1
|
Jahan F, Penna L, Luostarinen A, Veltman L, Hongisto H, Lähteenmäki K, Müller S, Ylä-Herttuala S, Korhonen M, Vettenranta K, Laitinen A, Salmenniemi U, Kerkelä E. Automated and closed clinical-grade manufacturing protocol produces potent NK cells against neuroblastoma cells and AML blasts. Sci Rep 2024; 14:26678. [PMID: 39496674 DOI: 10.1038/s41598-024-76791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Natural killer (NK) cells are a promising allogeneic immunotherapy option due to their natural ability to kill tumor cells, and due to their apparent safety. This study describes the development of a GMP-compliant manufacturing protocol for the local production of functionally potent NK cells tailored for high-risk acute myeloid leukemia (AML) and neuroblastoma (NBL) patients. Moreover, the quality control strategy and considerations for product batch specifications in early clinical development are described. The protocol is based on the CliniMACS Prodigy platform and Natural Killer Cell Transduction (NKCT) (Miltenyi Biotec). NK cells are isolated from leukapheresis through CD3 depletion and CD56 enrichment, followed by a 12-hour activation with IL-2 and IL-15 cytokines. Three CliniMACS Prodigy processes demonstrated the feasibility and consistency of the modified NKCT process. A three-step process without expansion, however, compromised the NK cell yield. T cells were depleted effectively, indicating excellent safety of the product. Characterization of the NK cells before and after cytokine activation revealed a notable increase in the expression of activation markers, particularly CD69, consistent with enhanced functionality. Intriguingly, the NK cells exhibited increased killing efficacy against patient-derived CD33 + AML blasts and NBL cells in vitro, suggesting a potential therapeutic benefit in AML and NBL.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Neuroblastoma/pathology
- Neuroblastoma/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Interleukin-15/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Interleukin-2/metabolism
- Leukapheresis/methods
- Cytokines/metabolism
Collapse
Affiliation(s)
- Farhana Jahan
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Leena Penna
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Annu Luostarinen
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Laurens Veltman
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heidi Hongisto
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | | | - Sabine Müller
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, Germany
| | - Seppo Ylä-Herttuala
- Translational Cancer Medicine Research Program, University of Eastern Finland, Kuopio, Finland
| | - Matti Korhonen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kim Vettenranta
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- University of Helsinki and the Children's Hospital, Helsinki, Finland
| | - Anita Laitinen
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Urpu Salmenniemi
- Stem Cell Transplantation Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland.
| |
Collapse
|
2
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Arellano-Ballestero H, Zubiak A, Dally C, Orchard K, Alrubayyi A, Charalambous X, Michael M, Torrance R, Eales T, Das K, Tran MGB, Sabry M, Peppa D, Lowdell MW. Proteomic and phenotypic characteristics of memory-like natural killer cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e008717. [PMID: 39032940 PMCID: PMC11261707 DOI: 10.1136/jitc-2023-008717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Human and mouse natural killer (NK) cells have been shown to develop memory-like function after short-term exposure to the cocktail of IL-12/15/18 or to overnight co-culture with some tumor cell lines. The resulting cells retain enhanced lytic ability for up to 7 days as well as after cryopreservation, and memory-like NK cells (mlNK) have been shown to induce complete remissions in patients with hematological malignancies. No single phenotype has been described for mlNK and the physiological changes induced by the short-term cytokine or tumor-priming which are responsible for these enhanced functions have not been fully characterized. Here, we have generated mlNK by cytokine and tumor-priming to find commonalities to better define the nature of NK cell "memory" in vitro and, for the first time, in vivo. METHODS We initiated mlNK in vitro from healthy donors with cytokines (initiated cytokine-induced memory-like (iCIML)-NK) and by tumor priming (TpNK) overnight and compared them by high-dimensional flow cytometry, proteomic and metabolomic profiling. As a potential mechanism of enhanced cytolytic function, we analyzed the avidity of binding of the mlNK to NK-resistant tumors (z-Movi). We generated TpNK from healthy donors and from cancer patients to determine whether mlNK generated by interaction with a single tumor type could enhance lytic activity. Finally, we used a replication-incompetent tumor cell line (INKmune) to treat patients with myeloid leukaemias to potentiate NK cell function in vivo. RESULTS Tumor-primed mlNK from healthy donors and patients with cancer showed increased cytotoxicity against multiple tumor cell lines in vitro, analogous to iCIML-NK cells. Multidimensional cytometry identified distinct memory-like profiles of subsets of cells with memory-like characteristics; upregulation of CD57, CD69, CD25 and ICAM1. Proteomic profiling identified 41 proteins restricted to mlNK cells and we identified candidate molecules for the basis of NK memory which can explain how mlNK overcome inhibition by resistant tumors. Finally, of five patients with myelodysplastic syndrome or refractory acute myeloid leukemia treated with INKmune, three responded to treatment with measurable increases in NK lytic function and systemic cytokines. CONCLUSIONS NK cell "memory" is a physiological state associated with resistance to MHC-mediated inhibition, increased metabolic function, mitochondrial fitness and avidity to NK-resistant target cells.
Collapse
Affiliation(s)
| | - Agnieszka Zubiak
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Chris Dally
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kim Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | | | | | - Trinity Eales
- Cancer Institute, University College London, London, UK
| | | | - Maxine G. B. Tran
- Department of Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
| | - May Sabry
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Mark W. Lowdell
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| |
Collapse
|
4
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
5
|
Wu Y, Wang Y, Ji J, Kuang P, Chen X, Liu Z, Li J, Dong T, Li X, Chen Q, Liu T. A pilot study of cord blood-derived natural killer cells as maintenance therapy after autologous hematopoietic stem cell transplantation. Ann Hematol 2023; 102:3229-3237. [PMID: 37775597 DOI: 10.1007/s00277-023-05471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Natural killer (NK) cell based immunotherapy is an emerging strategy in hematologic malignancies because allogeneic NK cells can provide potent antitumor immunity without inducing graft-versus-host disease. Thus, we expanded cord blood-derived NK (CB-NK) cells ex vivo from random (MHC mismatched and KIR mismatched) donors, and investigate the feasibility and efficacy of repeated infusions CB-NK cells as maintenance therapy after autologous hematopoietic stem cell transplantation (ASCT). Thirty-one patients with acute myeloid leukemia and high-risk lymphoma received ASCT and the adoptive CB-NK cell multiple infusions for maintenance therapy. Patients received a median dose of 5.98 × 107/kg (range, 1.87-17.69 × 107/kg) CB-NK cells and 23 patients completed four infusions, 8 patients received three infusions. Only mild infusion reactions occurred in 15.5% of 116 infusions. Compared to a contemporaneous cohort of 90 patients who did not receive NK cell therapy, the adoptive transfer of CB-NK cells as maintenance treatment showed a tendency of difference in decreasing the relapse rate between CB-NK group and control group (9.7% vs 24.4%). The patients who receiving NK cell infusions had a better PFS and OS than controls (4 year PFS, 84.4 ± 8.3% vs 73.5 ± 5.4%; and 4 year OS, 100% vs 78.1 ± 5.4%) . These findings demonstrate safety and validity of maintenance therapy using CB-NK cells multiple infusions after ASCT, and it is worthy of further clinical trial verification.
Collapse
Affiliation(s)
- Yuling Wu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yue Wang
- Sichuan Cord Blood Bank and Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, Sichuan, China
| | - Jie Ji
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pu Kuang
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinchuan Chen
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhigang Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jian Li
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tian Dong
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelian Li
- Sichuan Cord Blood Bank and Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, Sichuan, China
| | - Qiang Chen
- Sichuan Cord Blood Bank and Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, Sichuan, China
| | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Motallebnejad P, Kantardjieff A, Cichocki F, Azarin SM, Hu WS. Process engineering of natural killer cell-based immunotherapy. Trends Biotechnol 2023; 41:1314-1326. [PMID: 37142447 PMCID: PMC10523923 DOI: 10.1016/j.tibtech.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
Cell therapy offers the potential for curative treatment of cancers. Although T cells have been the predominantly used cell type, natural killer (NK) cells have attracted great attention owing to their ability to kill cancer cells and because they are naturally suitable for allogeneic applications. Upon stimulation by cytokines or activation by a target cell, NK cells proliferate and expand their population. These cytotoxic NK cells can be cryopreserved and used as an off-the-shelf medicine. The production process for NK cells thus differs from that of autologous cell therapies. We briefly outline key biological features of NK cells, review the manufacturing technologies for protein biologics, and discuss their adaptation for developing robust NK cell biomanufacturing processes.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Shman TV, Vashkevich KP, Migas AA, Matveyenka MA, Lasiukov YA, Mukhametshyna NS, Horbach KI, Aleinikova OV. Phenotypic and functional characterisation of locally produced natural killer cells ex vivo expanded with the K562-41BBL-mbIL21 cell line. Clin Exp Med 2023; 23:2551-2560. [PMID: 36527513 DOI: 10.1007/s10238-022-00974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
We characterised the expansion, phenotype and functional activity of natural killer (NK) cells obtained for a clinical trial. Nineteen expansion procedures were performed to obtain NK cell products for 16 patients. NK cells were expanded ex vivo from haploidentical donor peripheral blood mononuclear cells in the presence of the locally generated feeder cell line K-562 with ectopic expression of 4-1BBL and mbIL-21. The median duration of expansion was 18 days (interquartile range 15-19). The median number of live cells yielded was 2.26 × 109 (range 1.6-3.4 × 109) with an NK content of 96.6% (range 95.1-97.9%). The median NK cell fold expansion was 171 (range 124-275). NK cell fold expansion depended on the number of seeded NK cells, the initial level of C-myc expression and the initial number of mature and immature NK cells. The majority of expanded NK cells had the phenotype of immature activated cells (NKG2A + , double bright CD56 + + CD16 + + , CD57-) expressing NKp30, NKp44, NKp46, NKG2D, CD69, HLA-DR and CD96. Despite the expression of exhaustion markers, expanded NK cells exhibited high cytolytic activity against leukaemia cell lines, high degranulation activity and cytokine production. There was a noted decrease in the functional activity of NK cells in tests against the patient's blasts.In conclusion, NK cells obtained by ex vivo expansion with locally generated K562-41BBL-mbIL21 cells had a relatively undifferentiated phenotype and enhanced cytolytic activity against cancer cell lines. Expansion of NK cells with feeder cells yielded a sufficient quantity of the NK cell product to reach high cell doses or increase the frequency of cell infusions for adoptive immunotherapy. Registered at clinicaltrials.gov as NCT04327037.
Collapse
Affiliation(s)
- Tatsiana V Shman
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus.
| | - Katsiaryna P Vashkevich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Alexandr A Migas
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Mikhail A Matveyenka
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Yauheni A Lasiukov
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Nastassia S Mukhametshyna
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Katsiaryna I Horbach
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| | - Olga V Aleinikova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Reg., d., Frunzenskaya Str., 43., 223053, Borovliany, Belarus
| |
Collapse
|
8
|
Çubukçu HC, Mesutoğlu PY, Seval GC, Beksaç M. Ex vivo expansion of natural killer cells for hematological cancer immunotherapy: a systematic review and meta-analysis. Clin Exp Med 2023; 23:2503-2533. [PMID: 36333526 DOI: 10.1007/s10238-022-00923-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The present systematic review aimed to investigate natural killer (NK) cell ex vivo expansion protocols within the scope of clinical trials targeting hematological cancer and to conduct a meta-analysis to assess the effect of NK cell infusion on survival. Research articles of clinical studies in which cell products produced by ex vivo expansion, consisting of a certain amount of NK cells and infused to patients with hematological cancer, were included in the systematic review. We conducted a proportion analysis with random effects for product purity and viability values. Studies having control groups were included in the survival meta-analysis. Among 11.028 identified records, 21 were included in the systematic review. We observed statistically significant heterogeneity for viability (I2 = 97.83%, p < 0.001) and purity values (I2 = 99.95%, p < 0.001), which was attributed to the diversity among isolation and expansion protocols. In addition, the survival meta-analysis findings suggested that NK cell therapy favors disease-free survival (DFS) of patients with myeloid malignancies but limited to only two clinical studies (odds ratio = 3.40 (confidence interval:1.27-9.10), p = 0.01). While included protocols yielded cell products with acceptable viability, the utility of immunomagnetic methods; feeder cells such as K562 expressing membrane-bound IL15 and 4-1BBL or expressing membrane-bound IL21 and 4-1BBL might be preferable to achieve better purity. In conclusion, NK cell therapy has a potential to improve DFS of patients with myeloid malignancies.
Collapse
Affiliation(s)
- Hikmet Can Çubukçu
- Interdisciplinary Stem Cells and Regenerative Medicine, Ankara University Stem Cell Institute, Ankara, Turkey
- Autism, Special Mental Needs and Rare Diseases Department, General Directorate of Health Services, Turkish Ministry of Health, Ankara, Turkey
| | | | | | - Meral Beksaç
- Department of Hematology, Ankara University, Ankara, Turkey.
| |
Collapse
|
9
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
10
|
Silla L. Peripheral blood persistence and expansion of transferred non-genetically modified Natural Killer cells might not be necessary for clinical activity. IMMUNOTHERAPY ADVANCES 2023; 3:ltac024. [PMID: 36726770 PMCID: PMC9885937 DOI: 10.1093/immadv/ltac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that react without previous exposition to virus infected or malignant cells and stimulate adaptive immune response to build a long-lasting immunity against it. To that end, tissue resident NK cells are predominantly regulatory as opposed to cytotoxic. In the hematopoietic stem cell transplant (HSCT) setting, which curative potential relies on the graft versus leukemia effect, NK cells are known to play a significant role. This knowledge has paved the way to the active investigation on its anti-tumor effect outside the stem cell transplant scenario. Based on the relevant literature on the adoptive transfer of non-genetically modified NK cells for the treatment of relapsed/refractory acute leukemia and on our own experience, we discuss the role of donor cell peripheral blood persistence and expansion and its lack of correlation with anti-leukemia activity.
Collapse
Affiliation(s)
- Lucia Silla
- Correspondence: Rua Ramiro, Barcelos #2350, Universidade Federal do Rio, Grande do Sul, Porto Alegre, RS 90035-903, Brazil;
| |
Collapse
|
11
|
Wu J, Wu D, Wu G, Bei HP, Li Z, Xu H, Wang Y, Wu D, Liu H, Shi S, Zhao C, Xu Y, He Y, Li J, Wang C, Zhao X, Wang S. Scale-out production of extracellular vesicles derived from natural killer cells via mechanical stimulation in a seesaw-motion bioreactor for cancer therapy. Biofabrication 2022; 14. [PMID: 35793612 DOI: 10.1088/1758-5090/ac7eeb] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Extracellular vesicles (EVs) derived from immune cells have shown great anti-cancer therapeutic potential. However, inefficiency in EV generation has considerably impeded the development of EV-based basic research and clinical translation. Here, we developed a seesaw-motion bioreactor (SMB) system by leveraging mechanical stimuli such as shear stress and turbulence for generating EVs with high quality and quantity from natural killer (NK) cells. Compared to EV production in traditional static culture (229 ± 74 particles per cell per day), SMB produced NK-92MI-derived EVs at a higher rate of 438 ± 50 particles per cell per day and yielded a total number of 2 × 1011 EVs over two weeks via continuous dynamic fluidic culture. In addition, the EVs generated from NK-92MI cells in SMB shared a similar morphology, size distribution, and protein profile to EVs generated from traditional static culture. Most importantly, the NK-92MI-derived EVs in SMB were functionally active in killing melanoma and liver cancer cells in both 2D and 3D culture conditions in vitro, as well as in suppressing melanoma growth in vivo. We believe that SMB is an attractive approach to producing EVs with high quality and quantity; it can additionally enhance EV production from NK92-MI cells and promote both the basic and translational research of EVs.
Collapse
Affiliation(s)
- Jianguo Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Di Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Guohua Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, Hong Kong SAR, HONG KONG
| | - Zihan Li
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Han Xu
- Department of Building Environment and Energy Engineering, Xi'an Jiaotong University, 28 Xianning W Rd, Beilin, Xi'An, Shaanxi, China, 710049, Xi'an, Shanxi Province, 710049, CHINA
| | - Yimin Wang
- Institute of Translational Medicine, Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, HangZhou, 310027, CHINA
| | - Dan Wu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Hui Liu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Shengyu Shi
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, The Old Schools, Trinity Ln, Cambridge CB2 1TN, United Kingdom, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yibing Xu
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Yong He
- Department of Mechanical Engineering, Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, ZheJiang, 310027, CHINA
| | - Jun Li
- Zhejiang University, 866 Yuhangtang Rd, Xihu, Hangzhou, Zhejiang, China, 310027, Hangzhou, Zhejiang Province, 310058, CHINA
| | - Changyong Wang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institude of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Medical Sciences, Taiping Rd. 27, 100850, Tianjin, Beijing, China, Beijing, 100850, CHINA
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong, Hong Kong SAR, 999077, HONG KONG
| | - Shuqi Wang
- Sichuan University, 252 Shuncheng Ave, Qingyang District, Chengdu, Sichuan, China, Chengdu, Sichuan, 610017, CHINA
| |
Collapse
|
12
|
Cao XH, Wang ZD, Sun YQ, Kong J, Lu SY, Tang FF, Zhang YY, Wang JZ, Xu LP, Zhang XH, Wang Y, Liu KY, Huang XJ, Zhao XY. [Comparison of the characteristics of NK cells after two different methods of expansion and observation of the clinical efficacy in patients who relapsed post allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:400-407. [PMID: 35680598 PMCID: PMC9250962 DOI: 10.3760/cma.j.issn.0253-2727.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/23/2022]
Abstract
Objective: To explore the differences in the biological effects of different expansion systems on natural killer (NK) cells, as well as the safety and preliminary clinical efficacy in the treatment of patients with recurrence after allogeneic hematopoietic stem cell transplantation (allo-HSCT) . Methods: Peripheral blood cells from healthy donors were stimulated with either CD3 combined with CD52 or K562 feeder cells loaded with IL-21/4-1BB to induce NK cell expansion. Changes in the NK cell phenotype, cytokine secretion, and cytotoxicity before and after expansion were detected. We also evaluated the safety and clinical efficacy of two different expansion strategies for patients received NK infusion. Results: Compared with the CD3/CD52 monoclonal antibody amplification system, the feeder cell expansion group had a higher purity of NK cells and higher expression ratios of NK cell surface activation receptors such as DNAM-1 and NKp30, while inhibitory receptor CTLA-4 expression was low and NKG2D/CD25/CD69/ Trail/PD-1/TIM-3/TIGIT had no statistically significant differences between the groups. Further functional results showed that the expression level of KI67 in NK cells after expansion in the two groups increased significantly, especially in the feeder cell expansion group. Simultaneously, the perforin and granzyme B levels of NK cells in the feeder cell expansion group were significantly higher than in the CD3/CD52 expansion group. A retrospective analysis of eight patients who received monoclonal antibody-expanded NK cell reinfusion and nine patients with trophoblast cell-expanded NK cell reinfusion was done. The disease characteristics of the two groups were comparable, NK cell reinfusion was safe, and there were no obvious adverse reactions. Clinical prognostic results showed that in the CD3/CD52 monoclonal antibody amplification group, the MRD conversion rate was 50% (2/4) , and the feeder cell expansion group was 50% (3/6) . After 5 years of follow-up from allo-HSCT, three patients in the monoclonal antibody expansion group had long-term survival without leukemia, and the remaining five patients had died; two patients died in the feeder cell expansion group, and the other six patients had long-term survival. Six cases had GVHD before NK cell reinfusion, and GVHD did not aggravate or even relieved after NK cell reinfusion. Conclusions: Preliminary results show that the biological characteristics of NK cells with diverse expansion strategies are significantly different, which may affect the clinical prognosis of patients with recurrence or persistent minimal residual disease after HSCT. The two groups of patients treated with NK cells from different expansion strategies had no obvious adverse reactions after NK cell infusion, but efficacy still needs to be further confirmed.
Collapse
Affiliation(s)
- X H Cao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Z D Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Y Q Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - J Kong
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - S Y Lu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - F F Tang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Y Y Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - J Z Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - K Y Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - X J Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| | - X Y Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100044, China
| |
Collapse
|
13
|
Ramos-Mejia V, Arellano-Galindo J, Mejía-Arangure JM, Cruz-Munoz ME. A NK Cell Odyssey: From Bench to Therapeutics Against Hematological Malignancies. Front Immunol 2022; 13:803995. [PMID: 35493522 PMCID: PMC9046543 DOI: 10.3389/fimmu.2022.803995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In 1975 two independent groups noticed the presence of immune cells with a unique ability to recognize and eliminate transformed hematopoietic cells without any prior sensitization or expansion of specific clones. Since then, NK cells have been the axis of thousands of studies that have resulted until June 2021, in more than 70 000 publications indexed in PubMed. As result of this work, which include approaches in vitro, in vivo, and in natura, it has been possible to appreciate the role played by the NK cells, not only as effectors against specific pathogens, but also as regulators of the immune response. Recent advances have revealed previous unidentified attributes of NK cells including the ability to adapt to new conditions under the context of chronic infections, or their ability to develop some memory-like characteristics. In this review, we will discuss significant findings that have rule our understanding of the NK cell biology, the developing of these findings into new concepts in immunology, and how these conceptual platforms are being used in the design of strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Veronica Ramos-Mejia
- GENYO: Centro Pfizer, Universidad de Granada, Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Jose Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México “Dr. Federico Gomez”, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Arangure
- Genómica del Cancer, Instituto Nacional de Medicina Genómica (INMEGEN) & Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| |
Collapse
|
14
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
15
|
Bednarski JJ, Zimmerman C, Berrien-Elliott MM, Foltz JA, Becker-Hapak M, Neal CC, Foster M, Schappe T, McClain E, Pence PP, Desai S, Kersting-Schadek S, Wong P, Russler-Germain DA, Fisk B, Lie WR, Eisele J, Hyde S, Bhatt ST, Griffith OL, Griffith M, Petti AA, Cashen AF, Fehniger TA. Donor memory-like NK cells persist and induce remissions in pediatric patients with relapsed AML after transplant. Blood 2022; 139:1670-1683. [PMID: 34871371 PMCID: PMC8931511 DOI: 10.1182/blood.2021013972] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.
Collapse
Affiliation(s)
| | - Clare Zimmerman
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jennifer A Foltz
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Carly C Neal
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy Schappe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Patrick P Pence
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sweta Desai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Samantha Kersting-Schadek
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pamela Wong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - David A Russler-Germain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Bryan Fisk
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Jeremy Eisele
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Stephanie Hyde
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Sima T Bhatt
- Division of Hematology and Oncology, Department of Pediatrics, and
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Allegra A Petti
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO
| | - Amanda F Cashen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Rubio-Azpeitia E, Pérez-Corral AM, Dorado-Herrero N, Monsalvo S, Pérez-Balsera G, Fernández-Santos ME, Kwon M, Oarbeascoa G, Bastos-Oreiro M, Falero C, Pascual Izquierdo C, Muñoz-Martínez C, Pérez-Martínez A, Diez-Martin JL, Anguita J. Clinical grade production of IL-15 stimulated NK cells for early infusion in adult AML patients undergoing haploidentical stem cell transplantation with post-transplant cyclophosphamide. Transfusion 2022; 62:374-385. [PMID: 35023148 DOI: 10.1111/trf.16790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Allogeneic stem cell transplantation is the treatment of choice for acute myeloid leukemia (AML) patients. Unmanipulated haploidentical transplantation (Haplo-HSCT) is commonly used for those AML patients who need a timely transplant and do not have a suitable matched donor, but relapse rates are still high, and improvements are needed. Adoptive immunotherapy using natural killer cells (NK cells) could be a promising tool to improved Haplo-HSCT but, to date, no optimal infusion and manufacturing protocols have been developed. STUDY DESIGN AND METHODS In this study, we describe a quick and reproducible protocol for clinical-grade production of haploidentical donor NK cells using double immunomagnetic depletion and enrichment protocol and overnight IL-15 stimulation. RESULTS Thus, we have obtained 8 viable and functional NK cell products that have been safely infused to five AML patients undergoing unmanipulated Haplo-HSCT. DISCUSSION Our results demonstrate the safety and feasibility of manufactured NK IL15 cells obtained from an adult allogeneic donor in the setting of haploidentical transplantation for AML patients.
Collapse
Affiliation(s)
- Eva Rubio-Azpeitia
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Ana Maria Pérez-Corral
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Nieves Dorado-Herrero
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Silvia Monsalvo
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Gonzalo Pérez-Balsera
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Maria Eugenia Fernández-Santos
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,ATMPs Production Unit-GMP Facility, IISGM, Madrid, Spain
| | - Mi Kwon
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Gillen Oarbeascoa
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Mariana Bastos-Oreiro
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Carmen Falero
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Cristina Pascual Izquierdo
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Cristina Muñoz-Martínez
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Antonio Pérez-Martínez
- Paediatric Haemato-Oncology Department, La Paz University Hospital, La Paz Health Research Institute (idiPaz), Madrid, Spain.,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Luis Diez-Martin
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Anguita
- Hematology department, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Gao L, Yang L, Zhang S, Ge Z, Su M, Shi Y, Wang X, Huang C. Engineering NK-92 Cell by Upregulating CXCR2 and IL-2 Via CRISPR-Cas9 Improves Its Antitumor Effects as Cellular Immunotherapy for Human Colon Cancer. J Interferon Cytokine Res 2021; 41:450-460. [PMID: 34935484 DOI: 10.1089/jir.2021.0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells have shown good application prospects in adoptive cellular immunotherapy against cancer. However, due to its insufficient infiltration and low activity, the therapeutic effect of infused NK cells has been limited in solid tumors, such as colorectal cancer. It has been proved that tumor-produced chemokines regulate the migration of NK cells expressing corresponding chemokine receptors, and cytokines could enhance the antitumor activity of NK cells. In this study, we innovatively upregulated the expression of chemokine receptor CXC chemokine receptor 2 (CXCR2) and cytokine interleukin (IL)-2 on NK-92 cells using CRISPR-Cas9 gene-editing technology. We demonstrated that overexpressing CXCR2 and IL-2 promotes NK-92 cells to increasingly transfer into tumor sites and achieve stronger cell-killing and proliferation activity. Moreover, the inhibitory effects of gene-edited NK-92 cells on the growth of human colon cancer in vivo were also improved. The tumor burden of tumor-bearing mice was reduced, and their survival time was significantly prolonged. Gene-editing modification NK cells are expected to become a novel and promising tumor treatment strategy.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lili Yang
- Department of Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Siyu Zhang
- Department of Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zuanmin Ge
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Meng Su
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanfei Shi
- College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xuechun Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Changxin Huang
- Department of Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Pan C, Zhai Y, Li G, Jiang T, Zhang W. NK Cell-Based Immunotherapy and Therapeutic Perspective in Gliomas. Front Oncol 2021; 11:751183. [PMID: 34765554 PMCID: PMC8576093 DOI: 10.3389/fonc.2021.751183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022] Open
Abstract
Glioma is the most common malignant primary brain tumor diagnosed in adults. Current therapies are unable to improve its clinical prognosis, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor and its immunosuppressive microenvironment. Development of new therapies that avoid this immune evasion could improve the response to the current treatments. Natural killer (NK) cells are an intriguing candidate for the next wave of therapies because of several unique features that they possess. For example, NK cell-based immunotherapy causes minimal graft-versus-host disease. Cytokine release syndrome is less likely to occur during chimeric antigen receptor (CAR)-NK therapy, and CAR-NK cells can kill targets in a CAR-independent manner. However, NK cell-based therapy in treating glioma faces several difficulties. For example, CAR molecules are not sufficiently well designed so that they will thoroughly release functioning NK cells. Compared to hematological malignancies, the application of many potential NK cell-based therapies in glioma lags far behind. Here, we review several issues of NK cells and propose several strategies that will improve the efficacy of NK cell-based cancer immunotherapy in the treatment of glioma.
Collapse
Affiliation(s)
- Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - You Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA), Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas (CGGA) and Asian Glioma Genome Atlas (AGGA), Beijing, China
| |
Collapse
|
19
|
García-García I, Guerra-García P, Ferreras C, Borobia AM, Carcas AJ, Queiruga-Parada J, Vicario JL, Mirones I, Solano C, Eguizabal C, Soria B, Pérez-Martínez A. A phase I/II dose-escalation multi-center study to evaluate the safety of infusion of natural killer cells or memory T cells as adoptive therapy in coronavirus pneumonia and/or lymphopenia: RELEASE study protocol. Trials 2021; 22:674. [PMID: 34600562 PMCID: PMC8487326 DOI: 10.1186/s13063-021-05625-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Moderate/severe cases of COVID-19 present a dysregulated immune system with T cell lymphopenia and a hyper-inflammatory state. This is a study protocol of an open-label, multi-center, double-arm, randomized, dose-finding phase I/II clinical trial to evaluate the safety, tolerability, alloreactivity, and efficacy of the administration of allogeneic memory T cells and natural killer (NK) cells in COVID-19 patients with lymphopenia and/or pneumonia. The aim of the study is to determine the safety and the efficacy of the recommended phase 2 dose (RP2D) of this treatment for patients with moderate/severe COVID-19. METHODS In the phase I trial, 18 patients with COVID-19-related pneumonia and/or lymphopenia with no oxygen requirement or with an oxygen need of ≤ 2.5 liters per minute (lpm) in nasal cannula will be assigned to two arms, based on the biology of the donor and the patient. Treatment of arm A consists of the administration of escalating doses of memory T cells, plus standard of care (SoC). Treatment of arm B consists of the administration of escalating doses of NK cells, plus SoC. In the phase II trial, a total of 182 patients with COVID-19-related pneumonia and/or lymphopenia requiring or not oxygen supplementation but without mechanical ventilation will be allocated to arm A or B, considering HLA typing. Within each arm, they will be randomized in a 1:1 ratio. In arm A, patients will receive SoC or RP2D for memory T cells plus the SoC. In arm B, patients will receive SoC or RP2D for NK cells plus the SoC. DISCUSSION We hypothesized that SARS-CoV-2-specific memory T-lymphocytes obtained from convalescent donors recovered from COVID-19 can be used as a passive cell immunotherapy to treat pneumonia and lymphopenia in moderate/severe patients. The lymphopenia induced by COVID-19 constitutes a therapeutic window that may facilitate donor engraftment and viral protection until recovery. TRIAL REGISTRATION ClinicalTrials.gov NCT04578210 . First Posted : October 8, 2020.
Collapse
Affiliation(s)
- I García-García
- Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
| | - P Guerra-García
- Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
- Pediatric Hemato-oncology Department, University Hospital La Paz, Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - C Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - A M Borobia
- Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - A J Carcas
- Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Queiruga-Parada
- Clinical Pharmacology Department, University Hospital La Paz, Madrid, Spain
| | - J L Vicario
- Regional Blood Transfusion Centre, Madrid, Spain
| | - I Mirones
- Pediatric Hemato-oncology Department, University Hospital La Paz, Madrid, Spain
| | - C Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Valencia, Spain
| | - C Eguizabal
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Bizkaia, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - B Soria
- Institute of Bioengineering, Miguel Hernández University, Elche, Alicante, Spain
- Health Research Institute-ISABIAL, Alicante University Hospital, Alicante, Spain
- University Pablo de Olavide, Sevilla, Spain
| | - A Pérez-Martínez
- Pediatric Hemato-oncology Department, University Hospital La Paz, Madrid, Spain.
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain.
- Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
20
|
Wang YH, Lin CC, Yao CY, Hsu CL, Tsai CH, Hou HA, Chou WC, Tien HF. Immune signatures of bone marrow cells can independently predict prognosis in patients with myelodysplastic syndrome. Br J Haematol 2021; 196:156-168. [PMID: 34536013 DOI: 10.1111/bjh.17837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 01/17/2023]
Abstract
Increasing evidence supports the role of the immune microenvironment and associated signalling in the pathogenesis of myelodysplastic syndromes (MDS). Nevertheless, the clinical relevancy of immune signals in patients with MDS remains elusive. To address this, we used single-sample gene-set enrichment analysis to score immune signatures of bone marrow (BM) samples from 176 patients with primary MDS. Enhanced signatures of 'immature dendritic cells' and 'natural killer cells with cluster of differentiation (CD)56bright' were correlated with better overall survival (OS), whilst higher 'CD103+ signature' was associated with reduced survival. An MDS-Immune-Risk (MIR) scoring system was constructed based on the weighted sums derived from Cox regression analysis. High MIR scores were correlated with higher revised International Prognostic Scoring System (IPSS-R) scores and mutations in ASXL transcriptional regulator 1 (ASXL1), Runt-related transcription factor 1 (RUNX1), and tumour protein p53 (TP53). High-score patients had significantly inferior leukaemia-free survival (LFS) and OS than low-score patients. The prognostic significance of MIR scores for survival remained valid across IPSS-R subgroups and was validated in two independent cohorts. Multivariable analysis revealed that a higher MIR score was an independent adverse risk factor for LFS and OS. We further proposed a model with the combination of MIR score and gene mutations to be complementary to IPSS-R for the prognostication of LFS and OS of patients with MDS.
Collapse
Affiliation(s)
- Yu-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Haematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chin Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Haematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yuan Yao
- Division of Haematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hong Tsai
- Division of Haematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Haematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Haematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Haematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Silla L, Valim V, Pezzi A, da Silva M, Wilke I, Nobrega J, Vargas A, Amorin B, Correa B, Zambonato B, Scherer F, Merzoni J, Sekine L, Huls H, Cooper LJ, Paz A, Lee DA. Adoptive immunotherapy with double-bright (CD56 bright /CD16 bright ) expanded natural killer cells in patients with relapsed or refractory acute myeloid leukaemia: a proof-of-concept study. Br J Haematol 2021; 195:710-721. [PMID: 34490616 DOI: 10.1111/bjh.17751] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Patients with acute myeloid leukaemia (AML) have a five-year survival rate of 28·7%. Natural killer (NK)-cell have anti-leukaemic activity. Here, we report on a series of 13 patients with high-risk R/R AML, treated with repeated infusions of double-bright (CD56bright /CD16bright ) expanded NK cells at an academic centre in Brazil. NK cells from HLA-haploidentical donors were expanded using K562 feeder cells, modified to express membrane-bound interleukin-21. Patients received FLAG, after which cryopreserved NK cells were thawed and infused thrice weekly for six infusions in three dose cohorts (106 -107 cells/kg/infusion). Primary objectives were safety and feasibility. Secondary endpoints included overall response (OR) and complete response (CR) rates at 28-30 days after the first infusion. Patients received a median of five prior lines of therapy, seven with intermediate or adverse cytogenetics, three with concurrent central nervous system (CNS) leukaemia, and one with concurrent CNS mycetoma. No dose-limiting toxicities, infusion-related fever, or cytokine release syndrome were observed. An OR of 78·6% and CR of 50·0% were observed, including responses in three patients with CNS disease and clearance of a CNS mycetoma. Multiple infusions of expanded, cryopreserved NK cells were safely administered after intensive chemotherapy in high-risk patients with R/R AML and demonstrated encouraging outcomes.
Collapse
Affiliation(s)
- Lucia Silla
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vanessa Valim
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Annelise Pezzi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria da Silva
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ianae Wilke
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Nobrega
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alini Vargas
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Amorin
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Correa
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Zambonato
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Joice Merzoni
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Leo Sekine
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Helen Huls
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alessandra Paz
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Dean A Lee
- Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
22
|
Quamine AE, Olsen MR, Cho MM, Capitini CM. Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tumors. Cancers (Basel) 2021; 13:2796. [PMID: 34199783 PMCID: PMC8200074 DOI: 10.3390/cancers13112796] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop "next generation" NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.
Collapse
Affiliation(s)
- Aicha E. Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Mallery R. Olsen
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Monica M. Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (A.E.Q.); (M.R.O.); (M.M.C.)
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
23
|
Terrén I, Orrantia A, Mosteiro A, Vitallé J, Zenarruzabeitia O, Borrego F. Metabolic changes of Interleukin-12/15/18-stimulated human NK cells. Sci Rep 2021; 11:6472. [PMID: 33742092 PMCID: PMC7979769 DOI: 10.1038/s41598-021-85960-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Natural Killer (NK) cells acquire memory-like properties following a brief stimulation with IL-12, IL-15 and IL-18. These IL-12/15/18-preactivated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have been revealed as a powerful tool in cancer immunotherapy due to their persistence in the host and their increased effector functions. Several studies have shown that NK cells modulate their metabolism in response to cytokine-stimulation and other stimuli, suggesting that there is a link between metabolism and cellular functions. In this paper, we have analyzed metabolic changes associated to IL-12/15/18-stimulation and the relevance of glycolytic pathway for NK cell effector functions. We have found CIML NK cells are able to retain a metabolic profile shifted towards glycolysis seven days after cytokine withdrawal. Furthermore, we found that treatment with 2-DG differently affects distinct NK cell effector functions and is stimuli-dependent. These findings may have implications in the design of NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Alba Mosteiro
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
24
|
Gómez García LM, Escudero A, Mestre C, Fuster Soler JL, Martínez AP, Vagace Valero JM, Vela M, Ruz B, Navarro A, Fernández L, Fernández A, Leivas A, Martínez-López J, Ferreras C, De Paz R, Blanquer M, Galán V, González B, Corral D, Sisinni L, Mirones I, Balas A, Vicario JL, Valle P, Borobia AM, Pérez-Martínez A. Phase 2 Clinical Trial of Infusing Haploidentical K562-mb15-41BBL-Activated and Expanded Natural Killer Cells as Consolidation Therapy for Pediatric Acute Myeloblastic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:328-337.e1. [PMID: 33610500 DOI: 10.1016/j.clml.2021.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) accounts for approximately 20% of pediatric leukemia cases; 30% of these patients experience relapse. The antileukemia properties of natural killer (NK) cells and their safety profile have been reported in AML therapy. We proposed a phase 2, open, prospective, multicenter, nonrandomized clinical trial for the adoptive infusion of haploidentical K562-mb15-41BBL-activated and expanded NK (NKAE) cells as a consolidation strategy for children with favorable and intermediate risk AML in first complete remission after chemotherapy (NCT02763475). PATIENTS AND METHODS Before the NKAE cell infusion, patients underwent a lymphodepleting regimen. After the NKAE cell infusion, patients were administered low doses (1 × 106/IU/m2) of subcutaneous interleukin-2. The primary study endpoint was AML relapse-free survival. We needed to include 35 patients to demonstrate a 50% reduction in relapses. RESULTS Seven patients (median age, 7.4 years; range, 0.78-15.98 years) were administered 13 infusions of NKAE cells, with a median of 36.44 × 106 cells/kg (range, 6.92 × 106 to 193.2 × 106 cells/kg). We observed chimerism in 4 patients (median chimerism, 0.065%; range, 0.05-0.27%). After a median follow-up of 33 months, the disease of 6 patients (85.7%) remained in complete remission. The 3-year overall survival was 83.3% (95% confidence interval, 68.1-98.5), and the cumulative 3-year relapse rate was 28.6% (95% confidence interval, 11.5-45.7). The study was terminated early because of low patient recruitment. CONCLUSION This study emphasizes the difficulties in recruiting patients for cell therapy trials, though NKAE cell infusion is safe and feasible. However, we cannot draw any conclusions regarding efficacy because of the small number of included patients and insufficient biological markers.
Collapse
Affiliation(s)
| | - Adela Escudero
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Carmen Mestre
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Jose L Fuster Soler
- Pediatric Hematology-Oncology Unit, University Clinic Hospital Virgen de la Arrixaca, El Palmar, Spain
| | - Antonia Pascual Martínez
- Pediatric Hematology Unit, Maternal and Children Hospital, Regional University Hospital of Málaga, Málaga, Spain
| | - Jose M Vagace Valero
- Pediatric Hematology Department, Maternal Pediatric Hospital, University Hospital Complex of Badajoz, Badajoz, Spain
| | - María Vela
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Beatriz Ruz
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Alfonso Navarro
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Lucia Fernández
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Adrián Fernández
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Alejandra Leivas
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Joaquin Martínez-López
- Hematological Malignancies Clinical Research Unit, National Center for Cancer Research (CNIO), Madrid, Spain
| | - Cristina Ferreras
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain
| | - Raquel De Paz
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Miguel Blanquer
- Pediatric Hematology-Oncology Unit, University Clinic Hospital Virgen de la Arrixaca, El Palmar, Spain
| | - Victor Galán
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Berta González
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Dolores Corral
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Isabel Mirones
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Balas
- Histocompatibility and HLA Typing Laboratory, Transfusion Center of the Community of Madrid, Madrid, Spain
| | - José Luis Vicario
- Histocompatibility and HLA Typing Laboratory, Transfusion Center of the Community of Madrid, Madrid, Spain
| | - Paula Valle
- Clinical Pharmacology Department, La Paz University Hospital, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain; Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Madrid, Spain; Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain; Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Ragoonanan D, Khazal SJ, Abdel-Azim H, McCall D, Cuglievan B, Tambaro FP, Ahmad AH, Rowan CM, Gutierrez C, Schadler K, Li S, Di Nardo M, Chi L, Gulbis AM, Shoberu B, Mireles ME, McArthur J, Kapoor N, Miller J, Fitzgerald JC, Tewari P, Petropoulos D, Gill JB, Duncan CN, Lehmann LE, Hingorani S, Angelo JR, Swinford RD, Steiner ME, Hernandez Tejada FN, Martin PL, Auletta J, Choi SW, Bajwa R, Dailey Garnes N, Kebriaei P, Rezvani K, Wierda WG, Neelapu SS, Shpall EJ, Corbacioglu S, Mahadeo KM. Diagnosis, grading and management of toxicities from immunotherapies in children, adolescents and young adults with cancer. Nat Rev Clin Oncol 2021; 18:435-453. [PMID: 33608690 PMCID: PMC9393856 DOI: 10.1038/s41571-021-00474-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapies are associated with remarkable therapeutic response rates but also with unique and severe toxicities, which potentially result in rapid deterioration in health. The number of clinical applications for novel immune effector-cell therapies, including chimeric antigen receptor (CAR)-expressing cells, and other immunotherapies, such as immune-checkpoint inhibitors, is increasing. In this Consensus Statement, members of the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Hematopoietic Cell Transplantation-Cancer Immunotherapy (HCT-CI) Subgroup, Paediatric Diseases Working Party (PDWP) of the European Society of Blood and Marrow Transplantation (EBMT), Supportive Care Committee of the Pediatric Transplantation and Cellular Therapy Consortium (PTCTC) and MD Anderson Cancer Center CAR T Cell Therapy-Associated Toxicity (CARTOX) Program collaborated to provide updated comprehensive recommendations for the care of children, adolescents and young adults receiving cancer immunotherapies. With these recommendations, we address emerging toxicity mitigation strategies, we advocate for the characterization of baseline organ function according to age and discipline-specific criteria, we recommend early critical care assessment when indicated, with consideration of reversibility of underlying pathology (instead of organ failure scores) to guide critical care interventions, and we call for researchers, regulatory agencies and sponsors to support and facilitate early inclusion of young patients with cancer in well-designed clinical trials.
Collapse
Affiliation(s)
- Dristhi Ragoonanan
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sajad J Khazal
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hisham Abdel-Azim
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - David McCall
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Branko Cuglievan
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ali Haider Ahmad
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney M Rowan
- Department of Pediatrics, Division of Critical Care, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN, USA
| | - Cristina Gutierrez
- Department of Critical Care, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keri Schadler
- Department of Pediatrics Research, Center for Energy Balance in Cancer Prevention and Survivorship, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shulin Li
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Linda Chi
- Division of Diagnostic Imaging, Neuroradiology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alison M Gulbis
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Basirat Shoberu
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria E Mireles
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer McArthur
- Department of Pediatrics, Division of Critical Care, St Jude Children's Research Hospital, Memphis, TN, USA.,Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Neena Kapoor
- Department of Pediatrics, Blood and Marrow Transplantation Program, Keck School of Medicine, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jeffrey Miller
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie C Fitzgerald
- Department of Anesthesia and Critical Care, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Priti Tewari
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Demetrios Petropoulos
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan B Gill
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine N Duncan
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Leslie E Lehmann
- Pediatric Hematology-Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - Sangeeta Hingorani
- Department of Pediatrics, University of Washington School of Medicine, Division of Nephrology, Seattle Childrens and the Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joseph R Angelo
- Renal Section, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Rita D Swinford
- Department of Pediatrics, Division of Pediatric Nephrology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Marie E Steiner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Fiorela N Hernandez Tejada
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul L Martin
- Department of Pediatrics, Division of Transplant and Cellular Therapy, Duke Children's Hospital, Duke University, Durham, NC, USA
| | - Jeffery Auletta
- Division of Hematology, Oncology, Bone Marrow Transplant and Infectious Diseases, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Sung Won Choi
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Rajinder Bajwa
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplantation, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Natalie Dailey Garnes
- Department of Infectious Disease, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Regensburg, Germany
| | - Kris M Mahadeo
- Department of Pediatrics, CARTOX Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Fernández A, Navarro-Zapata A, Escudero A, Matamala N, Ruz-Caracuel B, Mirones I, Pernas A, Cobo M, Casado G, Lanzarot D, Rodríguez-Antolín C, Vela M, Ferreras C, Mestre C, Viejo A, Leivas A, Martínez J, Fernández L, Pérez-Martínez A. Optimizing the Procedure to Manufacture Clinical-Grade NK Cells for Adoptive Immunotherapy. Cancers (Basel) 2021; 13:cancers13030577. [PMID: 33540698 PMCID: PMC7867223 DOI: 10.3390/cancers13030577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Natural Killer cells have shown promise to treat different malignancies. Several methods have been described to obtain fully activated NK cells for clinical use. Here, we use different cell culture media and different artificial antigen presenting cells to optimize a GMP compliant manufacturing method to obtain activated and expanded NK cells suitable for clinical use. Abstract Natural killer (NK) cells represent promising tools for cancer immunotherapy. We report the optimization of an NK cell activation–expansion process and its validation on clinical-scale. Methods: RPMI-1640, stem cell growth medium (SCGM), NK MACS and TexMACS were used as culture mediums. Activated and expanded NK cells (NKAE) were obtained by coculturing total peripheral blood mononuclear cells (PBMC) or CD45RA+ cells with irradiated K562mbIL15-41BBL or K562mbIL21-41BBL. Fold increase, NK cell purity, activation status, cytotoxicity and transcriptome profile were analyzed. Clinical-grade NKAE cells were manufactured in CliniMACS Prodigy. Results: NK MACS and TexMACs achieved the highest NK cell purity and lowest T cell contamination. Obtaining NKAE cells from CD45RA+ cells was feasible although PBMC yielded higher total cell numbers and NK cell purity than CD45RA+ cells. The highest fold expansion and NK purity were achieved by using PBMC and K562mbIL21-41BBL cells. However, no differences in activation and cytotoxicity were found when using either NK cell source or activating cell line. Transcriptome profile showed to be different between basal NK cells and NKAE cells expanded with K562mbIL21-41BBL or K562mbIL15-41BBL. Clinical-grade manufactured NKAE cells complied with the specifications from the Spanish Regulatory Agency. Conclusions: GMP-grade NK cells for clinical use can be obtained by using different starting cells and aAPC.
Collapse
Affiliation(s)
- Adrián Fernández
- Hematological Malignancies Lab-H12O Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (A.F.); (A.L.); (J.M.); (L.F.)
| | - Alfonso Navarro-Zapata
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
| | - Adela Escudero
- Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, 28046 Madrid, Spain;
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-Institute of Medical and Molecular Genetics (INGEMM-IdiPAZ), 28046 Madrid, Spain; (N.M.); (B.R.-C.)
| | - Nerea Matamala
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-Institute of Medical and Molecular Genetics (INGEMM-IdiPAZ), 28046 Madrid, Spain; (N.M.); (B.R.-C.)
| | - Beatriz Ruz-Caracuel
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-Institute of Medical and Molecular Genetics (INGEMM-IdiPAZ), 28046 Madrid, Spain; (N.M.); (B.R.-C.)
| | - Isabel Mirones
- Advanced Therapy Medicinal Products Production Unit Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (I.M.); (A.P.); (M.C.); (G.C.)
| | - Alicia Pernas
- Advanced Therapy Medicinal Products Production Unit Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (I.M.); (A.P.); (M.C.); (G.C.)
| | - Marta Cobo
- Advanced Therapy Medicinal Products Production Unit Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (I.M.); (A.P.); (M.C.); (G.C.)
| | - Gema Casado
- Advanced Therapy Medicinal Products Production Unit Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain; (I.M.); (A.P.); (M.C.); (G.C.)
- Advanced Therapy Medicinal Products Production Unit, Pediatric Hemato-Oncology Service and Pharmacy Service, La Paz University Hospital, 28046 Madrid, Spain
| | - Diego Lanzarot
- Applications Department Miltenyi Biotec, 28223 Madrid, Spain;
| | - Carlos Rodríguez-Antolín
- Experimental Therapies and Novel Biomarkers in Cancer, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain;
| | - María Vela
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
| | - Cristina Ferreras
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
| | - Carmen Mestre
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
| | - Aurora Viejo
- Hematology and Hemotherapy Department, La Paz University Hospital, 28046 Madrid, Spain;
| | - Alejandra Leivas
- Hematological Malignancies Lab-H12O Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (A.F.); (A.L.); (J.M.); (L.F.)
- Hematology Department 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Joaquín Martínez
- Hematological Malignancies Lab-H12O Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (A.F.); (A.L.); (J.M.); (L.F.)
- Hematology Department 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Lucía Fernández
- Hematological Malignancies Lab-H12O Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (A.F.); (A.L.); (J.M.); (L.F.)
| | - Antonio Pérez-Martínez
- Translational Research Group in Paediatric Oncology Haematopoietic Transplantation & Cell Therapy, La Paz University Hospital Institute for Health Research-IdiPAZ, 28046 Madrid, Spain; (A.N.-Z.); (M.V.); (C.F.); (C.M.)
- Pediatric Hemato-Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
- Correspondence: ; Tel.: +34-912071408 (ext. 41408)
| |
Collapse
|
27
|
Generating natural killer cells for adoptive transfer: expanding horizons. Cytotherapy 2021; 23:559-566. [PMID: 33431318 DOI: 10.1016/j.jcyt.2020.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells are unique innate lymphoid cells that have therapeutic potential in adoptive cell transfer-based cancer immunotherapy that has been established across a range of early-phase clinical trials. NK cells for use in adoptive transfer therapies are obtained from various sources, including primary NK cells from peripheral blood or apheresis products (autologous or allogeneic) and umbilical cord blood. NK cells have also been generated from CD34+ hematopoietic progenitors, induced pluripotent stem cells, embryonic stem cells and malignant cell lines. Apheresis-derived NK cell products are often administered after brief cytokine-based ex vivo activation, ideally aiming for in vivo expansion and proliferation. NK cells from other sources or from smaller volumes of blood require a longer period of expansion prior to therapeutic use. Although ex vivo NK cell expansion introduces a concern for senescence and exhaustion, there is also an opportunity to achieve higher NK cell doses, modulate NK cell activation characteristics and apply genetic engineering approaches, ultimately generating potent effector cells from small volumes of readily available starting materials. Herein the authors review the field of clinical-grade NK cell expansion, explore the desirable features of an idealized NK cell expansion approach and focus on techniques used in recently published clinical trials.
Collapse
|
28
|
Zhang S, Zhao J, Bai X, Handley M, Shan F. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int Immunopharmacol 2020; 91:107318. [PMID: 33383444 DOI: 10.1016/j.intimp.2020.107318] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Interleukin-15 (IL-15) has recently emerged as a novel immunomodulatory cytokine in cancer immunotherapy. IL-15 has the potential to reject and destroy cancer cells in the tumor microenvironment by expanding and activating natural killer (NK), natural killer T (NKT), and memory (m) CD8+T cells. Due to the feasible outcomes obtained from preclinical studies and phase 1/2 clinical trials, IL-15-based therapy, including chimeric antigen receptor (CAR) T cell or CAR NK cell infusion following in vitro expansion in the presence of IL-15, used in combination with checkpoint inhibitors and other therapy may extend to clinical practice in the future. It is also important to understand the biological characteristics of IL-15 to ensure the maximal benefit of therapeutic strategies. Here, we summarize the current development of IL-15 in the following areas: anti-tumor mechanisms in the tumor microenvironment, advances in IL-15-based therapy itself or in combination with other methods, including biological agents, monoclonal antibodies, and adoptive immunotherapy.
Collapse
Affiliation(s)
- Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianzhu Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xueli Bai
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110004, China
| | - Mike Handley
- Cytocm lnc, 3001 Aloma Ave, Winter Park, FL 32792, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
29
|
Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia. J Hematol Oncol 2020; 13:167. [PMID: 33287858 PMCID: PMC7720594 DOI: 10.1186/s13045-020-00996-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Despite considerable progress has been achieved in the treatment of acute myeloid leukemia over the past decades, relapse remains a major problem. Novel therapeutic options aimed at attaining minimal residual disease-negative complete remission are expected to reduce the incidence of relapse and prolong survival. Natural killer cell-based immunotherapy is put forward as an option to tackle the unmet clinical needs. There have been an increasing number of therapeutic dimensions ranging from adoptive NK cell transfer, chimeric antigen receptor-modified NK cells, antibodies, cytokines to immunomodulatory drugs. In this review, we will summarize different forms of NK cell-based immunotherapy for AML based on preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Jing Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Tschan-Plessl A, Kalberer CP, Wieboldt R, Stern M, Siegler U, Wodnar-Filipowicz A, Gerull S, Halter J, Heim D, Tichelli A, Tsakiris DA, Malmberg KJ, Passweg JR, Bottos A. Cellular immunotherapy with multiple infusions of in vitro-expanded haploidentical natural killer cells after autologous transplantation for patients with plasma cell myeloma. Cytotherapy 2020; 23:329-338. [PMID: 33268029 DOI: 10.1016/j.jcyt.2020.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS To investigate the feasibility and safety of haploidentical natural killer (NK) cell infusions as consolidation immunotherapy after autologous stem cell transplant (ASCT) in patients with plasma cell myeloma. METHODS Ten patients (median age, 59 years) received induction treatment followed by high-dose melphalan (200 mg/m2) at day -1, ASCT at day 0 and increasing NK cell doses (1.5 × 106, 1.5 × 107 and multiple doses of 1.0 × 108 cells/kg body weight) from day +1 to day +30 after ASCT. NK cells were harvested and purified from peripheral blood of haploidentical donors and expanded for 19 days with interleukin (IL)-2 and IL-15 under Good Manufacturing Practice conditions. RESULTS NK cell numbers increased 56.0-fold (37.4- to 75.5-fold). Patients received a median of 3.8 × 108 (0.9-5.7 × 108) NK cells/kg body weight in six (three to eight) infusions. Multiparametric mass cytometry analysis demonstrated an altered surface receptor repertoire of expanded NK cells with increased degranulation and cytokine production activities but diminished expression of perforin. Donor NK cells were detectable in the peripheral blood, peaking 1 h after each dose (up to 90% donor NK cells). The treatment was safe and well tolerated, without evidence of graft-versus-host disease. Comparison with a control patient population receiving ASCT without NK cell infusions showed no significant difference in relapse, progression-free survival and overall survival. CONCLUSIONS This study demonstrates reliable manufacturing of high numbers of activated NK cells for multiple-dose infusions and safe administration of these cellular products. The trial was registered at ClinicalTrials.gov (identifier no. NCT01040026).
Collapse
Affiliation(s)
- Astrid Tschan-Plessl
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland.
| | - Christian P Kalberer
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Ronja Wieboldt
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Martin Stern
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Uwe Siegler
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | | | - Sabine Gerull
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Jörg Halter
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Dominik Heim
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - André Tichelli
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Dimitrios A Tsakiris
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Department of Medicine, Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob R Passweg
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| | - Alessia Bottos
- Clinical and Diagnostic Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
From bench to bedside - translational approaches in anti-fungal immunology. Curr Opin Microbiol 2020; 58:153-159. [PMID: 33190074 DOI: 10.1016/j.mib.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Invasive fungal infections mainly occur in patients suffering from impaired immunity. Their associated mortality is high despite antifungal treatment. Thus, several efforts have been made to translate our knowledge on protective antifungal immunity into clinical application. Since the first attempts with transfusion of neutrophilic granulocytes, these approaches have become more refined and include administration of cytokines to booster antifungal immune responses or selective stimulation of pattern recognition receptors. Recently, novel tools that have proven effective in the treatment of cancer have offered new options for enhancing antifungal immunity. These approaches include checkpoint inhibitors as well as T-cell based therapies, including chimeric antigen receptor T-cells.
Collapse
|
32
|
Alfarra H, Weir J, Grieve S, Reiman T. Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Front Immunol 2020; 11:575609. [PMID: 33304346 PMCID: PMC7693637 DOI: 10.3389/fimmu.2020.575609] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Innate immune surveillance of cancer involves multiple types of immune cells including the innate lymphoid cells (ILCs). Natural killer (NK) cells are considered the most active ILC subset for tumor elimination because of their ability to target infected and malignant cells without prior sensitization. NK cells are equipped with an array of activating and inhibitory receptors (IRs); hence NK cell activity is controlled by balanced signals between the activating and IRs. Multiple myeloma (MM) is a hematological malignancy that is known for its altered immune landscape. Despite improvements in therapeutic options for MM, this disease remains incurable. An emerging trend to improve clinical outcomes in MM involves harnessing the inherent ability of NK cells to kill malignant cells by recruiting NK cells and enhancing their cytotoxicity toward the malignant MM cells. Following the clinical success of blocking T cell IRs in multiple cancers, targeting NK cell IRs is drawing increasing attention. Relevant NK cell IRs that are attractive candidates for checkpoint blockades include KIRs, NKG2A, LAG-3, TIGIT, PD-1, and TIM-3 receptors. Investigating these NK cell IRs as pathogenic agents and therapeutic targets could lead to promising applications in MM therapy. This review describes the critical role of enhancing NK cell activity in MM and discusses the potential of blocking NK cell IRs as a future MM therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cytotoxicity, Immunologic/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy, Adoptive/adverse effects
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/transplantation
- Molecular Targeted Therapy
- Multiple Myeloma/drug therapy
- Multiple Myeloma/immunology
- Multiple Myeloma/metabolism
- Multiple Myeloma/pathology
- Receptors, Natural Killer Cell/antagonists & inhibitors
- Receptors, Natural Killer Cell/metabolism
- Signal Transduction
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Helmi Alfarra
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Jackson Weir
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Stacy Grieve
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
| | - Tony Reiman
- Department of Biology, University of New Brunswick, Saint John, NB, Canada
- Department of Oncology, Saint John Regional Hospital, Saint John, NB, Canada
- Department of Medicine, Dalhousie University, Saint John, NB, Canada
| |
Collapse
|
33
|
Ex vivo expansion of autologous, donor-derived NK-, γδT-, and cytokine induced killer (CIK) cells post haploidentical hematopoietic stem cell transplantation results in increased antitumor activity. Bone Marrow Transplant 2020; 54:727-732. [PMID: 31431711 DOI: 10.1038/s41409-019-0609-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Posttransplant treatment strategies are narrowed by the vulnerability of bone marrow. Building on immune cells with antitumor activity is a growing field in cancer therapy. Thus, transfer of expanded and preactivated immune cells is a promising intensification of treatment in high-risk tumor patients. We tested ex vivo expanded NK-, γδT-, and CIK cells that were generated by coincubation with irradiated K562-mb15-41BBL and Il2 and compared the expansion conditions of PBMCs versus CD3-depleted PBMCs as well as static versus semi-automated expansion. The median fold expansion was significantly higher using PBMCs and static expansion conditions. Expanded cells were preactivated with a CD56brightCD69high immunophenotype exerting excellent direct cellular cytotoxicity as well as ADCC in various tumor entities. We established a large-scale clinical-grade ex vivo expansion and activation protocol of NK-, γδT-, and CIK cells from donor-derived PBMCs of patients after haploidentical HSCT. In a patient with AML, NK/γδT/CIK cell transfer was associated with MRD response. A significant increase of direct antitumor activity and ADCC post cell transfer was documented. The results that we report here provide the rationale for clinical testing of expanded, preactivated NK/γδT/CIK cells for cancer therapy.
Collapse
|
34
|
Gao F, Ye Y, Gao Y, Huang H, Zhao Y. Influence of KIR and NK Cell Reconstitution in the Outcomes of Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:2022. [PMID: 32983145 PMCID: PMC7493622 DOI: 10.3389/fimmu.2020.02022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells play a significant role in immune tolerance and immune surveillance. Killer immunoglobin-like receptors (KIRs), which recognize human leukocyte antigen (HLA) class I molecules, are particularly important for NK cell functions. Previous studies have suggested that, in the setting of hematopoietic stem cell transplantation (HSCT), alloreactive NK cells from the donor could efficiently eliminate recipient tumor cells and the residual immune cells. Subsequently, several clinical models were established to determine the optimal donors who would exhibit a graft-vs. -leukemia (GVL) effect without developing graft-vs. -host disease (GVHD). In addition, hypotheses about specific beneficial receptor-ligand pairs and KIR genes have been raised and the favorable effects of alloreactive NK cells are being investigated. Moreover, with a deeper understanding of the process of NK cell reconstitution post-HSCT, new factors involved in this process and the defects of previous models have been observed. In this review, we summarize the most relevant literatures about the impact of NK cell alloreactivity on transplant outcomes and the factors affecting NK cell reconstitution.
Collapse
Affiliation(s)
- Fei Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yang Gao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
35
|
Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol 2020; 8:402. [PMID: 32582698 PMCID: PMC7283917 DOI: 10.3389/fcell.2020.00402] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-based immunotherapy is a promising field in the cancer treatment, since cytokines, as proteins of the immune system, are able to modulate the host immune response toward cancer cell, as well as directly induce tumor cell death. Since a low dose monotherapy with some cytokines has no significant therapeutic results and a high dose treatment leads to a number of side effects caused by the pleiotropic effect of cytokines, the problem of understanding the influence of cytokines on the immune cells involved in the pro- and anti-tumor immune response remains a pressing one. Immune system cells carry CD makers on their surface which can be used to identify various populations of cells of the immune system that play different roles in pro- and anti-tumor immune responses. This review discusses the functions and specific CD markers of various immune cell populations which are reported to participate in the regulation of the immune response against the tumor. The results of research studies and clinical trials investigating the effect of cytokine therapy on the regulation of immune cell populations and their surface markers are also discussed. Current trends in the development of cancer immunotherapy, as well as the role of cytokines in combination with other therapeutic agents, are also discussed.
Collapse
Affiliation(s)
- Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
36
|
Zhao XY, Jiang Q, Jiang H, Hu LJ, Zhao T, Yu XX, Huang XJ. Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute myeloid leukemia in vivo. Eur J Immunol 2020; 50:1374-1385. [PMID: 32357256 DOI: 10.1002/eji.201948375] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Adoptive NK cell infusion is a promising immunotherapy for acute myeloid leukemia (AML) patients. The aim of this study was to test the activity of clinical-grade membrane-bound IL-21/4-1BBL-expanded NK cell products against AML in vivo. METHODS Fresh peripheral blood mononuclear cells (PBMCs) were incubated with equal numbers of irradiated membrane-bound IL-21/4-1BBL-expressing K562 cells for 2-3 weeks to induce clinical-grade NK cell expansion. RESULTS Expansion for 2 and 3 weeks produced ∼4 and 8 × 109 NK cells from 2 × 107 PBMCs. The production of CD107a and TNF-α in NK cell products in response to AML cell lines and primary blasts was higher than that observed in resting NK cells. The 2-week expanded NK cell products were xenografted into immunodeficient mice with leukemia and were persistently found in the BM, spleen, liver, lung, and peripheral blood for at least 13 days; furthermore, these expanded products reduced the AML burden in vivo. Compared with matched AML patients with persistent or relapsed minimal residual disease (MRD+ ) who underwent regular consolidation therapy, MRD+ patients who underwent NK treatment had better overall survival and showed no major adverse events. CONCLUSIONS Clinical-grade mbIL-21/4-1BBL-expanded NK cells exhibited antileukemic activity against AML in vitro and in vivo.
Collapse
Affiliation(s)
- Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ting Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xing-Xing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,Beijing Engineering Laboratory for Cellular Therapy, Beijing, China
| |
Collapse
|
37
|
Sabry M, Lowdell MW. Killers at the crossroads: The use of innate immune cells in adoptive cellular therapy of cancer. Stem Cells Transl Med 2020; 9:974-984. [PMID: 32416056 PMCID: PMC7445022 DOI: 10.1002/sctm.19-0423] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell therapy (ACT) is an approach to cancer treatment that involves the use of antitumor immune cells to target residual disease in patients after completion of chemo/radiotherapy. ACT has several advantages compared with other approaches in cancer immunotherapy, including the ability to specifically expand effector cells in vitro before selection for adoptive transfer, as well as the opportunity for host manipulation in order to enhance the ability of transferred cells to recognize and kill established tumors. One of the main challenges to the success of ACT in cancer clinical trials is the identification and generation of antitumor effector cells with high avidity for tumor recognition. Natural killer (NK) cells, cytokine‐induced killers and natural killer T cells are key innate or innate‐like effector cells in cancer immunosurveillance that act at the interface between innate and adaptive immunity, to have a greater influence over immune responses to cancer. In this review, we discuss recent studies that highlight their potential in cancer therapy and summarize clinical trials using these effector immune cells in adoptive cellular therapy for the treatment of cancer.
Collapse
Affiliation(s)
- May Sabry
- Department of HaematologyUniversity College LondonLondonUK
| | | |
Collapse
|
38
|
Muñoz Builes M, Vela Cuenca M, Fuster Soler JL, Astigarraga I, Pascual Martínez A, Vagace Valero JM, Tong HY, Valentín Quiroga J, Fernández Casanova L, Escudero López A, Sisinni L, Blanquer M, Mirones Aguilar I, González Martínez B, Borobia AM, Pérez-Martínez A. Study protocol for a phase II, multicentre, prospective, non-randomised clinical trial to assess the safety and efficacy of infusing allogeneic activated and expanded natural killer cells as consolidation therapy for paediatric acute myeloblastic leukaemia. BMJ Open 2020; 10:e029642. [PMID: 31919123 PMCID: PMC6955478 DOI: 10.1136/bmjopen-2019-029642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Acute myeloblastic leukaemia (AML) constitutes the second most common haematological malignancy in the paediatric population. Current treatment regimens are based on the administration of polychemotherapy, combining high doses of cytarabine with anthracyclines and topoisomerase inhibitors. Allogeneic haematopoietic stem cell transplantation (HSCT) is an option for high-risk patients with AML (and for intermediate-risk patients if a sibling donor is available). With this strategy, AML survival has increased substantially; however, it has remained stagnant at approximately 60%, with relapse being the principal culprit. The predominant role of the immune system and natural killer (NK) cells in controlling paediatric AML has gained importance within the context of HSCT. In this protocol, we propose incorporating this cell therapy as an adjuvant treatment through the infusion of activated and expanded haploidentical NK (NKAE) cells in paediatric patients with AML who are in cytological remission after completing consolidation therapy, and with no indication for HSCT. METHODS AND ANALYSIS Patients up to 30 years of age, diagnosed with AML, in their first cytological remission, who have completed both the induction and the consolidation phases of chemotherapy and do not meet the criteria for allogeneic HSCT are eligible. The patients will receive two doses of NKAE cells once a week, using a GMP K562-mbIL15-41BBL stimulus from a haploidentical donor and interleukin 2 subcutaneously. The patients will then be followed up for 36 months to assess the primary endpoint, which is the probability of relapse after NK cell infusion. ETHICS AND DISSEMINATION This clinical trial was approved by the Clinical Research Ethics Committee of La Paz University Hospital and The Spanish Agency of Medicines and Medical Devices. Findings will be disseminated through peer-reviewed publications, conference presentations and community reporting. TRIAL REGISTRATION NUMBER EudraCT code: 2015-001901-15, ClinicalTrials.gov Identifier: NCT02763475.
Collapse
Affiliation(s)
- Mario Muñoz Builes
- La Paz Central Research and Clinical Trials Unit, Hospital Universitario La Paz, Madrid, Spain
| | - María Vela Cuenca
- Translational Research Unit in Paediatric Haemato-Oncology, Hematopoietic Stem Cell Transplantation and Cell Therapy, Hospital Universitario La Paz, Madrid, Spain
| | - Jose L Fuster Soler
- Paediatric Haematology-Oncology Unit, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Spain
| | - Itziar Astigarraga
- Department of Paediatrics, Hospital Universitario Cruces, Barakaldo, Spain
| | - Antonia Pascual Martínez
- Paediatric Haematology Unit, Maternal and Children Hospital, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jose M Vagace Valero
- Paediatric Haematology Department, Maternal and Children Hospital, Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain
| | - Hoi Y Tong
- La Paz Central Research and Clinical Trials Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Jaime Valentín Quiroga
- Translational Research Unit in Paediatric Haemato-Oncology, Hematopoietic Stem Cell Transplantation and Cell Therapy, Hospital Universitario La Paz, Madrid, Spain
| | - Lucía Fernández Casanova
- Haematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Adela Escudero López
- Translational Research Unit in Paediatric Hemato-Oncology, Haematopoietic Stem Cell Transplantation and Cell Therapy, Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Luisa Sisinni
- Paediatric Haemato-Oncology Deparment, Hospital Universitario La Paz, Madrid, Spain
| | - Miguel Blanquer
- Paediatric Haematology-Oncology Unit, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Spain
| | - Isabel Mirones Aguilar
- Translational Research Unit in Paediatric Haemato-Oncology, Hematopoietic Stem Cell Transplantation and Cell Therapy, Hospital Universitario La Paz, Madrid, Spain
| | - Berta González Martínez
- Translational Research Unit in Paediatric Haemato-Oncology, Hematopoietic Stem Cell Transplantation and Cell Therapy, Hospital Universitario La Paz, Madrid, Spain
- Paediatric Haemato-Oncology Deparment, Hospital Universitario La Paz, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research Unit in Paediatric Haemato-Oncology, Hematopoietic Stem Cell Transplantation and Cell Therapy, Hospital Universitario La Paz, Madrid, Spain
- Paediatric Haemato-Oncology Deparment, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
39
|
Herrera L, Santos S, Vesga MA, Anguita J, Martin-Ruiz I, Carrascosa T, Juan M, Eguizabal C. Adult peripheral blood and umbilical cord blood NK cells are good sources for effective CAR therapy against CD19 positive leukemic cells. Sci Rep 2019; 9:18729. [PMID: 31822751 PMCID: PMC6904575 DOI: 10.1038/s41598-019-55239-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Among hematological cancers, Acute Lymphoblastic Leukemia (ALL) and Chronic Lymphocytic Leukemia (CLL) are the most common leukemia in children and elderly people respectively. Some patients do not respond to chemotherapy treatments and it is necessary to complement it with immunotherapy-based treatments such as chimeric antigen receptor (CAR) therapy, which is one of the newest and more effective treatments against these cancers and B-cell lymphoma. Although complete remission results are promising, CAR T cell therapy presents still some risks for the patients, including cytokine release syndrome (CRS) and neurotoxicity. We proposed a different immune cell source for CAR therapy that might prevent these side effects while efficiently targeting malignant cells. NK cells from different sources are a promising vehicle for CAR therapy, as they do not cause graft versus host disease (GvHD) in allogenic therapies and they are prompt to attack cancer cells without prior sensitization. We studied the efficacy of NK cells from adult peripheral blood (AB) and umbilical cord blood (CB) against different target cells in order to determine the best source for CAR therapy. AB CAR-NK cells are slightly better at killing CD19 presenting target cells and CB NK cells are easier to stimulate and they have more stable number from donor to donor. We conclude that CAR-NK cells from both sources have their advantages to be an alternative and safer candidate for CAR therapy.
Collapse
Affiliation(s)
- L Herrera
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain.,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain
| | - S Santos
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain.,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain
| | - M A Vesga
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain.,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain
| | - J Anguita
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Biscay, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Biscay, Spain
| | - I Martin-Ruiz
- Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, Derio, Biscay, Spain
| | - T Carrascosa
- Servicio de Hematología, Hospital Galdakao-Usansolo, Galdakao, Spain.,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain
| | - M Juan
- Servei d´Immunologia, Hospital Clínic de Barcelona, Hospital Sant Joan de Déu, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital, Universitat de Barcelona, Barcelona, Spain
| | - C Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain. .,Biocruces Bizkaia Health Research Institute, Barkaldo, Spain.
| |
Collapse
|
40
|
Corral Sánchez MD, Fernández Casanova L, Pérez-Martínez A. Beyond CAR-T cells: Natural killer cells immunotherapy. Med Clin (Barc) 2019; 154:134-141. [PMID: 31771858 DOI: 10.1016/j.medcli.2019.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/30/2019] [Accepted: 08/27/2019] [Indexed: 10/25/2022]
Abstract
Children and adolescents suffering from refractory leukaemia, relapse after stem cell transplantation, solid metastatic tumour or refractory to conventional treatments still condition a dismal prognosis. The critical role of the immune system in the immunosurveillance of cancer is becoming relevant with the development of new treatments such as the checkpoint inhibitor drugs and genetic modified T lymphocytes, tisagenlecleucel or axicabtagene ciloleucel. In addition, other immunotherapies are being developed such as cell therapy with natural killer (NK) lymphocytes. The rapid and potent cytotoxic activity of NK cells respecting healthy cells and the possibility of expansion, manipulating them and combining them with other treatments, make these cells a powerful therapeutic tool to be developed, with a very high safety profile. Furthermore, new strategies are being developed to increase the therapeutic benefit of NK cells such as genetic manipulation for the expression of chimeric antigen receptors.
Collapse
Affiliation(s)
| | | | - Antonio Pérez-Martínez
- Servicio de Hemato-Oncología Pediátrica, Hospital Universitario La Paz, Madrid, España; Departamento de Pediatría, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, España.
| |
Collapse
|
41
|
Current state of nonengrafting donor leukocyte infusion (focus on microtransplantation for acute myeloid leukemia). Curr Opin Hematol 2019; 26:373-378. [PMID: 31589170 DOI: 10.1097/moh.0000000000000539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW Microtransplantation (or micro-stem cell transplantation, MST) is one permutation of alloreactive immunotherapy increasingly studied in clinical trials. It is most commonly applied to patients with myeloid malignancies who are not suitable candidates for allogeneic hematopoietic cell transplantation. This review highlights the past 2 years of work on stem/progenitor cell products in the field of nonengrafting donor leukocyte infusion (NE-DLI), with a focus on applications of MST in acute myeloid leukemia (AML). RECENT FINDINGS Assessing the utility of MST is hampered by lack of randomized controlled trials and by variability in donor selection algorithms, treatment timing, and unknown factors. The inherent complexity of the bidirectional alloreactive reactions, implicating many cell types, makes it challenging to move beyond correlative, population-level biology toward mechanistic explanations for MST's actions in any given patient-donor pair. Yet there are indicators that by stimulating a recipient-vs.-tumor effect, MST might substantially improve complete remission rates in AML and that it might find a role in postremission therapy. SUMMARY The mechanistic underpinnings of MST are gradually being disentangled and its clinical development remains in early stages.
Collapse
|
42
|
Jaiswal SR, Chakrabarti S. Natural killer cell-based immunotherapy with CTLA4Ig-primed donor lymphocytes following haploidentical transplantation. Immunotherapy 2019; 11:1221-1230. [DOI: 10.2217/imt-2019-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
NK cell-based immunotherapy is one of the more exciting propositions in the field of cellular therapy for hematological malignancies. Current protocols are largely based on expanded and activated NK cells which are used both with and without allogeneic transplantation. Based on our recent findings, we discuss the concept of CTLA4Ig-primed donor lymphocyte infusions following haploidentical transplantation as an effective tool to garner NK cell-mediated antitumor effect with abrogation of T cell-mediated alloreactivity. This approach might widen the possibility of immunotherapy following haploidentical transplantation without increase in graft-versus-host disease. Further studies would be needed to establish the veracity of this concept with better understanding of the antitumor effect via this pathway. Future studies would decide if CTLA4Ig might be used to augment NK-cell activation in vitro as well.
Collapse
Affiliation(s)
- Sarita Rani Jaiswal
- Cellular Therapy & Immunology, Manashi Chakrabarti Foundation, Kolkata
- Department of Blood & Marrow Transplantation, Dharamshila Narayana Superspeciality Hospital & Research Centre, New Delhi, India
| | - Suparno Chakrabarti
- Cellular Therapy & Immunology, Manashi Chakrabarti Foundation, Kolkata
- Department of Blood & Marrow Transplantation, Dharamshila Narayana Superspeciality Hospital & Research Centre, New Delhi, India
| |
Collapse
|
43
|
Vela M, Bueno D, González-Navarro P, Brito A, Fernández L, Escudero A, Valentín J, Mestre-Durán C, Arranz-Álvarez M, Pérez de Diego R, Mendiola M, Pozo-Kreilinger JJ, Pérez-Martínez A. Anti-CXCR4 Antibody Combined With Activated and Expanded Natural Killer Cells for Sarcoma Immunotherapy. Front Immunol 2019; 10:1814. [PMID: 31428099 PMCID: PMC6688426 DOI: 10.3389/fimmu.2019.01814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
Sarcoma is one of the most severe forms of pediatric cancer and current therapies -chemotherapy and surgery- fail to eradicate the disease in half of patients. Preclinical studies combining new therapeutic approaches can be useful to design better therapies. On one hand, it is known that CXCR4 expression is implicated in rhabdomyosarcoma progression, so we analyzed relapses and chemotherapy-resistant rhabdomyosarcoma tumors from pediatric patients and found that they had particularly high levels of CXCR4 expression. Moreover, in assays in vitro, anti-CXCR4 blocking antibody (MDX1338) efficiently reduced migration and invasion of alveolar rhabdomyosarcoma RH30 cells. On the other hand, activated and expanded natural killer (NKAE) cell therapy showed high cytotoxicity against sarcoma cells in vitro and completely inhibited RH30 tumor implantation in vivo. Only the combination of MDX1338 and NKAE treatments completely suppressed metastasis in mice. In this study, we propose a novel therapeutic approach based on anti-CXCR4 blocking antibody in combination with NKAE cell therapy to prevent rhabdomyosarcoma tumor implantation and lung metastasis. These results provide the first evidence for the efficacy of this combined immunotherapy for preventing sarcoma disease dissemination.
Collapse
Affiliation(s)
- Maria Vela
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - David Bueno
- Pediatric Hemato-Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Pablo González-Navarro
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ariadna Brito
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Lucía Fernández
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Adela Escudero
- Molecular Pediatric Oncology Unit, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Jaime Valentín
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Carmen Mestre-Durán
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | | | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Innate Immunity Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Molecular Pathology Section, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - José Juan Pozo-Kreilinger
- Molecular Pathology and Therapeutic Targets, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Pathology Service, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Pediatric Hemato-Oncology Department, Hospital Universitario La Paz, Madrid, Spain.,Department of Pediatric, Universidad Aut ónoma de Madrid (UAM), Instituto de Investigaci ón Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
44
|
Lee DA. Cellular therapy: Adoptive immunotherapy with expanded natural killer cells. Immunol Rev 2019; 290:85-99. [DOI: 10.1111/imr.12793] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Dean A. Lee
- Department of Hematology, Oncology, and Bone Marrow Transplantation Nationwide Children's Hospital Columbus Ohio
- Department of Pediatrics The Ohio State University Columbus Ohio
| |
Collapse
|