1
|
Glover CN, Veilleux HD, Misutka MD. Commentary: Environmental RNA and the assessment of organismal function in the field. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111036. [PMID: 39313021 DOI: 10.1016/j.cbpb.2024.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Environmental RNA (eRNA) is an emerging technique with significant potential for the assessment of organismal function in field settings. It has the advantage of being non-invasive, facilitating insight into the physiological status of an organism without complications associated with processes such as capture, handling, and transportation from the field to the laboratory. It is hypothesised that eRNA approaches will be especially valuable for assessing sublethal stress of species living in environmental settings undergoing change and could therefore be integral for examining population health and for testing hypotheses regarding organismal physiology developed from laboratory studies. However, the successful application of eRNA approaches requires further data regarding the stability and persistence of eRNA in natural substrates; established and validated relationships between molecular biomarkers and the physiological processes they participate in; and an understanding of the contributions of different epithelia in direct contact with the environment (skin, gill, gut) to the eRNA transcriptome. The utility of microRNA as a component of the eRNA pool should be an area of specific future research focus. Ultimately, eRNA has the potential to provide fundamental physiological information regarding the responses of organisms in their natural settings and could increase the sensitivity and acuity of biomonitoring efforts.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | - Melissa D Misutka
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Reeve C, Smith KA, Bzonek PA, Cooke SJ, Blanchfield PJ, Brownscombe JW. Calibrating acceleration transmitters to quantify the seasonal energetic costs of activity in lake trout. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39228148 DOI: 10.1111/jfb.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Bioenergetics models are powerful tools used to address a range of questions in fish biology. However, these models are rarely informed by free-swimming activity data, introducing error. To quantify the costs of activity in free-swimming fish, calibrations produced from standardized laboratory trials can be applied to estimate energy expenditure from sensor data for specific tags and species. Using swim tunnel respirometry, we calibrated acceleration sensor-equipped transmitting tags to estimate the aerobic metabolic rates (ṀO2) of lake trout (Salvelinus namaycush) at three environmentally relevant temperatures. Aerobic and swim performance were also assessed. Like other calibrations, we found strong relationships between ṀO2 and acceleration or swimming speed, and jackknife validations and data simulations suggest that our models accurately predict metabolic costs of activity in adult lake trout (~5% algebraic error and ~20% absolute error). Aerobic and swim performance metrics were similar to those reported in other studies, but their critical swimming speed was lower than expected. Additionally, lake trout exhibited a wide aerobic scope, suggesting that the avoidance of waters ≥15°C may be related to selection for optimal growing temperatures. The ability to quantify the free-swimming energetic costs of activity will advance our understanding of lake trout ecology and may yield improvements to bioenergetics model.
Collapse
Affiliation(s)
- Connor Reeve
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kurtis A Smith
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Paul A Bzonek
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Steven J Cooke
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Paul J Blanchfield
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, Canada
| | - Jacob W Brownscombe
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| |
Collapse
|
3
|
Firth BL, Craig PM, Drake DAR, Power M. Impact of turbidity on the gill morphology and hypoxia tolerance of eastern sand darter (Ammocrypta pellucida). JOURNAL OF FISH BIOLOGY 2024; 104:1888-1898. [PMID: 38506425 DOI: 10.1111/jfb.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/21/2024]
Abstract
Anthropogenic stressors such as agriculture and urbanization can increase river turbidity, which can negatively impact fish gill morphology and growth due to reduced oxygen in the benthic environment. We assessed the gill morphology, field metabolic rate (FMR), and two hypoxia tolerance metrics (oxygen partial pressure at loss of equilibrium, PO2 at LOE, and critical oxygen tension, Pcrit) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada, from rivers in southern Ontario. Field trials were conducted streamside in the Grand River (August 2019; mean NTU 8) and in the comparatively more turbid Thames River (August 2020; mean NTU 94) to test the effect of turbidity on each physiological endpoint. Gills were collected from incidental mortalities and museum specimens, and were assessed using hematoxylin and eosin and immunofluorescent staining. The between-river comparison indicated that turbidity significantly increased interlamellar space and filament width but had no significant influence on other gill morphometrics or FMR. Turbidity significantly increased PO2 at LOE (i.e., fish had a lower hypoxia tolerance) but did not significantly impact Pcrit. Therefore, although turbidity influences hypoxia tolerance through LOE, turbidity levels were not sufficiently high in the study rivers to contribute to measurable changes in gill morphology or metabolism in the wild. Determining whether changes in gill morphology or metabolism occur under higherturbidity levels would help resolve the ecological importance of turbidity on species physiology in urban and agricultural ecosystems.
Collapse
Affiliation(s)
- Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Durante E, Grammer G, Martino J, Klaebe R, Chung MT, Payne J, Doubleday Z. Developing isotopic proxies to reconstruct the metabolic rates and thermal histories of octopus. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106543. [PMID: 38728797 DOI: 10.1016/j.marenvres.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Understanding an animal's metabolic rate and thermal history is pivotal for ecological research. Recent studies have proposed the use of stable carbon and oxygen isotopes (δ13C and δ18O) in biogenic carbonates as proxies of metabolic rate and experienced temperature, respectively, to overcome the challenges of directly measuring these data in the field. Our study represents the first experimental investigation to develop δ13C and δ18O proxies in octopus. Octopus berrima hatchlings were raised in captivity, at varying water temperatures, for up to 110 days. O. berrima statoliths were then subsequently analysed for δ13C and δ18O values. The proportion of metabolically derived carbon, or respired carbon (Cresp), increased as the octopus grew (slope = 0.076, R2 = 0.72), suggesting an influence of somatic growth rate and body mass on δ13C values. Additionally, we identified an inverse correlation between δ18O values and environmental temperature (slope = -0.163, R2 = 0.91), which was subsequently used to develop a thermal reconstruction model. Our experiment aids in interpreting stable isotopic values in statoliths and their application as temperature and metabolic proxies in wild-caught octopus. Such proxies will increase our monitoring capabilities of these ecologically and commercially significant cephalopods and contribute to their conservation and effective management.
Collapse
Affiliation(s)
- Erica Durante
- Future Industries Institute, University of South Australia, South Australia, Australia.
| | - Gretchen Grammer
- South Australian Research and Development Institute Aquatic Sciences, South Australia, Australia
| | - Jasmin Martino
- Future Industries Institute, University of South Australia, South Australia, Australia
| | - Robert Klaebe
- Department of Earth Sciences, School of Physics, Chemistry and Earth Sciences, University of Adelaide, South Australia, Australia
| | - Ming-Tsung Chung
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Justin Payne
- STEM, University of South Australia, Adelaide, South Australia, Australia
| | - Zoë Doubleday
- Future Industries Institute, University of South Australia, South Australia, Australia
| |
Collapse
|
5
|
de Groot VA, Trueman C, Bates AE. Incorporating otolith-isotope inferred field metabolic rate into conservation strategies. CONSERVATION PHYSIOLOGY 2024; 12:coae013. [PMID: 38666227 PMCID: PMC11044438 DOI: 10.1093/conphys/coae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 04/28/2024]
Abstract
Fluctuating ocean conditions are rearranging whole networks of marine communities-from individual-level physiological thresholds to ecosystem function. Physiological studies support predictions from individual-level responses (biochemical, cellular, tissue, respiratory potential) based on laboratory experiments. The otolith-isotope method of recovering field metabolic rate has recently filled a gap for the bony fishes, linking otolith stable isotope composition to in situ oxygen consumption and experienced temperature estimates. Here, we review the otolith-isotope method focusing on the biochemical and physiological processes that yield estimates of field metabolic rate. We identify a multidisciplinary pathway in the application of this method, providing concrete research goals (field, modeling) aimed at linking individual-level physiological data to higher levels of biological organization. We hope that this review will provide researchers with a transdisciplinary 'roadmap', guiding the use of the otolith-isotope method to bridge the gap between individual-level physiology, observational field studies, and modeling efforts, while ensuring that in situ data is central in marine policy-making aimed at mitigating climatic and anthropogenic threats.
Collapse
Affiliation(s)
- Valesca A de Groot
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, A1C 5S7, Canada
- University of Victoria, 3800 Finnerty Rd, Victoria, BCV8 P5C2, Canada
| | - Clive Trueman
- School of Ocean and Earth Science, University of Southampton, Southampton SO1 43ZH, UK
| | - Amanda E Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, A1C 5S7, Canada
- University of Victoria, 3800 Finnerty Rd, Victoria, BCV8 P5C2, Canada
| |
Collapse
|
6
|
Zhao XF, Huang J, Li W, Wang SY, Liang LQ, Zhang LM, Liew HJ, Chang YM. Rh proteins and H + transporters involved in ammonia excretion in Amur Ide (Leuciscus waleckii) under high alkali exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116160. [PMID: 38432157 DOI: 10.1016/j.ecoenv.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.
Collapse
Affiliation(s)
- Xue Fei Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Jing Huang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Wen Li
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 2000, China
| | - Shuang Yi Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; BGI Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Li Qun Liang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Li Min Zhang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Hon Jung Liew
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti of Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Yu Mei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| |
Collapse
|
7
|
Yousaf MN, Røn Ø, Keitel-Gröner F, McGurk C, Obach A. Heart rate as an indicator of stress during the critical swimming speed test of farmed Atlantic salmon (Salmo salar L.). JOURNAL OF FISH BIOLOGY 2024; 104:633-646. [PMID: 37903720 DOI: 10.1111/jfb.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023]
Abstract
A swim tunnel is to fish as a treadmill is to humans, and is a device used for indirect measuring of the metabolic rate. This study aims to explore the fish stress (if any) during the critical swimming test routines (fish handling, confinement, and swimming) using heart rate (fH , heartbeat per minute) bio-loggers in farmed Atlantic salmon (Salmo salar L.). In addition, the recovery dynamics of exercised fish using fH were explored for 48 h post swim tests. Continuous fH data were acquired following the surgical implantation and throughout the trials, such as during fish handling, swim tests (critical swimming speed, Ucrit ), and 48 h post swim tests. After 3 weeks of surgical recovery, fH stabilized at 46.20 ± 1.26 beats min-1 , equalizing a ~38% reduction in fH recorded post-surgical tachycardia (74.13 ± 1.44 beats min-1 ). Interestingly, fH was elevated by ~200% compared to baseline levels not only due to the Ucrit (92.04 ± 0.23 beats min-1 ) but also due to fish handling and confinement in the swim tunnel, which was 66% above the baseline levels (77.48 ± 0.34 beats min-1 ), suggesting fish stress. Moreover, significantly higher plasma cortisol levels (199.56 ± 77.17 ng mL-1 ) corresponding to a ~300% increase compared to baseline levels (47.92 ± 27.70 ng mL-1 ) were identified after Ucrit , predicting post-swim test stress (physiological exhaustion). These findings reinforce the importance of fish acclimation in the swim tunnel prior to the swimming tests. However, fH dropped over the course of the 48-h post-swim test, but remained comparatively higher than the basal levels, suggesting fish should be given at least 48 h to recover from handling stress for better fish welfare. This study further explored the influence of fish tagging on Ucrit , which resulted in reduced swimming capabilities of tagged fish (1.95 ± 0.37 body lengths s-1 ) compared to untagged fish (2.54 ± 0.42 body length s-1 ), although this was not significant (p = 0.06), and therefore future tagging studies are warranted.
Collapse
Affiliation(s)
| | - Øyvind Røn
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| | | | - Charles McGurk
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| | - Alex Obach
- Skretting Aquaculture Innovation (Skretting AI), Stavanger, Norway
| |
Collapse
|
8
|
Lilkendey J, Barrelet C, Zhang J, Meares M, Larbi H, Subsol G, Chaumont M, Sabetian A. Herbivorous fish feeding dynamics and energy expenditure on a coral reef: Insights from stereo-video and AI-driven 3D tracking. Ecol Evol 2024; 14:e11070. [PMID: 38435013 PMCID: PMC10909578 DOI: 10.1002/ece3.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Unveiling the intricate relationships between animal movement ecology, feeding behavior, and internal energy budgeting is crucial for a comprehensive understanding of ecosystem functioning, especially on coral reefs under significant anthropogenic stress. Here, herbivorous fishes play a vital role as mediators between algae growth and coral recruitment. Our research examines the feeding preferences, bite rates, inter-bite distances, and foraging energy expenditure of the Brown surgeonfish (Acanthurus nigrofuscus) and the Yellowtail tang (Zebrasoma xanthurum) within the fish community on a Red Sea coral reef. To this end, we used advanced methods such as remote underwater stereo-video, AI-driven object recognition, species classification, and 3D tracking. Despite their comparatively low biomass, the two surgeonfish species significantly influence grazing pressure on the studied coral reef. A. nigrofuscus exhibits specialized feeding preferences and Z. xanthurum a more generalist approach, highlighting niche differentiation and their importance in maintaining reef ecosystem balance. Despite these differences in their foraging strategies, on a population level, both species achieve a similar level of energy efficiency. This study highlights the transformative potential of cutting-edge technologies in revealing the functional feeding traits and energy utilization of keystone species. It facilitates the detailed mapping of energy seascapes, guiding targeted conservation efforts to enhance ecosystem health and biodiversity.
Collapse
Affiliation(s)
- Julian Lilkendey
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
- Leibniz Centre for Tropical Marine Research (ZMT)BremenGermany
| | - Cyril Barrelet
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Jingjing Zhang
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
- The New Zealand Institute for Plant and Food Research LimitedAucklandNew Zealand
| | - Michael Meares
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
| | - Houssam Larbi
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Gérard Subsol
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
| | - Marc Chaumont
- Research‐Team ICAR, Laboratoire d'informatique, de robotique et de microélectronique de Montpellier (LIRMM), CNRSUniversity of MontpellierMontpellierFrance
- University of NîmesNîmesFrance
| | - Armagan Sabetian
- School of ScienceAuckland University of Technology (AUT)AucklandNew Zealand
| |
Collapse
|
9
|
González-Ferreras AM, Barquín J, Blyth PSA, Hawksley J, Kinsella H, Lauridsen R, Morris OF, Peñas FJ, Thomas GE, Woodward G, Zhao L, O'Gorman EJ. Chronic exposure to environmental temperature attenuates the thermal sensitivity of salmonids. Nat Commun 2023; 14:8309. [PMID: 38097543 PMCID: PMC10721842 DOI: 10.1038/s41467-023-43478-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Metabolism, the biological processing of energy and materials, scales predictably with temperature and body size. Temperature effects on metabolism are normally studied via acute exposures, which overlooks the capacity for organisms to moderate their metabolism following chronic exposure to warming. Here, we conduct respirometry assays in situ and after transplanting salmonid fish among different streams to disentangle the effects of chronic and acute thermal exposure. We find a clear temperature dependence of metabolism for the transplants, but not the in-situ assays, indicating that chronic exposure to warming can attenuate salmonid thermal sensitivity. A bioenergetic model accurately captures the presence of fish in warmer streams when accounting for chronic exposure, whereas it incorrectly predicts their local extinction with warming when incorporating the acute temperature dependence of metabolism. This highlights the need to incorporate the potential for thermal acclimation or adaptation when forecasting the consequences of global warming on ecosystems.
Collapse
Affiliation(s)
- Alexia M González-Ferreras
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain.
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Jose Barquín
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain
| | - Penelope S A Blyth
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jack Hawksley
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Hugh Kinsella
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Trinity College Dublin, Dublin, Ireland
| | - Rasmus Lauridsen
- Game & Wildlife Conservation Trust, Salmon and Trout Research Centre, East Stoke, Wareham, BH20 6BB, UK
- Six Rivers Iceland, Reykjavik, 101, Iceland
| | - Olivia F Morris
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Francisco J Peñas
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, C/Isabel Torres 15, 39011, Santander, Spain
| | - Gareth E Thomas
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
10
|
Turko AJ, Firth BL, Craig PM, Eliason EJ, Raby GD, Borowiec BG. Physiological differences between wild and captive animals: a century-old dilemma. J Exp Biol 2023; 226:jeb246037. [PMID: 38031957 DOI: 10.1242/jeb.246037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Goleta, CA 93117, USA
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Brittney G Borowiec
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
11
|
Trueman CN, Artetxe-Arrate I, Kerr LA, Meijers AJS, Rooker JR, Sivankutty R, Arrizabalaga H, Belmonte A, Deguara S, Goñi N, Rodriguez-Marin E, Dettman DL, Santos MN, Karakulak FS, Tinti F, Tsukahara Y, Fraile I. Thermal sensitivity of field metabolic rate predicts differential futures for bluefin tuna juveniles across the Atlantic Ocean. Nat Commun 2023; 14:7379. [PMID: 38012173 PMCID: PMC10682405 DOI: 10.1038/s41467-023-41930-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/25/2023] [Indexed: 11/29/2023] Open
Abstract
Changing environmental temperatures impact the physiological performance of fishes, and consequently their distributions. A mechanistic understanding of the linkages between experienced temperature and the physiological response expressed within complex natural environments is often lacking, hampering efforts to project impacts especially when future conditions exceed previous experience. In this study, we use natural chemical tracers to determine the individual experienced temperatures and expressed field metabolic rates of Atlantic bluefin tuna (Thunnus thynnus) during their first year of life. Our findings reveal that the tuna exhibit a preference for temperatures 2-4 °C lower than those that maximise field metabolic rates, thereby avoiding temperatures warm enough to limit metabolic performance. Based on current IPCC projections, our results indicate that historically-important spawning and nursery grounds for bluefin tuna will become thermally limiting due to warming within the next 50 years. However, limiting global warming to below 2 °C would preserve habitat conditions in the Mediterranean Sea for this species. Our approach, which is based on field observations, provides predictions of animal performance and behaviour that are not constrained by laboratory conditions, and can be extended to any marine teleost species for which otoliths are available.
Collapse
Affiliation(s)
- Clive N Trueman
- Ocean and Earth Science, University of Southampton, Southampton, SO143ZH, UK.
| | - Iraide Artetxe-Arrate
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain
| | - Lisa A Kerr
- University of Maine, Gulf of Maine Research Institute, 350 Commercial Street, Portland, ME, 04101, USA
| | - Andrew J S Meijers
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Jay R Rooker
- Department of Marine Biology, Department of Ecology and Conservation Biology, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77554, USA
| | - Rahul Sivankutty
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Haritz Arrizabalaga
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain
| | - Antonio Belmonte
- TAXON Estudios Ambientales S.L. C/Uruguay s/n, 30820, Alcantarilla, Murcia, Spain
| | - Simeon Deguara
- AquaBio Tech Ltd., Central Complex, Mosta, MST1761, Malta
| | - Nicolas Goñi
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain
- Natural Resources Institute Finland, Itäinen Pitkäkatu 4 A, 20520, Turku, Finland
| | - Enrique Rodriguez-Marin
- Centro Oceanográfico de Santander (COST-IEO). Instituto Español de Oceanografía. Consejo Superior de Investigaciones Científicas (IEO-CSIC), C/ Severiano Ballesteros 16, 39004, Santander, Cantabria, Spain
| | - David L Dettman
- Environmental Isotope Laboratory, Dept. of Geosciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Miguel Neves Santos
- Instituto Português do Mar e da Atmosfera, Olhão, Portugal. Currently at ICCAT Secretariat, Calle Corazón de Maria 8, Madrid, 28002, Spain
| | - F Saadet Karakulak
- Faculty of Aquatic Sciences, Istanbul University, Istanbul, 34134, Turkey
| | - Fausto Tinti
- Dept. Biological, Geological & Environmental Sciences, Alma Mater Studiorum - University of Bologna, via Sant'Alberto, 163 - 48123, Ravenna, Italy
| | - Yohei Tsukahara
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kanagawa, 236-8648, Japan
| | - Igaratza Fraile
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Gipuzkoa, Spain
| |
Collapse
|
12
|
Yoon GR, Thorstensen MJ, Bugg WS, Bouyoucos IA, Deslauriers D, Anderson WG. Comparison of metabolic rate between two genetically distinct populations of lake sturgeon. Ecol Evol 2023; 13:e10470. [PMID: 37664502 PMCID: PMC10468615 DOI: 10.1002/ece3.10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental temperatures differ across latitudes in the temperate zone, with relatively lower summer and fall temperatures in the north leading to a shorter growing season prior to winter. As an adaptive response, during early life stages, fish in northern latitudes may grow faster than their conspecifics in southern latitudes, which potentially manifests as different allometric relationships between body mass and metabolic rate. In the present study, we examined if population or year class had an effect on the variation of metabolic rate and metabolic scaling of age-0 lake sturgeon (Acipenser fulvescens) by examining these traits in both a northern (Nelson River) and a southern (Winnipeg River) population. We compiled 6 years of data that used intermittent flow respirometry to measure metabolic rate within the first year of life for developing sturgeon that were raised in the same environment at 16°C. We then used a Bayesian modeling approach to examine the impacts of population and year class on metabolic rate and mass-scaling of metabolic rate. Despite previous reports of genetic differences between populations, our results showed that there were no significant differences in standard metabolic rate, routine metabolic rate, maximum metabolic rate, and metabolic scaling between the two geographically separated populations at a temperature of 16°C. Our analysis implied that the lack of metabolic differences between populations could be due to family effects/parental contribution, or the rearing temperature used in the study. The present research provided insights for conservation and reintroduction strategies for these populations of lake sturgeon, which are endangered or threatened across most of their natural range.
Collapse
Affiliation(s)
- Gwangseok R. Yoon
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Matt J. Thorstensen
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - William S. Bugg
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
- Pacific Salmon FoundationVancouverBritish ColumbiaCanada
| | - Ian A. Bouyoucos
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - David Deslauriers
- Institut des sciences de la mer de RimouskiUniversité du Québec à RimouskiRimouskiQuébecCanada
| | - W. Gary Anderson
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
13
|
Reis-Santos P, Gillanders BM, Sturrock AM, Izzo C, Oxman DS, Lueders-Dumont JA, Hüssy K, Tanner SE, Rogers T, Doubleday ZA, Andrews AH, Trueman C, Brophy D, Thiem JD, Baumgartner LJ, Willmes M, Chung MT, Charapata P, Johnson RC, Trumble S, Heimbrand Y, Limburg KE, Walther BD. Reading the biomineralized book of life: expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management. REVIEWS IN FISH BIOLOGY AND FISHERIES 2023; 33:411-449. [PMID: 0 DOI: 10.1007/s11160-022-09720-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/15/2022] [Indexed: 05/26/2023]
Abstract
AbstractChemical analysis of calcified structures continues to flourish, as analytical and technological advances enable researchers to tap into trace elements and isotopes taken up in otoliths and other archival tissues at ever greater resolution. Increasingly, these tracers are applied to refine age estimation and interpretation, and to chronicle responses to environmental stressors, linking these to ecological, physiological, and life-history processes. Here, we review emerging approaches and innovative research directions in otolith chemistry, as well as in the chemistry of other archival tissues, outlining their value for fisheries and ecosystem-based management, turning the spotlight on areas where such biomarkers can support decision making. We summarise recent milestones and the challenges that lie ahead to using otoliths and archival tissues as biomarkers, grouped into seven, rapidly expanding and application-oriented research areas that apply chemical analysis in a variety of contexts, namely: (1) supporting fish age estimation; (2) evaluating environmental stress, ecophysiology and individual performance; (3) confirming seafood provenance; (4) resolving connectivity and movement pathways; (5) characterising food webs and trophic interactions; (6) reconstructing reproductive life histories; and (7) tracing stock enhancement efforts. Emerging research directions that apply hard part chemistry to combat seafood fraud, quantify past food webs, as well as to reconcile growth, movement, thermal, metabolic, stress and reproductive life-histories provide opportunities to examine how harvesting and global change impact fish health and fisheries productivity. Ultimately, improved appreciation of the many practical benefits of archival tissue chemistry to fisheries and ecosystem-based management will support their increased implementation into routine monitoring.
Graphical abstract
Collapse
|
14
|
Metcalfe NB, Bellman J, Bize P, Blier PU, Crespel A, Dawson NJ, Dunn RE, Halsey LG, Hood WR, Hopkins M, Killen SS, McLennan D, Nadler LE, Nati JJH, Noakes MJ, Norin T, Ozanne SE, Peaker M, Pettersen AK, Przybylska-Piech A, Rathery A, Récapet C, Rodríguez E, Salin K, Stier A, Thoral E, Westerterp KR, Westerterp-Plantenga MS, Wojciechowski MS, Monaghan P. Solving the conundrum of intra-specific variation in metabolic rate: A multidisciplinary conceptual and methodological toolkit: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species: New technical developments are opening the door to an understanding of why metabolic rate varies among individual animals of a species. Bioessays 2023; 45:e2300026. [PMID: 37042115 DOI: 10.1002/bies.202300026] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.
Collapse
Affiliation(s)
- Neil B Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Bize
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Pierre U Blier
- Département de Biologie, Université de Québec à Rimouski, Rimouski, Canada
| | - Amélie Crespel
- Department of Biology, University of Turku, Turku, Finland
| | - Neal J Dawson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Ruth E Dunn
- Lancaster Environment Centre, University of Lancaster, Lancaster, UK
| | - Lewis G Halsey
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, USA
| | - Mark Hopkins
- School of Food Science and Nutrition, Leeds University, Leeds, UK
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Darryl McLennan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Lauren E Nadler
- Ocean and Earth Science, NOC, University of Southampton, Southampton, UK
| | - Julie J H Nati
- Ocean Sciences Center, Memorial University of Newfoundland, St John's, Canada
| | - Matthew J Noakes
- School of Animal, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Amanda K Pettersen
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Life & Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Anna Przybylska-Piech
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Alann Rathery
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Charlotte Récapet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, INRAE, ECOBIOP, Saint-Pée-sur-, Nivelle, France
| | - Enrique Rodríguez
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Karine Salin
- IFREMER, Univ Brest, CNRS, IRD, Laboratory of Environmental Marine Sciences, Plouzané, France
| | - Antoine Stier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Elisa Thoral
- Department of Biology, Lund University, Lund, Sweden
| | - Klaas R Westerterp
- Department of Nutrition & Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Michał S Wojciechowski
- Department of Vertebrate Zoology & Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Pat Monaghan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Zolderdo AJ, Abrams AEI, Lawrence MJ, Reid CH, Suski CD, Gilmour KM, Cooke SJ. Freshwater protected areas can preserve high-performance phenotypes in populations of a popular sportfish. CONSERVATION PHYSIOLOGY 2023; 11:coad004. [PMID: 36937992 PMCID: PMC10019442 DOI: 10.1093/conphys/coad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Recreational fishing has the potential to cause evolutionary change in fish populations; a phenomenon referred to as fisheries-induced evolution. However, detecting and quantifying the magnitude of recreational fisheries selection in the wild is inherently difficult, largely owing to the challenges associated with variation in environmental factors and, in most cases, the absence of pre-selection or baseline data against which comparisons can be made. However, exploration of recreational fisheries selection in wild populations may be possible in systems where fisheries exclusion zones exist. Lakes that possess intra-lake freshwater protected areas (FPAs) can provide investigative opportunities to evaluate the evolutionary impact(s) of differing fisheries management strategies within the same waterbody. To address this possibility, we evaluated how two physiological characteristics (metabolic phenotype and stress responsiveness) as well as a proxy for angling vulnerability, catch-per-unit-effort (CPUE), differed between populations of largemouth bass (Micropterus salmoides) inhabiting long-standing (>70 years active) intra-lake FPAs and adjacent, open access, main-lake areas. Fish from FPA populations had significantly higher aerobic scope (AS) capacity (13%) and CPUE rates compared with fish inhabiting the adjacent main-lake areas. These findings are consistent with theory and empirical evidence linking exploitation with reduced metabolic performance, supporting the hypothesis that recreational fishing may be altering the metabolic phenotype of wild fish populations. Reductions in AS are concerning because they suggest a reduced scope for carrying out essential life-history activities, which may result in fitness level implications. Furthermore, these results highlight the potential for unexploited FPA populations to serve as benchmarks to further investigate the evolutionary consequences of recreational fishing on wild fish and to preserve high-performance phenotypes.
Collapse
Affiliation(s)
- A J Zolderdo
- Correspondence: Aaron Zolderdo, Queen's University Biological Station, 280 Queen's University Rd., Elgin, ON, Canada K0G 1E0.
| | - A E I Abrams
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada
| | - M J Lawrence
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada
| | - C H Reid
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada
| | - C D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - K M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
16
|
Firth BL, Craig PM, Drake DAR, Power M. Seasonal, environmental and individual effects on hypoxia tolerance of eastern sand darter ( Ammocrypta pellucida). CONSERVATION PHYSIOLOGY 2023; 11:coad008. [PMID: 36926473 PMCID: PMC10012177 DOI: 10.1093/conphys/coad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Metabolic rate and hypoxia tolerance are highly variable among individual fish in a stable environment. Understanding the variability of these measures in wild fish populations is critical for assessing adaptive potential and determining local extinction risks as a result of climate-induced fluctuations in temperature and hypoxic conditions. We assessed the field metabolic rate (FMR) and two hypoxia tolerance metrics, oxygen pressure at loss of equilibrium (PO2 at LOE) and critical oxygen tolerance (Pcrit) of wild-captured eastern sand darter (Ammocrypta pellucida), a threatened species in Canada, using field trials (June to October) that encompassed ambient water temperatures and oxygen conditions typically experienced by the species. Temperature was significantly and positively related to hypoxia tolerance but not FMR. Temperature alone explained 1%, 31% and 7% of the variability observed in FMR, LOE, and Pcrit, respectively. Environmental and fish-specific factors such as reproductive season and condition explained much of the residual variation. Reproductive season significantly affected FMR by increasing it by 159-176% over the tested temperature range. Further understanding the impact of reproductive season on metabolic rate over a temperature range is crucial for understanding how climate change could impact species fitness. Among-individual variation in FMR significantly increased with temperature while among-individual variation in both hypoxia tolerance metrics did not. A large degree of variation in FMR in the summer might allow for evolutionary rescue with increasing mean and variance of global temperatures. Findings suggest that temperature may be a weak predictor in a field setting where biotic and abiotic factors can act concurrently on variables that affect physiological tolerance.
Collapse
Affiliation(s)
- Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, ON, L7S 1A1, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
17
|
Sakamoto T, Takahashi M, Chung MT, Rykaczewski RR, Komatsu K, Shirai K, Ishimura T, Higuchi T. Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations. Nat Commun 2022; 13:5298. [PMID: 36244978 PMCID: PMC9573866 DOI: 10.1038/s41467-022-33019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Massive populations of sardines inhabit both the western and eastern boundaries of the world’s subtropical ocean basins, supporting both commercial fisheries and populations of marine predators. Sardine populations in western and eastern boundary current systems have responded oppositely to decadal scale anomalies in ocean temperature, but the mechanism for differing variability has remained unclear. Here, based on otolith microstructure and high-resolution stable isotope analyses, we show that habitat temperature, early life growth rates, energy expenditure, metabolically optimal temperature, and, most importantly, the relationship between growth rate and temperature are remarkably different between the two subpopulations in the western and eastern North Pacific. Varying metabolic responses to environmental changes partly explain the contrasting growth responses. Consistent differences in the life-history traits are observed between subpopulations in the western and eastern boundary current systems around South Africa. These growth and survival characteristics can facilitate the contrasting responses of sardine populations to climate change. Using high-resolution stable isotope and microstructure analyses of otoliths, this study reveals that sardine populations in the western and eastern North Pacific have different early life metabolic and growth rates that respond contrastingly to temperature variations. These findings could explain observations of different responses in these populations to decadal-scale temperature anomalies.
Collapse
|
18
|
Beghin M, Paris-Palacios S, Mandiki SNM, Schmitz M, Palluel O, Gillet E, Bonnard I, Nott K, Robert C, Porcher JM, Ronkart S, Kestemont P. Integrative multi-biomarker approach on caged rainbow trout: A biomonitoring tool for wastewater treatment plant effluents toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155912. [PMID: 35588819 DOI: 10.1016/j.scitotenv.2022.155912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The complex mixtures of contaminants released in wastewater treatment plant (WWTP) effluents are a major source of pollution for aquatic ecosystems. The present work aimed to assess the environmental risk posed by WWTP effluents by applying a multi-biomarker approach on caged rainbow trout (Oncorhynchus mykiss) juveniles. Fish were caged upstream and downstream of a WWTP for 21 days. To evaluate fish health, biomarkers representing immune, reproductive, nervous, detoxification, and antioxidant functions were assayed. Biomarker responses were then synthesized using an Integrated Biomarker Response (IBR) index. The IBR highlighted similar response patterns for the upstream and downstream sites. Caged juvenile females showed increased activities of innate immune parameters (lysozyme and complement), histological lesions and reduced glycogen content in the hepatic tissue, and higher muscle cholinergic metabolism. However, the intensity of the observed effects was more severe downstream of the WWTP. The present results suggest that the constitutive pollution level of the Meuse River measured upstream from the studied WWTP can have deleterious effects on fish health condition, which are exacerbated by the exposure to WWTP effluents. Our results infer that the application of IBR index is a promising tool to apply with active biomonitoring approaches as it provides comprehensive information about the biological effects caused by point source pollution such as WWTP, but also by the constitutive pollutions levels encountered in the receiving environment.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| | - Séverine Paris-Palacios
- Université de Reims Champagne-Ardennes, Research unity "Stress Environnementaux et BIOsurveillance des milieux aquatiques" (SEBIO), Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Mélodie Schmitz
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Olivier Palluel
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP n°2, 60550 Verneuil en Halatte, France
| | - Erin Gillet
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardennes, Research unity "Stress Environnementaux et BIOsurveillance des milieux aquatiques" (SEBIO), Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Katherine Nott
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Christelle Robert
- Centre d'Economie Rurale, Health Department, 8 Rue Point du Jour, B-6900 Marloie, Belgium
| | - Jean-Marc Porcher
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP n°2, 60550 Verneuil en Halatte, France
| | - Sébastien Ronkart
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
19
|
Schiettekatte NMD, Conte F, French B, Brandl SJ, Fulton CJ, Mercière A, Norin T, Villéger S, Parravicini V. Combining stereo-video monitoring and physiological trials to estimate reef fish metabolic demands in the wild. Ecol Evol 2022; 12:e9084. [PMID: 35813930 PMCID: PMC9254678 DOI: 10.1002/ece3.9084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Organismal metabolic rates (MRs) are the basis of energy and nutrient fluxes through ecosystems. In the marine realm, fishes are some of the most prominent consumers. However, their metabolic demand in the wild (field MR [FMR]) is poorly documented, because it is challenging to measure directly. Here, we introduce a novel approach to estimating the component of FMR associated with voluntary activity (i.e., the field active MR [AM R field ] ). Our approach combines laboratory-based respirometry, swimming speeds, and field-based stereo-video systems to estimate the activity of individuals. We exemplify our approach by focusing on six coral reef fish species, for which we quantified standard MR and maximum MR (SMR and MMR, respectively) in the laboratory, and body sizes and swimming speeds in the field. Based on the relationships between MR, body size, and swimming speeds, we estimate that the activity scope (i.e., the ratio betweenAM R field and SMR) varies from 1.2 to 3.2 across species and body sizes. Furthermore, we illustrate that the scaling exponent forAM R field varies across species and can substantially exceed the widely assumed value of 0.75 for SMR. Finally, by scaling organismalAM R field estimates to the assemblage level, we show the potential effect of this variability on community metabolic demand. Our approach may improve our ability to estimate elemental fluxes mediated by a critically important group of aquatic animals through a non-destructive, widely applicable technique.
Collapse
Affiliation(s)
- Nina M. D. Schiettekatte
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR 3278 CRIOBE, Université de PerpignanPerpignanFrance
- Laboratoire d'Excellence “CORAIL”PerpignanFrance
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaHawaiiUSA
| | - Francesca Conte
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR 3278 CRIOBE, Université de PerpignanPerpignanFrance
- Laboratoire d'Excellence “CORAIL”PerpignanFrance
| | - Beverly French
- Center for Marine Biodiversity and ConservationScripps Institution of Oceanography, University of CaliforniaSan DiegoCaliforniaUSA
| | - Simon J. Brandl
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR 3278 CRIOBE, Université de PerpignanPerpignanFrance
- Laboratoire d'Excellence “CORAIL”PerpignanFrance
- CESAB‐FRBMontpellierFrance
- Department of Marine Science, Marine Science InstituteThe University of Texas at AustinPort AransasTexasUSA
| | - Christopher J. Fulton
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreCrawleyWestern AustraliaAustralia
| | - Alexandre Mercière
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR 3278 CRIOBE, Université de PerpignanPerpignanFrance
- Laboratoire d'Excellence “CORAIL”PerpignanFrance
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic ResourcesTechnical University of DenmarkKgs. LyngbyDenmark
| | | | - Valeriano Parravicini
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR 3278 CRIOBE, Université de PerpignanPerpignanFrance
- Laboratoire d'Excellence “CORAIL”PerpignanFrance
| |
Collapse
|
20
|
Mehdi H, Morphet ME, Lau SC, Bragg LM, Servos MR, Parrott JL, Scott GR, Balshine S. Temperature modulates the impacts of wastewater exposure on the physiology and behaviour of fathead minnow. CHEMOSPHERE 2022; 294:133738. [PMID: 35085617 DOI: 10.1016/j.chemosphere.2022.133738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluent is a substantial source of pollution in aquatic habitats that can impact organisms across multiple levels of biological organization. Even though wastewater effluent is discharged continuously all year long, its impacts across seasons, specifically during winter, have largely been neglected in ecotoxicological research. Seasonal differences are of particular interest, as temperature-driven metabolic changes in aquatic organisms can significantly alter their ability to respond to chemical stressors. In this study, we examined the effects of multiple levels of wastewater effluent exposure (0, 25, or 50% treated effluent) on the physiological and behavioural responses of adult fathead minnow (Pimephales promelas) at temperatures simulating either summer (20 °C) or winter (4 °C) conditions. At 20 °C, wastewater exposure posed a metabolic cost to fish, demonstrated by higher standard metabolic rate and was associated with increased haematocrit and a reduction in boldness. In contrast, fish exposed to wastewater at 4 °C experienced no change in metabolic rate but performed fewer social interactions with their conspecifics. Taken together, our results demonstrate that wastewater exposure can lead to metabolic and behavioural disruptions, and such disruptions vary in magnitude and direction depending on temperature. Our findings highlight the importance of studying the interactions between stressors, while also underscoring the importance of research during colder periods of the year to broaden and deepen our understanding of the impacts of wastewater contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Hossein Mehdi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | - Markelle E Morphet
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | - Samantha C Lau
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| | - Joanne L Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario, L7S 1A1, Canada.
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
21
|
Slesinger E, Bates K, Wuenschel M, Saba GK. Regional differences in energy allocation of black sea bass (Centropristis striata) along the U.S. Northeast Shelf (36°N to 42°N) and throughout the spawning season. JOURNAL OF FISH BIOLOGY 2022; 100:918-934. [PMID: 35195897 PMCID: PMC9310597 DOI: 10.1111/jfb.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Fish reproduction is energetically costly, leading to a suite of energy allocation strategies for maximizing lifetime reproductive potential. Assessing energetic allocation for species that inhabit a wide distributional range can provide insight into different strategies found across individuals and populations. The Northern stock of black sea bass (Centropristis striata) inhabits the U.S. Northeast continental shelf from Cape Hatteras, NC, to the Gulf of Maine, and spawns inshore throughout this distribution from April to October. To assess energy allocation towards spawning, C. striata were collected in four regions across this distribution and throughout their spawning season. By assessing energetic allocation (lipid, energy density and total energy) in muscle, liver and gonad tissues, C. striata were identified as mixed breeders because while they mobilized somatic energy stores towards reproductive development, they also used energy acquired from their diet to sustain reproductive output throughout the spawning season. Unlike male fish, female fish both invested more energy into liver and gonad tissues and exhibited regional differences in energetic values. For both sexes, C. striata in the northern portion of the distribution had lower energetic values both in the somatic stores and towards gonadal development than the fish in the southern portion of the distribution, possibly because of longer migration distance. Overall, the authors found significant spatial variation in energetic constraints that may affect reproductive output and success (recruitment), a relevant result as C. striata are a popular recreational and commercial species throughout this distribution.
Collapse
Affiliation(s)
- Emily Slesinger
- Department of Marine and Coastal SciencesRutgers UniversityNew BrunswickNew JerseyUSA
- Alaska Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationNewportOregonUSA
| | - Kiernan Bates
- Department of Marine and Coastal SciencesRutgers UniversityNew BrunswickNew JerseyUSA
| | - Mark Wuenschel
- Northeast Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationWoods HoleMassachusettsUSA
| | - Grace K. Saba
- Department of Marine and Coastal SciencesRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
22
|
Ste-Marie E, Watanabe YY, Semmens JM, Marcoux M, Hussey NE. Life in the slow lane: Field Metabolic Rate and Prey Consumption Rate of the Greenland Shark (Somniosus microcephalus) modeled using Archival Biologgers. J Exp Biol 2022; 225:274642. [PMID: 35258589 DOI: 10.1242/jeb.242994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/24/2022] [Indexed: 11/20/2022]
Abstract
Field metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals which cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here we modeled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity. We estimated that Greenland sharks had an overall mean FMR of 21.67±2.30 mgO2h-1kg-0.84 (n=30; 1-4 day accelerometer package deployments) while residing inside these cold-water fjord systems in the late summer, and 25.48±0.47 mgO2h-1kg-0.84 (n=6; PSATs) over an entire year. When considering prey consumption rate, an average shark in these systems (224kg) requires a maintenance ration of 61-193g of fish or marine mammal prey daily. As a lethargic polar species, these low FMR estimates, and corresponding prey consumption estimates suggest Greenland sharks require very little energy to sustain themselves under natural conditions. These data provide the first characterization of the energetics and consumer role of this vulnerable and understudied species in the wild, essential given growing pressures from climate change and expanding commercial fisheries in the Arctic.
Collapse
Affiliation(s)
- Eric Ste-Marie
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Yuuki Y Watanabe
- National Institute of Polar Research, Tachikawa, Tokyo, 190-8518, Japan.,Department of Polar Science, The Graduate University for Advanced Studies, SOKENDAI, Tachikawa, Tokyo, 190-8518, Japan
| | - Jayson M Semmens
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, 7053, Australia
| | - Marianne Marcoux
- Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
23
|
Yoon GR, Laluk A, Bouyoucos IA, Anderson WG. Effects of Dietary Shifts on Ontogenetic Development of Metabolic Rates in Age 0 Lake Sturgeon ( Acipenser fulvescens). Physiol Biochem Zool 2022; 95:135-151. [PMID: 34990335 DOI: 10.1086/718211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn many fish species, ontogenetic dietary shifts cause changes in both quantitative and qualitative intake of energy, and these transitions can act as significant bottlenecks in survival within a given year class. In the present study, we estimated routine metabolic rate (RMR) and forced maximum metabolic rate (FMR) in age 0 lake sturgeon (Acipenser fulvescens) on a weekly basis from 6 to 76 days posthatch (dph) within the same cohort of fish. We were particularly interested in the period of dietary transition from yolk to exogenous feeding between 6 and 17 dph and as the fish transitioned from an artemia-based diet to a predominantly bloodworm diet between 49 and 67 dph. Measurement of growth rate and energy density throughout indicated that there was a brief period of growth arrest during the transition from artemia to bloodworm. The highest mass-specific RMR (mg O2 kg-1 h-1) recorded throughout the first 76 d of development occurred during the yolk sac phase and during transition from artemia to bloodworm. Similarly, diet transition from artemia to bloodworm-when growth arrest was observed-increased scaled RMR (i.e., mg O2 kg-0.89 h-1), and it did not significantly differ from scaled FMR. Log-log relationships between non-mass-specific RMR or FMR (i.e., mg O2 h-1) and body mass significantly changed as the growing fish adapted to the nutritional differences of their primary diet. We demonstrate that dietary change during early ontogeny has consequences for growth that may reflect altered metabolic performance. Results have implications for understanding cohort and population dynamics during early life and effective management for conservation fish hatcheries.
Collapse
|
24
|
Chung M, Chen C, Shiao J, Shirai K, Wang C. Metabolic proxy for cephalopods: Stable carbon isotope values recorded in different biogenic carbonates. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ming‐Tsung Chung
- Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa Japan
| | - Ching‐Yi Chen
- Department of Environmental Biology and Fisheries Science National Taiwan Ocean University Keelung Taiwan
| | - Jen‐Chieh Shiao
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Kotaro Shirai
- Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa Japan
| | - Chia‐Hui Wang
- Department of Environmental Biology and Fisheries Science National Taiwan Ocean University Keelung Taiwan
- Center of Excellence for the Oceans National Taiwan Ocean University Keelung Taiwan
| |
Collapse
|
25
|
Lennox RJ, Westrelin S, Souza AT, Šmejkal M, Říha M, Prchalová M, Nathan R, Koeck B, Killen S, Jarić I, Gjelland K, Hollins J, Hellstrom G, Hansen H, Cooke SJ, Boukal D, Brooks JL, Brodin T, Baktoft H, Adam T, Arlinghaus R. A role for lakes in revealing the nature of animal movement using high dimensional telemetry systems. MOVEMENT ECOLOGY 2021; 9:40. [PMID: 34321114 PMCID: PMC8320048 DOI: 10.1186/s40462-021-00244-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Movement ecology is increasingly relying on experimental approaches and hypothesis testing to reveal how, when, where, why, and which animals move. Movement of megafauna is inherently interesting but many of the fundamental questions of movement ecology can be efficiently tested in study systems with high degrees of control. Lakes can be seen as microcosms for studying ecological processes and the use of high-resolution positioning systems to triangulate exact coordinates of fish, along with sensors that relay information about depth, temperature, acceleration, predation, and more, can be used to answer some of movement ecology's most pressing questions. We describe how key questions in animal movement have been approached and how experiments can be designed to gather information about movement processes to answer questions about the physiological, genetic, and environmental drivers of movement using lakes. We submit that whole lake telemetry studies have a key role to play not only in movement ecology but more broadly in biology as key scientific arenas for knowledge advancement. New hardware for tracking aquatic animals and statistical tools for understanding the processes underlying detection data will continue to advance the potential for revealing the paradigms that govern movement and biological phenomena not just within lakes but in other realms spanning lands and oceans.
Collapse
Affiliation(s)
- Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries (LFI) at NORCE Norwegian Research Centre, Nygårdsporten 112, 5008, Bergen, Norway.
| | - Samuel Westrelin
- INRAE, Aix Marseille Univ, Pôle R&D ECLA, RECOVER, 3275 Route de Cézanne - CS 40061, 13182 Cedex 5, Aix-en-Provence, France
| | - Allan T Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marek Šmejkal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Milan Říha
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Marie Prchalová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 102 Berman Bldg, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Ivan Jarić
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
| | - Karl Gjelland
- Norwegian Institute of Nature Research, Tromsø, Norway
| | - Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
- University of Windsor, Windsor, ON, Canada
| | - Gustav Hellstrom
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henry Hansen
- Karlstads University, Universitetsgatan 2, 651 88, Karlstad, Sweden
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Boukal
- Faculty of Science, Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henrik Baktoft
- Technical University of Denmark, Vejlsøvej 39, Building Silkeborg-039, 8600, Silkeborg, Denmark
| | - Timo Adam
- Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Bergen, Germany
- Division of Integrative Fisheries Management, Humboldt-Universität zu Berlin, Bergen, Germany
| |
Collapse
|
26
|
Mignucci A, Bourjea J, Forget F, Allal H, Dutto G, Gasset E, McKenzie DJ. Cardiac and behavioural responses to hypoxia and warming in free-swimming gilthead seabream, Sparus aurata. J Exp Biol 2021; 224:271040. [PMID: 34308993 DOI: 10.1242/jeb.242397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Gilthead seabream were equipped with intraperitoneal biologging tags to investigate cardiac responses to hypoxia and warming, comparing when fish were either swimming freely in a tank with conspecifics or confined to individual respirometers. After tag implantation under anaesthesia, heart rate (fH) required 60 h to recover to a stable value in a holding tank. Subsequently, when undisturbed under control conditions (normoxia, 21°C), mean fH was always significantly lower in the tank than in the respirometers. In progressive hypoxia (100% to 15% oxygen saturation), mean fH in the tank was significantly lower than in the respirometers at oxygen levels down to 40%, with significant bradycardia in both holding conditions below this level. Simultaneous logging of tri-axial body acceleration revealed that spontaneous activity, inferred as the variance of external acceleration (VARm), was low and invariant in hypoxia. Warming (21 to 31°C) caused progressive tachycardia with no differences in fH between holding conditions. Mean VARm was, however, significantly higher in the tank during warming, with a positive relationship between VARm and fH across all temperatures. Therefore, spontaneous activity contributed to raising fH of fish in the tank during warming. Mean fH in respirometers had a highly significant linear relationship with mean rates of oxygen uptake, considering data from hypoxia and warming together. The high fH of confined seabream indicates that respirometry techniques may bias estimates of metabolic traits in some fishes, and that biologging on free-swimming fish will provide more reliable insight into cardiac and behavioural responses to environmental stressors by fish in their natural environment.
Collapse
Affiliation(s)
- Alexandre Mignucci
- MARBEC, Université de Montpelier, CNRS, IRD, Ifremer, 34200 Sète, France
| | - Jérôme Bourjea
- MARBEC, Université de Montpelier, CNRS, IRD, Ifremer, 34200 Sète, France
| | - Fabien Forget
- MARBEC, Université de Montpelier, CNRS, IRD, Ifremer, 34200 Sète, France
| | - Hossein Allal
- CHU de Montpellier, Service Chirurgie Pédiatrique, 34000 Montpellier, France
| | - Gilbert Dutto
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 34250, Palavas-les-Flots, France
| | - Eric Gasset
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 34250, Palavas-les-Flots, France
| | - David J McKenzie
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 34095 Montpellier, France
| |
Collapse
|
27
|
Pinte N, Coubris C, Jones E, Mallefet J. Red and white muscle proportions and enzyme activities in mesopelagic sharks. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110649. [PMID: 34298180 DOI: 10.1016/j.cbpb.2021.110649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
In the last decade, there has been an increase in the study of the ecology of deep-sea organisms. One way to understand an organism's ecology is the study of its metabolism. According to literature, deep-sea sharks possess a lower anaerobic enzyme activity than their shallow-water counterparts, but no difference has been observed regarding their aerobic enzyme activities. These studies have suggested deep-sea sharks should be slow and listless swimmers. However, other studies based on video observations have revealed differences in cruise swimming speed between different species. The present study examined muscles of squaliform sharks, including both luminous and non-luminous species. We combined measurements of the relative amounts of red and white muscle with assays of enzymes that are used as markers for aerobic (citrate synthase, malate dehydrogenase) and anaerobic (lactate dehydrogenase) metabolism, searching for a relationship with cruising speeds. Non-luminous deep-sea species displayed lower aerobic enzyme activities but similar anaerobic enzyme activities than the benthic shallow-water counterpart (Squalus acanthias). Conversely, luminous Etmopteridae species were found to have similar aerobic enzyme activities to S. acanthias but displayed lower anaerobic enzyme activities. Analyses revealed that red muscle proportion and aerobic enzyme activities were positively related to the cruise swimming speed. In contrast, Dalatias licha, which swims at the slowest cruise swimming speed ever recorded, presented a very low aerobic metabolic phenotype (lower aerobic marker enzymes and less red muscle). Finally, the values obtained for white muscle proportion and anaerobic metabolic phenotype suggested a high burst capacity for D. licha and non-luminous sharks.
Collapse
Affiliation(s)
- Nicolas Pinte
- Marine biology laboratory, Earth and Life Institute, Université catholique de Louvain, 3 place Croix du Sud, Kellner building, 1348 Louvain-la-Neuve, Belgium
| | - Constance Coubris
- Marine biology laboratory, Earth and Life Institute, Université catholique de Louvain, 3 place Croix du Sud, Kellner building, 1348 Louvain-la-Neuve, Belgium
| | - Emma Jones
- National Institute of Water and Atmospheric Research (NIWA), 41 Market Pl, Auckland 1010, New Zealand
| | - Jérôme Mallefet
- Marine biology laboratory, Earth and Life Institute, Université catholique de Louvain, 3 place Croix du Sud, Kellner building, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
28
|
Durhack TC, Mochnacz NJ, Macnaughton CJ, Enders EC, Treberg JR. Life through a wider scope: Brook Trout (Salvelinus fontinalis) exhibit similar aerobic scope across a broad temperature range. J Therm Biol 2021; 99:102929. [DOI: 10.1016/j.jtherbio.2021.102929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/28/2021] [Accepted: 03/29/2021] [Indexed: 01/19/2023]
|
29
|
Smoliński S, Denechaud C, von Leesen G, Geffen AJ, Grønkjær P, Godiksen JA, Campana SE. Differences in metabolic rate between two Atlantic cod (Gadus morhua) populations estimated with carbon isotopic composition in otoliths. PLoS One 2021; 16:e0248711. [PMID: 33793572 PMCID: PMC8016290 DOI: 10.1371/journal.pone.0248711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
The isotopic composition of inorganic carbon in otoliths (δ13Coto) can be a useful tracer of metabolic rates and a method to study ecophysiology in wild fish. We evaluated environmental and physiological sources of δ13Coto variation in Icelandic and Northeast Arctic (NEA) cod (Gadus morhua) over the years 1914-2013. Individual annual growth increments of otoliths formed at age 3 and 8 were micromilled and measured by isotope-ratio mass spectrometry. Simultaneously, all annual increment widths of the otoliths were measured providing a proxy of fish somatic growth. We hypothesized that changes in the physiological state of the organism, reflected by the isotopic composition of otoliths, can affect the growth rate. Using univariate and multivariate mixed-effects models we estimated conditional correlations between carbon isotopic composition and growth of fish at different levels (within individuals, between individuals, and between years), controlling for intrinsic and extrinsic effects on both otolith measurements. δ13Coto was correlated with growth within individuals and between years, which was attributed to the intrinsic effects (fish age or total length). There was no significant correlation between δ13Coto and growth between individuals, which suggests that caution is needed when interpreting δ13Coto signals. We found a significant decrease in δ13Coto through the century which was explained by the oceanic Suess effect-admixture of isotopically light carbon from fossil fuel. We calculated the proportion of the respired carbon in otolith carbonate (Cresp) using carbon isotopic composition in diet and dissolved inorganic carbon of the seawater. This approach allowed us to correct the values for each stock in relation to these two environmental baselines. Cresp was on average 0.275 and 0.295 in Icelandic and NEA stock, respectively. Our results provide an insight into the physiological basis for differences in growth characteristics between these two cod stocks, and how that may vary over time.
Collapse
Affiliation(s)
- Szymon Smoliński
- Institute of Marine Research, Nordnes, Bergen, Norway
- Department of Fisheries Resources, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Côme Denechaud
- Institute of Marine Research, Nordnes, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Gotje von Leesen
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Audrey J. Geffen
- Institute of Marine Research, Nordnes, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Peter Grønkjær
- Aquatic Biology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | | | - Steven E. Campana
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
30
|
Mehdi H, Lau SC, Synyshyn C, Salena MG, McCallum ES, Muzzatti MN, Bowman JE, Mataya K, Bragg LM, Servos MR, Kidd KA, Scott GR, Balshine S. Municipal wastewater as an ecological trap: Effects on fish communities across seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143430. [PMID: 33187712 DOI: 10.1016/j.scitotenv.2020.143430] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluents are a ubiquitous source of contamination whose impacts on fish and other aquatic organisms span across multiple levels of biological organization. Despite this, few studies have addressed the impacts of WWTP effluents on fish communities, especially during the winter-a season seldom studied. Here, we assessed the impacts of wastewater on fish community compositions and various water quality parameters during the summer and winter along two effluent gradients in Hamilton Harbour, an International Joint Commission Area of Concern in Hamilton, Canada. We found that fish abundance, species richness, and species diversity were generally highest in sites closest to the WWTP outfalls, but only significantly so in the winter. Fish community compositions differed greatly along the effluent gradients, with sites closest and farthest from the outfalls being the most dissimilar. Furthermore, the concentrations of numerous contaminants of emerging concern (CECs) in the final treated effluent were highest during the winter. Water quality of sites closer to the outfalls was poorer than at sites farther away, especially during the winter. We also demonstrated that WWTPs can significantly alter the thermal profile of effluent-receiving environments, increasing temperature by as much as ~9 °C during the winter. Our results suggest that wastewater plumes may act as ecological traps in winter, whereby fish are attracted to the favourable temperatures near WWTPs and are thus exposed to higher concentrations of CECs. This study highlights the importance of winter research as a key predictor in further understanding the impacts of wastewater contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Hossein Mehdi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Samantha C Lau
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Caitlyn Synyshyn
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Erin S McCallum
- Department of Wildlife Fish and Environmental Studies, Swedish University of Agriculture Sciences, SE-90183 Umeå, Sweden
| | - Melissa N Muzzatti
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Jennifer E Bowman
- Royal Botanical Gardens, 680 Plains Road W, Burlington, Ontario L7T 4H4, Canada.
| | - Kyle Mataya
- Royal Botanical Gardens, 680 Plains Road W, Burlington, Ontario L7T 4H4, Canada.
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Karen A Kidd
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada; School of Earth, Environment and Society, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada; Institute for Water, Environment and Health, United Nations University, 204 - 175 Longwood Road S., Hamilton, ON L8P 0A1, Canada.
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
31
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
32
|
Pack KE, Rius M, Mieszkowska N. Long-term environmental tolerance of the non-indigenous Pacific oyster to expected contemporary climate change conditions. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105226. [PMID: 33316607 DOI: 10.1016/j.marenvres.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/11/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The current global redistribution of biota is often attributed to two main drivers: contemporary climate change (CCC) and non-indigenous species (NIS). Despite evidence of synergetic effects, however, studies assessing long-term effects of CCC conditions on NIS fitness remain rare. We examined the interactive effects of warming, ocean acidification and reduced salinity on the globally distributed marine NIS Magallana gigas (Pacific oyster) over a ten-month period. Growth, clearance and oxygen consumption rates were measured monthly to assess individual fitness. Lower salinity had a significant, permanent effect on M. gigas, reducing and increasing clearance and oxygen consumption rates, respectively. Neither predicted increases in seawater temperature nor reduced pH had a long-term physiological effect, indicating conditions predicted for 2100 will not affect adult physiology and survival. These results suggest that M. gigas will remain a globally successful NIS and predicted CCC will continue to facilitate their competitive dominance in the near future.
Collapse
Affiliation(s)
- Kathryn E Pack
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom; Marine Biological Association, Plymouth, United Kingdom.
| | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom; Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Nova Mieszkowska
- Marine Biological Association, Plymouth, United Kingdom; School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
33
|
Chung M, Jørgensen KM, Trueman CN, Knutsen H, Jorde PE, Grønkjær P. First measurements of field metabolic rate in wild juvenile fishes show strong thermal sensitivity but variations between sympatric ecotypes. OIKOS 2020. [DOI: 10.1111/oik.07647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ming‐Tsung Chung
- Dept of Biology, Aarhus Univ. Aarhus Denmark
- Atmosphere and Ocean Research Inst., The Univ. of Tokyo Tokyo Japan
| | | | | | - Halvor Knutsen
- Inst. of Marine Research, Flødevigen Norway
- Center for Coastal Research, Univ. of Agder Kristiansand Norway
| | | | | |
Collapse
|
34
|
Impacts on Metabolism and Gill Physiology of Darter Species (Etheostoma spp.) That Are Attributed to Wastewater Effluent in the Grand River. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effluent from municipal wastewater treatment plants is a major point source of contamination in Canadian waterways. The improvement of effluent quality to reduce contaminants, such as pharmaceuticals and personal care products, before being released into the environment is necessary to reduce the impacts on organisms that live in the river downstream. Here, we aimed to characterize the metabolic and gill physiological responses of rainbow (Etheostoma caeruleum), fantail (Etheostoma flabellare), and greenside (Etheostoma blennioides) darters to the effluent in the Grand River from the recently upgraded Waterloo municipal wastewater treatment plant. The routine metabolism of darters was not affected by effluent exposure, but some species had increased maximum metabolic rates, leading to an increased aerobic scope. The rainbow darter aerobic scope increased by 2.2 times and the fantail darter aerobic scope increased by 2.7 times compared to the reference site. Gill samples from effluent-exposed rainbow darters and greenside darters showed evidence of more pathologies and variations in morphology. These results suggest that darters can metabolically adjust to effluent-contaminated water and may also be adapting to the urban and agricultural inputs. The modification and damage to the gills provide a useful water quality indicator but does not necessarily reflect how well acclimated the species is to the environment due to a lack of evidence of poor fish health.
Collapse
|
35
|
Lim LS, Tan SY, Tuzan AD, Kawamura G, Mustafa S, Rahmah S, Liew HJ. Diel osmorespiration rhythms of juvenile marble goby (Oxyeleotris marmorata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1621-1629. [PMID: 32430644 DOI: 10.1007/s10695-020-00817-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.
Collapse
Affiliation(s)
- Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Sin-Ying Tan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Audrey Daning Tuzan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Gunzo Kawamura
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Saleem Mustafa
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Sharifah Rahmah
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
36
|
Temperature and food availability alters the physiology and aerobic capacity of tambaqui (Colossoma macropomum). Comp Biochem Physiol A Mol Integr Physiol 2020; 245:110704. [DOI: 10.1016/j.cbpa.2020.110704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
|
37
|
Volkoff H, Rønnestad I. Effects of temperature on feeding and digestive processes in fish. Temperature (Austin) 2020; 7:307-320. [PMID: 33251280 PMCID: PMC7678922 DOI: 10.1080/23328940.2020.1765950] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
As most fish are ectotherms, their physiology is strongly affected by temperature. Temperature affects their metabolic rate and thus their energy balance and behavior, including locomotor and feeding behavior. Temperature influences the ability/desire of the fish to obtain food, and how they process food through digestion, absorb nutrients within the gastrointestinal tract, and store excess energy. As fish display a large variability in habitats, feeding habits, and anatomical and physiological features, the effects of temperature are complex and species-specific. The effects of temperature depend on the timing, intensity, and duration of exposure as well as the speed at which temperature changes occur. Whereas acute short-term variations of temperature might have drastic, often detrimental, effects on fish physiology, long-term gradual variations might lead to acclimation, e.g. variations in metabolic and digestive enzyme profiles. The goal of this review is to summarize our current knowledge on the effects of temperature on energy homeostasis, with specific focus on metabolism, feeding, digestion, and how fish are often able to "adapt" to changing environments through phenotypic and physiological changes.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
38
|
Martino JC, Doubleday ZA, Chung MT, Gillanders BM. Experimental support towards a metabolic proxy in fish using otolith carbon isotopes. ACTA ACUST UNITED AC 2020; 223:223/6/jeb217091. [PMID: 32220900 DOI: 10.1242/jeb.217091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/18/2020] [Indexed: 01/15/2023]
Abstract
Metabolic rate underpins our understanding of how species survive, reproduce and interact with their environment, but can be difficult to measure in wild fish. Stable carbon isotopes (δ13C) in ear stones (otoliths) of fish may reflect lifetime metabolic signatures but experimental validation is required to advance our understanding of the relationship. To this end, we reared juvenile Australasian snapper (Chrysophrys auratus), an iconic fishery species, at different temperatures and used intermittent-flow respirometry to calculate standard metabolic rate (SMR), maximum metabolic rate (MMR) and absolute aerobic scope (AAS). Subsequently, we analysed δ13C and oxygen isotopes (δ18O) in otoliths using isotope-ratio mass spectrometry. We found that under increasing temperatures, δ13C and δ18O significantly decreased, while SMR and MMR significantly increased. Negative logarithmic relationships were found between δ13C in otoliths and both SMR and MMR, while exponential decay curves were observed between proportions of metabolically sourced carbon in otoliths (M oto) and both measured and theoretical SMR. We show that basal energy for subsistence living and activity metabolism, both core components of field metabolic rates, contribute towards incorporation of δ13C into otoliths and support the use of δ13C as a metabolic proxy in field settings. The functional shapes of the logarithmic and exponential decay curves indicated that physiological thresholds regulate relationships between δ13C and metabolic rates due to upper thresholds of M oto Here, we present quantitative experimental evidence to support the development of an otolith-based metabolic proxy, which could be a powerful tool in reconstructing lifetime biological trends in wild fish.
Collapse
Affiliation(s)
- Jasmin C Martino
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zoë A Doubleday
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ming-Tsung Chung
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
39
|
Corriere M, Baptista M, Paula JR, Repolho T, Rosa R, Costa PR, Soliño L. Impaired fish swimming performance following dietary exposure to the marine phycotoxin okadaic acid. Toxicon 2020; 179:53-59. [PMID: 32147514 DOI: 10.1016/j.toxicon.2020.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Abstract
Fish are frequently exposed to harmful algal blooms (HAB) and to related toxins. However, the biological effects of okadaic acid (OA), the most abundant and frequent HAB-toxin in Europe, South America and Asia, have been poorly investigated. In this study, fish swimming performance and metabolic rates were investigated in juveniles of Zebra seabream (Diplodus cervinus) exposed to OA-group toxins via dietary route, during three days. Fish fed on contaminated food accumulated up to 455.5 μg OA equiv. Kg-1. Significant lower mean critical swimming speed (Ucrit) were observed in fish orally exposed to OA (and its related isomer dinophysistoxin-1, DTX-1) than fish feeding on non-toxic diet. A tendency to higher demands of oxygen consumption was also recorded in OA-exposed fish at higher current velocities. This study indicates that fish may not be affected by OA-group toxins under basal conditions, but suggests a decrease in fitness linked to a reduction in swimming performance of fish exposed to OA under increased stimulus. OA and related toxins are suggested to have a cryptic effect on swimming performance that may be enhanced when fish deals with multiple stressors. Considering that a reduction in swimming performance may have impact on critical activities, such as foraging and escaping from predators, this study highlights the ecological risk associated with dinoflagellate toxic blooms, biotoxins food web transfer and fish contamination.
Collapse
Affiliation(s)
- Mauro Corriere
- IPMA-Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal; Centro Interdipartimentale di Ricerca per le Scienze Ambientali, Università di Bologna, Via Sant'Alberto, 163 - 48100, Ravenna, Italy
| | - Miguel Baptista
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Laboratório Marítimo da Guia, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - José R Paula
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Laboratório Marítimo da Guia, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Tiago Repolho
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Laboratório Marítimo da Guia, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Laboratório Marítimo da Guia, Avenida Nossa Senhora do Cabo 939, 2750-374, Cascais, Portugal
| | - Pedro Reis Costa
- IPMA-Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Lucía Soliño
- IPMA-Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
40
|
Duncan MI, James NC, Potts WM, Bates AE. Different drivers, common mechanism; the distribution of a reef fish is restricted by local-scale oxygen and temperature constraints on aerobic metabolism. CONSERVATION PHYSIOLOGY 2020; 8:coaa090. [PMID: 33654546 PMCID: PMC7904075 DOI: 10.1093/conphys/coaa090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 05/02/2023]
Abstract
The distributions of ectothermic marine organisms are limited to temperature ranges and oxygen conditions that support aerobic respiration, quantified within the metabolic index (ϕ) as the ratio of oxygen supply to metabolic oxygen demand. However, the utility of ϕ at local scales and across heterogenous environments is unknown; yet, these scales are often where actionable management decisions are made. Here, we test if ϕ can delimit the entire distribution of marine organisms when calibrated across an appropriate temperature range and at local scales (~10 km) using the endemic reef fish, Chrysoblephus laticeps, which is found in the highly heterogenous temperature and oxygen environment along the South African coastal zone, as a model species. In laboratory experiments, we find a bidirectional (at 12°C) hypoxia tolerance response across the temperature range tested (8 to 24°C), permitting a piecewise calibration of ϕ. We then project this calibrated ϕ model through temperature and oxygen data from a high spatial resolution (11 to 13 km) ocean model for the periods 2005 to 2009 and 2095 to 2099 to quantify various magnitudes of ϕ across space and time paired with complementary C. laticeps occurrence points. Using random forest species distribution models, we quantify a critical ϕ value of 2.78 below which C. laticeps cannot persist and predict current and future distributions of C. laticeps in line with already observed distribution shifts of other South African marine species. Overall, we find that C. laticeps' distribution is limited by increasing temperatures towards its warm edge but by low oxygen availability towards its cool edge, which is captured within ϕ at fine scales and across heterogenous oxygen and temperature combinations. Our results support the application of ϕ for generating local- and regional-scale predictions of climate change effects on organisms that can inform local conservation management decisions.
Collapse
Affiliation(s)
- Murray I Duncan
- Department of Ichthyology and Fisheries Science, Rhodes University, Prince Alfred street, Makhanda, 6140, South Africa
- South African Institute for Aquatic Biodiversity, 11 Somerset street, Makhanda, 6139, South Africa
- Corresponding author: Department of Geological Sciences, Stanford University, Stanford, 94305, USA.
| | - Nicola C James
- Department of Ichthyology and Fisheries Science, Rhodes University, Prince Alfred street, Makhanda, 6140, South Africa
- South African Institute for Aquatic Biodiversity, 11 Somerset street, Makhanda, 6139, South Africa
| | - Warren M Potts
- Department of Ichthyology and Fisheries Science, Rhodes University, Prince Alfred street, Makhanda, 6140, South Africa
| | - Amanda E Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Rd, St. John’s, NL, A1C 5S7, Canada
| |
Collapse
|
41
|
Burggren W, Filogonio R, Wang T. Cardiovascular shunting in vertebrates: a practical integration of competing hypotheses. Biol Rev Camb Philos Soc 2019; 95:449-471. [PMID: 31859458 DOI: 10.1111/brv.12572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
This review explores the long-standing question: 'Why do cardiovascular shunts occur?' An historical perspective is provided on previous research into cardiac shunts in vertebrates that continues to shape current views. Cardiac shunts and when they occur is then described for vertebrates. Nearly 20 different functional reasons have been proposed as specific causes of shunts, ranging from energy conservation to improved gas exchange, and including a plethora of functions related to thermoregulation, digestion and haemodynamics. It has even been suggested that shunts are merely an evolutionary or developmental relic. Having considered the various hypotheses involving cardiovascular shunting in vertebrates, this review then takes a non-traditional approach. Rather than attempting to identify the single 'correct' reason for the occurrence of shunts, we advance a more holistic, integrative approach that embraces multiple, non-exclusive suites of proposed causes for shunts, and indicates how these varied functions might at least co-exist, if not actually support each other as shunts serve multiple, concurrent physiological functions. It is argued that deposing the 'monolithic' view of shunting leads to a more nuanced view of vertebrate cardiovascular systems. This review concludes by suggesting new paradigms for testing the function(s) of shunts, including experimentally placing organ systems into conflict in terms of their perfusion needs, reducing sources of variation in physiological experiments, measuring possible compensatory responses to shunt ablation, moving experiments from the laboratory to the field, and using cladistics-related approaches in the choice of experimental animals.
Collapse
Affiliation(s)
- Warren Burggren
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX, 76203-5220, U.S.A
| | - Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus C, 8000, Denmark.,Aarhus Institute of Advanced Sciences (AIAS), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
42
|
Yoon GR, Deslauriers D, Anderson WG. Influence of a dynamic rearing environment on development of metabolic phenotypes in age-0 Lake Sturgeon, Acipenser fulvescens. CONSERVATION PHYSIOLOGY 2019; 7:coz055. [PMID: 31620291 PMCID: PMC6788496 DOI: 10.1093/conphys/coz055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 05/31/2023]
Abstract
Environment-phenotype interactions are the most pronounced during early life stages and can strongly influence metabolism and ultimately ecological fitness. In the present study, we examined the effect of temperature [ambient river temperature (ART) vs ART+2°C], dissolved oxygen (DO; 100% vs 80%) and substrate (presence vs absence) on standard metabolic rate, forced maximum metabolic rate and metabolic scope with Fulton's condition factor (K), energy density (ED) and critical thermal maximum (CTmax) in age-0 Lake Sturgeon, Acipenser fulvescens, before and after a simulated overwintering event. We found that all the environmental variables strongly influenced survival, K, ED and CTmax. Fish reared in elevated temperature showed higher mortality and reduced K pre-winter at 127 days post-hatch (dph). Interestingly, we did not find any significant difference in terms of metabolic rate between treatments at both sampling points of pre- and post-winter. Long-term exposure to 80% DO reduced ED in Lake Sturgeon post-winter at 272 dph. Our data suggest that substrate should be removed at the onset of exogenous feeding to enhance the survival rate of age-0 Lake Sturgeon in the first year of life. Effects of early rearing environment during larval development on survival over winter are discussed with respect to successful recruitment of stock enhanced Lake Sturgeon, a species that is at risk throughout its natural range.
Collapse
Affiliation(s)
- Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Deslauriers
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
43
|
Healy TM, Brennan RS, Whitehead A, Schulte PM. Mitochondria, sex and variation in routine metabolic rate. Mol Ecol 2019; 28:4608-4619. [PMID: 31529542 DOI: 10.1111/mec.15244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Variation in the metabolic costs associated with organismal maintenance may play a key role in determining fitness, and thus these differences among individuals are likely to be subject to natural selection. Although the evolvability of maintenance metabolism depends on its underlying genetic architecture, relatively little is known about the nature of genetic variation that underlies this trait. To address this, we measured variation in routine metabolic rate (ṀO2 routine ), an index of maintenance metabolism, within and among three populations of Atlantic killifish, Fundulus heteroclitus, including a population from a region of genetic admixture between two subspecies. Polygenic association tests among individuals from the admixed population identified 54 single nucleotide polymorphisms (SNPs) that were associated with ṀO2 routine , and these SNPs accounted for 43% of interindividual variation in this trait. However, genetic associations with ṀO2 routine involved different SNPs if females and males were analysed separately, and there was a sex-dependent effect of mitochondrial genotype on variation in routine metabolism. These results imply that there are sex-specific genetic mechanisms, and potential mitonuclear interactions, that underlie variation in ṀO2 routine . Additionally, there was evidence for epistatic interactions between 17% of the possible pairs of trait-associated SNPs, suggesting that epistatic effects on ṀO2 routine are common. These data demonstrate not only that phenotypic variation in this ecologically important trait has a polygenic basis with considerable epistasis among loci, but also that these underlying genetic mechanisms, and particularly the role of mitochondrial genotype, may be sex-specific.
Collapse
Affiliation(s)
- Timothy M Healy
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Reid S Brennan
- Department of Environmental Toxicology, University of California Davis, Davis, CA, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA, USA
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
Campbell LA, Gormley PT, Bennett JC, Murimboh JD, MacCormack TJ. Functionalized silver nanoparticles depress aerobic metabolism in the absence of overt toxicity in brackish water killifish, Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105221. [PMID: 31207537 DOI: 10.1016/j.aquatox.2019.105221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Engineered nanomaterials (ENMs) tend to precipitate in saline waters so the majority of aquatic toxicity studies have focused on freshwaters, where bioavailability is presumed to be higher. Recent studies have illustrated that some ENM formulations are bioavailable and bioactive in salt water and that their effects are more pronounced at the physiological than biochemical level. These findings raise concerns regarding the effects of ENMs on marine organisms. Therefore, our goal was to characterize the effects of polyvinylpyrolidone-functionalized silver ENMs (nAg) on aerobic performance in the killifish (Fundulus heteroclitus), a common euryhaline teleost. Fish were exposed to 80 μg L-1 of 5 nm nAg for 48 h in brackish water (12 ppt) and routine (ṀO2min) and maximum (ṀO2max) rates of oxygen consumption were quantified. Silver dissolution was minimal and nAg remained well dispersed in brackish water, with a hydrodynamic diameter of 21.0 nm, compared to 19.3 in freshwater. Both ṀO2min and ṀO2max were significantly lower (by 53 and 30%, respectively) in killifish exposed to nAg and a reduction in ṀO2 variability suggested spontaneous activity was suppressed. Neither gill Na+/K+-ATPase activity, nor various other biochemical markers were affected by nAg exposure. The results illustrate that a common ENM formulation is bioactive in salt water and, as in previous studies on functionalized copper ENMs, that effects are more pronounced at the whole animal than the biochemical level.
Collapse
Affiliation(s)
- L A Campbell
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - P T Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - J C Bennett
- Department of Physics, Acadia University, Wolfville, NS, Canada
| | - J D Murimboh
- Department Chemistry, Acadia University, Wolfville, NS, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada.
| |
Collapse
|
45
|
Chung MT, Trueman CN, Godiksen JA, Holmstrup ME, Grønkjær P. Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun Biol 2019; 2:24. [PMID: 30675522 PMCID: PMC6338665 DOI: 10.1038/s42003-018-0266-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/12/2018] [Indexed: 11/15/2022] Open
Abstract
Field metabolic rate (FMR) is key to understanding individual and population-level responses to environmental changes, but is challenging to measure in field conditions, particularly in aquatic environments. Here we show that FMR can be estimated directly from the isotopic composition of carbon in fish otoliths (δ13Coto). We describe the relationship between δ13Coto values and oxygen consumption rate, and report results from laboratory experiments relating individual-level measurements of oxygen consumption rates to δ13Coto values in Atlantic cod (Gadus morhua). We apply our new δ13Coto metabolic proxy to existing δ13Coto data from wild cod and four deepwater fish species to test the validity of inferred FMR estimates. The δ13Coto metabolic proxy offers a new approach to study physiological ecology in free-ranging wild fishes. Otolith-based proxies for FMR are particularly promising as they allow retrospective assessment of time-integrated, individual-level FMR throughout an individual fish's life history.
Collapse
Affiliation(s)
- Ming-Tsung Chung
- Department of Bioscience, Section for Aquatic Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Clive N. Trueman
- Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| | | | - Mathias Engell Holmstrup
- Department of Bioscience, Section for Aquatic Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter Grønkjær
- Department of Bioscience, Section for Aquatic Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
46
|
Mehdi H, Dickson FH, Bragg LM, Servos MR, Craig PM. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:270-279. [DOI: 10.1016/j.cbpb.2017.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 01/26/2023]
|
47
|
McGaw I, Nancollas S. Experimental setup influences the cardiovascular responses of decapod crustaceans to environmental change. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of different holding methods on heart rate (HR) changes in the green crab, Carcinus maenas (Linnaeus, 1758), were investigated. Green crabs were held in perforated plastic boxes (with or without a layer of sand) suspended above the bottom of the tank or strapped to a weighted plastic grate. The HR of green crabs classified as unrestrained (plastic box with or without sand) dropped more rapidly compared with restrained (hanging from band, strapped to grate) green crabs. Within 1 h, unrestrained green crabs exhibited periods of cardiac pausing accounting for between 8% and 14% of the hourly time. In contrast, restrained green crabs rarely exhibited cardiac pausing. When the green crabs were subjected to a temperature increase (10–30 °C), the HR of unrestrained green crabs reached higher levels than that of the restrained animals. The four restraining methods were also used to investigate cardiac responses to hypoxia. During progressive hypoxia (100%–20% oxygen), the HR of unrestrained green crabs declined to lower levels than that of the restrained animals. The restraining methods appeared to be more stressful for the green crabs that maintained elevated HRs and were less able to respond to environmental change compared with green crabs that could move freely within a small chamber. This suggests that even subtle changes in experimental design may alter physiological responses.
Collapse
Affiliation(s)
- I.J. McGaw
- Department of Oceans Sciences, 0 Marine Lab Road, Memorial University of Newfoundland, St John’s, NL A1C 5S7, Canada
- Department of Oceans Sciences, 0 Marine Lab Road, Memorial University of Newfoundland, St John’s, NL A1C 5S7, Canada
| | - S.J. Nancollas
- Department of Oceans Sciences, 0 Marine Lab Road, Memorial University of Newfoundland, St John’s, NL A1C 5S7, Canada
| |
Collapse
|
48
|
Guzzo MM, Van Leeuwen TE, Hollins J, Koeck B, Newton M, Webber DM, Smith FI, Bailey DM, Killen SS, Gaggiotti O. Field testing a novel high residence positioning system for monitoring the fine-scale movements of aquatic organisms. Methods Ecol Evol 2018; 9:1478-1488. [PMID: 30008993 PMCID: PMC6033000 DOI: 10.1111/2041-210x.12993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 11/29/2022]
Abstract
Acoustic telemetry is an important tool for studying the behaviour of aquatic organisms in the wild.VEMCO high residence (HR) tags and receivers are a recent introduction in the field of acoustic telemetry and can be paired with existing algorithms (e.g. VEMCO positioning system [VPS]) to obtain high-resolution two-dimensional positioning data.Here, we present results of the first documented field test of a VPS composed of HR receivers (hereafter, HR-VPS). We performed a series of stationary and moving trials with HR tags (mean HR transmission period = 1.5 s) to evaluate the precision, accuracy and temporal capabilities of this positioning technology. In addition, we present a sample of data obtained for five European perch Perca fluviatilis implanted with HR tags (mean HR transmission period = 4 s) to illustrate how this technology can estimate the fine-scale behaviour of aquatic animals.Accuracy and precision estimates (median [5th-95th percentile]) of HR-VPS positions for all stationary trials were 5.6 m (4.2-10.8 m) and 0.1 m (0.02-0.07 m), respectively, and depended on the location of tags within the receiver array. In moving tests, tracks generated by HR-VPS closely mimicked those produced by a handheld GPS held over the tag, but these differed in location by an average of ≈9 m.We found that estimates of animal speed and distance travelled for perch declined when positional data for acoustically tagged perch were thinned to mimic longer transmission periods. These data also revealed a trade-off between capturing real nonlinear animal movements and the inclusion of positioning error.Our results suggested that HR-VPS can provide more representative estimates of movement metrics and offer an advancement for studying fine-scale movements of aquatic organisms, but high-precision survey techniques may be needed to test these systems.
Collapse
Affiliation(s)
- Matthew M. Guzzo
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Travis E. Van Leeuwen
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
- Cape Eleuthera InstituteRock SoundBahamas
| | - Jack Hollins
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Barbara Koeck
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Matthew Newton
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | | | | | - David M. Bailey
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Shaun S. Killen
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | | |
Collapse
|
49
|
Magnhagen C, Backström T, Nilsson J, Brännäs E. Oxygen consumption and swimming performance in Arctic charr with different pigmentation patterns. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
McGaw IJ, Steell SC, Leeuwen TEV, Eliason EJ, Cooke SJ. Application of Miniature Heart Rate Data Loggers for Use in Large Free-Moving Decapod Crustaceans: Method Development and Validation. Physiol Biochem Zool 2017; 91:731-739. [PMID: 29206569 DOI: 10.1086/695839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cardiovascular responses of decapod crustaceans to environmental challenges have received extensive attention. However, nearly all of these studies have been restricted to lab-based experiments; here we describe a methodology that will enable measurement of heart rate (HR) in free-moving decapods in the field. Data storage tag heart rate and temperature loggers (DST micro-HRT; Star-Oddi) were used to record electrocardiograms (ECG) and HR in large decapod crustaceans. These loggers were originally designed for use in vertebrates and must be surgically implanted in the body cavity near the heart in order to function. We adapted these loggers for external use in large decapod crustaceans. The method involved abrading the carapace directly above the heart and placing the electrodes of the logger directly on top of the dermal tissue. The logger was then secured in place with periphery wax. This method negated some of the more intricate operations used for vertebrates. The rapid setup time of approximately 5 min suggested that animals could be easily instrumented in the field and without the use of anesthetic. The logger was calibrated by simultaneously measuring the HR changes of a West Indian spider crab Mithrax spinosissimus with a pulsed-Doppler flowmeter. The data gathered with the two methods showed a tight correlation during an increase in temperature. The loggers were also successfully implanted in a variety of other large species of aquatic and terrestrial decapods. The data obtained showed that the method works in a broad range of species, under different experimental conditions. In each case, the loggers comprised less than 1% of the body mass and would be suitable for use in animals >300 g. All animals survived the attachment procedures and were feeding and active after removal of the loggers. Nearly all previous cardiac measurements on decapods have been carried out in controlled laboratory settings. The use of these loggers will make significant advances in measuring HR in unrestrained, undisturbed animals in their natural environment during extended periods of time and has the potential to lead to novel findings.
Collapse
|