1
|
Zhou C, Huang Z, Lin H, Ma Z, Wang J, Wang Y, Yu W. Rhizoma curcumae Longae ameliorates high dietary carbohydrate-induced hepatic oxidative stress, inflammation in golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2022; 130:31-42. [PMID: 36038103 DOI: 10.1016/j.fsi.2022.08.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In general, starch, as a complex carbohydrate, is the most economical energy source in aquaculture for its relatively low cost. However, excessive dietary levels of carbohydrate result in pathological conditions. An 8-week feeding trial with CT (control diet, containing 21% carbohydrate), HC (a high-carbohydrate diet, containing 50% carbohydrate) and HCR (a HC diet supplemented with 0.015% Rhizoma curcumae Longae) was performed to investigate the protective effect of curcumin on high-carbohydrate-induced hepatic oxidative stress and intestine lesion in juvenile Trachinotus ovatus. In the current study, HC group significantly decreased WGR, SGR, plasma CAT activity, intestinal C4 levels, hepatic Nrf2, Keap1, Bach1, HO1, CAT, and GPX mRNA expression as well as ZO-1, Occludin, and Claudin-3, TGF-β mRNA transcription levels, while the opposite was true for plasma AST activity, hepatic MDA contents, intestinal Claudin-15, NF-κB, IL-1β, IL-6, and TNF-α mRNA expression. In contrast with the HC group, the HCR group significantly increased the activities of hepatic CAT, SOD, intestinal C3, C4, IgG and LZM levels, hepatic Nrf2, Bach1, CAT, and GPX mRNA expression as well as intestinal ZO-1, Occludin, Claudin-3, TGF-β and IL-10 mRNA expression levels, but the opposite trend was found in plasma triglyceride content, hepatic lipid deposition, hepatic Keap1 mRNA level as well as intestinal NF-κB, IL-6. In conclusion, high-carbohydrate diet can cause detrimental effect on physiological health status in Trachinotus ovatus, while adding Rhizoma curcumae Longae can improve hepatic and intestinal health status via attenuating the oxidative stress, inflammation, and reducing lipid deposition.
Collapse
Affiliation(s)
- Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Zhong Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China.
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, PR China
| | - Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| | - Wei Yu
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, PR China
| |
Collapse
|
2
|
Islam MJ, Kunzmann A, Slater MJ. Extreme winter cold-induced osmoregulatory, metabolic, and physiological responses in European seabass (Dicentrarchus labrax) acclimatized at different salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145202. [PMID: 33736134 DOI: 10.1016/j.scitotenv.2021.145202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Despite climate-change challenges, for most aquaculture species, physiological responses to different salinities during ambient extreme cold events remain unknown. Here, European seabass acclimatized at 3, 6, 12, and 30 PSU were subjected to 20 days of an ambient extreme winter cold event (8 °C), and monitored for growth and physiological performance. Growth performance decreased significantly (p < 0.05) in fish exposed at 3 and 30 PSU compared to 6 and 12 PSU. During cold stress exposure, serum Na+, Cl-, and K+ concentrations were significantly (p < 0.05) increased in fish exposed at 30 PSU. Serum cortisol, glucose, and blood urea nitrogen (BUN) were increased significantly (p < 0.05) in fish exposed at 3 and 30 PSU. In contrast, opposite trends were observed for serum protein, lactate, and triglycerides content during cold exposure. Transaminase activities [glutamic-pyruvate transaminase (GPT), glutamic oxaloacetic transaminase (GOT), lactic acid dehydrogenase (LDH), gamma-glutamyl-transaminase (γGGT)] were significantly higher in fish exposed at 3 and 30 PSU on days 10 and 20. The abundance of heat shock protein 70 (HSP70), tumor necrosis factor-α (TNF-α), cystic fibrosis transmembrane conductance (CFTR) were significantly (p < 0.05) increased in fish exposed at 3 and 30 PSU during cold shock exposure. In contrast, insulin-like growth factor 1 (Igf1) expression was significantly lower in fish exposed at 3 and 30 PSU. Whereas, on day 20, Na+/K+ ATPase α1 and Na+/K+/Cl- cotransporter-1 (NKCC1) were significantly upregulated in fish exposed at 30 PSU, followed by 12, 6, and 3 PSU. Results demonstrated that ambient extreme winter cold events induce metabolic and physiological stress responses and provide a conceivable mechanism by which growth and physiological fitness are limited at cold thermal events. However, during ambient extreme cold (8 °C) exposure, European seabass exhibited better physiological fitness at 12 and 6 PSU water, providing possible insight into future aquaculture management options.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
3
|
Han H, Wang Z, Wang J, Wang T, Li Y, Guan D, Sun H. Impact of high dietary cornstarch level on growth, antioxidant response, and immune status in GIFT tilapia Oreochromis niloticus. Sci Rep 2021; 11:6678. [PMID: 33758306 PMCID: PMC7988106 DOI: 10.1038/s41598-021-86172-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
This study was conducted to investigate the relationship between different cornstarch levels in tilapia diet and immune function. All test fish were fed with three cornstarch levels: low-cornstarch (0, LS), medium-cornstarch (18%, MS) and high-cornstarch (36%, HS) diets. Three hundred and sixty fish (initial mean body weight 31.73 ± 1.36 g) were randomly allocated into twelve water-circulated tanks, and thirty fish per tank. Compared with the low and medium cornstarch diets, the results of growth showed that the high cornstarch diet significantly decreased the FBW, WGR, and SGR, and increased the FCR of tilapia (P < 0.05). The high cornstarch diet significantly decreased the content of crude protein and increased the content of crude lipid in whole body composition (P < 0.05). Moreover, the VSI and CF in HS diet were significantly higher than those of LS diet (P < 0.05). The results of blood biochemical index exhibited that the HS diet significantly increased the content of blood glucose, and liver/muscle glycogen (P < 0.05). The results of antioxidant experiments demonstrated that the content of SOD and T-AOC in MS diet were significantly higher than those of HS diet (P < 0.05). Meanwhile, the content of MDA in MS diet was significantly lower than that of HS diet (P < 0.05). The results of immune index test showed that the lysozyme activities in the serum, liver, and gill, and the phagocytic activity and index in MS diet were significantly higher than those of HS diet (P < 0.05). The challenge assay results revealed that the mortality rate of HS diet was higher than those of LS and MS diets, but the difference was not significant (P > 0.05). In conclusion, the overall results suggested that the 36% cornstarch diet reduced not only the growth performance, but also body immunity. Under this experimental condition, GIFT tilapia could tolerate 18% cornstarch, but not 36% cornstarch.
Collapse
Affiliation(s)
- Haojun Han
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Laboratory of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University,, 61 Daizong Street, Taian City, 271018 Shandong Province China
| | - Zhen Wang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Laboratory of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University,, 61 Daizong Street, Taian City, 271018 Shandong Province China
| | - Jiting Wang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Laboratory of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University,, 61 Daizong Street, Taian City, 271018 Shandong Province China
| | - Tingting Wang
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Laboratory of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University,, 61 Daizong Street, Taian City, 271018 Shandong Province China
| | - Yang Li
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Laboratory of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University,, 61 Daizong Street, Taian City, 271018 Shandong Province China
| | - Dongyan Guan
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Laboratory of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University,, 61 Daizong Street, Taian City, 271018 Shandong Province China
| | - Huiwen Sun
- grid.440622.60000 0000 9482 4676Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Laboratory of Aquatic Animal Nutrition and Environmental Health, Shandong Agricultural University,, 61 Daizong Street, Taian City, 271018 Shandong Province China
| |
Collapse
|
4
|
Islam MJ, Slater MJ, Kunzmann A. What metabolic, osmotic and molecular stress responses tell us about extreme ambient heatwave impacts in fish at low salinities: The case of European seabass, Dicentrarchus labrax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141458. [PMID: 32829272 DOI: 10.1016/j.scitotenv.2020.141458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Unprecedented shifts in temperature and precipitation patterns in recent decades place multiple abiotic stressors on the fish. In teleosts, metabolic, osmoregulatory, and molecular potential as tolerance responses to extreme ambient heatwave events at different salinities are poorly understood. The study was performed to evaluate the physio-biochemical stress responses and acclimation potential of European seabass, Dicentrarchus labrax maintained at four different salinities followed by an extreme ambient heatwave exposure. Fish were kept at 32, 12, 6, and 2 psu for 35 days followed by a simulated extreme ambient heatwave (33 °C) exposure for 10 days. Fish growth performances, physio-biochemical and molecular responses were recorded. Fish acclimated at 32 and 2 psu exhibited significantly (p < 0.05) decreased growth performance. Serum [Na+] and [Cl-] ions were significantly lowered (p < 0.05) in 32 psu fish on day 10 of heatwave exposure. While serum glucose, triglycerides, and protein tended to decrease during the extreme ambient heatwave exposure, lactate content increased significantly (p < 0.05) in 32 psu fish on day 10. In 32 and 2 psu fish, serum metabolic enzymes, and cortisol levels increased significantly (p < 0.05) during the extreme heatwave exposure. On days 5 and 10, HSP70 mRNA was significantly (p < 0.05) upregulated in kidneys and gills of 32 and 2 psu fish, while Igf1 showed downregulation. In gills of 2 psu fish, ATPase Na+/K+-α1 and NKCC1 expression decreased significantly (p < 0.05) in 2 psu, in contrast, significant upregulation was observed at 32 psu fish during extreme ambient heatwave exposure. On days 5 and 10, cystic fibrosis transmembrane conductance (CFTR) upregulation was significantly lower (p < 0.05) in 32 and 2 psu fish. Results suggest that European seabass held at 12 and 6 psu water fare better physiological fitness during the tested extreme ambient heatwave event (33 °C), providing possible insights into options for future aquaculture management in a warming environment.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| |
Collapse
|
5
|
Islam MJ, Kunzmann A, Thiele R, Slater MJ. Effects of extreme ambient temperature in European seabass, Dicentrarchus labrax acclimated at different salinities: Growth performance, metabolic and molecular stress responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139371. [PMID: 32473428 DOI: 10.1016/j.scitotenv.2020.139371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 05/22/2023]
Abstract
Extreme weather events are becoming more intense and frequent as a result of climate change. The modulation of hemato-physiological potential as a compensatory response to extreme warm events combined with different salinities is poorly understood. This study aimed to assess the hemato-physiological and molecular response of European seabass, Dicentrarchus labrax exposed to extreme warm temperature (33 °C) after prior acclimatization at 32 psu, 12 psu, 6 psu, and 2 psu water. Fish were acclimated to 32 psu, 12 psu, 6 psu, and 2 psu followed by 10 days extreme warm (33 °C) exposure. Along with growth performance and survival, hemato-physiological response and molecular response of fish were recorded. Fish held at 32 psu and 2 psu exhibited significantly lower growth performance and survival than those at 12 psu and 6 psu (p < 0.05). Red blood cells (RBC), hematocrit, and hemoglobin content were significantly decreased, while white blood cells (WBC), erythrocytic cellular abnormalities (ECA) and erythrocytic nuclear abnormalities (ENA) were found to increase significantly in 32 psu and 2 psu fish (p < 0.05). Plasma lactate was found to increase significantly in 32 psu fish on day 10 (p < 0.05). Activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and TNF-α expression increased significantly in 32 psu and 2 psu fish (p < 0.05). Most of the repeated measured parameters indicated limited acclimation capacity during the extreme warm exposure at all four salinity groups. However, overall results indicate that European seabass acclimatized at 12 psu and 6 psu salinities, can cope better during extreme warm exposure (33 °C).
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany.
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| | - Rajko Thiele
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
6
|
Xia SL, Li XF, Abasubong KP, Xu C, Shi HJ, Liu WB, Zhang DD. Effects of dietary glucose and starch levels on the growth, apparent digestibility, and skin-associated mucosal non-specific immune parameters in juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2018; 79:193-201. [PMID: 29733960 DOI: 10.1016/j.fsi.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
A 10-week feeding trial was performed to evaluate the effects of different types and levels of carbohydrates in growth performance, apparent digestibility coefficients and skin-associated mucosal non-specific immune parameters in blunt snout bream (Megalobrama amblycephala). Fish were randomly fed four diets containing two carbohydrates (glucose and starch) diets and two carbohydrates levels (330 and 440 g kg-1). High carbohydrate levels remarkably increased the weight gain rate (WGR), apparent digestibility of dry matters, protein and carbohydrates, body crud protein content, plasma levels of aspartate transaminase (AST), and skin-associated mucosal levels of immunoglobulin M (IgM), HDL cholesterol, lysozyme (LZM), advanced the transcriptions of mucin 2 (Muc2), mucin 5b (Muc5b) and apolipoprotein A-I (apoA-I), whereas the opposite was true for feed conversion ratio (FCR), plasma levels of IgM, skin-associated mucosal levels of major histocompatibility complex (MHC) and β-Defensins, and the transcriptions of heat shock protein 60 (Hsp60). In addition, carbohydrate types of glucose remarkably increased the survival rate, apparent digestibility of dry matters, protein and carbohydartes, body crud ash, plasma levels of total protein (TP), globulin (GLB), immunoglobulin M (IgM), complement C3 and complement C4 and the transcriptions of Muc5b. Whereas the carbohydrate types of starch remarkably increased viscerosomatic index (VSI), hepatosomatic index (HSI), condition factor (CF), abdominal fat percentage (AFP), apparent digestibility of liquid, advanced the transcriptions of Muc2, apoA-I and heat shock protein 70 (Hsp70). Significant interactions between different types and levels of dietary carbohydrates were also observed in WGR, apparent digestibility of dry matters, protein and liquid, body crud ash, plasma levels of TP, albumin (ALB) and AST, skin-associated mucosal levels of major histocompatibility complex (MHC) and β-Defensins, and the transcriptions of Muc2 and Muc5b. Our results indicate that inclusion of high level of glucose in the diet of blunt snout bream could improve growth performance, nonspecific immunity, and increase the efficiency of protein, which is suggesting that high level of glucose could be used in feed production. However, the proportion of the specific formula of glucose using in feed needs further study.
Collapse
Affiliation(s)
- Si-Lei Xia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kenneth Prudence Abasubong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Pinedo-Gil J, Martín-Diana AB, Bertotto D, Sanz-Calvo MÁ, Jover-Cerdá M, Tomás-Vidal A. Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:939-948. [PMID: 29511985 DOI: 10.1007/s10695-018-0483-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
This study evaluates the effects of red beet (RB) and betaine on rainbow trout submitted to an acute stress challenge. A control diet was compared with four experimental diets in which red beet (14 and 28%) and betaine (0.9 and 1.63%) were incorporated in different concentrations according to a factorial design. Cortisol in plasma and fin, glucose and lactate plasma levels, and malondialdehide (MDA) in muscle were all measured before the stress challenge and 30 min and 6 and 12 h after the stress challenge as parameters to determine the diet effects. RB and betaine had no effect on cortisol, glucose, and MDA basal levels. However, lactate basal levels were significantly lower on fish fed with RB and betaine. Thirty minutes after the stress challenge, there was a significant increase in plasma and fin cortisol, glucose and lactate concentrations, although fish fed with diets containing RB and betaine showed significantly higher plasma cortisol values. MDA values of fish fed with 14% RB and 0.9% betaine were significantly higher than MDA values from fish fed with 28% RB and 1.63% betaine. After 6 and 12 h, plasma and fin cortisol and lactate levels recovered in a similar trend. Glucose plasma levels recovered in almost all groups 12 h after the stress. Also, MDA values recovered basal levels after 6 and 12 h. RB and betaine did not enhance the tolerance to the stress challenge compared to the control group, although the presence of these ingredients had no negative effect on any of the stress indicators.
Collapse
Affiliation(s)
- Julia Pinedo-Gil
- Research Group of Aquaculture and Biodiversity, Institute of Animal Science and Technology, Universitat Poliècnica de València, Camino de Vera, 14, 46071, Valencia, Spain.
| | - Ana Belén Martín-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, Ctra. Burgos km. 119, 47071, Valladolid, Spain.
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16 Agripolis, 35020, Legnaro, PD, Italy
| | - Miguel Ángel Sanz-Calvo
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, Ctra. Burgos km. 119, 47071, Valladolid, Spain
| | - Miguel Jover-Cerdá
- Research Group of Aquaculture and Biodiversity, Institute of Animal Science and Technology, Universitat Poliècnica de València, Camino de Vera, 14, 46071, Valencia, Spain
| | - Ana Tomás-Vidal
- Research Group of Aquaculture and Biodiversity, Institute of Animal Science and Technology, Universitat Poliècnica de València, Camino de Vera, 14, 46071, Valencia, Spain
| |
Collapse
|
8
|
Prisingkorn W, Prathomya P, Jakovlić I, Liu H, Zhao YH, Wang WM. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics 2017; 18:856. [PMID: 29121861 PMCID: PMC5680769 DOI: 10.1186/s12864-017-4246-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Background Global trend of the introduction of high levels of relatively cheap carbohydrates to reduce the amount of costly protein in the aquatic animal feed production has affected the aquaculture of an economically important cyprinid fish, blunt snout bream (Megalobrama amblycephala). This dietary shift has resulted in increased prevalence of metabolic disorders, often causing economic losses. High dietary intake of carbohydrates, associated with obesity, is one of the major causes of non-alcoholic fatty liver disease (NAFLD) in humans. Results We have conducted an eight-week feeding trial to better understand how a high-carbohydrate diet (HCBD) affects the liver health in this fish. Hepatosomatic index and lipid content were significantly (P < 0.05) higher in the HCBD group. Histology results also suggested pathological changes in the livers of HCBD group, with excessive lipid accumulation and indication of liver damage. Metabolomics and serum biochemistry analyses showed that a number of metabolites indicative of liver damage were increased in the HCBD group. This group also exhibited low levels of betaine, which is a metabolite crucial for maintaining the healthy liver functions. Transcriptomic and qPCR analyses indicated that HCBD had a strong impact on the expression of a large number of genes associated with the NAFLD and insulin signalling pathways, which may lead to the development of insulin resistance in hepatocytes, pathological liver changes, and eventually the NAFLD. Conclusions Transcriptomics, metabolomics and histology results all indicate early symptoms of liver damage. However whether these would actually lead to the development of NAFLD after a longer period of time, remains inconclusive. Additionally, a very high number of upregulated genes in the HCBD group associated with several neurodegenerative diseases is a strong indication of neurodegenerative changes caused by the high-carbohydrate diet in blunt snout bream. This suggests that fish might present a good model to study neurodegenerative changes associated with high-carbohydrate diet in humans. Electronic supplementary material The online version of this article (10.1186/s12864-017-4246-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Panita Prathomya
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075, People's Republic of China
| | - Han Liu
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
9
|
Rito J, Viegas I, Pardal MA, Jones JG. Evidence of extensive plasma glucose recycling following a glucose load in seabass. Comp Biochem Physiol A Mol Integr Physiol 2017; 211:41-48. [DOI: 10.1016/j.cbpa.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 11/26/2022]
|
10
|
Sesay DF, Habte-Tsion HM, Zhou Q, Ren M, Xie J, Liu B, Chen R, Pan L. The effect of dietary folic acid on biochemical parameters and gene expression of three heat shock proteins (HSPs) of blunt snout bream (Megalobrama amblycephala) fingerling under acute high temperature stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:923-940. [PMID: 28409385 DOI: 10.1007/s10695-016-0311-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/31/2016] [Indexed: 06/07/2023]
Abstract
The effects of dietary folic acid on biochemical parameters and gene expression of three heat shock proteins (HSPs) of blunt snout bream (Megalobrama amblycephala) fingerling under acute high temperature stress. Six dietary folic acid groups (0.0, 0.5, 1.0, 2.0, 5.0, and 10.0) mg/kg diets were designed and assigned into 18 tanks in three replicates each (300 l/tank) and were administered for 10 weeks in a re-circulated water system. The fingerlings with an initial weight of 27.0 ± 0.03 g were fed with their respective diets four times daily. At the end of the experiment, samples were collected before challenge, 0, 24, 72 h, and 7 days. Serum total protein (TP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cortisol, glucose, complement C3 (C3), complement C4 (C4, immunoglobulin M (IgM) hepatic superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and the expression of heat shock protein 60 (HSP60), 70 (HSP70), and 90 (HSP90) were studied. The results showed that fish fed with dietary folic acid between 1.0, 2.0, and 5.0 mg/kg significantly (P < 0.05) increased serum TP, C3, C4 hepatic SOD, CAT, and the expression of HSP60, HSP70, and HSP90 before and after temperature challenge of 32 °C. Also, serum ALP, cortisol, glucose, and hepatic MDA were significantly (P < 0.05) reduced by supplementation of dietary folic acid level 1.0, 2.0, and 5.0 mg/kg before and after the same temperature challenge of 32 °C. Before stress, 0, 24, 72 h, and 7 days significantly (P < 0.05) affects serum biochemical parameters, immune and antioxidant capacities, and expression level of three HSPs. Furthermore, there was no statistical evidence to show that dietary folic acid inclusion level and temperature duration have significant interactive effect on serum biochemical parameters, antioxidant parameters, and gene expression level (P > 0.05) of the three HSPs. However, there were statistical significant interactive effect between dietary folic acid inclusion level and temperature duration on serum C3 and C4 (P < 0.05) except IgM (P > 0.05). The present results indicate that supplementation of basal diet from 1.0 mg/kg; 2.0 and 5.0 mg/kg can enhance acute high temperature resistance ability in M. amblycephala fingerling to some degree and improve physiological response, immune and antioxidant capacities, and expression level of three HSPs.
Collapse
Affiliation(s)
- Daniella Fatmata Sesay
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
- Njala University, Mokonde Campus, Moyamba, Sierra Leone
| | - Habte-Michael Habte-Tsion
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Ruli Chen
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
| | - Liangkun Pan
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Shanshui East Road No. 9, Wuxi, Jiangsu, 214081, People's Republic of China
| |
Collapse
|
11
|
Short- and long-term metabolic responses to diets with different protein:carbohydrate ratios in Senegalese sole (Solea senegalensis, Kaup 1858). Br J Nutr 2017; 115:1896-910. [PMID: 27046056 DOI: 10.1017/s0007114516001057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Four isolipidic and isoenergetic diets with different protein:carbohydrate (CH) contents (48:38, 52:34, 56:30, 60:26) were fed to juvenile Senegalese sole (22·01 (sem 0·01) g) during 104 d. Oral glucose tolerance tests were performed at the beginning (4 d) and at the end (104 d) of the experiment to assess the effect of the dietary treatment on glucose tolerance. Samples of blood, liver and muscle of all dietary groups were also obtained at the initial and final phases of the trial at different postprandial times (0, 1, 5 and 10 h after feeding) in order to analyse glucose and NEFA in plasma, and metabolites and enzyme activities involved in glycogen metabolism, glycolysis, gluconeogenesis and lipogenesis pathways in liver and muscle. The results obtained in this study suggest a good glucose tolerance in Senegalese sole. This species tolerated important amounts of CH in the diet without showing any deleterious signs in terms of growth or any metabolic disorders. After 104 d of feeding diets with an important amount of CH (48:38 and 52:34), the control of glycaemia was maintained and even postprandial glucose levels in plasma were (in general) lower than at the beginning of the experiment. This reasonable tolerance to glucose is also reflected by an increased use of glucose through glycolysis in liver (indicated by glucokinase activity), and the absence of changes in lipogenic potential in the same tissue (indicated by ATP citrate lyase activity). No clear changes were induced in the muscle by the dietary treatments.
Collapse
|
12
|
Turner LA, Bucking C. The interactive effect of digesting a meal and thermal acclimation on maximal enzyme activities in the gill, kidney, and intestine of goldfish (Carassius auratus). J Comp Physiol B 2017; 187:959-972. [PMID: 28382530 DOI: 10.1007/s00360-017-1068-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Surrounding environmental temperatures affect many aspects of ectotherm physiology. Generally, organisms can compensate at one or more biological levels, or allow temperature to dictate processes such as enzyme activities through kinetic effects on reaction rates. As digestion also alters physiological processes such as enzyme activities, this study determined the interacting effect of thermal acclimation (8 and 20 °C) and digesting a single meal on maximal enzyme activities in three tissues of the goldfish (Carrassius auratus). Acclimation to elevated temperatures decreased branchial Na+, K+, ATPase (NKA) activity. In contrast, acclimation to elevated temperatures had no effect on citrate synthase (CS) or pyruvate kinase (PK) activity in any tissue, nor were renal NKA or glutamine synthetase (GS) activities impacted. Warm water-acclimation exaggerated the positive impact of digestion on intestinal and branchial NKA activities and intestinal GS activity only, but digestion had no effect in the kidney. CS and PK did not display intestinal zonation; however, there was a distinct increase towards the distal intestine in NKA and GS activities. Zonation of NKA was more prominent in warm-acclimated animals, while acclimation temperature did not affect intestinal heterogeneity of GS. Finally, the impact of tissue protein content on enzyme activity was discussed. We conclude that the intestine and gill of warm-acclimated goldfish exhibited an augmented capacity for increasing several enzyme activities in response to digestion while the kidney was unaffected by thermal acclimation or digesting a single meal. However, this amplified capacity was ameliorated by alterations in tissue protein content. Amplified increases in NKA activity may ultimately have implications for ATP demand in these tissues, while increased GS activity may beneficially increase ammonia-detoxifying capacity in the intestine.
Collapse
Affiliation(s)
- Leah A Turner
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Carol Bucking
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
13
|
Viegas I, Jarak I, Rito J, Carvalho RA, Metón I, Pardal MA, Baanante IV, Jones JG. Effects of dietary carbohydrate on hepatic de novo lipogenesis in European seabass (Dicentrarchus labrax L.). J Lipid Res 2016; 57:1264-72. [PMID: 27247346 DOI: 10.1194/jlr.m067850] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
Farmed seabass have higher adiposity than their wild counterparts and this is often attributed to carbohydrate (CHO) feeding. Whether this reflects a reduction in fat oxidation, increased de novo lipogenesis (DNL), or both, is not known. To study the effects of high CHO diets on hepatic TG biosynthesis, hepatic TG deuterium ((2)H) enrichment was determined following 6 days in (2)H-enriched tank water for fish fed with a no-CHO control diet (CTRL), and diets with digestible starch (DS) and raw starch (RS). Hepatic fractional synthetic rates (FSRs, percent per day(-1)) were calculated for hepatic TG-glyceryl and FA moieties through (2)H NMR analysis. Glyceryl FSRs exceeded FA FSRs in all cases, indicating active cycling. DS fish did not show increased lipogenic potential compared to CTRL. RS fish had lower glyceryl FSRs compared with the other diets and negligible levels of FA FSRs despite similar hepatic TG levels to CTRL. DS-fed fish showed higher activity for enzymes that can provide NADPH for lipogenesis, relative to CTRL in the case of glucose-6-phosphate dehydrogenase (G6PDH) and relative to RS for both G6PDH and 6-phosphogluconate dehydrogenase. This approach indicated that elevated hepatic adiposity from DS feeding was not attributable to increased DNL.
Collapse
Affiliation(s)
- Ivan Viegas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal Center for Functional Ecology, Department Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ivana Jarak
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - João Rito
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal Center for Functional Ecology, Department Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rui A Carvalho
- Center for Functional Ecology, Department Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miguel A Pardal
- Center for Functional Ecology, Department Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - John G Jones
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
14
|
Contribution of dietary starch to hepatic and systemic carbohydrate fluxes in European seabass (Dicentrarchus labrax L.). Br J Nutr 2015; 113:1345-54. [PMID: 25989995 DOI: 10.1017/s0007114515000574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, the effects of partial substitution of dietary protein by digestible starch on endogenous glucose production were evaluated in European seabass (Dicentrarchus labrax). The fractional contribution of dietary carbohydrates v. gluconeogenesis to blood glucose appearance and hepatic glycogen synthesis was quantified in two groups of seabass fed with a diet containing 30% digestible starch (DS) or without a carbohydrate supplement as the control (CTRL). Measurements were performed by transferring the fish to a tank containing water enriched with 5% (2)H2O over the last six feeding days, and quantifying the incorporation of (2)H into blood glucose and hepatic glycogen by (2)H NMR. For CTRL fish, gluconeogenesis accounted for the majority of circulating glucose while for the DS fish, this contribution was significantly lower (CTRL 85 (SEM 4) % v. DS 54 (SEM 2) %; P < 0.001). Hepatic glycogen synthesis via gluconeogenesis (indirect pathway) was also significantly reduced in the DS fish, in both relative (CTRL 100 (SEM 1) % v. DS 72 (SEM 1) %; P < 0.001) and absolute terms (CTRL 28 (SEM 1) v. DS 17 (sem 1) μmol/kg per h; P < 0.001). A major fraction of the dietary carbohydrates that contributed to blood glucose appearance (33 (sem 1) % of the total 47 (SEM 2) %) had undergone exchange with hepatic glucose 6-phosphate. This indicated the simultaneous activity of hepatic glucokinase and glucose 6-phosphatase. In conclusion, supplementation of digestible starch resulted in a significant reduction of gluconeogenic contributions to systemic glucose appearance and hepatic glycogen synthesis.
Collapse
|
15
|
Nie Q, Miao H, Miao S, Zhou H, Zhang Y, Zhang W, Mai K. Effects of dietary glucose and dextrin on activity and gene expression of glucokinase and fructose-1,6-bisphosphatase in liver of turbot Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:819-832. [PMID: 25893902 DOI: 10.1007/s10695-015-0049-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Glucokinase (GK) and fructose-1,6-bisphosphatase (FBPase) play crucial role in glucose metabolism. In the present study, the cDNA encoding GK and FBPase was cloned from the liver of turbot Scophthalmus maximus by rapid amplification of cDNA end technique. Effects of dietary glucose and dextrin on the activities and gene expressions of these two enzymes were also studied. Results showed that the full length of GK cDNA was 2226 bp, consisting of an open reading frame (ORF) of 1434 bp. The full-length cDNA coding FBPase was 1314 bp with a 1014 bp ORF encoding 337 amino acids. Analyses of gene expression of GK and FBPase were conducted in gill, liver, the whole intestine, the whole kidney, heart, the dorsal white muscle and brain. The highest expression of GK was found in liver, followed by muscle. The expression of FBPase was found higher in liver than heart and gill. Both hepatic GK activity and mRNA expression were highly induced in turbot after being fed with dietary carbohydrates (p < 0.05). However, the GK activity and mRNA expression in the group with dietary glucose did not significantly differ from those in the group with dietary dextrin (p > 0.05). Compared with the control group, there were no significant differences in FBPase activity and mRNA expression in the glucose as well as dextrin group (p > 0.05). The increased hepatic GK activity and gene expression indicated that the first step of glycolysis was activated in turbot by dietary carbohydrates.
Collapse
Affiliation(s)
- Qin Nie
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhou C, Ge X, Liu B, Xie J, Chen R, Ren M. Effect of High Dietary Carbohydrate on the Growth Performance, Blood Chemistry, Hepatic Enzyme Activities and Growth Hormone Gene Expression of Wuchang Bream (Megalobrama amblycephala) at Two Temperatures. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:207-14. [PMID: 25557816 PMCID: PMC4283165 DOI: 10.5713/ajas.13.0705] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/27/2014] [Accepted: 07/20/2014] [Indexed: 11/27/2022]
Abstract
The effects of high carbohydrate diet on growth, serum physiological response, and hepatic heat shock protein 70 expression in Wuchang bream were determined at 25°C and 30°C. At each temperature, the fish fed the control diet (31% CHO) had significantly higher weight gain, specific growth rate, protein efficiency ratio and hepatic glucose-6-phosphatase activities, lower feed conversion ratio and hepatosomatic index (HSI), whole crude lipid, serum glucose, hepatic glucokinase (GK) activity than those fed the high-carbohydrate diet (47% CHO) (p<0.05). The fish reared at 25°C had significantly higher whole body crude protein and ash, serum cholesterol and triglyceride, hepatic G-6-Pase activity, lower glycogen content and relative levels of hepatic growth hormone (GH) gene expression than those reared at 30°C (p<0.05). Significant interaction between temperature and diet was found for HSI, condition factor, hepatic GK activity and the relative levels of hepatic GH gene expression (p<0.05).
Collapse
Affiliation(s)
- Chuanpeng Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China ; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
| | - Xianping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Bo Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jun Xie
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Ruli Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| |
Collapse
|
17
|
Zhou C, Ge X, Lin H, Niu J. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2014; 41:183-190. [PMID: 25181652 DOI: 10.1016/j.fsi.2014.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/16/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
The present study was conducted to investigate the effects of dietary carbohydrate (CHO) levels on non-specific immune responses, hepatic antioxidative status and disease resistance of juvenile golden pompano. Fish were fed six isonitrogenous and isoenergetic diets containing various CHO levels for 8 weeks. After the feeding trial, fish were challenged by Vibrio harveyi and survival rate was recorded for the next 12 days. Plasma total protein and albumin content, respiratory burst activity, alkaline phosphatase, slightly increased with dietary starch level from 0% to 16.8%, but significantly decreased at dietary starch levels of 16.8%-28%. Plasma lysozyme, complement 3 and complement 4 levels increased with increasing dietary carbohydrate up to 11.2% and then declined (P < 0.05). Contrary to glutamic-oxalacetic transaminase and triiodothyronine, plasma cortisol content increased with increasing dietary carbohydrate up to 22.4%, and then levelled off. The hepatic total antioxidative capacity, reduced glutathione and catalase levels reached the peak at the fish fed diet with 16.8% carbohydrate (P < 0.05). This also held true for hepatic superoxide dismutase activities, whereas the hepatic malondialdehyde content of fish fed dietary starch level of 16.8% was significantly lower than that of fish fed no CHO diet, but showed little difference (P > 0.05) with those of the other treatments. After challenge, fish fed 11.2% and 16.8% dietary CHO showed higher survival rate than that of fish in 0% CHO group (P < 0.05). However, survival rate showed little difference among 0%, 5.6%, 22.4% and 28% CHO groups (P > 0.05). The results of this study suggest that ingestion of 11.2-16.8% dietary CHO can enhance the non-specific immune responses, increase the hepatic antioxidant abilities, and improve resistance to V. harveyi infection of juvenile golden pompano.
Collapse
Affiliation(s)
- Chuanpeng Zhou
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, the South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Xianping Ge
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Heizhao Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, the South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Jin Niu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, the South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
18
|
Zhou CP, Ge XP, Liu B, Xie J, Miao LH. Effect of High Dietary Carbohydrate on the Growth Performance and Physiological Responses of Juvenile Wuchang Bream, Megalobrama amblycephala. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1598-608. [PMID: 25049747 PMCID: PMC4093814 DOI: 10.5713/ajas.2012.12659] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/30/2013] [Accepted: 02/27/2013] [Indexed: 11/27/2022]
Abstract
An optimum dietary carbohydrate content is important for maximum fish growth. In this study, we fed Wuchang bream (Megalobrama amblycephala) with either control diet (30.42%) or high carbohydrate diet (52.92%) for 90 d. Fish were fed to apparent satiation three times daily in an aquarium with automatic temperature control and circulated water. Growth performance, plasma biochemical parameters, hepatic morphology and enzyme activities were determined. It was shown that compared to fish fed control diet, fish fed high carbohydrate diet had higher plasma triglyceride and cortisol levels for d 90, and lower alkaline phosphatase level for d 45, lower hepatic superoxide dismutase and total antioxidative capacity for d 90, higher malondialdehyde for d 45 and glycogen content for d 45 and 90 (p<0.05). Histological and transmission electron microscopy studies showed that hepatocytes of fish fed high carbohydrate diet contained large lipid droplets, causing displacement of cellular organelles to periphery of hepatocytes. The relative level of hepatic heat shock protein 70 (HSP70) mRNA of Wuchang bream fed high carbohydrate diet was significantly higher than that of fish fed the control diet for 90 d (p<0.05). These changes led to decreased specific growth rate and increased feed conversion ratio (p<0.05). Upon hypoxia challenge, fish fed high carbohydrate diet had higher cumulative mortality than those fed the control diet (p<0.05). These results suggested that high dietary carbohydrate (52.92%) was detrimental to the growth performance and health of Wuchang bream.
Collapse
Affiliation(s)
- C P Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - X P Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - B Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - J Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - L H Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
19
|
Viegas I, Caballero-Solares A, Rito J, Giralt M, Pardal MA, Metón I, Jones JG, Baanante IV. Expressional regulation of key hepatic enzymes of intermediary metabolism in European seabass (Dicentrarchus labrax) during food deprivation and refeeding. Comp Biochem Physiol A Mol Integr Physiol 2014; 174:38-44. [PMID: 24746983 DOI: 10.1016/j.cbpa.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 11/18/2022]
Abstract
We hypothesized that the analysis of mRNA level and activity of key enzymes in amino acid and carbohydrate metabolism in a feeding/fasting/refeeding setting could improve our understanding of how a carnivorous fish, like the European seabass (Dicentrarchus labrax), responds to changes in dietary intake at the hepatic level. To this end cDNA fragments encoding genes for cytosolic and mitochondrial alanine aminotransferase (cALT; mALT), pyruvate kinase (PK), glucose 6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) were cloned and sequenced. Measurement of mRNA levels through quantitative real-time PCR performed in livers of fasted seabass revealed a significant increase in cALT (8.5-fold induction) while promoting a drastic 45-fold down-regulation of PK in relation to the levels found in fed seabass. These observations were corroborated by enzyme activity meaning that during food deprivation an increase in the capacity of pyruvate generation happened via alanine to offset the reduction in pyruvate derived via glycolysis. After a 3-day refeeding period cALT returned to control levels while PK was not able to rebound. No alterations were detected in the expression levels of G6PDH while 6PGDH was revealed to be more sensitive specially to fasting, as confirmed by a significant 5.7-fold decrease in mRNA levels with no recovery after refeeding. Our results indicate that in early stages of refeeding, the liver prioritized the restoration of systemic normoglycemia and replenishment of hepatic glycogen. In a later stage, once regular feeding is re-established, dietary fuel may then be channeled to glycolysis and de novo lipogenesis.
Collapse
Affiliation(s)
- Ivan Viegas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; CFE - Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas 3000-456 Coimbra, Portugal.
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - João Rito
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; CFE - Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas 3000-456 Coimbra, Portugal
| | - Marina Giralt
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - Miguel A Pardal
- CFE - Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas 3000-456 Coimbra, Portugal
| | - Isidoro Metón
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - John G Jones
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | - Isabel V Baanante
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Qiang J, He J, Yang H, Wang H, Kpundeh M, Xu P, Zhu Z. Temperature modulates hepatic carbohydrate metabolic enzyme activity and gene expression in juvenile GIFT tilapia (Oreochromis niloticus) fed a carbohydrate-enriched diet. J Therm Biol 2014; 40:25-31. [DOI: 10.1016/j.jtherbio.2013.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/25/2013] [Accepted: 12/22/2013] [Indexed: 11/16/2022]
|
21
|
Viegas I, Rito J, González JD, Jarak I, Carvalho RA, Metón I, Pardal MA, Baanante IV, Jones JG. Effects of food-deprivation and refeeding on the regulation and sources of blood glucose appearance in European seabass (Dicentrarchus labrax L.). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:399-405. [PMID: 23871878 DOI: 10.1016/j.cbpa.2013.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 02/06/2023]
Abstract
Sources of blood glucose in European seabass (initial weight 218.0±43.0g; mean±S.D., n=18) were quantified by supplementing seawater with deuterated water (5%-(2)H2O) for 72h and analyzing blood glucose (2)H-enrichments by (2)H NMR. Three different nutritional states were studied: continuously fed, 21-day of fast and 21-day fast followed by 3days of refeeding. Plasma glucose levels (mM) were 10.7±6.3 (fed), 4.8±1.2 (fasted), and 9.3±1.4 (refed) (means±S.D., n=6), showing poor glycemic control. For all conditions, (2)H-enrichment of glucose position 5 was equivalent to that of position 2 indicating that blood glucose appearance from endogenous glucose 6-phosphate (G6P) was derived by gluconeogenesis. G6P-derived glucose accounted for 65±7% and 44±10% of blood glucose appearance in fed and refed fish, respectively, with the unlabeled fraction assumed to be derived from dietary carbohydrate (35±7% and 56±10%, respectively). For 21-day fasted fish, blood glucose appearance also had significant contributions from unlabeled glucose (52±16%) despite the unavailability of dietary carbohydrates. To assess the role of hepatic enzymes in glycemic control, activity and mRNA levels of hepatic glucokinase (GK) and glucose 6-phosphatase (G6Pase) were assessed. Both G6Pase activity and expression declined with fasting indicating the absence of a classical counter-regulatory stimulation of hepatic glucose production in response to declining glucose levels. GK activities were basal during fed and fasted conditions, but were strongly stimulated by refeeding. Overall, hepatic G6Pase and GK showed limited capacity in regulating glucose levels between feeding and fasting states.
Collapse
Affiliation(s)
- Ivan Viegas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; CFE-Center for Functional Ecology, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Response of hepatic lipid and glucose metabolism to a mixture or single fatty acids: Possible presence of fatty acid-sensing mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:241-8. [PMID: 23010243 DOI: 10.1016/j.cbpa.2012.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
To assess the hypothesis that an acute dietary fatty acid (FA) supply may improve glucose tolerance in rainbow trout, we orally administered fish with fish oil (FO; 10mL.kg(-1), one time), which were then subjected to a glucose tolerance test and sampled 6h after injection. Parameters related to glucose and lipid metabolism were then assessed. The results suggest that when both nutrients were administered at the same time, an increased potential for lipogenesis occurred concomitantly with a lower level of glycaemia. In a second experiment we administered intraperitoneally a single FA present in the FO mixture such as oleic acid (60 or 300μg.kg(-1)) whereas octanoic acid (60 or 300μg.kg(-1)) was used as negative control (absent from the FO). However, the effects of both FA were similar in reducing the potential of lipid synthesis and oxidation, and in enhancing the potential of glucose synthesis and glycogenesis. Differences found between FO and single FA administration show that response to FA was dependent on the treatment (mixture vs. single FA) but also comply with the idea that an interaction between FA and glucose rather than FA alone are in the origin of the results reported. The administration of individual FA such as oleic and octanoic acid failed in enhancing lipogenesis and reducing plasma glucose levels and thus in explaining results obtained with FO. However, results provide evidence that FA even provided at a low dose play a key role in the regulation of several putative components of a FA sensing system present in rainbow trout liver.
Collapse
|
23
|
Kumar S, Sahu NP, Pal AK, Subramanian S, Priyadarshi H, Kumar V. High dietary protein combats the stress of Labeo rohita fingerlings exposed to heat shock. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:1005-1019. [PMID: 21573753 DOI: 10.1007/s10695-011-9504-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 04/28/2011] [Indexed: 05/30/2023]
Abstract
The amelioration effect of high dietary protein against stress was evaluated in Labeo rohita fingerlings, exposed to heat shock. Two hundred and forty fingerlings (6.57 ± 0.04 g, average weight ± SE) were randomly distributed into 4 treatment groups, each with 4 replicates was fed with either of four diets containing different levels of protein (20, 30, 40 or 45%). Water temperatures of all the treatments were within the range of 25.5-26.5°C throughout the experimental period of 30 days. After 30 days of feeding, fish were given heat shock by exposing to 38°C for 2 h. Heat shock significantly decreased (P < 0.05) liver glycogen content in treatment groups fed with 20 and 30% dietary protein, whereas unaffected in the 40 and 45% protein-fed groups. Heat shock significantly increased (P < 0.05) serum glucose and cortisol level in all the treatments. The 40 and 45% dietary protein-fed groups registered significantly higher survival (%) after the heat shock compared with their lower-protein counterparts. Heat shock increased the glycolytic, gluconeogenic, protein metabolic and antioxidative enzymes to cope up with thermal stress. Our results indicate that high-protein diet (≥40%) combats the stress due to heat shock in Labeo rohita.
Collapse
Affiliation(s)
- Shivendra Kumar
- Krishi Vigyan Kendra, Rajendra Agricultural University, Madhopur, Bihar, India.
| | | | | | | | | | | |
Collapse
|
24
|
Enes P, Panserat S, Kaushik S, Oliva-Teles A. Dietary Carbohydrate Utilization by European Sea Bass (Dicentrarchus labraxL.) and Gilthead Sea Bream (Sparus aurataL.) Juveniles. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/10641262.2011.579363] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Enes P, Peres H, Couto A, Oliva-Teles A. Growth performance and metabolic utilization of diets including starch, dextrin, maltose or glucose as carbohydrate source by gilthead sea bream (Sparus aurata) juveniles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:903-910. [PMID: 19894133 DOI: 10.1007/s10695-009-9366-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 10/20/2009] [Indexed: 05/28/2023]
Abstract
The effect of dietary carbohydrate complexity on growth, feed utilization and activity of selected key liver enzymes of intermediary metabolism were studied in gilthead sea bream juveniles. Four isonitrogenous (50% crude protein) and isolipidic (16% crude lipids) diets were formulated to contain 20% of pregelatinized maize starch, dextrin, maltose or glucose. Triplicate groups of fish (117 g initial weight) were fed each diet to near satiation during 6 weeks. No effect of dietary carbohydrate on growth was noticed. Feed efficiency was lower in fish fed the glucose diet than the maltose and dextrin diets. The lowest protein efficiency ratio was observed in fish fed the glucose diet. Six hours after feeding, glycemia was higher in fish fed the glucose diet than the maltose and starch diets. Liver glycogen content was unaffected by dietary carbohydrate complexity. Hepatic glucokinase (GK) activity was higher in fish fed the glucose and the maltose diets, while higher pyruvate kinase (PK) activity was recorded in fish fed the glucose diet than in fish fed the starch diet. Fructose-1,6-bisphosphatase (FBPase) and glucose-6-phosphate dehydrogenase (G6PD) activities were higher in fish fed the starch diet compared to dextrin and glucose diets. Data suggest that dietary glucose and maltose are more effective than complex carbohydrates in enhancing liver glycolytic activity. Dietary glucose also seems to be more effective than starch in depressing liver gluconeogenic and lipogenic activities. Overall, dietary maltose, dextrin or starch was better utilized than glucose as energy source by gilthead sea bream juveniles.
Collapse
Affiliation(s)
- P Enes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade do Porto, 4050-123, Porto, Portugal.
| | | | | | | |
Collapse
|
26
|
Alexander C, Sahu NP, Pal AK, Akhtar MS. Haemato-immunological and stress responses of Labeo rohita (Hamilton) fingerlings: effect of rearing temperature and dietary gelatinized carbohydrate. J Anim Physiol Anim Nutr (Berl) 2010; 95:653-63. [DOI: 10.1111/j.1439-0396.2010.01096.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Alexander C, Sahu NP, Pal AK, Akhtar MS, Saravanan S, Xavier B, Munilkumar S. Higher water temperature enhances dietary carbohydrate utilization and growth performance in Labeo rohita (Hamilton) fingerlings. J Anim Physiol Anim Nutr (Berl) 2010; 95:642-52. [DOI: 10.1111/j.1439-0396.2010.01095.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Enes P, Sanchez-Gurmaches J, Navarro I, Gutiérrez J, Oliva-Teles A. Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrate levels. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:346-53. [PMID: 20696267 DOI: 10.1016/j.cbpa.2010.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
The roles of insulin and insulin-like growth factor-I (IGF-I) in the regulation of glucose metabolism were assessed in European sea bass juveniles fed with distinct dietary carbohydrate levels. Three isonitrogenous diets were formulated to contain 10% (10%PGS) or 30% (30%PGS) pregelatinized starch or no starch (control). The highest plasma glucose and insulin levels were observed 6h after feeding in fish receiving the 30%PGS diet. Although plasma IGF-I was higher at 6h than at 24h after feeding, no effect of dietary carbohydrate level was noticed within each sampling time. Increasing dietary carbohydrate level resulted in an increase of liver but not of muscle glycogen content. Hepatic glucokinase (GK) and glucose-6-phosphate dehydrogenase (G6PD) activities increased with the dietary carbohydrate content, whereas pyruvate kinase (PK) activity was higher in fish fed the carbohydrate containing diets than the carbohydrate-free diet. GK activity was higher 6h than 24h after feeding, whereas the opposite was observed for G6PD activity. Data suggest that under the nutritional conditions assayed plasma glucose is an insulin secretagogue. Furthermore, insulin appears to have a more important role than IGF-I in stimulating hepatic glucose uptake, thus enhancing GK activity and leading to an increase in liver glycogen content to maintain glucose homeostasis.
Collapse
Affiliation(s)
- P Enes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | | | | | | | | |
Collapse
|
29
|
Ibarz A, Blasco J, Gallardo MA, Fernández-Borràs J. Energy reserves and metabolic status affect the acclimation of gilthead sea bream (Sparus aurata) to cold. Comp Biochem Physiol A Mol Integr Physiol 2009; 155:319-26. [PMID: 19931633 DOI: 10.1016/j.cbpa.2009.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
During winter, low temperatures induce a direct metabolic depression in gilthead sea bream, without any significant compensatory effect below 13 degrees C. The present study therefore focused on how to improve response to cold in these fish, looking specifically at the two factors of diet (high energy, HiE, and low energy, LoE) and activity (normal, -SW, and sustained activity, +SW) prior to exposure to cold. Following a preparatory period of 75 days water was adjusted to 10 degrees C and kept for 40 days. Enzymatic activities and store deposition revealed that the HiE-SW group had acquired an energy surplus whilst the LoE+SW group exhibited an energy deficit. Liver enzyme activities evidenced diet dependence: LoE groups showed greater glucose-6-phosphate dehydrogenase activity and HiE groups showed greater lipoprotein lipase and hepatic lipase activities. Moreover, the HiE-SW group's lower citrate synthase/cytochrome-c-oxidase ratio reflected the energy surplus available. Perivisceral fat mobilisation caused by cold stress affected liver integrity, resulting in a pre-steatotic condition for the HE-SW group. The differences in liver enzyme activities produced by pre-cold conditions disappeared at low temperatures and enzymatic activities did not compensate. Therefore any improvement that would enable gilthead sea bream to face up to winter must be achieved prior to the appearance of low temperatures.
Collapse
Affiliation(s)
- A Ibarz
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Avd. Diagonal 645, E-08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
30
|
Enes P, Panserat S, Kaushik S, Oliva-Teles A. Nutritional regulation of hepatic glucose metabolism in fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:519-539. [PMID: 18791853 DOI: 10.1007/s10695-008-9259-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 07/27/2008] [Indexed: 05/26/2023]
Abstract
Glucose plays a key role as energy source in the majority of mammals, but its importance in fish appears limited. Until now, the physiological basis for such apparent glucose intolerance in fish has not been fully understood. A distinct regulation of hepatic glucose utilization (glycolysis) and production (gluconeogenesis) may be advanced to explain the relative inability of fish to efficiently utilize dietary glucose. We summarize here information regarding the nutritional regulation of key enzymes involved in glycolysis (hexokinases, 6-phosphofructo-1-kinase and pyruvate kinase) and gluconeogenesis (phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and glucose-6-phosphatase) pathways as well as that of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The effect of dietary carbohydrate level and source on the activities and gene expression of the mentioned key enzymes is also discussed. Overall, data strongly suggest that the liver of most fish species is apparently capable of regulating glucose storage. The persistent high level of endogenous glucose production independent of carbohydrate intake level may lead to a putative competition between exogenous (dietary) glucose and endogenous glucose as the source of energy, which may explain the poor dietary carbohydrate utilization in fish.
Collapse
Affiliation(s)
- P Enes
- Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | | | | | | |
Collapse
|
31
|
Couto A, Enes P, Peres H, Oliva-Teles A. Effect of water temperature and dietary starch on growth and metabolic utilization of diets in gilthead sea bream (Sparus aurata) juveniles. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:45-50. [PMID: 18586542 DOI: 10.1016/j.cbpa.2008.05.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/23/2008] [Accepted: 05/24/2008] [Indexed: 11/29/2022]
Abstract
We evaluated the effect of dietary starch level on growth performance, feed utilization, whole-body composition and activity of selected key enzymes of intermediary metabolism in gilthead sea bream juveniles reared at 18 and 25 degrees C. A diet was formulated to contain 48% crude protein, 12% lipids and 30% gelatinized maize starch (diet 30GS). Two other diets were formulated to include the same level of ingredients as diet 30GS except for the gelatinized starch, which was included at 20% (diet 20GS) or 10% (diet 10GS). No adjustment to diet composition was otherwise made. Each diet was fed to triplicate groups of gilthead sea bream (30 g initial mass) for 8 weeks, on a pair-feeding scheme. The higher temperature improved growth performance but the opposite was true for feed efficiency and protein efficiency ratio. Independently of temperature, growth performance, feed efficiency and protein efficiency ratio were lower in fish fed diet 30GS. No effect of temperature or dietary starch level on whole-body composition was noticed. Hepatosomatic index and liver glycogen were higher at 18 degrees C and, within each temperature, in fish fed diet 30GS. Glycemia was not affected by temperature, but was lower in fish fed diet 10GS. Data on enzyme activities showed that increasing water temperature enhances liver glucokinase (GK) and pyruvate kinase (PK) activities, suggesting that gilthead sea bream is more apt to use dietary starch at higher temperatures. No effect of temperature was noticed on hexokinase (HK), fructose-1,6-bisphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6PD) and glutamate dehydrogenase (GDH) activities. Dietary starch enhanced PK and FBPase activities while depressed GDH activity, suggesting a lack of significant regulation of hepatic glucose utilization and production in this species. HK, GK and G6PD activities were unaffected by dietary composition. Irrespectively of water temperature, gelatinized starch may be included up to 20% in diets for gilthead sea bream juveniles; at higher dietary levels, growth and efficiency of feed utilization are depressed.
Collapse
Affiliation(s)
- A Couto
- Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| | | | | | | |
Collapse
|
32
|
Enes P, Panserat S, Kaushik S, Oliva-Teles A. Rearing temperature enhances hepatic glucokinase but not glucose-6-phosphatase activities in European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) juveniles fed with the same level of glucose. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:355-8. [PMID: 18508397 DOI: 10.1016/j.cbpa.2008.04.596] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/15/2022]
Abstract
The aim of this work was to elucidate if the previous results observed in hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities in European sea bass and gilthead sea bream are due to temperature per se or to differences in feed intake at different water temperatures. For that purpose triplicate groups of fish (30 g initial body weight) were kept at 18 degrees C or 25 degrees C during two weeks and fed a fixed daily ration of a glucose-free or 20% glucose diet. At the end of the experimental period, plasma glucose levels in both species were not influenced by water temperature but were higher in fish fed the glucose diet. Higher hepatic GK activity was observed in the two fish species fed the glucose diet than the glucose-free diet. In the glucose fed groups, GK activity was higher at 25 degrees C than at 18 degrees C. Glucose-6-phosphatase activities in both species were not influenced by water temperature. In European sea bass and in contrast to gilthead sea bream it was observed an effect of dietary composition on G6Pase activities with surprising higher activities recorded in fish fed the glucose diet than in fish fed the glucose-free diet. Overall, our data strongly suggest that European sea bass and gilthead sea bream are apparently capable to strongly regulate glucose uptake by the liver but not glucose synthesis, which is even enhanced by dietary glucose in European sea bass. Within limits, increasing water temperature enhances liver GK but not G6Pase activities, suggesting that both species are more able to use dietary carbohydrates at higher rearing temperatures.
Collapse
Affiliation(s)
- P Enes
- Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal.
| | | | | | | |
Collapse
|
33
|
Enes P, Panserat S, Kaushik S, Oliva-Teles A. Hepatic glucokinase and glucose-6-phosphatase responses to dietary glucose and starch in gilthead sea bream (Sparus aurata) juveniles reared at two temperatures. Comp Biochem Physiol A Mol Integr Physiol 2007; 149:80-6. [PMID: 18023221 DOI: 10.1016/j.cbpa.2007.10.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/17/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022]
Abstract
The effects of carbohydrate sources/complexity and rearing temperature on hepatic glucokinase (GK) and glucose-6-phosphatase (G6Pase) activities and gene expression were studied in gilthead sea bream juveniles. Two isonitrogenous (50% crude protein) and isolipidic (19% crude lipids) diets were formulated to contain 20% waxy maize starch or 20% glucose. Triplicate groups of fish (63.5 g initial body weight) were fed each diet to near satiation during four weeks at 18 degrees C or 25 degrees C. Growth, feed intake, feed efficiency and protein efficiency ratio, were higher at the higher water temperature. At each water temperatures fish growth and feed efficiency were higher with the glucose diet. Plasma glucose levels were not influenced by water temperature but were higher in fish fed the glucose diet. Hepatosomatic index and liver glycogen were higher at the lower water temperature and within each water temperature in fish fed the glucose diet. No effect of water temperature on enzymes activities was observed, except for hexokinase and GK which were higher at 25 degrees C. Hepatic hexokinase and pyruvate kinase activities were not influenced by diet composition, whereas glucose-6-phosphate dehydrogenase activity was higher in fish fed the glucose diet. Higher GK activity was observed in fish fed the glucose diet. GK gene expression was higher at 25 degrees C in fish fed the waxy maize starch diet while in fish fed the glucose diet, no temperature effect on GK gene expression was observed. Hepatic G6Pase activities and gene expression were neither influenced by dietary carbohydrates nor water temperature. Overall, our data suggest that in gilthead sea bream juveniles hepatocytes dietary carbohydrate source and temperature affect more intensively GK, the enzyme responsible for the first step of glucose uptake, than G6Pase the enzyme involved in the last step of glucose hepatic release.
Collapse
Affiliation(s)
- P Enes
- Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal.
| | | | | | | |
Collapse
|