifungal activities of the extracts against a pathogenic isolate of F. solani were assessed. Fusarium solani was isolated from infected zucchini and characterized by scanning electron microscopy. Hierarchical clustering analysis of the phytochemical screening and in vitro bioactivity revealed that Rosmarinus officinalis, Pulicaria crispa, Achillea falcata and Haloxylon salicornicum were the richest in polyphenols and the most powerful against F. solani. Further, the extracts of these four plants significantly decreased the disease incidence in zucchini, where P. crispa was the premier. Interestingly, results of transmission electron microscopy revealed that extract of P. crispa, as a representative of the powerful group, induced ultrastructural disorders in fungal cells. Therefore, this study suggests the use of R. officinalis, P. crispa, A. falcata and H. salicornicum grown in semi-arid environments as ore plants to develop phytochemical-based biocides against Fusarium crown and foot rot.
Collapse
Affiliation(s)
- Ahmed M. A. Khalil
- grid.411303.40000 0001 2155 6022Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Saleh
- grid.7776.10000 0004 0639 9286Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Sayed M. S. Abo El-Souad
- grid.7776.10000 0004 0639 9286Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| | - Mahmoud S. M. Mohamed
- grid.7776.10000 0004 0639 9286Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613 Egypt
| |
Collapse
|
9
|
Sun M, Li L, Wang C, Wang L, Lu D, Shen D, Wang J, Jiang C, Cheng L, Pan X, Yang A, Wang Y, Zhu X, Li B, Li Y, Zhang F. Naringenin confers defence against Phytophthora nicotianae through antimicrobial activity and induction of pathogen resistance in tobacco. MOLECULAR PLANT PATHOLOGY 2022; 23:1737-1750. [PMID: 36094814 PMCID: PMC9644278 DOI: 10.1111/mpp.13255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Tobacco black shank caused by Phytophthora nicotianae is a serious disease in tobacco cultivation. We found that naringenin is a key factor that causes different sensitivity to P. nicotianae between resistant and susceptible tobacco. The level of basal flavonoids in resistant tobacco was distinct from that in susceptible tobacco. Of all flavonoids with different content, naringenin showed the best antimicrobial activity against mycelial growth and sporangia production of P. nicotianae in vitro. However, naringenin showed very low or no antimicrobial activity to other plant pathogens. We found that naringenin induced not only the accumulation of reactive oxygen species, but also the expression of salicylic acid biosynthesis-related genes. Naringenin induced the expression of the basal pathogen resistance gene PR1 and the SAR8.2 gene that contributes to plant resistance to P. nicotianae. We then interfered with the expression of the chalcone synthase (NtCHS) gene, the key gene of the naringenin synthesis pathway, to inhibit naringenin biosynthesis. NtCHS-RNAi rendered tobacco highly sensitive to P. nicotianae, but there was no change in susceptibility to another plant pathogen, Ralstonia solanacearum. Finally, exogenous application of naringenin on susceptible tobacco enhanced resistance to P. nicotianae and naringenin was very stable in this environment. Our findings revealed that naringenin plays a core role in the defence against P. nicotianae and expanded the possibilities for the application of plant secondary metabolites in the control of P. nicotianae.
Collapse
Affiliation(s)
- Mingming Sun
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
- China Tobacco Shandong Industrial Co., Ltd.JinanChina
| | - Lei Li
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Chengdong Wang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Luanming Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Di Lu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Danyu Shen
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Jie Wang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Caihong Jiang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Lirui Cheng
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Xuhao Pan
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Aiguo Yang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Yuanying Wang
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | | | - Bin Li
- Sichuan Tobacco CorporationChengduChina
| | - Yiting Li
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Feng Zhang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
10
|
Ximenez GR, Bianchin M, Carmona JMP, de Oliveira SM, Ferrarese-Filho O, Pastorini LH. Reduction of Weed Growth under the Influence of Extracts and Metabolites Isolated from Miconia spp. Molecules 2022; 27:5356. [PMID: 36080124 PMCID: PMC9458153 DOI: 10.3390/molecules27175356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Weeds pose a problem, infesting areas and imposing competition and harvesting difficulties in agricultural systems. Studies that provide the use of alternative methods for weed control, in order to minimize negative impacts on the environment, have intensified. Native flora represents a source of unexplored metabolites with multiple applications, such as bioherbicides. Therefore, we aimed to carry out a preliminary phytochemical analysis of crude extracts and fractions of Miconia auricoma and M. ligustroides and to evaluate these and the isolated metabolites phytotoxicity on the growth of the target species. The growth bioassays were conducted with Petri dishes with lettuce, morning glory, and sourgrass seeds incubated in germination chambers. Phytochemical analysis revealed the presence of flavonoids, isolated myricetin, and a mixture of quercetin and myricetin. The results showed that seedling growth was affected in a dose-dependent manner, with the root most affected and the seedlings of the lettuce, morning glory, and sourgrass as the most sensitive species, respectively. Chloroform fractions and myricetin were the most inhibitory bioassays evaluated. The seedlings showed structural changes, such as yellowing, nonexpanded cotyledons, and less branched roots. These results indicate the phytotoxic potential of Miconia allelochemicals, since there was the appearance of abnormal seedlings and growth reduction.
Collapse
Affiliation(s)
- Gabriel Rezende Ximenez
- Programa de Pós-Graduação em Biologia Comparada, Centro de Ciências Biológicas, Departamento de Biologia, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - Mirelli Bianchin
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - João Marcos Parolo Carmona
- Graduação em Biotecnologia, Centro de Ciências Biológicas, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - Silvana Maria de Oliveira
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - Osvaldo Ferrarese-Filho
- Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Biológicas, Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - Lindamir Hernandez Pastorini
- Programa de Pós-Graduação em Biologia Comparada, Centro de Ciências Biológicas, Departamento de Biologia, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| |
Collapse
|
11
|
Fu S, Deng Y, Zou K, Zhang S, Liu X, Liang Y. Flavonoids affect the endophytic bacterial community in Ginkgo biloba leaves with increasing altitude. FRONTIERS IN PLANT SCIENCE 2022; 13:982771. [PMID: 36035669 PMCID: PMC9410704 DOI: 10.3389/fpls.2022.982771] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 05/14/2023]
Abstract
Altitude affects plant growth and metabolism, but the effect of altitude on plant endophytic microorganisms is still unclear. In this study, we selected 16 Ginkgo biloba trees to study the response of leaves' endophytes to flavonoids and altitude (from 530 m to 1,310 m). HPLC results showed that flavonoids in Ginkgo biloba leaves increased by more than 150% with attitude rising from 530 m to 1,310 m, which revealed a positive correlation with altitude. Ginkgo biloba might regulate the increased flavonoids in leaves to resist the increasing light intensity. 16S rDNA sequencing results showed that the endophytic bacterial communities of Ginkgo biloba at different altitudes significantly differed. Ginkgo leaf endophytes' alpha diversity decreased with increasing flavonoids content and altitude. The increased flavonoids might increase the environmental pressure on endophytes and affect the endophytic community in Ginkgo biloba leaves. The bacterial network in Ginkgo biloba leaves became more complex with increasing altitude, which might be one of the strategies of leaf endophytes to cope with increasing flavonoids. Metagenomes results predicted with PICRUSt showed that the abundance of flavonoid biosynthesis and photosynthesis genes were significantly decreased with the increase of flavonoid contents. High flavonoid content in leaves appeared to inhibit microbial flavonoid synthesis. Our findings indicate that altitude can modulate microbial community structure through regulating plant metabolites, which is important to uncovering the interaction of microbes, host and the environment.
Collapse
Affiliation(s)
- Shaodong Fu
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Kai Zou
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Shuangfei Zhang
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| | - Yili Liang
- School of Resource Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
12
|
Shebis Y, Laskavy A, Molad-Filossof A, Arnon-Rips H, Natan-Warhaftig M, Jacobi G, Fallik E, Banin E, Poverenov E. Non-radical synthesis of chitosan-quercetin polysaccharide: Properties, bioactivity and applications. Carbohydr Polym 2022; 284:119206. [DOI: 10.1016/j.carbpol.2022.119206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/24/2023]
|
13
|
Tsypurskaya EV, Nikolaeva TN, Lapshin PV, Nechaeva TL, Yuorieva NO, Baranova EN, Derevyagina MK, Nazarenko LV, Goldenkova-Pavlova IV, Zagoskina NV. Response of Transgenic Potato Plants Expressing Heterologous Genes of ∆9- or ∆12-Acyl-lipid Desaturases to Phytophthora infestans Infection. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030288. [PMID: 35161270 PMCID: PMC8840463 DOI: 10.3390/plants11030288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 05/29/2023]
Abstract
Late blight is one of the most economically important diseases affecting potato and causing a significant loss in yield. The development of transgenic potato plants with enhanced resistance to infection by Phytophthora infestans may represent a possible approach to solving this issue. A comparative study of the leaf response in control potato plants (S.tuberosum L. cultivar Skoroplodnyi), control transgenic plants expressing the reporter gene of thermostable lichenase (transgenic licBM3 line) and transgenic plants expressing cyanobacterial hybrid genes ∆9-acyl-lipid desaturase (transgenic desC lines) and ∆12-acyl-lipid desaturase (transgenic desA lines) to infection with P. infestans has been performed. The expression of desaturase genes in potato plants enhanced their tolerance to potato late blight agents as compared with the control. The lipid peroxidation level raised in the leaves of the control and transgenic desA plants on third day after inoculation with P. infestans zoospores and remained the same in the transgenic desC plants. The number of total phenolic compounds was increased as early as on the second day after infection in all studied variants and continued to remain the same, except for transgenic desC plants. Accumulation of flavonoids, the main components of the potato leaf phenolic complex, raised on the second day in all studied variants, remained unchanged on the third day in the control plants and decreased in most transgenic plants expressing desaturase genes. The results obtained in our study demonstrate that the expression of genes of Δ9- and Δ12-acyl-lipid desaturases in potato plants enhanced their resistance to P. infestans as compared with the control non-transgenic plants due to concomitant accumulation of phenolic compounds, including flavonoids, in the leaves. All these changes were more pronounced in transgenic desC plants, which indicates that the Δ9-acyllipid desaturase gene appears to be a potential inducer of the production of biological antioxidants in plant cells.
Collapse
Affiliation(s)
- Elena V. Tsypurskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.N.N.); (P.V.L.); (T.L.N.); (N.O.Y.); (I.V.G.-P.)
| | - Tatiana N. Nikolaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.N.N.); (P.V.L.); (T.L.N.); (N.O.Y.); (I.V.G.-P.)
| | - Petr V. Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.N.N.); (P.V.L.); (T.L.N.); (N.O.Y.); (I.V.G.-P.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.N.N.); (P.V.L.); (T.L.N.); (N.O.Y.); (I.V.G.-P.)
| | - Natalya O. Yuorieva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.N.N.); (P.V.L.); (T.L.N.); (N.O.Y.); (I.V.G.-P.)
| | - Ekaterina N. Baranova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, 127550 Moscow, Russia
| | | | - Lyudmila V. Nazarenko
- Department of Biology and Human Physiology, Institute of Natural Sciences and Sports Technologies, Moscow City Teachers’ Training University, 129226 Moscow, Russia;
| | - Irina V. Goldenkova-Pavlova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.N.N.); (P.V.L.); (T.L.N.); (N.O.Y.); (I.V.G.-P.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (T.N.N.); (P.V.L.); (T.L.N.); (N.O.Y.); (I.V.G.-P.)
| |
Collapse
|
14
|
Kato-Noguchi H. Allelopathy of Knotweeds as Invasive Plants. PLANTS (BASEL, SWITZERLAND) 2021; 11:3. [PMID: 35009007 PMCID: PMC8747059 DOI: 10.3390/plants11010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Perennial herbaceous Fallopia is native to East Asia, and was introduced to Europe and North America in the 19th century as an ornamental plant. Fallopia has been spreading quickly and has naturalized in many countries. It is listed in the world's 100 worst alien species. Fallopia often forms dense monospecies stands through the interruption of the regeneration process of indigenous plant species. Allelopathy of Japanese knotweed (Fallopia japonica), giant knotweed (Fallopia sachalinensis), and Bohemian knotweed (Fallopia x bohemica) has been reported to play an essential role in its invasion. The exudate from their roots and/or rhizomes, and their plant residues inhibited the germination and growth of some other plant species. These knotweeds, which are non-mycorrhizal plants, also suppressed the abundance and species richness of arbuscular mycorrhizal fungi (AMF) in the rhizosphere soil. Such suppression was critical for most territorial plants to form the mutualism with AMF, which enhances the nutrient and water uptake, and the tolerance against pathogens and stress conditions. Several allelochemicals such as flavanols, stilbenes, and quinones were identified in the extracts, residues, and rhizosphere soil of the knotweeds. The accumulated evidence suggests that some of those allelochemicals in knotweeds may be released into the rhizosphere soil through the decomposition process of their plant parts, and the exudation from their rhizomes and roots. Those allelochemicals may inhibit the germination and growth of native plants, and suppress the mycorrhizal colonization of native plants, which provides the knotweeds with a competitive advantage, and interrupts the regeneration processes of native plants. Therefore, allelopathy of knotweeds may contribute to establishing their new habitats in the introduced ranges as invasive plant species. It is the first review article focusing on the allelopathy of knotweeds.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| |
Collapse
|
15
|
Effects of Secondary Metabolites from Pea on Fusarium Growth and Mycotoxin Biosynthesis. J Fungi (Basel) 2021; 7:jof7121004. [PMID: 34946987 PMCID: PMC8706721 DOI: 10.3390/jof7121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate no/very low amounts of mycotoxins. The ability of the host plant to modulate the biosynthesis of these toxins is entirely depending on the secondary metabolites produced by the plant, often as a part of systemic acquired resistance (SAR). A major role plays in the family of metabolites called phenyl propanoids, consisting of thousands of natural products, synthesized from the phenylalanine or tyrosine amino acids through a cascade of enzymatic reactions. They are also famous for inhibiting or limiting infection through their antioxidant characteristics. The current study was aimed at identifying the differentially expressed secondary metabolites in resistant (Sokolik) and susceptible (Santana) cultivars of pea (Pisum sativum L.) and understanding their roles in the growth and mycotoxin biosynthesis of two different Fusarium species. Although metabolites such as coumarin, spermidine, p-coumaric acid, isoorientin, and quercetin reduced the growth of the pathogen, a higher level of p-coumaric acid was found to enhance the growth of F. proliferatum strain PEA1. It was also noticeable that the growth of the pathogen did not depend on their ability to produce mycotoxins, as all the metabolites were able to highly inhibit the biosynthesis of fumonisin B1 and beauvericin.
Collapse
|
16
|
An J, Kim SH, Bahk S, Vuong UT, Nguyen NT, Do HL, Kim SH, Chung WS. Naringenin Induces Pathogen Resistance Against Pseudomonas syringae Through the Activation of NPR1 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:672552. [PMID: 34093630 PMCID: PMC8173199 DOI: 10.3389/fpls.2021.672552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Flavonoids are well known for the coloration of plant organs to protect UV and ROS and to attract pollinators as well. Flavonoids also play roles in many aspects of physiological processes including pathogen resistance. However, the molecular mechanism to explain how flavonoids play roles in pathogen resistance was not extensively studied. In this study, we investigated how naringenin, the first intermediate molecule of the flavonoid biosynthesis, functions as an activator of pathogen resistances. The transcript levels of two pathogenesis-related (PR) genes were increased by the treatment with naringenin in Arabidopsis. Interestingly, we found that naringenin triggers the monomerization and nuclear translocation of non-expressor of pathogenesis-related genes 1 (NPR1) that is a transcriptional coactivator of PR gene expression. Naringenin can induce the accumulation of salicylic acid (SA) that is required for the monomerization of NPR1. Furthermore, naringenin activates MPK6 and MPK3 in ROS-dependent, but SA-independent manners. By using a MEK inhibitor, we showed that the activation of a MAPK cascade by naringenin is also required for the monomerization of NPR1. These results suggest that the pathogen resistance by naringenin is mediated by the MAPK- and SA-dependent activation of NPR1 in Arabidopsis.
Collapse
|
17
|
Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081209] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current world of climate change, global warming and a constantly changing environment have made life very stressful for living entities, which has driven the evolution of biochemical processes to cope with stressed environmental and ecological conditions. As climate change conditions continue to develop, we anticipate more frequent occurrences of abiotic stresses such as drought, high temperature and salinity. Living plants, which are sessile beings, are more exposed to environmental extremes. However, plants are equipped with biosynthetic machinery operating to supply thousands of bio-compounds required for maintaining internal homeostasis. In addition to chemical coordination within a plant, these compounds have the potential to assist plants in tolerating, resisting and escaping biotic and abiotic stresses generated by the external environment. Among certain biosynthates, flavonoids are an important example of these stress mitigators. Flavonoids are secondary metabolites and biostimulants; they play a key role in plant growth by inducing resistance against certain biotic and abiotic stresses. In addition, the function of flavonoids as signal compounds to communicate with rhizosphere microbes is indispensable. In this review, the significance of flavonoids as biostimulants, stress mitigators, mediators of allelopathy and signaling compounds is discussed. The chemical nature and biosynthetic pathway of flavonoid production are also highlighted.
Collapse
|
18
|
Gutiérrez-Albanchez E, Gradillas A, García A, García-Villaraco A, Gutierrez-Mañero FJ, Ramos-Solano B. Elicitation with Bacillus QV15 reveals a pivotal role of F3H on flavonoid metabolism improving adaptation to biotic stress in blackberry. PLoS One 2020; 15:e0232626. [PMID: 32374762 PMCID: PMC7202615 DOI: 10.1371/journal.pone.0232626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to determine the involvement of the flavonol-anthocyanin pathway on plant adaptation to biotic stress using the B.amyloliquefaciens QV15 to trigger blackberry metabolism and identify target genes to improve plant fitness and fruit quality. To achieve this goal, field-grown blackberries were root-inoculated with QV15 along its growth cycle. At fruiting, a transcriptomic analysis by RNA-Seq was performed on leaves and fruits of treated and non-treated field-grown blackberries after a sustained mildew outbreak; expression of the regulating and core genes of the Flavonol-Anthocyanin pathway were analysed by qPCR and metabolomic profiles by UHPLC/ESI-qTOF-MS; plant protection was found to be up to 88%. Overexpression of step-controlling genes in leaves and fruits, associated to lower concentration of flavonols and anthocyanins in QV15-treated plants, together with a higher protection suggest a phytoanticipin role for flavonols in blackberry; kempferol-3-O-rutinoside concentration was strikingly high. Overexpression of RuF3H (Flavonol-3-hidroxylase) suggests a pivotal role in the coordination of committing steps in this pathway, controlling carbon flux towards the different sinks. Furthermore, this C demand is supported by an activation of the photosynthetic machinery, and boosted by a coordinated control of ROS into a sub-lethal range, and associated to enhanced protection to biotic stress.
Collapse
Affiliation(s)
- Enrique Gutiérrez-Albanchez
- Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, Madrid, Spain
- * E-mail: (BRS); (EGA)
| | - Ana Gradillas
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Antonia García
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ana García-Villaraco
- Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, Madrid, Spain
| | - F. Javier Gutierrez-Mañero
- Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Beatriz Ramos-Solano
- Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, Madrid, Spain
- * E-mail: (BRS); (EGA)
| |
Collapse
|
19
|
Avelar Amado P, Fonsêca Castro AH, Samúdio Santos Zanuncio V, Stein VC, Brentan da Silva D, Alves Rodrigues Dos Santos Lima L. Assessment of allelopathic, cytotoxic, genotoxic and antigenotoxic potential of Smilax brasiliensis Sprengel leaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110310. [PMID: 32061987 DOI: 10.1016/j.ecoenv.2020.110310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Smilax brasiliensis (Smilacaceae) is a native Brazilian plant found in the Cerrado biome and commonly used in folk medicine. The aim of this study was to evaluate the allelopathic, cytotoxic, genotoxic, and antigenotoxic potential of extract and fractions of Smilax brasiliensis leaves. Quercetin and rutin isomers were observed in the subfractions. The dichloromethane fraction (1000 μg/mL) decreased lettuce (Lactuca sativa) seed vigor, while and ethyl acetate and hydromethanol fractions (1000 μg/mL) affected the germination, and quercetin and rutin affected the vigor and germination of onion seeds. The extract, fractions, quercetin, and rutin inhibited or promoted lettuce hypocotyl and radicle growth. The extract and fractions inhibited onion hypocotyl growth at all concentrations. With regards to radicle growth, the results were diversified: growth was either inhibited or promoted. Rutin and quercetin inhibited onion hypocotyl and radicle growth at all concentrations. The extract and fractions of Smilax brasiliensis, rutin, and quercetin did not cause cytotoxic effect evaluated by mitotic index. The extract and fractions showed genotoxic effects. Quercetin and rutin did not cause genotoxic effects. On the other hand, the extract and fractions showed antigenotoxic effects at all tested concentrations, where they were able to revert chromosomal abnormalities caused by glyphosate. However, additional studies are required to evaluate the possible use of the S. brasiliensis leaf methanol extract and fractions as natural sources of bioherbicides.
Collapse
Affiliation(s)
- Paula Avelar Amado
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), 35501-296, Divinópolis, MG, Brazil
| | - Ana Hortência Fonsêca Castro
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), 35501-296, Divinópolis, MG, Brazil
| | - Vanessa Samúdio Santos Zanuncio
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil
| | - Vanessa Cristina Stein
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), 35501-296, Divinópolis, MG, Brazil
| | - Denise Brentan da Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil
| | | |
Collapse
|
20
|
Enaime G, Baçaoui A, Yaacoubi A, Belaqziz M, Wichern M, Lübken M. Phytotoxicity assessment of olive mill wastewater treated by different technologies: effect on seed germination of maize and tomato. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8034-8045. [PMID: 31897978 DOI: 10.1007/s11356-019-06672-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The phytotoxicity effect of olive mill wastewater (OMWW) treated in a combined system regrouping pretreatment by filtration on olive stones and coagulation-flocculation, and anaerobic digestion (AD) on seed germination of maize and tomato was evaluated through germination tests in petri dishes and growth tests in pots. Three samples, referenced as AD-40, AD-60, and AD-80, were collected from the anaerobic reactor operating with an influent at 40, 60, and 80% OMWW/water (% v/v). Concentrations between 25 and 100% were used for maize and between 5 and 25% were used for tomato using raw and pretreated samples, while anaerobic samples were used without dilution. For maize, 100% and 75% OMWW were very phytotoxic and completely prohibited seed germination, while phytotoxicity was decreased following dilution at 25% and 50% OMWW. Maize germinability was found highly enhanced when watered with anaerobic samples. For tomato, high dilution was required to reduce the phytotoxicity of raw and pretreated OMWW and a high relative germination percentage was registered at 5, 10, and 15% OMWW, while for samples anaerobically treated, a high phytotoxicity is still observed. Growth tests, showed more favorable results for maize watered with raw and pretreated samples at 25% OMWW and with biological samples. For tomato and with the exception of 25% OMWW and AD-80, seeds respond positively to all samples. It was concluded that if the OMWW will be used for irrigating maize, it could be directly used after anaerobic digestion, while for tomato further dilution is required. The phenolic profile analysis of the tested samples coupled with the results of the germination tests showed that the OMWW phytotoxicity appears to be determined by not only the monomeric phenols but also by other toxic components unaffected by the applied treatments.
Collapse
Affiliation(s)
- Ghizlane Enaime
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco.
| | - Abdelaziz Baçaoui
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco
| | - Abdelrani Yaacoubi
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco
| | - Majdouline Belaqziz
- Polyvalent Laboratory of Research and Development, Polydisciplinary Faculty, Sultan Moulay Slimane University, Béni Mellal, Morocco
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Manfred Lübken
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
21
|
Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME JOURNAL 2019; 14:506-518. [PMID: 31664159 PMCID: PMC6976672 DOI: 10.1038/s41396-019-0519-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 11/08/2022]
Abstract
Persistent infection, wherein a pathogen is continually present in a host individual, is widespread in virus–host systems. However, little is known regarding how seasonal environments alter virus–host interaction during such metastability. We observed a lineage-to-lineage infection of the host plant Arabidopsis halleri with Turnip mosaic virus for 3 years without severe damage. Virus dynamics and virus–host interactions within hosts were highly season dependent. Virus accumulation in the newly formed leaves was temperature dependent and was suppressed during winter. Transcriptome analyses suggested that distinct defence mechanisms, i.e. salicylic acid (SA)-dependent resistance and RNA silencing, were predominant during spring and autumn, respectively. Transcriptomic difference between infected and uninfected plants other than defence genes appeared transiently only during autumn in upper leaves. However, the virus preserved in the lower leaves is transferred to the clonal offspring of the host plants during spring. In the linage-to-linage infection of the A. halleri–TuMV system, both host clonal reproduction and virus transmission into new clonal rosettes are secured during the winter–spring transition. How virus and host overwinter turned out to be critical for understanding a long-term virus–host interaction within hosts under temperate climates, and more generally, understanding seasonality provides new insight into ecology of plant viruses.
Collapse
|
22
|
Gene Modules Co-regulated with Biosynthetic Gene Clusters for Allelopathy between Rice and Barnyardgrass. Int J Mol Sci 2019; 20:ijms20163846. [PMID: 31394718 PMCID: PMC6719971 DOI: 10.3390/ijms20163846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Allelopathy is a central process in crop–weed interactions and is mediated by the release of allelochemicals that result in adverse growth effects on one or the other plant in the interaction. The genomic mechanism for the biosynthesis of many critical allelochemicals is unknown but may involve the clustering of non-homologous biosynthetic genes involved in their formation and regulatory gene modules involved in controlling the coordinated expression within these gene clusters. In this study, we used the transcriptomes from mono- or co-cultured rice and barnyardgrass to investigate the nature of the gene clusters and their regulatory gene modules involved in the allelopathic interactions of these two plants. In addition to the already known biosynthetic gene clusters in barnyardgrass we identified three potential new clusters including one for quercetin biosynthesis and potentially involved in allelopathic interaction with rice. Based on the construction of gene networks, we identified one gene regulatory module containing hub transcription factors, significantly positively co-regulated with both the momilactone A and phytocassane clusters in rice. In barnyardgrass, gene modules and hub genes co-expressed with the gene clusters responsible for 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) biosynthesis were also identified. In addition, we found three genes in barnyardgrass encoding indole-3-glycerolphosphate synthase that regulate the expression of the DIMBOA cluster. Our findings offer new insights into the regulatory mechanisms of biosynthetic gene clusters involved in allelopathic interactions between rice and barnyardgrass, and have potential implications in controlling weeds for crop protection.
Collapse
|
23
|
Karre S, Kumar A, Yogendra K, Kage U, Kushalappa A, Charron JB. HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight. PLANT MOLECULAR BIOLOGY 2019; 100:591-605. [PMID: 31098785 DOI: 10.1007/s11103-019-00882-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/09/2019] [Indexed: 05/20/2023]
Abstract
Crop plant resistance against pathogens is governed by dynamic molecular and biochemical responses driven by complex transcriptional networks. However, the underlying mechanisms are largely unclear. Here we report an interesting role of HvWRKY23 transcription factor (TF) in modulating defense response against Fusarium head blight (FHB) in barley. The combined approach of gene silencing, metabolomics, real time expression analysis and ab initio bioinformatics tools led to the identification of the HvWRKY23 role in FHB resistance. The knock-down of HvWRKY23 gene in the FHB resistant barley genotype CI9831, followed by inoculation with Fusarium graminearum, led to the down regulation of key flavonoid and hydroxycinnamic acid amide biosynthetic genes resulting in reduced accumulation of resistant related (RR) secondary metabolites such as pelargonidin 3-rutinoside, peonidin 3-rhamnoside-5-glucoside, kaempferol 3-O-arabinoside and other flavonoid glycosides. Reduced abundances of RR metabolites in TF silenced plants were also associated with an increased proportion of spikelets diseased and amount of fungal biomass in spikelets, depicting the role of HvWRKY23 in disease resistance. The luciferase reporter assay demonstrated binding of HvWRKY23 protein to promoters of key flavonoid and hydroxycinnamic acid amides (HCAA) biosynthetic genes, such as HvPAL2, HvCHS1, HvHCT, HvLAC15 and HvUDPGT. The accumulation of high abundances of HCAAs and flavonoid glycosides reinforce cell walls to contain the pathogen to initial infection area. This gene in commercial cultivars can be edited, if non-functional, to enhance resistance against FHB.
Collapse
Affiliation(s)
- Shailesh Karre
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Arun Kumar
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Kalenahalli Yogendra
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Udaykumar Kage
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Ajjamada Kushalappa
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada.
| | - Jean-Benoit Charron
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
24
|
Lin M, Han P, Li Y, Wang W, Lai D, Zhou L. Quinoa Secondary Metabolites and Their Biological Activities or Functions. Molecules 2019; 24:E2512. [PMID: 31324047 PMCID: PMC6651730 DOI: 10.3390/molecules24132512] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) was known as the "golden grain" by the native Andean people in South America, and has been a source of valuable food over thousands of years. It can produce a variety of secondary metabolites with broad spectra of bioactivities. At least 193 secondary metabolites from quinoa have been identified in the past 40 years. They mainly include phenolic acids, flavonoids, terpenoids, steroids, and nitrogen-containing compounds. These metabolites exhibit many physiological functions, such as insecticidal, molluscicidal and antimicrobial activities, as well as various kinds of biological activities such as antioxidant, cytotoxic, anti-diabetic and anti-inflammatory properties. This review focuses on our knowledge of the structures, biological activities and functions of quinoa secondary metabolites. Biosynthesis, development and utilization of the secondary metabolites especially from quinoa bran were prospected.
Collapse
Affiliation(s)
- Minyi Lin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peipei Han
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Weixuan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Chhetri HB, Macaya-Sanz D, Kainer D, Biswal AK, Evans LM, Chen JG, Collins C, Hunt K, Mohanty SS, Rosenstiel T, Ryno D, Winkeler K, Yang X, Jacobson D, Mohnen D, Muchero W, Strauss SH, Tschaplinski TJ, Tuskan GA, DiFazio SP. Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. THE NEW PHYTOLOGIST 2019; 223:293-309. [PMID: 30843213 DOI: 10.1111/nph.15777] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/22/2019] [Indexed: 05/08/2023]
Abstract
Genome-wide association studies (GWAS) have great promise for identifying the loci that contribute to adaptive variation, but the complex genetic architecture of many quantitative traits presents a substantial challenge. We measured 14 morphological and physiological traits and identified single nucleotide polymorphism (SNP)-phenotype associations in a Populus trichocarpa population distributed from California, USA to British Columbia, Canada. We used whole-genome resequencing data of 882 trees with more than 6.78 million SNPs, coupled with multitrait association to detect polymorphisms with potentially pleiotropic effects. Candidate genes were validated with functional data. Broad-sense heritability (H2 ) ranged from 0.30 to 0.56 for morphological traits and 0.08 to 0.36 for physiological traits. In total, 4 and 20 gene models were detected using the single-trait and multitrait association methods, respectively. Several of these associations were corroborated by additional lines of evidence, including co-expression networks, metabolite analyses, and direct confirmation of gene function through RNAi. Multitrait association identified many more significant associations than single-trait association, potentially revealing pleiotropic effects of individual genes. This approach can be particularly useful for challenging physiological traits such as water-use efficiency or complex traits such as leaf morphology, for which we were able to identify credible candidate genes by combining multitrait association with gene co-expression and co-methylation data.
Collapse
Affiliation(s)
- Hari B Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ajaya K Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Luke M Evans
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Kimberly Hunt
- ArborGen, Inc., 2011 Broadbank Ct., Ridgeville, SC, 29472, USA
| | - Sushree S Mohanty
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Todd Rosenstiel
- Department of Biology, Portland State University, Portland, OR, 97207, USA
| | - David Ryno
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kim Winkeler
- ArborGen, Inc., 2011 Broadbank Ct., Ridgeville, SC, 29472, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Steven H Strauss
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
26
|
Phytochemicals of Apple Pomace as Prospect Bio-Fungicide Agents against Mycotoxigenic Fungal Species-In Vitro Experiments. Toxins (Basel) 2019; 11:toxins11060361. [PMID: 31226831 PMCID: PMC6628436 DOI: 10.3390/toxins11060361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
The phytochemical constituents of apple waste were established as potential antifungal agents against four crops pathogens, specifically, Botrytis sp., Fusarium oxysporum, Petriella setifera, and Neosartorya fischeri. Crude, purified extracts and fractions of apple pomace were tested in vitro to evaluate their antifungal and antioxidant properties. The phytochemical constituents of the tested materials were mainly represented by phloridzin and quercetin derivatives, as well as previously undescribed in apples, monoterpene-pinnatifidanoside D. Its structure was confirmed by 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopic analyses. The fraction containing quercetin pentosides possessed the highest antioxidant activity, while the strongest antifungal activity was exerted by a fraction containing phloridzin. Sugar moieties differentiated the antifungal activity of quercetin glycosides. Quercetin hexosides possessed stronger antifungal activity than quercetin pentosides.
Collapse
|
27
|
Mecina GF, Chia MA, Cordeiro-Araújo MK, Bittencourt-Oliveira MDC, Varela RM, Torres A, González Molinillo JM, Macías FA, da Silva RMG. Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:81-91. [PMID: 30954847 DOI: 10.1016/j.aquatox.2019.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The excessive proliferation of toxin producing cyanobacteria constitutes a significant health risk to the environment and humans. This is due to the contamination of potable water and accumulation of cyanotoxins in plant and animal tissues. As a means of controlling bloom forming cyanobacteria, secondary metabolites with pro-oxidative activities from plants are used to treat water bodies contaminated with cyanobacterial blooms and their associated toxins. The objective of the present study was to evaluate the mechanism of action of extract, fractions and isolated flavonoids of Tridax procumbens L. on Microcystis aeruginosa (Kützing) Kützing. by monitoring changes in growth, oxidative stress, antioxidant response, and cyanatoxin microcystins (MCs) production. The extract, fraction 3 and the isolated flavonoids significantly reduced the cell density of the cyanobacterium. Furthermore, the extract and fraction 3 increased the production of reactive oxygen species, induced lipid peroxidation, and altered antioxidant enzyme activities of M. aeruginosa. The total MCs content of the cyanobacterium was negatively affected by the presence of the extract, fractions and isolated flavonoids. The present study show that T. procumbens has secondary metabolites that are capable of interfering with the physiology and microcystins production of M. aeruginosa. These characteristics are promising for the control of this noxious cyanobacterium in aquatic ecosystems.
Collapse
Affiliation(s)
- Gustavo Franciscatti Mecina
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages Assis, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Avenida Dom Antônio 2100, CEP: 19806-900, Assis, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Rua Prof. Francisco Degni 55, CEP: 14800-060, Araraquara, São Paulo, Brazil
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, 810001 Nigeria
| | - Micheline Kézia Cordeiro-Araújo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Maria do Carmo Bittencourt-Oliveira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Rosa Maria Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional 6 (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - Ascensión Torres
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional 6 (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - José María González Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional 6 (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - Francisco Antonio Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional 6 (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - Regildo Márcio Gonçalves da Silva
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages Assis, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Avenida Dom Antônio 2100, CEP: 19806-900, Assis, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Rua Prof. Francisco Degni 55, CEP: 14800-060, Araraquara, São Paulo, Brazil.
| |
Collapse
|
28
|
Bilska K, Stuper-Szablewska K, Kulik T, Buśko M, Załuski D, Jurczak S, Perkowski J. Changes in Phenylpropanoid and Trichothecene Production by Fusarium culmorum and F. graminearum Sensu Stricto via Exposure to Flavonoids. Toxins (Basel) 2018; 10:toxins10030110. [PMID: 29510600 PMCID: PMC5869398 DOI: 10.3390/toxins10030110] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are a group of hydroxylated polyphenolic compounds widely distributed in the plant kingdom. Biosynthesis of these compounds involves type III PKSs, whose presence has been recently predicted in some fungal species through genome sequencing efforts. In this study, for the first time it was found that Fusaria produce flavonoids on solid YES medium. Naringenin, as the central precursor of all flavonoids, was produced at highest quantities, followed by quercetin, kaempferol, apigenin and luteolin. In plants, flavonoids are involved in the protection of cereals to a wide range of stresses, including host defense against Fusaria. Under in vitro conditions, strains of Fusarium culmorum and F. graminearum sensu stricto were incubated at levels of flavonoids close to amounts produced by cereals in response to fungal infection. The amounts of exogenous naringenin, apigenin, luteolin, kaempferol and quercetin were reduced and converted by fungi to the other flavonoid derivatives. Treatment of fungi with naringenin derivatives led to the inhibition of naringenin production. Correspondingly, the production of fungal-derived phenolic acids decreased in flavonoid treated samples, although this effect appeared to be dependent on the strain, flavonoid molecule and its concentration. Fusaria showed high variability in trichothecene production in response to flavonoids. With emphasis on quercetin, mycotoxin accumulation in the media was significantly decreased by luteolin, kaempferol, naringenin and apigenin. However, in some cases, apigenin led to the increase of mycotoxin content in the media. Gene expression experiments of Tri genes responsible for trichothecene biosynthesis (Tri4, Tri5 and Tri10) proved that the inhibition of mycotoxin production by flavonoids occurred at the transcriptional level. However, the changes in Tri transcript levels were not significant in most apigenin and all kaempferol-treated cultures. In this study, a link was established between antioxidant and antiradical properties of flavonoids and their effects on fungi.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| | - Tomasz Kulik
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Maciej Buśko
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| | - Dariusz Załuski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Sebastian Jurczak
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Juliusz Perkowski
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| |
Collapse
|
29
|
Hu W, Pan X, Li F, Dong W. UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the pathogenesis of Rhizoctonia solani strain AG-1-IA. PLoS One 2018; 13:e0192486. [PMID: 29408919 PMCID: PMC5800620 DOI: 10.1371/journal.pone.0192486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/24/2018] [Indexed: 12/23/2022] Open
Abstract
To explore the pathogenesis of Rhizoctonia solani and its phytotoxin phenylacetic acid (PAA) on maize leaves and sheaths, treated leaf and sheath tissues were analyzed and interpreted by ultra-performance liquid chromatography-mass spectrometry combined with chemometrics. The PAA treatment had similar effects to those of R. solani on maize leaves regarding the metabolism of traumatin, phytosphingosine, vitexin 2'' O-beta-D-glucoside, rutin and DIBOA-glucoside, which were up-regulated, while the synthesis of OPC-8:0 and 12-OPDA, precursors for the synthesis of jasmonic acid, a plant defense signaling molecule, was down-regulated under both treatments. However, there were also discrepancies in the influences exhibited by R. solani and PAA as the metabolic concentration of zeaxanthin diglucoside in the R. solani infected leaf group decreased. Conversely, in the PAA-treated leaf group, the synthesis of zeaxanthin diglucoside was enhanced. Moreover, although the synthesis of 12 metabolites were suppressed in both the R. solani- and PAA-treated leaf tissues, the inhibitory effect of R. solani was stronger than that of PAA. An increased expression of quercitrin and quercetin 3-O-glucoside was observed in maize sheaths treated by R. solani, while their concentrations were not changed significantly in the PAA-treated sheaths. Furthermore, a significant decrease in the concentration of L-Glutamate, which plays important roles in plant resistance to necrotrophic pathogens, only occurred in the R. solani-treated sheath tissues. The differentiated metabolite levels may be the partial reason of why maize sheaths were more susceptible to R. solani than leaves and may explain the underlying mechanisms of R. solani pathogenesis.
Collapse
Affiliation(s)
- Wenjin Hu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xinli Pan
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Dortmund, Germany
| | - Fengfeng Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
30
|
Ruiz VE, Cerioni L, Zampini IC, Cuello S, Isla MI, Hilal M, Rapisarda VA. UV-B radiation on lemons enhances antifungal activity of flavedo extracts against Penicillium digitatum. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Dhokane D, Karre S, Kushalappa AC, McCartney C. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2. PLoS One 2016; 11:e0155851. [PMID: 27232496 PMCID: PMC4883744 DOI: 10.1371/journal.pone.0155851] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/05/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Fusarium head blight (FHB) caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance. FINDINGS In our study recombinant inbred lines (RILs) carrying resistant (R-RIL) and susceptible (S-RIL) alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL), callose synthase (CS), basic Helix Loop Helix (bHLH041) transcription factor, glutathione S-transferase (GST), ABC transporter-4 (ABC4) and cinnamyl alcohol dehydrogenase (CAD) as putative resistance genes localized within the QTL-Fhb2 region. CONCLUSION Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat resistance QTL-Fhb2 is associated with high rachis resistance through additive resistance effects of genes, based on cell wall enforcement and detoxification of DON. Following further functional characterization and validation, these resistance genes can be used to replace the genes in susceptible commercial cultivars, if nonfunctional, based on genome editing to improve FHB resistance.
Collapse
Affiliation(s)
- Dhananjay Dhokane
- Department of Plant Science, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Shailesh Karre
- Department of Plant Science, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Ajjamada C. Kushalappa
- Department of Plant Science, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Curt McCartney
- Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, R3T 2M9, Canada
| |
Collapse
|
32
|
Piola F, Bellvert F, Meiffren G, Rouifed S, Walker V, Comte G, Bertrand C. InvasiveFallopia×bohemicainterspecific hybrids display different patterns in secondary metabolites. ECOSCIENCE 2015. [DOI: 10.2980/20-3-3597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014; 19:16240-65. [PMID: 25310150 PMCID: PMC6270724 DOI: 10.3390/molecules191016240] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are small molecular secondary metabolites synthesized by plants with various biological activities. Due to their physical and biochemical properties, they are capable of participating in plants' interactions with other organisms (microorganisms, animals and other plants) and their reactions to environmental stresses. The majority of their functions result from their strong antioxidative properties. Although an increasing number of studies focus on the application of flavonoids in medicine or the food industry, their relevance for the plants themselves also deserves extensive investigations. This review summarizes the current knowledge on the functions of flavonoids in the physiology of plants and their relations with the environment.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Kamil Kostyn
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Anna Kulma
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
34
|
|
35
|
Yan Z, Guo H, Yang J, Liu Q, Jin H, Xu R, Cui H, Qin B. Phytotoxic flavonoids from roots of Stellera chamaejasme L. (Thymelaeaceae). PHYTOCHEMISTRY 2014; 106:61-68. [PMID: 25096753 DOI: 10.1016/j.phytochem.2014.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/14/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Allelopathy, the negative effect on plants of chemicals released to the surroundings by a neighboring plant, is an important factor which contributes to the spread of some weeds in plant communities. In this field, Stellera chamaejasme L. (Thymelaeaceae) is one of the most toxic and ecologically-threatening weeds in some of the grasslands of north and west China. Bioassay-guided fractionation of root extracts of this plant led to the isolation of eight flavonoids 1-8, whose structures were elucidated by spectroscopic analysis. All compounds obtained, except 7-methoxylneochaejasmin A (4) and (+)-epiafzelechin (5), showed strong phytotoxic activity against Arabidopsis thaliana seedlings. Seedling growth was reduced by neochamaejasmin B (1), mesoneochamaejasmin A (2), chamaejasmenin C (3), genkwanol A (6), daphnodorin B (7) and dihydrodaphnodorin B (8) with IC50 values of 6.9, 12.1, 43.2, 74.8, 7.1 and 27.3μg/mL, respectively, and all of these compounds disrupted root development. Endogenous auxin levels at the root tips of the A. thaliana DR5::GUS transgenic line were largely reduced by compounds 1, 2 and 6-8, and were increased by compound 4. Moreover, the inhibition rate of A. thaliana auxin transport mutants pin2 and aux1-7 by compounds 1-8 were all lower than the wild type (Col-0). The influence of these compounds on endogenous auxin distribution is thus proposed as a critical factor for the phytotoxic effect. Compounds 1, 2, 4 and 8 were found in soils associated with S. chamaejasme, and these flavonoids also showed phytotoxicity to Clinelymus nutans L., an associated weed of S. chamaejasme. These results indicated that some phytotoxic compounds from roots of S. chamaejasme may be involved in the potential allelopathic behavior of this widespread weed.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hongru Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jiayue Yang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Quan Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hui Jin
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Rui Xu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Haiyan Cui
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Bo Qin
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
36
|
Salhi N, Salama MED, Halilat MET. Allelotoxicity of Oudneya africana R. Br. aqueous leachate on germination efficiency of Bromus tectorum L. and Triticum aestivum L. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/ajb2013.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
37
|
Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB. Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 2013; 169:353-60. [PMID: 24168925 DOI: 10.1016/j.micres.2013.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/24/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
The present study was carried out with the aim of evaluating the effectiveness and potentiality of three compatible rhizosphere microbes, viz., fluorescent Pseudomonas aeruginosa (PHU094), Trichoderma harzianum (THU0816) and Mesorhizobium sp. (RL091), in promoting plant growth and mobilizing phenolic acid biosynthesis in chickpea under challenge of Sclerotium rolfsii. The microbes were applied as seed coating in different combinations in two experimental sets and the pathogen was inoculated after 25 days of sowing in one set. Results revealed that microbe application led to higher growth in chickpea particularly in the triple microbe combination compared to their individual treatments and control. Similarly, pathogen challenged plants accumulated higher amount of phenolic compounds both at the site of attack of the pathogen i.e. collar region as well as leaves compared to unchallenged plants. All the bioagents were found to trigger the level of phenolic compounds at collar region in varying degrees as compared to the healthy control (A). However, the most effective treatment was D7 (combined application of PHU094, THU0816 and RL091 with pathogen challenge) among all the treatments. Shikimic acid was maximally induced amongst all the phenolic compounds. In leaves also, the most effective treatment was D7 where shikimic acid, t-chlorogenic acid, ferulic acid, myricetin, quercetin and syringic acid were produced in higher amounts as compared to treatment B where the plants were challenged only with the pathogen.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Akansha Jain
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India.
| | - Ram S Upadhyay
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
38
|
De Martino L, Mencherini T, Mancini E, Aquino RP, De Almeida LFR, De Feo V. In vitro phytotoxicity and antioxidant activity of selected flavonoids. Int J Mol Sci 2012; 13:5406-5419. [PMID: 22754304 PMCID: PMC3382788 DOI: 10.3390/ijms13055406] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/24/2012] [Accepted: 04/28/2012] [Indexed: 12/22/2022] Open
Abstract
The knowledge of flavonoids involved in plant-plant interactions and their mechanisms of action are poor and, moreover, the structural characteristics required for these biological activities are scarcely known. The objective of this work was to study the possible in vitro phytotoxic effects of 27 flavonoids on the germination and early radical growth of Raphanus sativus L. and Lepidium sativum L., with the aim to evaluate the possible structure/activity relationship. Moreover, the antioxidant activity of the same compounds was also evaluated. Generally, in response to various tested flavonoids, germination was only slightly affected, whereas significant differences were observed in the activity of the various tested flavonoids against radical elongation. DPPH test confirms the antioxidant activity of luteolin, quercetin, catechol, morin, and catechin. The biological activity recorded is discussed in relation to the structure of compounds and their capability to interact with cell structures and physiology. No correlation was found between phytotoxic and antioxidant activities.
Collapse
Affiliation(s)
- Laura De Martino
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano, Salerno, Italy; E-Mails: (L.D.M.); (T.M.); (E.M.); (R.P.A.)
| | - Teresa Mencherini
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano, Salerno, Italy; E-Mails: (L.D.M.); (T.M.); (E.M.); (R.P.A.)
| | - Emilia Mancini
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano, Salerno, Italy; E-Mails: (L.D.M.); (T.M.); (E.M.); (R.P.A.)
| | - Rita Patrizia Aquino
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano, Salerno, Italy; E-Mails: (L.D.M.); (T.M.); (E.M.); (R.P.A.)
| | - Luiz Fernando Rolim De Almeida
- Departamento de Botânica, Instituto de Biociências de Botucatu, UNESP-Campu de Botucatu Distrito de Rubião Júnior, S/N, 18.618-000, Botucatu-SP, Brazil; E-Mail:
| | - Vincenzo De Feo
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano, Salerno, Italy; E-Mails: (L.D.M.); (T.M.); (E.M.); (R.P.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-089-969751; Fax: +39-089-969602
| |
Collapse
|
39
|
Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3429-44. [PMID: 22213816 DOI: 10.1093/jxb/err430] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The flavonoid pathway produces a diverse array of plant compounds with functions in UV protection, as antioxidants, pigments, auxin transport regulators, defence compounds against pathogens and during signalling in symbiosis. This review highlights some of the known function of flavonoids in the rhizosphere, in particular for the interaction of roots with microorganisms. Depending on their structure, flavonoids have been shown to stimulate or inhibit rhizobial nod gene expression, cause chemoattraction of rhizobia towards the root, inhibit root pathogens, stimulate mycorrhizal spore germination and hyphal branching, mediate allelopathic interactions between plants, affect quorum sensing, and chelate soil nutrients. Therefore, the manipulation of the flavonoid pathway to synthesize specifically certain products has been suggested as an avenue to improve root-rhizosphere interactions. Possible strategies to alter flavonoid exudation to the rhizosphere are discussed. Possible challenges in that endeavour include limited knowledge of the mechanisms that regulate flavonoid transport and exudation, unforeseen effects of altering parts of the flavonoid synthesis pathway on fluxes elsewhere in the pathway, spatial heterogeneity of flavonoid exudation along the root, as well as alteration of flavonoid products by microorganisms in the soil. In addition, the overlapping functions of many flavonoids as stimulators of functions in one organism and inhibitors of another suggests caution in attempts to manipulate flavonoid rhizosphere signals.
Collapse
Affiliation(s)
- Samira Hassan
- Division of Plant Science, Research School of Biology, Australian National University, Linnaeus Way, Canberra, ACT 0200, Australia
| | | |
Collapse
|
40
|
Bellaloui N. Soybean Seed Phenol, Lignin, and Isoflavones and Sugars Composition Altered by Foliar Boron Application in Soybean under Water Stress. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.34080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Flamini G. Natural Herbicides as a Safer and More Environmentally Friendly Approach to Weed Control: A Review of the Literature Since 2000. BIOACTIVE NATURAL PRODUCTS 2012. [DOI: 10.1016/b978-0-444-59530-0.00013-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA. Phenolics and plant allelopathy. Molecules 2010; 15:8933-52. [PMID: 21139532 PMCID: PMC6259130 DOI: 10.3390/molecules15128933] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/21/2010] [Accepted: 11/25/2010] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds arise from the shikimic and acetic acid (polyketide) metabolic pathways in plants. They are but one category of the many secondary metabolites implicated in plant allelopathy. Phenolic allelochemicals have been observed in both natural and managed ecosystems, where they cause a number of ecological and economic problems, such as declines in crop yield due to soil sickness, regeneration failure of natural forests, and replanting problems in orchards. Phenolic allelochemical structures and modes of action are diverse and may offer potential lead compounds for the development of future herbicides or pesticides. This article reviews allelopathic effects, analysis methods, and allelopathic mechanisms underlying the activity of plant phenolic compounds. Additionally, the currently debated topic in plant allelopathy of whether catechin and 8-hydroxyquinoline play an important role in Centaurea maculata and Centaurea diffusa invasion success is discussed. Overall, the main purpose of this review is to highlight the allelopacthic potential of phenolic compounds to provide us with methods to solve various ecology problems, especially in regard to the sustainable development of agriculture, forestry, nature resources and environment conservation.
Collapse
Affiliation(s)
- Zhao-Hui Li
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - Qiang Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
- Authors to whom correspondence should be addressed; E-Mails: (Q.W.); (D.-A.J.); Tel.: +86-574-88134338 (Q.W.); +86-571-88206461(D.-A.J.); Fax: +86-574-88229545 (Q.W.); +86-571-88206461(D.-A.J.)
| | - Xiao Ruan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - Cun-De Pan
- College of Forest, Xinjiang Agricultural University, Urumqi 830052, China
| | - De-An Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Authors to whom correspondence should be addressed; E-Mails: (Q.W.); (D.-A.J.); Tel.: +86-574-88134338 (Q.W.); +86-571-88206461(D.-A.J.); Fax: +86-574-88229545 (Q.W.); +86-571-88206461(D.-A.J.)
| |
Collapse
|
43
|
Allelochemical, eudesmane-type sesquiterpenoids from Inula falconeri. Molecules 2010; 15:1554-61. [PMID: 20336000 PMCID: PMC6257347 DOI: 10.3390/molecules15031554] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/25/2010] [Accepted: 03/05/2010] [Indexed: 11/17/2022] Open
Abstract
We have identified through bioassay guided isolation an allelochemical, eudesmane-type sesquiterpeniod, 3beta-caffeoxyl-beta1,8alpha-dihydroxyeudesm-4(15)-ene (1), from an endemic plant species growing in the Himalayas. In our search for the bioactive subfraction, the hexane one was highly significant, showing 100% inhibition of lettuce seed growth at 100 ppm while other subfractions (chloroform, ethyl acetate, butanol and water) exhibited inhibitory to stimulatory allelopathic effects. The bioactive hexane subfraction was subjected to chromatographic techniques, using lettuce seeds (Lactuca sativa) as indicator species to reveal the bioactive allelopathic fraction. This resulted in the isolation of compound 1, whose structure was elucidated through NMR techniques. The compound presented 92.34% inhibitory effect on the growth of lettuce at 500 ppm. Further field level experiments may help develop an environmentally friendly herbicide from this lead.
Collapse
|
44
|
Razavi SM, Zahri S, Zarrini G, Nazemiyeh H, Mohammadi S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2009; 35:414-6. [PMID: 19621057 DOI: 10.1134/s1068162009030133] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytotoxic, phytotoxic, antimicrobial and antioxidant effects of quercetin 3-O-glucoside (Q3G) isolated by HPLC from aerial parts of Prangos ferulaceae was studied by MTT assay, lettuce germination assay, disk diffusion and DPPH method. Our results showed that Q3G exhibits high antioxidant effect with RC(50) of 22 microg/mL, it has low cytotoxicity and no antibacterial effects. Q3G exhibits high phytotoxic effect with IC(50) value of 282.7 microg/ml, as well. It is assumed that Q3G does not play a defense role in plants and it may act as an allelopatic agent.
Collapse
Affiliation(s)
- Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh-Ardabili, Ardabil, Iran.
| | | | | | | | | |
Collapse
|
45
|
Kalinova J, Vrchotova N. Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2719-25. [PMID: 19253962 DOI: 10.1021/jf803633f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Buckwheat is well-known as a crop rich in flavonoids, however, attention has usually only been paid to the main flavonoid rutin as an important natural antioxidant or as a possible allelopathic compound. Therefore, some of the other constituents found within individual plant parts of buckwheat (isoquercitrin, quercetin, catechin, and myricetin), as well as changes of their level during the growing season, were determined by HPLC analysis. The effects of these compounds on plant growth were proved on seven plant species. In buckwheat, isoquercitrin represented the largest component of the selected compounds. The strongest inhibitive effects on the growth of those selected plants were produced by catechin. Quercetin and isoquercitrin had weak inhibitive effects. Myricetin did not show any influence on plant growth. Hence we suppose that myricetin, isoquercetin and quercetin do not have important function in allelopathy of buckwheat. Buckwheat as row material for functional foods could be a significant source of another antioxidant, isoquercitrin.
Collapse
Affiliation(s)
- Jana Kalinova
- Faculty of Agriculture, University of South Bohemia, Studentska 13, 370 05 Ceske Budejovice, Czech Republic.
| | | |
Collapse
|
46
|
Fiorentino A, Ricci A, D'Abrosca B, Golino A, Izzo A, Pascarella M, Piccolella S, Esposito A. Kaempferol Glycosides fromLobularia maritimaand Their Potential Role in Plant Interactions. Chem Biodivers 2009; 6:204-17. [DOI: 10.1002/cbdv.200800097] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Tucker G, Robards K. Bioactivity and structure of biophenols as mediators of chronic diseases. Crit Rev Food Sci Nutr 2009; 48:929-66. [PMID: 18949595 DOI: 10.1080/10408390701761977] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biophenols and their associated activity have generated intense interest. Current topics of debate are their bioavailability and bioactivity. It is generally assumed that their plasma concentrations are insufficient to produce the health benefits previously attributed to their consumption. However, data on localized in vivo concentrations are not available and many questions remain unanswered. Potential mechanisms by which they may exert significant bioactivity are discussed together with structure activity relationships. Biophenols are highly reactive species and they can react with a range of other compounds. Products of their reaction when functioning as antioxidants are examined.
Collapse
Affiliation(s)
- Gregory Tucker
- School of Biosciences, University of Nottingham, Loughborough, Leics, UK
| | | |
Collapse
|
48
|
Puhl I, Stadler F, Treutter D. Alterations of flavonoid biosynthesis in young grapevine (Vitis vinifera L.) leaves, flowers, and berries induced by the dioxygenase inhibitor prohexadione-Ca. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2498-2504. [PMID: 18335993 DOI: 10.1021/jf0727645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Prohexadione-Ca is a structural mimic of 2-oxoglutarate, and according to this property, it is able to inhibit dioxygenase enzymes, which require 2-oxoglutarate as a cosubstrate. Such enzymes are involved in flavonoid biosynthesis; therefore, prohexadione-Ca treatment leads to alterations in the flavonoid metabolism in grapevine tissues. Because of the fact that phenolic compounds often are responsible for enhanced plant resistance, modification of phenylpropanoid metabolism using elicitation can be considered as a new potential strategy in plant protection. The phenolic compounds were analyzed by high-performance liquid chromatography combined with chemical reaction detection. Tissue treatment induced the accumulation of unusual flavonoids, which were identified as derivatives of pentahydroxyflavanone, eriodictyol, and luteoliflavan. Concentrations of constitutive flavonoids were also affected by the bioregulator treatment. The alterations of the flavonoid profiles are discussed with respect to substrate preferences of relevant enzymes.
Collapse
Affiliation(s)
- Iva Puhl
- Centre of Life and Food Sciences Weihenstephan, Technische Universität München Fachgebiet für Obstbau, Freising, Germany
| | | | | |
Collapse
|
49
|
Abdel-Farid IB, Kim HK, Choi YH, Verpoorte R. Metabolic characterization of Brassica rapa leaves by NMR spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7936-43. [PMID: 17708639 DOI: 10.1021/jf071294b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Brassica has been intensively studied due to the nutritional and beneficial effects. However, many species, varieties, and cultivars of this genus and the resulting large metabolic variation have been obstacles for systematic research of the plant. In order to overcome the problems posed by the biological variation, the metabolomic analysis of various cultivars of Brassica rapa was performed by NMR spectroscopy combined with multivariate data analysis. Discriminating metabolites in different cultivars and development stages were elucidated by diverse 2D-NMR techniques after sorting out different significant signals using (1)H NMR measurements and principal component analysis. Among the elucidated metabolites, several organic and amino acids, carbohydrates, adenine, indole acetic acid (IAA), phenylpropanoids, flavonoids, and glucosinolates were found to be the metabolites contributing to the differentiation between cultivars and age of Brassica rapa. On the basis of these results, the distribution of plant metabolites among different cultivars and development stages of B. rapa is discussed.
Collapse
Affiliation(s)
- Ibrahim Bayoumi Abdel-Farid
- Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
50
|
Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:581-91. [PMID: 16388461 DOI: 10.1055/s-2005-873009] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The roles of flavonoids in plant defence against pathogens, herbivores, and environmental stress are reviewed and their significant contribution to plant resistance is discussed. The induction of flavonoids is of particular interest for gathering evidence of their roles. Tools are mentioned which may enhance flavonoid biosynthesis and accumulation. These include metabolic engineering and UV light. The induction of defence-related flavonoids is modified by other determining factors and competition between growth and secondary metabolism may exist. In an evolutionary context, stress-related oxidative pressure may have been a major trigger for the distribution and abundance of flavonoids. UV protection is one of their most significant, or even the most significant, functional role for flavonoids. The multi-functionality of these compounds, however, often complicates the interpretation of experimental results but, overall, it supports the importance of flavonoids.
Collapse
Affiliation(s)
- D Treutter
- Unit of Fruit Science, Center of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 16, 85350 Freising, Germany.
| |
Collapse
|