1
|
Stachowiak K, Zabiszak M, Grajewski J, Teubert A, Bajek A, Jastrzab R. Thermodynamic Studies of Complexes in Cu(II)/Uridine-5'-Diphosphoglucuronic Acid System. Molecules 2024; 29:3695. [PMID: 39125099 PMCID: PMC11314288 DOI: 10.3390/molecules29153695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
A binary system of uridine-5'-diphosphoglucuronic acid with copper (II) ions was studied. Potentiometric studies in aqueous solutions using computer data analysis were carried out. The pH of dominance, the overall stability constants (logβ), and the equilibrium constants of the formation reaction (logKe) were determined for each complex compound formed in the studied system. Spectroscopic studies were carried out to determine the mode of coordination in the compounds studied. Cytotoxicity and metabolic activity tests of the compounds obtained showed an increase in the biological activity of the complexes tested against the free ligand. The current research may contribute to the knowledge of complex compounds of biomolecules found in the human body and may also contribute to the characterization of a group of complex compounds with potential anticancer properties.
Collapse
Affiliation(s)
- Klaudia Stachowiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (K.S.); (M.Z.)
| | - Michal Zabiszak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (K.S.); (M.Z.)
| | - Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (K.S.); (M.Z.)
| | - Anna Teubert
- Institute of Bioorganic Chemistry, Polish Academy of Science, Zygmunta Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Anna Bajek
- Faculty of Medicine, Department of Urology and Andrology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska 13, 85-067 Bydgoszcz, Poland;
| | - Renata Jastrzab
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (K.S.); (M.Z.)
| |
Collapse
|
2
|
Frayman KB, Macowan M, Caparros-Martin J, Ranganathan SC, Marsland BJ. The longitudinal microbial and metabolic landscape of infant cystic fibrosis: the gut-lung axis. Eur Respir J 2024; 63:2302290. [PMID: 38485151 DOI: 10.1183/13993003.02290-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND AIM In cystic fibrosis, gastrointestinal dysfunction and lower airway infection occur early and are independently associated with poorer outcomes in childhood. This study aimed to define the relationship between the microbiota at each niche during the first 2 years of life, its association with growth and airway inflammation, and explanatory features in the metabolome. MATERIALS AND METHODS 67 bronchoalveolar lavage fluid (BALF), 62 plasma and 105 stool samples were collected from 39 infants with cystic fibrosis between 0 and 24 months who were treated with prophylactic antibiotics. 16S rRNA amplicon and shotgun metagenomic sequencing were performed on BALF and stool samples, respectively; metabolomic analyses were performed on all sample types. Sequencing data from healthy age-matched infants were used as controls. RESULTS Bacterial diversity increased over the first 2 years in both BALF and stool, and microbial maturation was delayed in comparison to healthy controls from the RESONANCE cohort. Correlations between their respective abundance in both sites suggest stool may serve as a noninvasive alternative for detecting BALF Pseudomonas and Veillonella. Multisite metabolomic analyses revealed age- and growth-related changes, associations with neutrophilic airway inflammation, and a set of core systemic metabolites. BALF Pseudomonas abundance was correlated with altered stool microbiome composition and systemic metabolite alterations, highlighting a complex gut-plasma-lung interplay and new targets with therapeutic potential. CONCLUSION Exploration of the gut-lung microbiome and metabolome reveals diverse multisite interactions in cystic fibrosis that emerge in early life. Gut-lung metabolomic links with airway inflammation and Pseudomonas abundance warrant further investigation for clinical utility, particularly in non-expectorating patients.
Collapse
Affiliation(s)
- Katherine B Frayman
- Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Australia
- K.B. Frayman and M. Macowan are joint first authors
| | - Matthew Macowan
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- K.B. Frayman and M. Macowan are joint first authors
| | | | - Sarath C Ranganathan
- Respiratory Diseases Group, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- S.C. Ranganathan and B.J. Marsland are joint last authors
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- S.C. Ranganathan and B.J. Marsland are joint last authors
| |
Collapse
|
3
|
Yang Y, Ye Y, Deng Y, Gao L. Uridine and its role in metabolic diseases, tumors, and neurodegenerative diseases. Front Physiol 2024; 15:1360891. [PMID: 38487261 PMCID: PMC10937367 DOI: 10.3389/fphys.2024.1360891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Uridine is a pyrimidine nucleoside found in plasma and cerebrospinal fluid with a concentration higher than the other nucleosides. As a simple metabolite, uridine plays a pivotal role in various biological processes. In addition to nucleic acid synthesis, uridine is critical to glycogen synthesis through the formation of uridine diphosphate glucose in which promotes the production of UDP-GlcNAc in the hexosamine biosynthetic pathway and supplies UDP-GlcNAc for O-GlcNAcylation. This process can regulate protein modification and affect its function. Moreover, Uridine has an effect on body temperature and circadian rhythms, which can regulate the metabolic rate and the expression of metabolic genes. Abnormal levels of blood uridine have been found in people with diabetes and obesity, suggesting a link of uridine dysregulation and metabolic disorders. At present, the role of uridine in glucose metabolism and lipid metabolism is controversial, and the mechanism is not clear, but it shows the trend of long-term damage and short-term benefit. Therefore, maintaining uridine homeostasis is essential for maintaining basic functions and normal metabolism. This article summarizes the latest findings about the metabolic effects of uridine and the potential of uridine metabolism as therapeutic target in treatment of metabolic disorders.
Collapse
Affiliation(s)
- Yueyuan Yang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yahong Ye
- Department of Internal Medicine, QuanZhou Women’s and Children’s Hospital, QuanZhou, China
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, City of Hope, Duarte, CA, United States
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Gao L, Zhang W, Zhang L, Gromova B, Chen G, Csizmadia E, Cagle C, Nastasio S, Ma Y, Bonder A, Patwardhan V, Robson SC, Jiang S, Longhi MS. Silencing of aryl hydrocarbon receptor repressor restrains Th17 cell immunity in autoimmune hepatitis. J Autoimmun 2024; 143:103162. [PMID: 38142533 PMCID: PMC10981568 DOI: 10.1016/j.jaut.2023.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Th17-cells play a key role in the pathogenesis of autoimmune hepatitis (AIH). Dysregulation of Th17-cells in AIH is linked to defective response to aryl-hydrocarbon-receptor (AhR) activation. AhR modulates adaptive immunity and is regulated by aryl-hydrocarbon-receptor-repressor (AHRR), which inhibits AhR transcriptional activity. In this study, we investigated whether defective Th17-cell response to AhR derives from aberrant AHRR regulation in AIH. Th17-cells, obtained from the peripheral blood of AIH patients (n = 30) and healthy controls (n = 30) were exposed to AhR endogenous ligands, and their response assessed in the absence or presence of AHRR silencing. Therapeutic effects of AHRR blockade were tested in a model of Concanavalin-A (Con-A)-induced liver injury in humanized mice. AHRR was markedly upregulated in AIH Th17-cells, following exposure to l-kynurenine, an AhR endogenous ligand. In patients, silencing of AHRR boosted Th17-cell response to l-kynurenine, as reflected by increased levels of CYP1A1, the main gene controlled by AhR; and decreased IL17A expression. Blockade of AHRR limited the differentiation of naïve CD4-cells into Th17 lymphocytes; and modulated Th17-cell metabolic profile by increasing the levels of uridine via ATP depletion or pyrimidine salvage. Treatment with 2'-deoxy-2'-fluoro-d-arabinonucleic acid (FANA) oligonucleotides to silence human AHRR in vivo, reduced ALT levels, attenuated lymphocyte infiltration on histology, and heightened frequencies of regulatory immune subsets in NOD/scid/gamma mice, reconstituted with human CD4 cells, and exposed to Con-A. In conclusion, blockade of AHRR in AIH restores Th17-cell response to AHR, and limits Th17-cell differentiation through generation of uridine. In vivo, silencing of AHRR attenuates liver damage in NOD/scid/gamma mice. Blockade of AHRR might therefore represent a novel therapeutic strategy to modulate effector Th17-cell immunity and restore homeostasis in AIH.
Collapse
Affiliation(s)
- Li Gao
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
| | - Wei Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
| | - Lina Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; School of Arts and Sciences, Tufts University, Medford, MA, USA.
| | - Barbora Gromova
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | - Guanqing Chen
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Cortney Cagle
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Silvia Nastasio
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA.
| | - Yun Ma
- Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Alan Bonder
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Vilas Patwardhan
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
He M, Xu C, Yang R, Liu L, Zhou D, Yan S. Causal relationship between human blood metabolites and risk of ischemic stroke: a Mendelian randomization study. Front Genet 2024; 15:1333454. [PMID: 38313676 PMCID: PMC10834680 DOI: 10.3389/fgene.2024.1333454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Background: Ischemic stroke (IS) is a major cause of death and disability worldwide. Previous studies have reported associations between metabolic disorders and IS. However, evidence regarding the causal relationship between blood metabolites and IS lacking. Methods: A two-sample Mendelian randomization analysis (MR) was used to assess the causal relationship between 1,400 serum metabolites and IS. The inverse variance-weighted (IVW) method was employed to estimate the causal effect between exposure and outcome. Additionally, MR-Egger regression, weighted median, simple mode, and weighted mode approaches were employed as supplementary comprehensive evaluations of the causal effects between blood metabolites and IS. Tests for pleiotropy and heterogeneity were conducted. Results: After rigorous selection, 23 known and 5 unknown metabolites were identified to be associated with IS. Among the 23 known metabolites, 13 showed significant causal effects with IS based on 2 MR methods, including 5-acetylamino-6-formylamino-3-methyluracil, 1-ribosyl-imidazoleacetate, Behenoylcarnitine (C22), N-acetyltyrosine, and N-acetylputrescine to (N (1) + N (8))-acetate,these five metabolites were positively associated with increased IS risk. Xanthurenate, Glycosyl-N-tricosanoyl-sphingadienine, Orotate, Bilirubin (E,E), Bilirubin degradation product, C17H18N2O, Bilirubin (Z,Z) to androsterone glucuronide, Bilirubin (Z,Z) to etiocholanolone glucuronide, Biliverdin, and Uridine to pseudouridine ratio were associated with decreased IS risk. Conclusion: Among 1,400 blood metabolites, this study identified 23 known metabolites that are significantly associated with IS risk, with 13 being more prominent. The integration of genomics and metabolomics provides important insights for the screening and prevention of IS.
Collapse
Affiliation(s)
- Menghao He
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chun Xu
- Changde College of Science and Technology, Changde, Hunan, China
| | - Renyi Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lijuan Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Desheng Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Belosludtseva NV, Pavlik LL, Mikheeva IB, Talanov EY, Serov DA, Khurtin DA, Belosludtsev KN, Mironova GD. Protective Effect of Uridine on Structural and Functional Rearrangements in Heart Mitochondria after a High-Dose Isoprenaline Exposure Modelling Stress-Induced Cardiomyopathy in Rats. Int J Mol Sci 2023; 24:17300. [PMID: 38139129 PMCID: PMC10744270 DOI: 10.3390/ijms242417300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Lubov L. Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Irina B. Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Eugeny Yu. Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilov St. 38, 119991 Moscow, Russia;
| | - Dmitriy A. Khurtin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia;
| | - Galina D. Mironova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (L.L.P.); (I.B.M.); (E.Y.T.); (K.N.B.)
| |
Collapse
|
7
|
Xu X, Zhang X, Cheng S, Li Q, Chen C, Ouyang M. Protective effect of uridine on atrial fibrillation: a Mendelian randomisation study. Sci Rep 2023; 13:19639. [PMID: 37950049 PMCID: PMC10638443 DOI: 10.1038/s41598-023-47025-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Uridine, a pyrimidine nucleoside, is crucial in the synthesis of metabolites. According to observational studies, a higher plasma uridine level is associated with a lower risk of atrial fibrillation (AF). However, the casual relationship between uridine and AF is still unknown. In this study, we used the Mendelian randomisation (MR) approach to explore causality. Three genetic variants associated with uridine were identified from the Metabolomics GWAS server (7824 participants); summary-level datasets associated with AF were acquired from a genome-wide association study (GWAS) meta-analysis with 1,030,836 European participants (60,620 AF cases). We duplicated the MR analyses using datasets from AF HRC studies and the FinnGen Consortium, and then conducted a meta-analysis which combined the main results. The risk of AF was significantly associated with the genetically determined plasma uridine level (odds ratio [OR] 0.27; 95% confidence interval [CI] 0.16, 0.47; p = 2.39 × 10-6). The association remained consistent in the meta-analysis of the various datasets (OR 0.27; 95% CI 0.17, 0.42; p = 1.34 × 10-8). In conclusion, the plasma uridine level is inversely associated with the risk of AF. Raising the plasma uridine level may have prophylactic potential against AF.
Collapse
Affiliation(s)
- Xintian Xu
- Department of Cardiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoyu Zhang
- Department of Cardiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shiyao Cheng
- Department of Cardiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qinglang Li
- Department of Cardiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Cai Chen
- Department of Cardiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Mao Ouyang
- Department of Cardiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Vignon M, Bastide A, Attina A, David A, Bousquet P, Orti V, Vialaret J, Lehmann S, Periere DD, Hirtz C. Multiplexed LC-MS/MS quantification of salivary RNA modifications in periodontitis. J Periodontal Res 2023; 58:959-967. [PMID: 37349891 DOI: 10.1111/jre.13155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE To analyse the salivary epitranscriptomic profiles as periodontitis biomarkers using multiplexed mass spectrometry (MS). BACKGROUND The field of epitranscriptomics, which relates to RNA chemical modifications, opens new perspectives in the discovery of diagnostic biomarkers, especially in periodontitis. Recently, the modified ribonucleoside N6-methyladenosine (m6A) was revealed as a crucial player in the etiopathogenesis of periodontitis. However, no epitranscriptomic biomarker has been identified in saliva to date. MATERIALS AND METHODS Twenty-four saliva samples were collected from periodontitis patients (n = 16) and from control subjects (n = 8). Periodontitis patients were stratified according to stage and grade. Salivary nucleosides were directly extracted and, in parallel, salivary RNA was digested into its constituent nucleosides. Nucleoside samples were then quantified by multiplexed MS. RESULTS Twenty-seven free nucleosides were detected and an overlapping set of 12 nucleotides were detected in digested RNA. Among the free nucleosides, cytidine and three other modified nucleosides (inosine, queuosine and m6Am) were significantly altered in periodontitis patients. In digested RNA, only uridine was significantly higher in periodontitis patients. Importantly there was no correlation between free salivary nucleoside levels and the levels of those same nucleotides in digested salivary RNA, except for cytidine, m5C and uridine. This statement implies that the two detection methods are complementary. CONCLUSION The high specificity and sensitivity of MS allowed the detection and quantification of multiple nucleosides from RNA and free nucleosides in saliva. Some ribonucleosides appear to be promising biomarkers of periodontitis. Our analytic pipeline opens new perspectives for diagnostic periodontitis biomarkers.
Collapse
Affiliation(s)
- Margaux Vignon
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Aurore Attina
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Philippe Bousquet
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
| | - Valérie Orti
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
| | - Jérôme Vialaret
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Christophe Hirtz
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
9
|
Zhou NN, Wang T, Lin YX, Xu R, Wu HX, Ding FF, Qiao F, Du ZY, Zhang ML. Uridine alleviates high-carbohydrate diet-induced metabolic syndromes by activating sirt1/AMPK signaling pathway and promoting glycogen synthesis in Nile tilapia ( Oreochromis niloticus). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:56-66. [PMID: 37252330 PMCID: PMC10208930 DOI: 10.1016/j.aninu.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/06/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
Carbohydrates have a protein sparing effect, but long-term feeding of a high-carbohydrate diet (HCD) leads to metabolic disorders due to the limited utilization efficiency of carbohydrates in fish. How to mitigate the negative effects induced by HCD is crucial for the rapid development of aquaculture. Uridine is a pyrimidine nucleoside that plays a vital role in regulating lipid and glucose metabolism, but whether uridine can alleviate metabolic syndromes induced by HCD remains unknown. In this study, a total of 480 Nile tilapia (Oreochromis niloticus) (average initial weight 5.02 ± 0.03 g) were fed with 4 diets, including a control diet (CON), HCD, HCD + 500 mg/kg uridine (HCUL) and HCD + 5,000 mg/kg uridine (HCUH), for 8 weeks. The results showed that addition of uridine decreased hepatic lipid, serum glucose, triglyceride and cholesterol (P < 0.05). Further analysis indicated that higher concentration of uridine activated the sirtuin1 (sirt1)/adenosine 5-monophosphate-activated protein kinase (AMPK) signaling pathway to increase lipid catabolism and glycolysis while decreasing lipogenesis (P < 0.05). Besides, uridine increased the activity of glycogen synthesis-related enzymes (P < 0.05). This study suggested that uridine could alleviate HCD-induced metabolic syndrome by activating the sirt1/AMPK signaling pathway and promoting glycogen synthesis. This finding reveals the function of uridine in fish metabolism and facilitates the development of new additives in aquatic feeds.
Collapse
|
10
|
Shen L, Shen Y, Zhang Y, Cao S, Yu S, Zong X, Su Z. Effects of Anemoside B4 on Plasma Metabolites in Cows with Clinical Mastitis. Vet Sci 2023; 10:437. [PMID: 37505842 PMCID: PMC10383794 DOI: 10.3390/vetsci10070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Anemoside B4 has a good curative effect on cows with CM; however, its impact on their metabolic profiles is unclear. Based on similar somatic cell counts and clinical symptoms, nine healthy dairy cows and nine cows with CM were selected, respectively. Blood samples were collected from cows with mastitis on the day of diagnosis. Cows with mastitis were injected with anemoside B4 (0.05 mL/kg, once daily) for three consecutive days, and healthy cows were injected with the same volume of normal saline. Subsequently, blood samples were collected. The plasma metabolic profiles were analyzed using untargeted mass spectrometry, and the concentrations of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were evaluated via ELISA. The cows with CM showed increased concentrations of IL-1β, IL-6, and TNF-α (p < 0.05). After treatment with anemoside B4, the concentrations of IL-1β, IL-6, and TNF-α were significantly decreased (p < 0.01). Untargeted metabolomics analysis showed that choline, glycocholic acid, PC (18:0/18:1), 20-HETE, PGF3α, and oleic acid were upregulated in cows with CM. After treatment with anemoside B4, the concentrations of PC (16:0/16:0), PC (18:0/18:1), linoleic acid, eicosapentaenoic acid, phosphorylcholine, and glycerophosphocholine were downregulated, while the LysoPC (14:0), LysoPC (18:0), LysoPC (18:1), and cis-9-palmitoleic acid were upregulated. This study indicated that anemoside B4 alleviated the inflammatory response in cows with CM mainly by regulating lipid metabolism.
Collapse
Affiliation(s)
- Liuhong Shen
- The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Shen
- The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Zhang
- The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shumin Yu
- The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Zong
- The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhetong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu 546600, China
| |
Collapse
|
11
|
Wei Y, Zhang Z, Zhang Y, Li J, Ruan X, Wan Q, Yin T, Zou Y, Chen S, Zhang Y. Nontargeted metabolomics analysis of follicular fluid in patients with endometriosis provides a new direction for the study of oocyte quality. MedComm (Beijing) 2023; 4:e302. [PMID: 37265938 PMCID: PMC10229744 DOI: 10.1002/mco2.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Endometriosis is a common, estrogen-dependent chronic gynecological disease that endangers the reproductive system and systemic metabolism of patients. We aimed to investigate the differences in metabolic profiles in the follicular fluid between infertile patients with endometriosis and controls. A total of 25 infertile patients with endometriosis and 25 infertile controls who were similar in age, BMI, fertilization method and ovulation induction treatment were recruited in this study. Metabolomics analysis of follicular fluid was performed by two methods of high-performance liquid chromatography tandem mass spectrometry. There were 36 upregulated and 17 downregulated metabolites in the follicular fluid of patients in the endometriosis group. KEGG pathway analysis revealed that these metabolites were enriched in phenylalanine, tyrosine and tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism and pyrimidine metabolism pathways. A biomarker panel consisting of 20 metabolites was constructed by random forest, with an accuracy of 0.946 and an AUC of 0.988. This study characterizes differences in follicular fluid metabolites and associated pathway profiles in infertile patients with endometriosis. These findings can provide a better comprehensive understanding of the disease and a new direction for the study of oocyte quality, as well as potential metabolic markers for the prognosis of endometriosis.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Zhourui Zhang
- The Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Yaoyao Zhang
- Department of Obstetrics and GynecologyKey Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduSichuanChina
| | - Jianan Li
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xianqin Ruan
- The Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Qiongqiong Wan
- The Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Tailang Yin
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yujie Zou
- Reproductive Medicine CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Suming Chen
- The Institute for Advanced StudiesWuhan UniversityWuhanHubeiChina
| | - Yan Zhang
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
12
|
Yan Z, Liu H, Li J, Wang Y. Qualitative and quantitative analysis of Lanmaoa asiatica in different storage years based on FT-NIR combined with chemometrics. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Zi L, Ma W, Zhang L, Qiao B, Qiu Z, Xu J, Zhang J, Ye Y, Yang Y, Dong K, Chen C, Wang W, Zhao Q. Uridine Inhibits Hepatocellular Carcinoma Cell Development by Inducing Ferroptosis. J Clin Med 2023; 12:jcm12103552. [PMID: 37240659 DOI: 10.3390/jcm12103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Uridine is a key metabolite used as a substrate for the production of DNA, RNA, and glucose, and it is mainly synthesized in the liver. Currently, it is not known whether uridine levels are altered in the tumor microenvironment of patients with hepatocellular carcinoma (HCC) and whether uridine can be a target for tumor therapy. In this study, the detection of genes associated with de novo uridine synthesis, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase (CAD) (n = 115), and dihydroorotate dehydrogenase (DHODH) (n = 115) in HCC tissues through tissue microarrays revealed that the expression of CAD and DHODH was higher in tumor compared with paraneoplastic tissues. Next, we collected tumor tissues from surgically resected HCC patients and the corresponding adjacent non-tumor tissues (n = 46) for LC-MS/MS assays. The results showed that the median and interquartile ranges of uridine content in non-tumor and tumor tissues were 640.36 (504.45-807.43) and 484.22 (311.91-626.73) nmol/g, respectively. These results suggest that uridine metabolism is disturbed in HCC patients. To further investigate whether uridine can be used as a tumor-therapeutic target, a series of high concentrations of uridine were incubated with HCC cells in vitro and in vivo. It was observed that uridine dose-dependently inhibited the proliferation, invasion, and migration of HCC cells by activating the ferroptosis pathway. Overall, these results reveal for the first time the range of uridine content in human HCC tissues and suggest that uridine may be a new target for HCC therapy.
Collapse
Affiliation(s)
- Liuliu Zi
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wangbin Ma
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Lilong Zhang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Boyang Qiao
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Zhendong Qiu
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Junhui Xu
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Yahong Ye
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yueyuan Yang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Keshuai Dong
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Chen Chen
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Weixing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Qingyan Zhao
- Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute of Wuhan University, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
14
|
Lai K, Song C, Gao M, Deng Y, Lu Z, Li N, Geng Q. Uridine Alleviates Sepsis-Induced Acute Lung Injury by Inhibiting Ferroptosis of Macrophage. Int J Mol Sci 2023; 24:ijms24065093. [PMID: 36982166 PMCID: PMC10049139 DOI: 10.3390/ijms24065093] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023] Open
Abstract
Uridine metabolism is extensively reported to be involved in combating oxidative stress. Redox-imbalance-mediated ferroptosis plays a pivotal role in sepsis-induced acute lung injury (ALI). This study aims to explore the role of uridine metabolism in sepsis-induced ALI and the regulatory mechanism of uridine in ferroptosis. The Gene Expression Omnibus (GEO) datasets including lung tissues in lipopolysaccharides (LPS) -induced ALI model or human blood sample of sepsis were collected. In vivo and vitro, LPS was injected into mice or administered to THP-1 cells to generate sepsis or inflammatory models. We identified that uridine phosphorylase 1 (UPP1) was upregulated in lung tissues and septic blood samples and uridine significantly alleviated lung injury, inflammation, tissue iron level and lipid peroxidation. Nonetheless, the expression of ferroptosis biomarkers, including SLC7A11, GPX4 and HO-1, were upregulated, while lipid synthesis gene (ACSL4) expression was greatly restricted by uridine supplementation. Moreover, pretreatment of ferroptosis inducer (Erastin or Era) weakened while inhibitor (Ferrostatin-1 or Fer-1) strengthened the protective effects of uridine. Mechanistically, uridine inhibited macrophage ferroptosis by activating Nrf2 signaling pathway. In conclusion, uridine metabolism dysregulation is a novel accelerator for sepsis-induced ALI and uridine supplementation may offer a potential avenue for ameliorating sepsis-induced ALI by suppressing ferroptosis.
Collapse
Affiliation(s)
- Kai Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Minglang Gao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zilong Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
15
|
Hanssen R, Rigoux L, Albus K, Kretschmer AC, Edwin Thanarajah S, Chen W, Hinze Y, Giavalisco P, Steculorum SM, Cornely OA, Brüning JC, Tittgemeyer M. Circulating uridine dynamically and adaptively regulates food intake in humans. Cell Rep Med 2023; 4:100897. [PMID: 36652907 PMCID: PMC9873946 DOI: 10.1016/j.xcrm.2022.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/02/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023]
Abstract
Feeding behavior must be continuously adjusted to match energy needs. Recent discoveries in murine models identified uridine as a regulator of energy balance. Here, we explore its contribution to the complex control of food intake in humans by administering a single dose of uridine monophosphate (UMP; 0.5 or 1 g) to healthy participants in two placebo-controlled studies designed to assess food behavior (registration: DRKS00014874). We establish that endogenous circulating uridine correlates with hunger and ensuing food consumption. It also dynamically decreases upon caloric ingestion, prompting its potential role in a negative feedback loop regulating energy intake. We further demonstrate that oral UMP administration temporarily increases circulating uridine and-when within the physiological range-enhances hunger and caloric intake proportionally to participants' basal energy needs. Overall, uridine appears as a potential target to tackle dysfunctions of feeding behavior in humans.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany,University of Cologne, Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Lionel Rigoux
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Kerstin Albus
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Kerpener Str. 62, 50937 Cologne, Germany
| | - Alina Chloé Kretschmer
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany,University of Cologne, Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), Kerpener Str. 62, 50937 Cologne, Germany
| | - Sharmili Edwin Thanarajah
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 10, 60528 Frankfurt am Main, Germany
| | - Weiyi Chen
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany,University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Yvonne Hinze
- Max Planck Institute for Biology of Ageing, Metabolomics Core Facility, Joseph-Stelzmann-Straße 9B, 50931 Cologne, Germany
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Metabolomics Core Facility, Joseph-Stelzmann-Straße 9B, 50931 Cologne, Germany
| | - Sophie M. Steculorum
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany,University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany,German Center of Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Oliver A. Cornely
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Kerpener Str. 62, 50937 Cologne, Germany,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Herderstr. 52, 50931 Cologne, Germany,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Gleueler Str. 269, 50935 Cologne, Germany
| | - Jens C. Brüning
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany,University of Cologne, Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), Kerpener Str. 62, 50937 Cologne, Germany,University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Marc Tittgemeyer
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany; University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany.
| |
Collapse
|
16
|
Dubinin MV, Starinets VS, Belosludtseva NV, Mikheeva IB, Chelyadnikova YA, Penkina DK, Vedernikov AA, Belosludtsev KN. The Effect of Uridine on the State of Skeletal Muscles and the Functioning of Mitochondria in Duchenne Dystrophy. Int J Mol Sci 2022; 23:ijms231810660. [PMID: 36142572 PMCID: PMC9500747 DOI: 10.3390/ijms231810660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the loss of functional dystrophin that secondarily causes systemic metabolic impairment in skeletal muscles and cardiomyocytes. The nutraceutical approach is considered as a possible complementary therapy for this pathology. In this work, we have studied the effect of pyrimidine nucleoside uridine (30 mg/kg/day for 28 days, i.p.), which plays an important role in cellular metabolism, on the development of DMD in the skeletal muscles of dystrophin deficient mdx mice, as well as its effect on the mitochondrial dysfunction that accompanies this pathology. We found that chronic uridine administration reduced fibrosis in the skeletal muscles of mdx mice, but it had no effect on the intensity of degeneration/regeneration cycles and inflammation, pseudohypetrophy, and muscle strength of the animals. Analysis of TEM micrographs showed that uridine also had no effect on the impaired mitochondrial ultrastructure of mdx mouse skeletal muscle. The administration of uridine was found to lead to an increase in the expression of the Drp1 and Parkin genes, which may indicate an increase in the intensity of organelle fission and the normalization of mitophagy. Uridine had little effect on OXPHOS dysfunction in mdx mouse mitochondria, and moreover, it was suppressed in the mitochondria of wild type animals. At the same time, uridine restored the transport of potassium ions and reduced the production of reactive oxygen species; however, this had no effect on the impaired calcium retention capacity of mdx mouse mitochondria. The obtained results demonstrate that the used dose of uridine only partially prevents mitochondrial dysfunction in skeletal muscles during Duchenne dystrophy, though it mitigates the development of destructive processes in skeletal muscles.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Correspondence: ; Tel.: +7-987-701-0437
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Yuliya A. Chelyadnikova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Daria K. Penkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alexander A. Vedernikov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| |
Collapse
|
17
|
Belosludtseva NV, Starinets VS, Mikheeva IB, Belosludtsev MN, Dubinin MV, Mironova GD, Belosludtsev KN. Effect of Chronic Treatment with Uridine on Cardiac Mitochondrial Dysfunction in the C57BL/6 Mouse Model of High-Fat Diet-Streptozotocin-Induced Diabetes. Int J Mol Sci 2022; 23:10633. [PMID: 36142532 PMCID: PMC9502122 DOI: 10.3390/ijms231810633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Long-term hyperglycemia in diabetes mellitus is associated with complex damage to cardiomyocytes and the development of mitochondrial dysfunction in the myocardium. Uridine, a pyrimidine nucleoside, plays an important role in cellular metabolism and is used to improve cardiac function. Herein, the antidiabetic potential of uridine (30 mg/kg/day for 21 days, i.p.) and its effect on mitochondrial homeostasis in the heart tissue were examined in a high-fat diet-streptozotocin-induced model of diabetes in C57BL/6 mice. We found that chronic administration of uridine to diabetic mice normalized plasma glucose and triglyceride levels and the heart weight/body weight ratio and increased the rate of glucose utilization during the intraperitoneal glucose tolerance test. Analysis of TEM revealed that uridine prevented diabetes-induced ultrastructural abnormalities in mitochondria and sarcomeres in ventricular cardiomyocytes. In diabetic heart tissue, the mRNA level of Ppargc1a decreased and Drp1 and Parkin gene expression increased, suggesting the disturbances of mitochondrial biogenesis, fission, and mitophagy, respectively. Uridine treatment of diabetic mice restored the mRNA level of Ppargc1a and enhanced Pink1 gene expression, which may indicate an increase in the intensity of mitochondrial biogenesis and mitophagy, and as a consequence, mitochondrial turnover. Uridine also reduced oxidative phosphorylation dysfunction and suppressed lipid peroxidation, but it had no significant effect on the impaired calcium retention capacity and potassium transport in the heart mitochondria of diabetic mice. Altogether, these findings suggest that, along with its hypoglycemic effect, uridine has a protective action against diabetes-mediated functional and structural damage to cardiac mitochondria and disruption of mitochondrial quality-control systems in the diabetic heart.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Maxim N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Galina D. Mironova
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Konstantin N. Belosludtsev
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| |
Collapse
|
18
|
Gao LM, Liu GY, Wang HL, Wassie T, Wu X. Maternal pyrimidine nucleoside supplementation regulates fatty acid, amino acid and glucose metabolism of offspring. ANIMAL NUTRITION 2022; 11:309-321. [PMID: 36312745 PMCID: PMC9589032 DOI: 10.1016/j.aninu.2022.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Pyrimidine nucleosides (PN) are abundant in mammalian milk and mainly involved in glycogen deposition and lipid metabolism. To investigate the effects of maternal supplementation with pyrimidine nucleoside on glucose, fatty acids (FAs), and amino acids (AAs) metabolism in neonatal piglets. Forty pregnant sows were randomly assigned into the control (CON) group (fed a basal diet, n = 20) or the PN group (fed a basal diet supplemented with PN at 150 g/t, n = 20). Litter size, born alive and birth litter weight were recorded. The serum and placenta of sows, and jejunum and liver of neonatal piglets were sampled. The results indicated that supplementing sow diets with PN decreased birth mortality and increased the birth weight of piglets (P < 0.05). In addition, neonates from sows supplemented with PN had higher glucose levels in serum and liver compared with the CON group (P < 0.05). Moreover, maternal PN supplementation regulated the ratio of saturated FAs and polyunsaturated FAs, and AAs content in serum and liver of piglets (P < 0.05). Furthermore, an up-regulation of mRNA expression of genes related to glucose and AA transport were observed in the neonatal jejunum from the PN group (P < 0.05). Additionally, hepatic protein expressions of phosphorylated hormone-sensitive lipase (P-HSL), HSL, sterol regulatory element-binding transcription factor 1c (SREBP-1c), and phosphorylated protein kinase B (P-AKT) was higher in the piglets from the PN group than the CON group (P < 0.05). Together, maternal PN supplementation may regulate nutrient metabolism of neonatal piglets by modulating the gene expression of glucose and AA transporters in placenta and jejunum, and the gene and protein expression of key enzymes related to lipid metabolism in liver of neonatal piglets, which may improve the reproductive performance of sows.
Collapse
|
19
|
Metabolite, protein, and tissue dysfunction associated with COVID-19 disease severity. Sci Rep 2022; 12:12204. [PMID: 35842456 PMCID: PMC9288092 DOI: 10.1038/s41598-022-16396-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/08/2022] [Indexed: 01/09/2023] Open
Abstract
Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and complete blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19.
Collapse
|
20
|
Munia NS, Hosen MA, Azzam KMA, Al-Ghorbani M, Baashen M, Hossain MK, Ali F, Mahmud S, Shimu MSS, Almalki FA, Hadda TB, Laaroussi H, Naimi S, Kawsar SMA. Synthesis, antimicrobial, SAR, PASS, molecular docking, molecular dynamics and pharmacokinetics studies of 5'- O-uridine derivatives bearing acyl moieties: POM study and identification of the pharmacophore sites. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1036-1083. [PMID: 35797068 DOI: 10.1080/15257770.2022.2096898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Because of their superior antibacterial and pharmacokinetic capabilities, many nucleoside-based esters show potential against microorganisms, and may be used as pharmacological agents to address multidrug-resistant pathogenic problems. In this study, several aliphatic and aromatic groups were inserted to synthesize various 5'-O-decanoyluridine (2-5) and 5'-O-lauroyluridine derivatives (6-7) for antimicrobial, in silico computational, pharmacokinetic and POM (Petra/Osiris/Molinspiration). The chemical structures of the synthesized uridine derivatives were confirmed by physicochemical, elemental, and spectroscopic analyses. In vitro antimicrobial screening against five bacteria and two fungi, as well as the prediction of substance activity spectra (PASS), revealed that these uridine derivatives have promising antifungal properties when compared to the antibacterial activities. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties. Molecular docking was conducted against lanosterol 14a-demethylase CYP51A1 (3JUV) and Aspergillus flavus (1R4U) and revealed binding affinities and non-covalent interactions with the target. Then, a 150 ns molecular dynamic simulation was performed to confirm the behavior of the complex structure formed by microbial protein under in silico physiological conditions to examine its stability over time, which revealed a stable conformation and binding pattern in a stimulating environment of uridine derivatives. The acyl chain {CH3(CH2)9CO-} and {CH3(CH2)10CO-} in conjunction with sugar, was determined to have the most potent activity against bacterial and fungal pathogens in a structure-activity relationships (SAR) investigation. POM analyses were conducted with the presence of an antifungal (O δ- -- O' δ-) pharmacophore site. Overall, the present study might be useful for the development of uridine-based novel multidrug-resistant antimicrobial.
Collapse
Affiliation(s)
- Nasrin S Munia
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohammed A Hosen
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Khaldun M A Azzam
- Pharmacological and Diagnostic Research Center (PDRC), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
| | - Mohammed Baashen
- Department of Chemistry, Science and Humanities College, Shaqra University, Shaqra, KSA
| | - Mohammed K Hossain
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Shafi Mahmud
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Mst S S Shimu
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Taibi B Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco
| | - Souad Naimi
- Department of Biological Sciences, Sanofi-Aventis, Vitry, France
| | - Sarkar M A Kawsar
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
21
|
Quan W, Lin Y, Xue C, Cheng Y, Luo J, Lou A, Zeng M, He Z, Shen Q, Chen J. Metabolic perturbations and health impact from exposure to a combination of multiple harmful Maillard reaction products on Sprague-Dawley rats. Food Funct 2022; 13:5515-5527. [PMID: 35522130 DOI: 10.1039/d2fo00143h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study aimed to investigate the metabolic perturbations and health impact of the co-accumulation of Maillard reaction products (MRPs), including acrylamide, harmane, and Nε-(carboxymethyl)lysine (CML), via serum biochemical and histopathological examinations as well as metabolomic analysis. Sprague-Dawley rats were treated with acrylamide (2 mg per kg body weight [bw]), harmane (1 mg per kg bw), CML (2 mg per kg bw), and combinations of these MRPs. Harmane did not cause adverse effects on the health of rats, whereas acrylamide and CML resulted in significantly (P < 0.05) decreased insulin sensitivity (HOMA-IR > 1), increased oxidative stress levels, and pathological injuries to the pancreas, liver, and gastrocnemius. Owing to the antioxidant and anti-diabetic activities of harmane, the effects of the combination of the MRPs on oxidative stress levels, blood glucose metabolism, and pathological injuries to the pancreas and gastrocnemius were relieved. However, new health problems, including pathological injury of the kidneys and increased cancer risk, were observed. Metabolomic analysis revealed that this may be related to the effects of MRPs on the arginine biosynthesis pathway, which resulted in the abnormal metabolism of fumaric acid and the tricarboxylic acid cycle. These results indicated that the mechanisms of the combined effect of MRPs and their effects on health cannot be predicted from the effects of individual MRPs.
Collapse
Affiliation(s)
- Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yong Lin
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
22
|
Matin MM, Uzzaman M, Chowdhury SA, Bhuiyan MMH. In vitro antimicrobial, physicochemical, pharmacokinetics and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease. J Biomol Struct Dyn 2022; 40:3668-3680. [PMID: 33297848 PMCID: PMC7738211 DOI: 10.1080/07391102.2020.1850358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 01/18/2023]
Abstract
Different esters were found potential against microorganisms, and could be a better choice to solve the multidrug resistant (MDR) pathogenic global issue due to their improved biological and pharmacokinetic properties. In this view, several 4-t-butylbenzoyl uridine esters 4-15 with different aliphatic and aromatic groups were synthesized for antimicrobial, physicochemical and biological studies. In vitro antimicrobial tests against nine bacteria and three fungi along with prediction of activity spectra for substances (PASS) indicated promising antifungal functionality of these uridine esters compared to the antibacterial activities. In support of this observation their cytotoxicity and molecular docking studies have been performed against lanosterol 14α-demethylase (CYP51A1) and Aspergillus flavus (1R51). Significant binding affinities were observed against SARS-CoV-2 main protease (7BQY) considering hydroxychloroquine (HCQ) as standard. ADMET predictions were investigated to evaluate their absorption, metabolism and toxic properties. Most of the uridine esters showed better results than that of the HCQ. Overall, the present study might be useful for the development of uridine-based novel MDR antimicrobial and COVID-19 drugs.
Collapse
Affiliation(s)
- Mohammed Mahbubul Matin
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh
| | - Monir Uzzaman
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh
- Faculty of Engineering, Department of Applied Chemistry and Biochemical Engineering, Shizuoka University, Hamamatsu, Japan
| | - Shagir Ahammad Chowdhury
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh
| | - Md. Mosharef Hossain Bhuiyan
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
23
|
Tian L, Pang Z, Li M, Lou F, An X, Zhu S, Song L, Tong Y, Fan H, Fan J. Molnupiravir and Its Antiviral Activity Against COVID-19. Front Immunol 2022; 13:855496. [PMID: 35444647 PMCID: PMC9013824 DOI: 10.3389/fimmu.2022.855496] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a major worldwide public health threat and economic burden. The pandemic is still ongoing and the SARS-CoV-2 variants are still emerging constantly, resulting in an urgent demand for new drugs to treat this disease. Molnupiravir, a biological prodrug of NHC (β-D-N(4)-hydroxycytidine), is a novel nucleoside analogue with a broad-spectrum antiviral activity against SARS-CoV, SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, respiratory syncytial virus (RSV), bovine viral diarrhea virus (BVDV), hepatitis C virus (HCV) and Ebola virus (EBOV). Molnupiravir showed potent therapeutic and prophylactic activity against multiple coronaviruses including SARS-CoV-2, SARS-CoV, and MERS-CoV in animal models. In clinical trials, molnupiravir showed beneficial effects for mild to moderate COVID-19 patients with a favorable safety profile. The oral bioavailability and potent antiviral activity of molnupiravir highlight its potential utility as a therapeutic candidate against COVID-19. This review presents the research progress of molnupiravir starting with its discovery and synthesis, broad-spectrum antiviral effects, and antiviral mechanism. In addition, the preclinical studies, antiviral resistance, clinical trials, safety, and drug tolerability of molnupiravir are also summarized and discussed, aiming to expand our knowledge on molnupiravir and better deal with the COVID-19 epidemic.
Collapse
Affiliation(s)
- Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shaozhou Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Junfen Fan, ; Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Junfen Fan, ; Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Junfen Fan, ; Huahao Fan, ; Yigang Tong, ; Lihua Song,
| | - Junfen Fan
- Department of Neurology, Institute of Cerebrovascular Disease Research, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Junfen Fan, ; Huahao Fan, ; Yigang Tong, ; Lihua Song,
| |
Collapse
|
24
|
Zhou D, Long C, Shao Y, Li F, Sun W, Zheng Z, Wang X, Huang Y, Pan F, Chen G, Guo Y, Huang Y. Integrated Metabolomics and Proteomics Analysis of Urine in a Mouse Model of Posttraumatic Stress Disorder. Front Neurosci 2022; 16:828382. [PMID: 35360173 PMCID: PMC8963102 DOI: 10.3389/fnins.2022.828382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a serious stress disorder that occurs in individuals who have experienced major traumatic events. The underlying pathological mechanisms of PTSD are complex, and the related predisposing factors are still not fully understood. In this study, label-free quantitative proteomics and untargeted metabolomics were used to comprehensively characterize changes in a PTSD mice model. Differential expression analysis showed that 12 metabolites and 27 proteins were significantly differentially expressed between the two groups. Bioinformatics analysis revealed that the differentiated proteins were mostly enriched in: small molecule binding, transporter activity, extracellular region, extracellular space, endopeptidase activity, zymogen activation, hydrolase activity, proteolysis, peptidase activity, sodium channel regulator activity. The differentially expressed metabolites were mainly enriched in Pyrimidine metabolism, D-Glutamine and D-glutamate metabolism, Alanine, aspartate and glutamate metabolism, Arginine biosynthesis, Glutathione metabolism, Arginine, and proline metabolism. These results expand the existing understanding of the molecular basis of the pathogenesis and progression of PTSD, and also suggest a new direction for potential therapeutic targets of PTSD. Therefore, the combination of urine proteomics and metabolomics explores a new approach for the study of the underlying pathological mechanisms of PTSD.
Collapse
Affiliation(s)
- Daxue Zhou
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Chengyan Long
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yan Shao
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yiwei Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Feng Pan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Chongqing Key Laboratory of Cytomics, Chongqing, China
- *Correspondence: Gang Chen,
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Yanlei Guo,
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Yi Huang,
| |
Collapse
|
25
|
Ye J, Jin Z, Chen S, Guo W. Uridine relieves MSCs and chondrocyte senescence in vitvo and exhibits the potential to treat osteoarthritis in vivo. Cell Cycle 2022; 21:33-48. [PMID: 34974808 PMCID: PMC8837230 DOI: 10.1080/15384101.2021.2010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of extremely high incidence in the elderly. Therefore, anti-aging may be an important prerequisite for treating OA. The senescence of chondrocytes and mesenchymal stem cells (MSCs) is one of the important factors that causes OA. Here, the effect of uridine (which is a functional food derived from plants or animals) on senescence of chondrocytes and MSCs was evaluated in in vivo and in vitro experiments. For this, we established the senescence model of chondrocyte and MSCs in vitro, and established the OA model in vivo, and a series of experiments (such as CLSM, ELISA, Western blot, etc.) were conducted to evaluate the effect of uridine on chondrocyte and MSCs senescence. The results showed that uridine could alleviate chondrocyte and MSCs senescence in vitro by evaluating a series of aging markers. Furthermore, uridine could also relieve OA in vivo. In summary, in the present work, we found that uridine can alleviate chondrocyte and MSCs senescence in in vitro and in vivo experiments. Uridine has shown great potential in the treatment of OA in vivo, suggesting that uridine could be used to treat and prevent OA induced by aging, and has potential clinical applications in future.
Collapse
Affiliation(s)
- Jia Ye
- Department of Orthopedics, People’s Hospital of Wuhan University, Wuhan, China,CONTACT Jia Ye Department of Orthopedics, People’s Hospital of Wuhan University, No. 99, Zhangzhidong Road, Wuchang District, Wuhan, Hubei, China
| | - Zhihui Jin
- Department of Orthopedics, People’s Hospital of Wuhan University, Wuhan, China
| | - Sen Chen
- Department of Orthopedics, People’s Hospital of Wuhan University, Wuhan, China
| | - Weichun Guo
- Department of Orthopedics, People’s Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Ostrakhovitch EA, Song ES, Macedo JKA, Gentry MS, Quintero JE, van Horne C, Yamasaki TR. Analysis of circulating metabolites to differentiate Parkinson's disease and essential tremor. Neurosci Lett 2021; 769:136428. [PMID: 34971771 DOI: 10.1016/j.neulet.2021.136428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022]
Abstract
Parkinson disease (PD) and essential tremor (ET) are two common adult-onset tremor disorders in which prevalence increases with age. PD is a neurodegenerative condition with progressive disability. In ET, neurodegeneration is not an established etiology. We sought to determine whether an underlying metabolic pattern may differentiate ET from PD. Circulating metabolites in plasma and cerebrospinal fluid were analyzed using gas chromatography-mass spectroscopy. There were several disrupted pathways in PD compared to ET plasma including glycolysis, tyrosine, phenylalanine, tyrosine biosynthesis, purine and glutathione metabolism. Elevated α-synuclein levels in plasma and CSF distinguished PD from ET. The perturbed metabolic state in PD was associated with imbalance in the pentose phosphate pathway, deficits in energy production, and change in NADPH, NADH and nicotinamide phosphoribosyltransferase levels. This work demonstrates significant metabolic differences in plasma and CSF of PD and ET patients.
Collapse
Affiliation(s)
| | - Eun-Suk Song
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica K A Macedo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jorge E Quintero
- Department of Neurosurgery, University of Kentucky, Lexington, KY, 40536, USA
| | - Craig van Horne
- Department of Neurosurgery, University of Kentucky, Lexington, KY, 40536, USA
| | - Tritia R Yamasaki
- Department of Neurology, University of Kentucky, Lexington, KY, 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA; Veterans Affairs Medical Center, Lexington, KY, 40536, USA
| |
Collapse
|
27
|
Shagufta, Ahmad I. An Update on Pharmacological Relevance and Chemical Synthesis of Natural Products and Derivatives with Anti SARS-CoV-2 Activity. ChemistrySelect 2021; 6:11502-11527. [PMID: 34909460 PMCID: PMC8661826 DOI: 10.1002/slct.202103301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
Natural products recognized traditionally as a vital source of active constituents in pharmacotherapy. The COVID-19 infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible, pathogenic, and considered an ongoing global health emergency. The emergence of COVID-19 globally and the lack of adequate treatment brought attention towards herbal medicines, and scientists across the globe instigated the search for novel drugs from medicinal plants and natural products to tackle this deadly virus. The natural products rich in scaffold diversity and structural complexity are an excellent source for antiviral drug discovery. Recently the investigation of several natural products and their synthetic derivatives resulted in the identification of promising anti SARS-CoV-2 agents. This review article will highlight the pharmacological relevance and chemical synthesis of the recently discovered natural product and their synthetic analogs as SARS-CoV-2 inhibitors. The summarized information will pave the path for the natural product-based drug discovery of safe and potent antiviral agents, particularly against SARS-CoV-2.
Collapse
Affiliation(s)
- Shagufta
- Department of Mathematics and Natural SciencesSchool of Arts and SciencesAmerican University of Ras Al KhaimahRas Al Khaimah Road, P. O. Box10021Ras Al Khaimah, UAE
| | - Irshad Ahmad
- Department of Mathematics and Natural SciencesSchool of Arts and SciencesAmerican University of Ras Al KhaimahRas Al Khaimah Road, P. O. Box10021Ras Al Khaimah, UAE
| |
Collapse
|
28
|
Two-dimensional correlation spectroscopy combined with deep learning method and HPLC method to identify the storage duration of porcini. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Krylova IB, Selina EN, Bulion VV, Rodionova OM, Evdokimova NR, Belosludtseva NV, Shigaeva MI, Mironova GD. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Sci Rep 2021; 11:16999. [PMID: 34417540 PMCID: PMC8379228 DOI: 10.1038/s41598-021-96562-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The effect of uridine on the myocardial ischemic and reperfusion injury was investigated. A possible mechanism of its cardioprotective action was established. Two rat models were used: (1) acute myocardial ischemia induced by occlusion of the left coronary artery for 60 min; and (2) myocardial ischemia/reperfusion with 30-min ischemia and 120-min reperfusion. In both models, treatment with uridine (30 mg/kg) prevented a decrease in cell energy supply and in the activity of the antioxidant system, as well as an increase in the level of lipid hydroperoxides and diene conjugates. This led to a reduction of the necrosis zone in the myocardium and disturbances in the heart rhythm. The blocker of the mitochondrial ATP-dependent potassium (mitoKATP) channel 5-hydroxydecanoate limited the positive effects of uridine. The data indicate that the cardioprotective action of uridine may be related to the activation of the mitoKATP channel. Intravenously injected uridine was more rapidly eliminated from the blood in hypoxia than in normoxia, and the level of the mitoKATP channel activator UDP in the myocardium after uridine administration increased. The results suggest that the use of uridine can be a potentially effective approach to the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Irina B Krylova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376.
| | - Elena N Selina
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Valentina V Bulion
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Olga M Rodionova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Natalia R Evdokimova
- Department of Neuropharmacology, Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia, 197376
| | - Natalia V Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Maria I Shigaeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - Galina D Mironova
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| |
Collapse
|
30
|
Liu Y, Xie C, Zhai Z, Deng ZY, De Jonge HR, Wu X, Ruan Z. Uridine attenuates obesity, ameliorates hepatic lipid accumulation and modifies the gut microbiota composition in mice fed with a high-fat diet. Food Funct 2021; 12:1829-1840. [PMID: 33527946 DOI: 10.1039/d0fo02533j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uridine (UR) is a pyrimidine nucleoside that plays an important role in regulating glucose and lipid metabolism. The aim of this study was to investigate the effect of UR on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet (HFD)-fed mice. ICR mice were, respectively, divided into 3 groups for 8 weeks, that is, control (CON, n = 12), high fat diet (HFD, n = 16), and HFD + UR groups (0.4 mg mL-1 in drinking water, n = 16). UR supplementation significantly reduced the body weight and suppressed the accumulation of subcutaneous, epididymal, and mesenteric WAT in HFD-fed mice (P < 0.05). Meanwhile, UR also decreased the lipid droplet accumulation in the liver and liver organoids (P < 0.05). In addition, UR supplementation increased bacterial diversity and Bacteroidetes abundance, and decreased the Firmicutes-to-Bacteroidetes ratio in HFD-fed mice significantly (P < 0.05). UR promoted the growth of butyrate-producing bacteria of Odoribacter, unidentified-Ruminococcaceae, Intestinimonas, Ruminiclostridium, and unidentified-Lachnospiraceae. A close correlation between several specific bacterial phyla or genera and the levels of WAT weight, hepatic TC, or hepatic TG genera was revealed through Spearman's correlation analysis. These results demonstrated that UR supplementation could be beneficial by attenuating HFD-induced obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yilin Liu
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China. and Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China.
| | - Chunyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China and Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Zhenya Zhai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China.
| | - Ze-Yuan Deng
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Hugo R De Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Xin Wu
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China. and Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China. and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zheng Ruan
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
31
|
Sun R, Wen Y, He H, Yuan L, Wan Y, Sha J, Dong J, Li Y, Li T, Ren B. Uridine in twelve pure solvents: Equilibrium solubility, thermodynamic analysis and molecular simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Blood metabolomics in infants enrolled in a dose escalation pilot trial of budesonide in surfactant. Pediatr Res 2021; 90:784-794. [PMID: 33469180 PMCID: PMC7814527 DOI: 10.1038/s41390-020-01343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The pathogenesis of BPD includes inflammation and oxidative stress in the immature lung. Corticosteroids improve respiratory status and outcome, but the optimal treatment regimen for benefit with low systemic effects is uncertain. METHODS In a pilot dose escalation trial, we administered ≤5 daily doses of budesonide in surfactant to 24 intubated premature infants (Steroid And Surfactant in ELGANs (SASSIE)). Untargeted metabolomics was performed on dried blood spots using UPLC-MS/MS. Tracheal aspirate IL-8 concentration was determined as a measure of lung inflammation. RESULTS Metabolomics data for 829 biochemicals were obtained on 121 blood samples over 96 h from 23 infants receiving 0.025, 0.05, or 0.1 mg budesonide/kg. Ninety metabolites were increased or decreased in a time- and dose-dependent manner at q ≤ 0.1 with overrepresentation in lipid and amino acid super pathways. Different dose response patterns occurred, with negative regulation associated with highest sensitivity to budesonide. Baseline levels of 22 regulated biochemicals correlated with lung inflammation (IL-8), with highest significance for sphingosine and thiamin. CONCLUSIONS Numerous metabolic pathways are regulated in a dose-dependent manner by glucocorticoids, which apparently act via distinct mechanisms that impact dose sensitivity. The findings identify candidate blood biochemicals as biomarkers of lung inflammation and systemic responses to corticosteroids. IMPACT Treatment of premature infants in respiratory failure with 0.1 mg/kg intra-tracheal budesonide in surfactant alters levels of ~11% of detected blood biochemicals in discrete time- and dose-dependent patterns. A subset of glucocorticoid-regulated biochemicals is associated with lung inflammatory status as assessed by lung fluid cytokine concentration. Lower doses of budesonide in surfactant than currently used may provide adequate anti-inflammatory responses in the lung with fewer systemic effects, improving the benefit:risk ratio.
Collapse
|
33
|
Discovery and comparison of serum biomarkers for diabetes mellitus and metabolic syndrome based on UPLC-Q-TOF/MS. Clin Biochem 2020; 82:40-50. [DOI: 10.1016/j.clinbiochem.2020.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/01/2020] [Accepted: 03/13/2020] [Indexed: 12/28/2022]
|
34
|
The unaided recovery of marathon-induced serum metabolome alterations. Sci Rep 2020; 10:11060. [PMID: 32632105 PMCID: PMC7338546 DOI: 10.1038/s41598-020-67884-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Endurance athlete performance is greatly dependent on sufficient post-race system recovery, as endurance races have substantial physiological, immunological and metabolic effects on these athletes. To date, the effects of numerous recovery modalities have been investigated, however, very limited literature exists pertaining to metabolic recovery of athletes after endurance races without the utilisation of recovery modalities. As such, this investigation is aimed at identifying the metabolic recovery trend of athletes within 48 h after a marathon. Serum samples of 16 athletes collected 24 h before, immediately after, as well as 24 h and 48 h post-marathon were analysed using an untargeted two-dimensional gas chromatography time-of-flight mass spectrometry metabolomics approach. The metabolic profiles of these comparative time-points indicated a metabolic shift from the overall post-marathon perturbed state back to the pre-marathon metabolic state during the recovery period. Statistical analyses of the data identified 61 significantly altered metabolites including amino acids, fatty acids, tricarboxylic acid cycle, carbohydrates and associated intermediates. These intermediates recovered to pre-marathon related concentrations within 24 h post-marathon, except for xylose which only recovered within 48 h. Furthermore, fluctuations in cholesterol and pyrimidine intermediates indicated the activation of alternative recovery mechanisms. Metabolic recovery of the athletes was attained within 48 h post-marathon, most likely due to reduced need for fuel substrate catabolism. This may result in the activation of glycogenesis, uridine-dependent nucleotide synthesis, protein synthesis, and the inactivation of cellular autophagy. These results may be beneficial in identifying more efficient, targeted recovery approaches to improve athletic performance.
Collapse
|
35
|
Wang Z, Yang L. Turning the Tide: Natural Products and Natural-Product-Inspired Chemicals as Potential Counters to SARS-CoV-2 Infection. Front Pharmacol 2020; 11:1013. [PMID: 32714193 PMCID: PMC7343773 DOI: 10.3389/fphar.2020.01013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
The novel and highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become a continued focus of global attention due to the serious threat it poses to public health. There are no specific drugs available to combat SARS-CoV-2 infection. Natural products (carolacton, homoharringtonine, emetine, and cepharanthine) and natural product-inspired small molecules (ivermectin, GS-5734, EIDD-2801, and ebselen) are potential anti-SARS-CoV-2 agents that have attracted significant attention due to their broad-spectrum antiviral activities. Here, we review the research on potential landmark anti-SARS-CoV-2 agents, systematically discussing the importance of natural products and natural-product-inspired small molecules in the research and development of safe and effective antiviral agents.
Collapse
Affiliation(s)
- Zhonglei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Liyan Yang
- School of Physics and Engineering, Qufu Normal University, Qufu, China
| |
Collapse
|
36
|
Mohandoss S, Atchudan R, Edison TNJI, Mishra K, Tamargo RJI, Palanisamy S, Yelithao K, You S, Napoleon AA, Lee YR. Enhancement of solubility, antibiofilm, and antioxidant activity of uridine by inclusion in β-cyclodextrin derivatives. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Zhang Y, Guo S, Xie C, Fang J. Uridine Metabolism and Its Role in Glucose, Lipid, and Amino Acid Homeostasis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7091718. [PMID: 32382566 PMCID: PMC7180397 DOI: 10.1155/2020/7091718] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Pyrimidine nucleoside uridine plays a critical role in maintaining cellular function and energy metabolism. In addition to its role in nucleoside synthesis, uridine and its derivatives contribute to reduction of cytotoxicity and suppression of drug-induced hepatic steatosis. Uridine is mostly present in blood and cerebrospinal fluid, where it contributes to the maintenance of basic cellular functions affected by UPase enzyme activity, feeding habits, and ATP depletion. Uridine metabolism depends on three stages: de novo synthesis, salvage synthesis pathway and catabolism, and homeostasis, which is tightly relating to glucose homeostasis and lipid and amino acid metabolism. This review is devoted to uridine metabolism and its role in glucose, lipid, and amino acid homeostasis.
Collapse
Affiliation(s)
- Yumei Zhang
- College of Bioscience and Biotechnology, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Songge Guo
- College of Bioscience and Biotechnology, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Chunyan Xie
- College of Bioscience and Biotechnology, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
38
|
Hamaloğlu KÖ. Nucleoside Isolation Performance of Ti4+/Zr4+ Immobilized Polydopamine Coated, Monodisperse-Porous Titania Microbeads. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01431-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
40
|
Zhang Y, Guo S, Xie C, Wang R, Zhang Y, Zhou X, Wu X. Short-Term Oral UMP/UR Administration Regulates Lipid Metabolism in Early-Weaned Piglets. Animals (Basel) 2019; 9:ani9090610. [PMID: 31461833 PMCID: PMC6770922 DOI: 10.3390/ani9090610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Uridine monophosphate (UMP) and uridine (UR) are rich in sow’s milk. The results from this study showed that UMP and UR affect the lipid profile and lipid metabolism in weanling piglets. It is suggested that UMP and UR improve the energy status in early-weaned piglets. Abstract As a main ingredient of milk, the nucleotides content is about 12–58 mg/g, which plays a critical role in maintaining cellular function and lipid metabolism. This study was conducted to evaluate the effects of short-term uridine monophosphate (UMP) and uridine (UR) administration on lipid metabolism in early-weaned piglets. Twenty-one weaned piglets (7 d of age; 3.32 ± 0.20 kg average body weight) were randomly assigned into three groups: The control (CON), UMP, and UR group, and oral administered UMP or UR for 10 days, respectively. The results showed that supplementation with UMP significantly increased (p < 0.05) serum low density lipoprotein (LDL) and tended to increase (p = 0.062) serum total cholesterol (TC) content of piglets when compared with the other two groups. Oral administration with UMP and UR significantly decreased (p < 0.05) the serum total bile acid (TBA) and plasma free fatty acids (FFA) of piglets, and significantly reduced the fatty acid content of C12:0 (p < 0.01) and C14:0 (p < 0.05) in liver. Experiments about key enzymes that are involved in de novo synthesis of fatty acid showed that the gene expression of liver X receptors (LXRα), sterol regulatory element-binding transcription factor 1 (SREBP1c), fatty acid desaturase 2 (FADS2), and fatty acid elongase 5 (ELOVL5) were remarkably down-regulated (p < 0.05) with UMP and UR treatment, and key factors of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and carnitine palmitoyl transferase 1 (CPT-1α) involved in fatty acid catabolism were also decreased (p < 0.05). Additionally, the protein expression of phosphorylated-mTOR was not affected while phosphorylation of AKT was repressed (p < 0.05). In conclusion, short-term oral UMP or UR administration could regulate fatty acid composition and lipid metabolism, thus providing energy for early-weaned piglets.
Collapse
Affiliation(s)
- Yumei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Songge Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Chunyan Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ruxia Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yan Zhang
- Meiya Hai'an pharmaceutical Co., Ltd., Hai'an 226600, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
41
|
Liu Y, Zhang Y, Yin J, Ruan Z, Wu X, Yin Y. Uridine dynamic administration affects circadian variations in lipid metabolisms in the liver of high-fat-diet-fed mice. Chronobiol Int 2019; 36:1258-1267. [DOI: 10.1080/07420528.2019.1637347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yilin Liu
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production
| | - Yumei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production
| | - Zheng Ruan
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Wu
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Yulong Yin
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| |
Collapse
|
42
|
Prabu S, Rajamohan R, Sivakumar K, Mohamad S. Spectral Studies on the Supramolecular Assembly of Uridine with β-Cyclodextrin and Its In Vitro Cytotoxicity. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1636831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Samikannu Prabu
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Rajaram Rajamohan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | | | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Alsaleh M, Barbera TA, Reeves HL, Cramp ME, Ryder S, Gabra H, Nash K, Shen YL, Holmes E, Williams R, Taylor-Robinson SD. Characterization of the urinary metabolic profile of cholangiocarcinoma in a United Kingdom population. Hepat Med 2019; 11:47-67. [PMID: 31118840 PMCID: PMC6507078 DOI: 10.2147/hmer.s193996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/06/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Outside South-East Asia, most cases of cholangiocarcinoma (CCA) have an obscure etiology. There is often diagnostic uncertainty. Metabolomics using ultraperformance liquid chromatography mass spectrometry (UPLC-MS) offers the portent to distinguish disease-specific metabolic signatures. We aimed to define such a urinary metabolic signature in a patient cohort with sporadic CCA and investigate whether there were characteristic differences from those in patients with hepatocellular carcinoma (HCC), metastatic secondary liver cancer, pancreatic cancer and ovarian cancer (OCA). Methods: Spot urine specimens were obtained from 211 subjects in seven participating centers across the UK. Samples were collected from healthy controls and from patients with benign hepatic disease (gallstone, biliary strictures, sphincter of Oddi dysfunction and viral hepatitis) and patients with malignant conditions (HCC, pancreatic cancer, OCA and metastatic cancer in the liver). The spectral metabolite profiles were generated using a UPLC-MS detector and data were analyzed using multivariate and univariate statistical analyses. Results: The greatest class differences were seen between the metabolic profiles of disease-free controls compared to individuals with CCA with altered acylcarnitine, bile acid and purine levels. Individuals with benign strictures showed comparable urine profiles to patients with malignant bile duct lesions. The metabolic signatures of patients with bile duct tumors were distinguishable from patients with hepatocellular and ovarian tumors, but no difference was observed between CCA cases and patients with pancreatic cancer or hepatic secondary metastases. Conclusion: CCA causes subtle but detectable changes in the urine metabolic profiles. The findings point toward potential applications of metabonomics in early tumor detection. However, it is key to utilize both global and targeted metabonomics in a larger cohort for in-depth characterization of the urine metabolome in hepato-pancreato-biliary disease.
Collapse
Affiliation(s)
- Munirah Alsaleh
- Division of Surgery and Cancer, Imperial College London, London
| | | | - Helen L Reeves
- Northern Institute for Cancer Research, Medical School, University of Newcastle, Newcastle upon Tyne, UK
| | | | - Stephen Ryder
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK.,NIHR Biomedical Research Unit, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - Hani Gabra
- Division of Surgery and Cancer, Imperial College London, London.,Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Kathryn Nash
- Liver Unit, Southampton General Hospital, Southampton, Hampshire, UK
| | - Yi-Liang Shen
- Division of Surgery and Cancer, Imperial College London, London.,Department of Radiation Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Elaine Holmes
- Division of Surgery and Cancer, Imperial College London, London
| | | | | |
Collapse
|
44
|
Wevers RA, Christensen M, Engelke UFH, Geuer S, Coene KLM, Kwast JT, Lund AM, Vissers LELM. Functional disruption of pyrimidine nucleoside transporter CNT1 results in a novel inborn error of metabolism with high excretion of uridine and cytidine. J Inherit Metab Dis 2019; 42:494-500. [PMID: 30847922 DOI: 10.1002/jimd.12081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
Genetic defects in the pyrimidine nucleoside transporters of the CNT transporter family have not yet been reported. Metabolic investigations in a patient with infantile afebrile tonic-clonic seizures revealed increased urinary uridine and cytidine excretion. Segregation of this metabolic trait in the family showed the same biochemical phenotype in a healthy older brother of the index. Whole exome sequencing revealed biallelic mutations in SLC28A1 encoding the pyrimidine nucleoside transporter CNT1 in the index and his brother. Both parents and unaffected sibs showed the variant in heterozygous state. The transporter is expressed in the kidneys. Compelling evidence is available for the disrupting effect of the mutation on the transport function thus explaining the increased excretion of the pyrimidine nucleosides. The exome analysis also revealed a pathogenic mutation in PRRT2 in the index, explaining the epilepsy phenotype in infancy. At present, both the index (10 years) and his older brother are asymptomatic. Mutations in SLC28A1 cause a novel inborn error of metabolism that can be explained by the disrupted activity of the pyrimidine nucleoside transporter CNT1. This is the first report describing a defect in the family of CNT concentrative pyrimidine nucleoside transporter proteins encoded by the SLC28 gene family. In all likelihood, the epilepsy phenotype in the index is unrelated to the SLC28A1 defect, as this can be fully explained by the pathogenic PRRT2 variant. Clinical data on more patients are required to prove whether pathogenic mutations in SLC28A1 have any clinical consequences or are to be considered a benign metabolic phenotype.
Collapse
Affiliation(s)
- R A Wevers
- Department Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - M Christensen
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - U F H Engelke
- Department Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - S Geuer
- Department Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Institut für Medizinische Diagnostik GmbH, Ingelheim, Germany
| | - K L M Coene
- Department Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - J T Kwast
- Department Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - A M Lund
- Department of Paediatrics and Clinical Genetics, Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - L E L M Vissers
- Department Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Diverse metabolic reactions activated during 58-hr fasting are revealed by non-targeted metabolomic analysis of human blood. Sci Rep 2019; 9:854. [PMID: 30696848 PMCID: PMC6351603 DOI: 10.1038/s41598-018-36674-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/21/2018] [Indexed: 12/30/2022] Open
Abstract
During human fasting, metabolic markers, including butyrates, carnitines, and branched-chain amino acids, are upregulated for energy substitution through gluconeogenesis and use of stored lipids. We performed non-targeted, accurate semiquantitative metabolomic analysis of human whole blood, plasma, and red blood cells during 34–58 hr fasting of four volunteers. During this period, 44 of ~130 metabolites increased 1.5~60-fold. Consistently fourteen were previously reported. However, we identified another 30 elevated metabolites, implicating hitherto unrecognized metabolic mechanisms induced by fasting. Metabolites in pentose phosphate pathway are abundant, probably due to demand for antioxidants, NADPH, gluconeogenesis and anabolic metabolism. Global increases of TCA cycle-related compounds reflect enhanced mitochondrial activity in tissues during fasting. Enhanced purine/pyrimidine metabolites support RNA/protein synthesis and transcriptional reprogramming, which is promoted also by some fasting-related metabolites, possibly via epigenetic modulations. Thus diverse, pronounced metabolite increases result from greatly activated catabolism and anabolism stimulated by fasting. Anti-oxidation may be a principal response to fasting.
Collapse
|
46
|
Deficiency of perforin and hCNT1, a novel inborn error of pyrimidine metabolism, associated with a rapidly developing lethal phenotype due to multi-organ failure. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1182-1191. [PMID: 30658162 DOI: 10.1016/j.bbadis.2019.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/25/2023]
Abstract
Pyrimidine nucleotides are essential for a vast number of cellular processes and dysregulation of pyrimidine metabolism has been associated with a variety of clinical abnormalities. Inborn errors of pyrimidine metabolism affecting enzymes in the pyrimidine de novo and degradation pathway have been identified but no patients have been described with a deficiency in proteins affecting the cellular import of ribonucleosides. In this manuscript, we report the elucidation of the genetic basis of the observed uridine-cytidineuria in a patient presenting with fever, hepatosplenomegaly, persistent lactate acidosis, severely disturbed liver enzymes and ultimately multi-organ failure. Sequence analysis of genes encoding proteins directly involved in the metabolism of uridine and cytidine showed two variants c.1528C > T (p.R510C) and c.1682G > A (p.R561Q) in SLC28A1, encoding concentrative nucleotide transporter 1 (hCNT1). Functional analysis showed that these variants affected the three-dimensional structure of hCNT1, altered glycosylation and decreased the half-life of the mutant proteins which resulted in impaired transport activity. Co-transfection of both variants, mimicking the trans disposition of c.1528C > T (p.R510C) and c.1682G > A (p.R561Q) in the patient, significantly impaired hCNT1 biological function. Whole genome sequencing identified two pathogenic variants c.50delT; p.(Leu17Argfs*34) and c.853_855del; p.(Lys285del) in the PRF1 gene, indicating that our patient was also suffering from Familial Hemophagocytic Lymphohistiocytosis type 2. The identification of two co-existing monogenic defects might have resulted in a blended phenotype. Thus, the clinical presentation of isolated hCNT1 deficiency remains to be established.
Collapse
|
47
|
Liu Y, Liu J, Ye S, Bureau DP, Liu H, Yin J, Mou Z, Lin H, Hao F. Global metabolic responses of the lenok (Brachymystax lenok) to thermal stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:308-319. [PMID: 30669055 DOI: 10.1016/j.cbd.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022]
Abstract
High temperature is a powerful stressor for fish living in natural and artificial environments, especially for cold water species. Understanding the impact of thermal stress on physiological processes of fish is crucial for better cultivation and fisheries management. However, the metabolic mechanism of cold water fish to thermal stress is still not completely clear. In this study, a NMR-based metabonomic strategy in combination with high-throughput RNA-Seq was employed to investigate global metabolic changes of plasma and liver in a typical cold water fish species lenok (Brachymystax lenok) subjected to a sub-lethal high temperature. Our results showed that thermal stress caused multiple dynamic metabolic alterations of the lenok with prolonged stress, including repression of energy metabolism, shifts in lipid metabolism, alterations in amino acid metabolism, changes in choline and nucleotide metabolisms. Specifically, thermal stress induced an activation of glutamate metabolism, indicating that glutamate could be an important biomarker associated with thermal stress. Evidence from Hsp 70 gene expression, blood biochemistry and histology confirmed that high temperature exposure had negative effects on health of the lenok. These findings imply that thermal stress has a severe adverse effect on fish health and demonstrate that the integrated analyses combining NMR-based metabonomics and transcriptome strategy is a powerful approach to enhance our understanding of metabolic mechanisms of fish to thermal stress.
Collapse
Affiliation(s)
- Yang Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Jiashou Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaowen Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dominique P Bureau
- Fish Nutrition Research Laboratory, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hongbai Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Jiasheng Yin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhenbo Mou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Hong Lin
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuhua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
48
|
Berrío Escobar JF, Márquez Fernández DM, Giordani C, Castelli F, Sarpietro MG. Anomalous interaction of tri-acyl ester derivatives of uridine nucleoside with a l-α-dimyristoylphosphatidylcholine biomembrane model: a differential scanning calorimetry study. J Pharm Pharmacol 2018; 71:329-337. [PMID: 30456846 DOI: 10.1111/jphp.13038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Uridine was conjugated with fatty acids to improve the drug lipophilicity and the interaction with phospholipid bilayers. METHODS The esterification reaction using carbodiimides compounds as coupling agents and a nucleophilic catalyst allowed us to synthesize tri-acyl ester derivatives of uridine with fatty acids. Analysis of molecular interactions between these tri-acyl ester derivatives and l-α-dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV) - as a mammalian cell membrane model - have been performed by differential scanning calorimetry (DSC). KEY FINDINGS The DSC thermograms suggest that nucleoside and uridine triacetate softly interact with phospholipidic multilamellar vesicles which are predominantly located between the polar phase, whereas the tri-acyl ester derivatives with fatty acids (myristic and stearic acids) present a strongly interaction with the DMPC bilayer due to the nucleoside and aliphatic chains parts which are oriented towards the polar and lipophilic phases of the phospholipidic bilayer, respectively. However, the effects caused by the tri-myristoyl uridine and tri-stearoyl uridine are different. CONCLUSIONS We show how the structural changes of uridine modulate the calorimetric behaviour of DMPC shedding light on their affinity with the phospholipidic biomembrane model.
Collapse
Affiliation(s)
- Jhon Fernando Berrío Escobar
- Productos Naturales Marinos, Departamento de Farmacia , Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Diana Margarita Márquez Fernández
- Productos Naturales Marinos, Departamento de Farmacia , Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Cristiano Giordani
- Productos Naturales Marinos, Departamento de Farmacia , Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia.,Instituto de Física, Universidad de Antioquia, UdeA, Medellín, Colombia
| | - Francesco Castelli
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Catania, Italia
| | | |
Collapse
|
49
|
Zhang K, Liu YL, Zhang Y, Zhang J, Deng Z, Wu X, Yin Y. Dynamic oral administration of uridine affects the diurnal rhythm of bile acid and cholesterol metabolism-related genes in mice. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1474844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Yi-lin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Yumei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Juan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
50
|
Escobar JFB, Restrepo MHP, Fernández DMM, Martínez AM, Giordani C, Castelli F, Sarpietro MG. Synthesis and interaction of sterol-uridine conjugate with DMPC liposomes studied by differential scanning calorimetry. Colloids Surf B Biointerfaces 2018; 166:203-209. [PMID: 29597153 DOI: 10.1016/j.colsurfb.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/14/2022]
Abstract
Differential scanning calorimetry (DSC) is a thermoanalytical technique which provides information on the interaction between drugs and models of cell membranes. Studies on the calorimetric behavior of hydrated phospholipids within liposomes are employed to shed light on the changes in the physico-chemical properties when interacting with drugs. In this report, new potential anti-cancer drugs such as uridine and uridine derivatives (acetonide and its succinate), 3β-5α,8α-endoperoxide-cholestan-6-en-3-ol (5,8-epidioxicholesterol) and conjugate (uridine acetonide-epidioxicholesterol succinate) have been synthesized. Steglich esterification method using coupling agents allowed to obtain the uridine acetonide-sterol conjugate. The study on the interaction between the drugs and dimiristoyl-phophatidilcholine (DMPC) liposomes has been conducted by the use of DSC. The analysis of the DSC curves indicated that the uridine and derivatives (acetonide and its succinate) present a very soft interaction with the DMPC liposomes, whereas the 5,8-epidioxicholesterol and the conjugate showed a strong effect on the thermotropic behavior. Our results suggested that the lipophilic character of uridine acetonide-sterol conjugate improves the affinity with the DMPC liposomes.
Collapse
Affiliation(s)
- Jhon Fernando Berrío Escobar
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Manuel Humberto Pastrana Restrepo
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Diana Margarita Márquez Fernández
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Alejandro Martínez Martínez
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Cristiano Giordani
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia; Instituto de Física, Universidad de Antioquia, UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Francesco Castelli
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Maria Grazia Sarpietro
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|